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Abstract. Teichmiiller theory for super Riemann surfaces is rigorously deve- 
loped using the supermanifold theory" of Rogers. In the case of trivial topology 
in the soul directions, relevant for superstring applications, the following results 
are proven. The super Teichmiiller space is a complex super-orbifold whose 
body is the ordinary Teichmiiller space of the associated Riemann surfaces with 
spin structure. For  genus g > 1 it has 3g-3 complex even and 29-2 complex 
odd dimensions. The super modular group which reduces super Teichmfiller 
space to super moduli space is the ordinary modular group; there are no new 
discrete modular transformations in the odd directions. The boundary of super 
Teichmiiller space contains not only super Riemann surfaces with pinched 
bodies, but Rogers supermanifolds having nontrivial topology in the odd 
dimensions as well. We also prove the uniformization theorem for super 
Riemann surfaces and discuss their representation by discrete supergroups of 
Fuchsian and Schottky type and by Beltrami differentials. Finally we present 
partial results for the more difficult problem of classifying super Riemann 
surfaces of arbitrary topology. 

1. Introduction 

Polyakov's bosonic string theory [13 is a theory of maps from a two-dimensional 
surface X into (Euclidean) spacetime, with action 

S = Sd2~/g9abC~aX"ObXu, 

X:~7--~ R 26 . (1.1) 

The world sheet metric gab is an auxiliary field which permits the action to be 
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expressed in local form. Quantization involves functional integration over the fields 
gab and X". In addition to reparametrization invariance, the action (1.1) has a Weyl 
invariance under conformal rescalings of the metric 

g,b ..+ ~gab, (1.2) 

with 1"2 a positive scalar function on 2;. To define the functional integral we pick 
a gauge-fixing slice transverse to the orbits of the Weyl and diffeomorphism groups 
in the space of metrics. This slice is a realization of the space of conformal equivalence 
classes of metrics modulo diffeomorphisms on 2;, which is also the moduli space 
of Riemann surface structures on 2:. Hence the amplitudes of the bosonic string 
theory can be expressed as integrals of various functional determinants over moduli 
space [-2, 3]. Such a representation of the amplitudes allows the use of powerful 
techniques of algebraic geometry to study their holomorphic structure, investigate 
their finiteness, and even compute them in terms of theta functions via the Selberg 
trace formula [2, 4]. Unfortunately, they are divergent. 

It is generally believed that the superstring does not suffer from the divergences 
of the bosonic string and may provide a realistic and predictive theory of all 
fundamental interactions. Accordingly, there is great interest in generalizing the 
algebraic geometry of moduli space to the superstring context. Several authors 
have computed the dimension of the gauge-fixing slice for the superconformal 
symmetries of 2D supergravity using index theorems [5, 6]. This only gives local 
information about the "super moduli space." The object of this paper is to study 
the space of super moduli in a global way, as done in the Teichmiiller theory of 
Riemann surfaces. We provide a rigorous foundation for the theory of super 
Riemann surfaces, proving all the basic results necessary for applications to 
superstrings. 

Teichmfiller theory constructs a certain covering space of the moduli space of 
all complex structures on 27. In the course of the construction it is shown that 
complex structures are in 1-1 correspondence with conformal equivalence classes 
of metrics. The construction of Teichmfiller space proceeds via a passage to the 
universal covering space of 27, which is shown to be the Riemann sphere, complex 
plane, or upper half plane by the uniformization theorem. The complex structures 
on 27 are then parametrized by representing each generator of zc 1 (27) by a PSL(2, C) 
transformation acting on the covering space. The parameters of the PSL(2, C) 
elements give coordinates on Teichmfiller space. The moduli space is obtained as 
the quotient by the modular group which acts by changing the choice of generators 
of rq (27). 

Using Friedan's global definition of a super Riemann surface [TJ we are able 
to repeat this entire construction. This :is one of the few applications of superspace 
in physics which seems to require a rigorous mathematical theory of supermanifolds 
rather than just an intuitive manipulation of anticommuting variables. By 
employing Rogers' theory of supermanifolds [-8-10] we maintain full rigor while 
staying close to our intuitive notion of superspace. In Sect. 2 we define super 
Riemann surfaces, specifying in particular their global topology, and describe the 
supergroup which generalizes PSL(2,C). In Sect. 3 we construct the super 
Teichmiiller space by the procedure outlined above. We show that it is the quotient 
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of a real supermanifold by a Z 2 symmetry with fixed points, hence a super-orbifold, 
and compute its dimension, which agrees with the result from 2D supergravity. 
The description of supertori in terms of superlattices is worked out explicitly with 
attention to the dependence of the results on spin structure. Some technical aspects 
of the uniformization theorem are postponed to Sect. 4. In Sect. 5 we show how 
to describe super Riemann surfaces in terms of Beltrami differentials, deriving the 
super Beltrami equations and discussing the uniqueness of their solutions. This 
machinery allows us to embed the double cover of super Teichmiiller space in a 
space of superdifferentials of weight 3/2, thereby exhibiting its complex structure; 
to represent super Riemann surfaces by Schottky supergroups; and to define a 
universal super Teichmfiller space. It should make possible deeper studies of the 
geometry of super moduli space as well. Some of our results have been announced 
by other authors [7,11, 12], but without the rigorous proofs provided here. In 
Sect. 6 we briefly consider super Riemann surfaces with nontrivial topology in the 
anticommuting directions. We sketch arguments for a uniformization conjecture 
for them and explain why they do not contribute to the superstring path integral. 
Section 7 contains our conclusions. 

2. Definitions 

We adopt Friedan's definition of a super Riemann surface (SRS) [7], which we 
make rigorous by combining it with Rogers' general theory of supermanifolds 
[8-10]. Thus, a SRS will be a complex supermanifold of dimension (1, 1) whose 
transition functions are superconformal maps. We now explain this definition in 
detail. 

In each coordinate chart of a SRS there will be one complex even coordinate 
z and one complex odd coordinate 0. These coordinates take their values in a fixed 
Grassmann algebra B L having L anticommuting generators vl, v2 ... .  , v L. Thus, 

Z = Z o -}- Zi) ~ i  -}" "'" = Z F~ F, 

0 = Oivi + Ou~vuk + "'" = Orvr ,  (2.1) 

where Vr denotes the product of all the v~ whose subscripts appear in the sequence 
F, and Vo = 1. The coefficients Zr,  Or are ordinary complex numbers. Sometimes 
we will use Z to denote either or both of z and 0. The complex number Zo is called 
the body of z, while the remainder z -Zo is its soul; 0 has no body and is pure 
soul. A SRS can always be viewed as an ordinary complex manifold of dimension 
2 L by using the Z r  as complex coordinates. This is a major advantage of Rogers' 
theory: topological properties of SRS's are as well defined as those of ordinary 
manifolds. 

The transition functions relating coordinates in overlapping charts on the SRS 
are required to be both complex analytic and superanalytic, meaning that they 
take the form, 

= f ( z )  + O~(z), 

= tp(z) + 09(z). (2.2) 
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Furthermore the component functions f ,  (, q,, g have Taylor expansions in powers 
of the soul of z, for example 

f (z) = f (zo) + (z - zo) f ' (zo)  +. . . ,  (2.3) 

with f (zo)  analytic. This series always terminates because z -  z 0 is nilpotent, so 
the component functions are uniquely specified once known for soulless values of z. 

We are assuming the Grassmann algebra BL to be finite-dimensional in order 
to avoid questions of convergence. However, this assumption creates its own 
technical difficulties stemming from the fact that the derivative ~/~0 does not obey 
the Leibniz rule in a finite-dimensional algebra. To see the problem, consider 
~(Ovl 2...L)/OO. If the Leibniz rule were valid, this derivative would have to be v t 2...L, 
but the function being differentiated is identically zero! Since we will need the 
Leibniz rule on several occasions, such as Eq. (2.4) below, we handle this problem 
by the method suggested recently by Rogers [13-]. We restrict the components 
f(zo),  ~(Zo) of all superanalytic functions F(z, O) = f ( z )  + O((z) to take values in the 
subalgebra BL-1 generated by vl,v2 . . . . .  vL-~. Then the components cannot 
contain any term proportional to v~2...L and the problem is resolved. The results 
to be obtained in this paper will hold for all finite values of L and in the limit L--+ o0. 

We must now impose the condition that the transition functions (2.2) be 
superconformal [7, 14, 15]. In each chart there is a derivative operator 

D=~--o+O~--~ D 2 ' = ~ z z '  ( 2 . 4 )  

which transforms according to 

D = (DO')~3 + (D~ - OD 0)I3 2. (2.5) 

By analogy with the behavior of ~/Oz on a Riemann surface, we demand that D 
transform homogeneously, so that D = (DO)D. This imposes the constraint 

D~ = OD O, (2.6) 

which becomes explicitly 

( = g ~ ,  g2 = f ,  + ~/~/. (2.7) 

Thus, a general superconformal map takes the form, 

~= f + O~ x S f  7, 

+ + (2.8) 

It is specified by the two Bt . - :va lued analytic functions f (zo)  and ~,(zo). 
There is an equivalent definition of a superconformal map which we will find 

more useful. Requiring the 1-form dz + OdO to transform homogeneously leads to 
the same conditions (2.7) and the transformation law 

d~ + 0d0"= (D0") 2 (dz + OdO). (2.9) 

(Our convention for 1-forms is that dO commutes with itself but anticommutes 
with dz and with 0.) This works because dz + OdO and dO constitute the basis of 
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1-forms dual to the basis D, D 2 of vector fields. The object dZ defined by Friedan 
[7] via its transformation law dZ = (DO)dZ can be viewed as a square root of 
dz + OdO in the sense of haft-forms. 

So far we have defined a Rogers SRS whose global topology may be very 
complicated: in particular, nontrivial topology in the 0 dimensions is possible E9,10]. 
For  applications to superstrings the more restricted topology of a DeWitt 
supermanifold [163 is appropriate. To implement this restriction we require that 
each coordinate chart of the SRS may not be an arbitrary open set but instead 
must be the Cartesian product of an open set in the Zo plane with the entire complex 
planes of the other coordinates Zr.  This effectively trivializes the topology in all 
but the Zo dimension. From now on the unqualified term "SRS" will imply this 
DeWitt topology. When we discuss Rogers SRS's we will explicitly identify them 
as such. 

To every (DeWitt) SRS M there is associated a corresponding Riemann surface 
Mo, called the body of M, with a particular spin structure. The charts on Mo are 
the projections on the z 0 plane of the charts on M, and its transition functions 
are the bodies fo(Zo). Then the f'o(Zo) are the transition functions of the tangent 
bundle of Mo, and a choice of square roots of these functions defines a spin structure 
[17]. Since the square root of a Grassmann number can be found as an expansion 
about the square root of its body in powers of its soul, such a choice of square 
roots is implicit in Eqs. (2.8). M is a fiber bundle over Mo having a vector space 
as fiber, but it is not strictly speaking a vector bundle because the transition 
functions need not be linear in the fiber coordinates. Conversely, given a Riemann 
surface M o with spin structure, there is a canonical SRS M whose body is M o. 
The charts on M are the Cartesian products of the charts on M0 with the entire 
complex planes in the soul coordinates, and its transition functions have f(zo) 
equal to the transition functions of M o, and ~(z0) -- 0, with the square roots in 
Eqs. (2.8) defined via the given spin structure. An important question which will 
be answered (in the negative) by the Teichmfiller theory we will develop is whether 
every SRS is equivalent to one of these canonical ones. 

Because the plane C, the Riemann sphere C*, and the upper half-plane U are 
simply connected, they have unique spin structures. Therefore there are unique 
canonical SRS's over these Riemann surfaces, whicl~ we denote by SC, SC*, and 
SU. The group of superconformal automorphisms of SC* is the natural generaliz- 
ation of the group of fractional linear transformations and will play a central role 
in our work [7, 14, 15]. We now determine this group, which Friedan calls SL 2 
and which we will denote as SPL(2, C). Each element of the group is specified by 
functions f(zo) and ~(Zo). Certainly the body of f(zo) must be a MSbius 
transformation, 

aoZo + bo 
fo(Zo) = CoZo + do. (2.10) 

At first it seems that there are no constraints on ~(Zo) or on the soul of f(zo), 
because a superanalytic map is invertible whenever its body is: the inverse can be 
found as an expansion about the inverse of the body in powers of the soul [16]. 
However the situation is more subtle because of the pole in Eq. (2.10). Certainly 
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an expansion in powers of the soul is not valid if the soul has a pole at a point 
where the body is finite. The soul may have poles where the body does, but they 
cannot be poles of arbitrarily high order or again the expansion fails. Indeed, in 
the neighborhood of a pole we use the transition functions of SC* to replace 
(~, 0) by ( - 1/~, 0/~), which must make the soul as well as the body finite. The most 
general functions satisfying these conditions are 

f ( zo  ) az o + b  a d - b c = l ,  
cz o + d ' 

~'(Zo) - ~Zo + a 
cz o + d '  (2.11) 

depending on three independent even parameters in B L_ 1 and two odd ones. Thus 
we obtain the general group element 

a z + b  y z + 6  
= - -  + 0 (cz cz + d + d) z ' 

0"= 7z + 6 c z ~  cz + d + (1 + ½ 67). (2.12) 

The group SPL(2,  C) so defined is obtained by exponentiating the subalgebra of 
the Neveu-Schwarz algebra generated by L_ 1, Lo, L1, G_ 1/2, and G1/2. If any other 
generators are included, all others are produced by commutation, leading to poles 
of arbitrarily high order, which is unacceptable. 

Given three points of SC*, there are exactly two SPL(2, C) transformations 
which send two of them, as well as the even coordinate of the third, to specified 
values. For example, the points (z,O)= (0,0), (1,0) and the even coordinate of 
(~ ,  0) are fixed by both the identity and the fermionic inversion I:~ = z, 0'= - 0 .  
The fact that I cannot be distinguished from the identity by its action on these 
points will lead to a fundamental Zz ambiguity in the Teichmiiller theory in Sects. 3 
and 5. An element of SPL(2,  C) can be characterized in terms of its fixed points 
and multiplier, just as is true for ordinary M6bius transformations [12]. 

Associated to any subgroup G of SPL(2, C) is the group Go of fractional linear 
transformations which are the bodies (2.10) of the elements of G. If G acts on some 
SRS M, then Go acts on Mo. Specifically, if Xo is a point of Mo and q0 an element 
of Go, take any point x in the fiber of M lying over x o and any element q of G 
with body q0. Then define qoXo to be the body of qx, which does not depend on 
the choice of x and q. 

3. Uniformization 

In this section we wilt prove the uniformization theorem for SRS's, which states 
that any "metrizable" SRS is SC* or a quotient of SC or SU by a subgroup of 
SPL(2, C). As a corollary we learn that the super Teichmiiller space is a real 
super-orbifold and determine its dimension and its body. As an illustration we 
explicitly work out the groups representing super tori. This genus 1 case is 



Super Riemann Surfaces 607 

exceptional in that the dimension of the super Teichmfiller space depends on spin 
structure. 

Let M be an arbitrary SRS and M o its body. Since M is a bundle over Mo 
with contractible fibers, its universal covering space 3~ is also such a bundle over 
3Jo, the universal cover of Mo. M can be given a SRS structure such that the 
covering group acts by superconformal transformations and the body is ATI o. By 
the uniformization theorem for Riemann surfaces we know that M0 is C, C*, or 
U [18, 19]. In the next section we will use sheaf cohomology methods to prove 
that the canonical SRS's SC, SC*, and SU are in fact the only SRS's over these 
Riemann surfaces. This will show that any SRS is a quotient of SC, SC*, or SU 
by a group G of superconformal automorphisms. Furthermore, G is isomorphic 
to the fundamental group ~1 (M). Since M is a fiber bundle with a vector space as 
fiber, this in turn is isomorphic to Tcl(Mo), a discrete group. Hence G is known to 
be discrete. 

In order for the quotient space M/G to be a manifold, G must act properly 
discontinuously: each point of M must have an open neighborhood which does 
not intersect any of its images under group transformations (other than the identity). 
If the open neighborhoods in this definition can be arbitrary, then the quotient 
space in general will be a Rogers SRS. To ensure that the quotient is a DeWitt 
SRS, the neighborhoods satisfying the above condition must be open in the DeWitt 
sense: they must be cylinders over open sets in Mo. This in turn is possible iff the 
associated M6bius group Go acts properly discontinuously on the body M o. A 
simple example illustrating these points is provided by supersymmetry. The group 
G generated by 

~=z+O~, g=0+~ (3.1) 

for some fixed 6 acts properly discontinuously on SC, but Go consists of the identity 
map alone. The body is actually fixed by the transformation, and taking the quotient 
SC/G renders the fibers nonsimply connected while leaving the body unchanged [9]. 

Since no M6bius transformation acts properly discontinuously on the body 
C* of SC*, no new SRS's can be obtained as quotients of SC*. So we know that 
any SRS is either SC* or a quotient of SC or SU by a group of superconformal 
automorphisms which acts properly discontinuously on the body. Unfortunately, 
it is not true that all superconformal automorphisms of SC and SU belong to 
SPL(2, C). Since C and U do not contain the point at infinity, we no longer have 
the constraints on the behavior of superconformal maps at their poles which gave 
us the group SPL(2, C) for the Riemann sphere. A superconformal automorphism 
of SC or SU need only have a fractional linear transformation as its body-- i ts  
soul is unrestricted. For example, the superconformal transformation 

5= z + l + Orlz", O = O + tlz", (3.2) 

does not belong to SPL(2, C) for n > 1, but it is nevertheless an automorphism of SC. 
For applications to superstrings, however, more than just a SRS structure is 

required. There must be enough geometric structure to construct an integration 
measure and invariant Lagrangian for world sheet supergravity. For Riemann 
surfaces the existence of a metric is automatic, but not every SRS admits a metric 
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generalizing the metric on its body. For  physical applications, then, we must restrict 
ourselves to "metrizable" SRS's. For  example, on SU there is a generalization of 
the Poincar~ metric, 

ds = (Imz + ½00)- l ldz + OdO], (3.3) 

which is invariant under SPL(2, R) but not under larger superconformal groups 
[11]. Here SPL(2, R) is the subgroup of SPL(2, C) for which the even parameters 
are all real (d = a, etc.) and the odd parameters are restricted by ~7 -- iy, etc. This 
restriction ensures that the product of two odd parameters will be a real even 
parameter. Heuristically, one can think of SPL(2, R) as the subgroup of SPL(2, C) 
which fixes the "superboundary" SR of SU, namely the set ~ = z, 0-= iO. The 
superboundary is not the boundary of SU as a manifold because it has half the 
dimension of SU rather than the dimension minus one, but unlike the true boundary 
SR is a supermanifold. Similarly the metric 

ds = Idz + OdOj (3.4) 

on SC is only invariant under a subgroup of SPL(2, C). Thus the uniformization 
theorem which is needed for physical applications states that any metrizable SRS 
is either SC* or a quotient of SC or SU by a discrete subgroup of SPL(2, C). This 
subgroup is isomorphic to the fundamental group of the body and is unique up 
to conjugation. 

It is not quite clear that the physical requirement for superstring applications 
is the existence of the metrics described above, because 2D supergravity is not a 
Riemannian supergeometry based on a metric but instead involves covariant 
derivatives with torsion. The metrics above also cannot be directly relevant to the 
heterotic string because they depend on gas well as 0. However, in 2D supergravity 
one does make use of a frame on the SRS which is constructed from a metric (or 
the associated zweibein) on its body as well as a gravitino field which can be locally 
gauged away. Therefore the constant curvature metric on the body must extend 
to a function of z which is invariant under the bosonic parts of the superconformal 
automorphisms. The fermionic parts mix this metric with the gravitino. This 
certainly restricts the bosonic parts of the automorphisms to be those of SPL(2, C) 
elements, but it restricts the fermionic parts as well since the fermionic parts of 
two group elements contribute to the bosonic part of their product. In this way 
one is again led to the metrizability condition. The same is true in "heterotic 
geometry" [20], although this is a somewhat different construction in which only 
the bosonic parts of superconformal maps are used as transition functions of the 
SRS while the fermionic parts act in the tangent space. 

In addition to this general argument, a specific one can be given for the 2D 
supergravity describing the nonchiral spinning string. In this case the "metrics" ds 
above should be reinterpreted as the norms of the even component of the frame 
field E~= dZME~ on SU and SC. Invariance of the "metric" translates into 
invariance of E z up to a phase, which is invariance up to a rotation by the tangent 
space group U(1) in two dimensions. This is certainly necessary for the SRS to 
inherit a supergravity frame field from its covering space. It is also sufficient, since 
an odd component E ° can be found such that the complete frame is invariant up 
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to a U(1) rotation. The complete frame fields are 

E z = dz + Od O, E ° = dO, (3.5) 

for SC; and 

E z = (Im z + ½00)-~ (dz + OdO), 

E°=Omz+½OU)- l /ZdO+½(iO-O)(Imz+½OO)-3/Z(dz+OdO),  (3.6) 

for SU. 
Having proven the uniformization theorem, we can now describe the super 

Teichmiiller space for genus g, STg. It is defined as the space of marked metrizable 
SRS's M having compact bodies of genus g, where a marking is a specific choice 
of generators for ~I(M). Dropping the marking defines the super moduli space. 
For genus g > 1, representing the SRS as a quotient of SU by a (Fuchsian) subgroup 
G of SPL(2, R) having 29 generators ql, q2 . . . .  , q2g provides 69 even and 4g odd 
parameters. These parameters are not all independent, however, since there is the 
freedom of an overall conjugation as well as a single relation among the generators 
of the fundamental group. Indeed, by an SPL(2, R) conjugation we can move the 
fixed points of ql to (z, 0) = (0, 0), (~ ,  0) and specify the even coordinate of the 
attractive fixed point of q2. There are in fact two conjugations that do this, differing 
by the inversion I. [In principle we are free to conjugate by superconformal 
automorphisms of SU lying outside SPL(2, R) as well, but such a conjugation 
would take the qi out of SPL(2, R).] The group relation 

ql qzq~ ~ q~ 1... q2g- 1 q2gq2a 1-1 q2g: = 1 (3.7) 

then imposes three more even and two odd conditions. Each point of S T  o can 
therefore be described by 69-6 independent even parameters and 4g-4 odd 
ones, and this can be done in two different ways depending on which of the two 
possible conjugations is chosen. Since conjugation by 1 changes the signs of the 
odd parameters of an SPL(2, C) element while leaving the even ones unchanged, 
the two descriptions are related by changing the signs of the odd parameters. This 
means that S T  o has a double cover which is a real supermanifold of dimension 
(6g-6, 49-4). It is also a complex supermanifold, but we will not be able to prove 
this until Sect. 5. The only restrictions on the values of the parameters come from 
the requirement that the group act properly discontinuously on the body, which 
affects only the bodies of the parameters. Thus the soul coordinates are unrestricted, 
so the supermanifold is of the DeWitt type. ST, itself is a super-orbifold, the singular 
points being those whose odd parameters vanish. The body of STg is identified 
with the equivalence classes of canonical SRS's, whose transition functions are 
soulless. But these are in 1-1 correspondence with Riemann surfaces with spin 
structure. Hence the body of STg is precisely the ordinary Teichmiiller space of 
Riemann surfaces with spin structure, which is a 2~g-sheeted covering of the 
Teichmfiller space T o. This incidentally implies that any metrizable SRS is a 
deformation of a canonical one. This is the analogue of Rothstein's theorem that 
any complex (Berezin-Leites-Kostant) supermanifold is a deformation of a vector 
bundle [21]. 

In a previous version of this paper we indicated that by omitting metrizability 
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from the definition of super Teichmfitler space, one would obtain an object which 
is infinite-dimensional and not a supermanifold. Recently, however, Hodgkin has 
shown that metrizability is a superfluous assumption for SRS's having compact 
bodies; precisely the same space STg is defined without including any metrizability 
requirement [22]. This is surprising because infinitely many parameters should be 
required to describe 29 superconformal automorphisms of SU representing the 
generators of re1 of an arbitrary SRS. The implication of Hodgkin's result is that 
any set of 29 automorphisms obeying the relation (3.7) can in fact be brought into 
SPL(2, R) by a conjugation. 

Next we can discuss the reduction of STg to the super moduli space. In order 
to obtain coordinates on ST o we had to choose a specific set of generators for the 
fundamental group of a SRS, then represent these generators by SPL(2, R) elements. 
To pass to super moduli space we must eliminate the dependence on the choice 
of generators. There will be infinitely many points of ST o which describe the same 
group in terms of different sets of generators. The transformations of ST o which 
take such points into one another form the super modular group, and super moduti 
space is the quotient of STg by this group. Because the fundamental group of a 
SRS is isomorphic to that of its body, changing the choice of generators of zc 1 (M) 
is equivalent to changing the choice of generators of rcl(Mo). Hence the super 
modular group is isomorphic to the ordinary modular group for genus 9. (This 
does not mean that it acts trivially on the odd coordinates of ST o. The groups are 
isomorphic, but they act on different spaces.) No "super extension" of the modular 
group appears for SRS's with the DeWitt topology, although it certainly would 
for general Rogers SRS's. The body of super modufi space is again a 22°-sheeted 
covering of the moduli space of the body, but is branched at points where the 
Riemann surface has automorphisms taking one spin structure into another. 

We have not yet discussed the super Teichmiiller space in the genus 1 case. 
We will now work it out explicitly as a concrete illustration of the above ideas. 
The existence of a conformal Killing spinor for the trivial spin structure in this 
case means that the corresponding sheet of STI will have a different dimension 
than the other sheets. 

A super torus is obtained as the quotient of SC by a subgroup of SPL(2, C) 
having two generators of the form (2.12). This subgroup must act properly 
discontinuously on the body C, which requires Co = 0, a 2 = 1, and bo -¢ 0. If the 
super torus is to be metrizable, then invariance of the metric (3.4) strengthens these 
conditions to c = 0, a 2 =  1, 7 = 0, and b o ~ O. SPL(2, C) elements with c = 7 = 0 
take the form, 

= a Z z  + ab + a203, 

O = a(O + ,5). (3.8) 

We represent the two generators by the ordered triples (a, b, 6) and (a', b', 6'). The 
choice of signs for a and a' determines the spin structure. The composition law 
for the transformations (3.8) is 

(a',b',3')(a,b,b)= a 'a ,a 'b+- -+d&5' ,3+ . (3.9) 
a 
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Next we need to determine how much the generators can be simplified by conju- 
gation, and when such generators commute (re1 of the torus is Abelian). We find 

(A,B,A)-I(a,b,6)(A,B,A) = [a, bA -2 + (a + 1)A6A-I,(1 - a)A + 6A-~], (3.10) 

and 
(a',b',6')-1(a,b,6)-l(a',b',6')(a,b, 6) 

= [1,(aa' + a + a ' -  1)88', (1 - a' )6-  (1 - a)6'], (3.11) 

where we have used a 2 = a '2 = 1. Note that the commutator (3.11) is a pure soul 
transformation. This means that if we dropped the requirement that the generators 
commute the quotient space would be a Rogers SRS. 

Consider first the case of a nontrivial spin structure, so that a and a' are not 
both 1; for definiteness assume a = - 1. Then by a conjugation (3.10) we can set 
b to unity and 6 to zero, whereupon commutativity requires 8' = 0 as well. Hence 
the generators can be chosen to be ( - 1, t, 0) and ( _+ 1, b', 0), with one complex 
even parameter and no odd ones. The three sheets of ST1 describing nontrivial 
spin structures are supermanifolds of complex dimension (1, 0). 

For the trivial spin structure a = a' = 1, the conjugation (3.10) can set b to unity 
but cannot set 6 to zero. This reflects the existence of the conformal Killing spinor. 
Nevertheless, 6 can be set to zero by conjugation with the SPL(2, C) element 

~=z+O6z, O=O+~z, (3.12) 

without changing the form of the other generator. Commutativity imposes no 
restriction on 8' in this case, so the generators can be chosen to be (1, 1, 0) and 
(1, b',6'), with one even and one odd complex parameter. However, this sheet of 
ST1 is not quite a supermanifold of complex dimension (1, 1). Conjugation by the 
inversion I shows that changing the sign of 6' does not change the super torus. 
The trivial sheet of ST~ is obtained by identifying (b', 6') with ( b ' , -  6') in the 
parameter space. Since the points with 6' = 0 are fixed by this Z2 symmetry, the 
result is a super-orbifold. 

It is clear from the super torus example that small changes in the group 
parameters of a DeWitt SRS can produce a Rogers SRS. The super Teichmiiller 
space sits inside a larger space of Rogers SRS's and its boundary contains Rogers 
SRS's with nontrivial topology in soul directions. In general one can approach the 
boundary by sending the group parameters toward values for which the action 
on the body is not properly discontinuous. During this process one can always 
adjust the souls of the parameters in such a way that the action on the entire 
supermanifold remains properly discontinuous. The boundary point then repre- 
sents a Rogers supermanifold. In effect, the souls of the group parameters can be 
used to regulate the pinch singularity on the body, replacing it with a compacti- 
fication in the soul dimensions. This type of nonsingular representation of pinched 
surfaces may be convenient in some applications. 

4. Deformation of SRS Structure 

In this section we will complete the proof of the uniformization theorem by showing 
that SC*, SC, and SU are the unique SRS's having simply connected Riemann 
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surfaces as bodies. Our method is essentially to treat an arbitrary SRS over C*, 
C, or U as a deformation of the canonical one. We then use the standard sheaf 
cohomology methods of deformation theory to show that the deformation is trivial. 
This means that the transition functions of the SRS can be brought to the canonical 
soulless form by redefining the coordinates in the charts. An excellent if lengthy 
account of deformation theory for complex manifolds can be found in 1-23]. 

Let M be a SRS with simply connected body Mo. If {U ~} is an atlas of charts 
for Mo, then the cylinders over the U ~ are charts on M. The structure of M is 
completely characterized by the functions f~P(z~o) and ~k'P(z~o) which specify the 
superconformal transformation from Z p to Z" in the region above U'c~ U p. Of 
course, many different sets of functions describe the same SRS, because a 
superconformal redefinition of coordinates in any chart will change the transition 
functions but not the SRS structure. Hence a SRS corresponds to a collection of 
transition functions modulo coordinate redefinitions. 

The consistency condition satisfied by the transition functions on triple overlaps 
U ~ c~ U g c~ U ~ is of crucial importance. Changing coordinates from Z ~ to Z p and 
then to Z ~ must give the same result as changing directly from Z ~ to ZL This 
imposes the "cocycle conditions," 

f~,  = f~ls(fp,) + ~kp, O~( f p , ) x /  f~p" (fp,), (4.1a) 

0 ~' = O~P(f p') + OP'x/f~P'(f  p') + O~P(fP')~P'(f~'). (4.1b) 

The summation convention will not apply to the Greek indices in this and 
subsequent equations. We expand the transition functions in the basis of B z and 
consider separately their soul components f]~, O]~, F # 0, showing by induction 
on the length of the sequence F that they can all be set to zero by superconformal 
coordinate redefinitions. This will show that M is equivalent to a canonical SRS. 
(We need not consider the body component fgP, since it is well known that Mo 
admits only one complex structure.) 

Consider first Eq. (4.1b) for the leading terms O~ 'p. It simplifies to 

~ ~ -  ~P ~ ,t,P~z~ /~P'~z p~ (4.2) 4'~ ( Z o ) -  0~ (Zo) + ~,~ ~ oJ,~ J o ~ o~, 

where we have used the fact that the fgP are the transition functions for the body. 
To see the significance of this equation, multiply both sides by e ~, a local section 
over U ~ for the line bundle of spinors whose square is the tangent bundle to Mo. 
The transformation law of e ~ absorbs the square root in (4.2), and we obtain 

e'O~'(zro) = e~tp~P(zg) + ePO~'(Z~o). (4.3) 

This shows that the e~OT a define a cocycle in the first Cech cohomology group of 
Mo with coefficients in the sheaf of sections of the spin bundle. This cohomology 
is known to be trivial when M0 is simply connected. For the sphere this follows 
from the Riemann-Roch theorem, while for C and U it follows from the triviality of 
holomorphic line bundles including the spin bundle [19]. Since the cohomology 
is trivial, the cocycle is exact, 

e ~  ~ = ePtt~ - e~t/~ ', (4.4) 
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or  

~b~ ~ = x/@~=t/{  - q~. (4.5) 

This relation implies that the leading terms ~b~a can be set to zero by the 
superconformal redefinition of coordinates 

~ct = z ~ + Octtl~vi, 

O ct = 0 ~ 1 1  "t- l~l"~'f)ij "4- ~l)f .  (4.6) 

Of course, this redefinition may also alter the higher-order terms in the transition 
functions, but these are dealt with at a later stage of our inductive argument. 

The same type of reasoning applies to the leading soul terms of the even functions 
fete. From Eq. (4.1a) we have, using the fact that tp~ ~ has already been set to zero, 

f ij (z0) = fy(zg) + f ,j (zo) f  o (Zo). (4.7) 
This shows that f~[fO/~z~ defines a cocycle in the first cohomology group of Mo 
with coefficients in the sheaf of holomorphic vector fields. Again the triviality of 
this cohomotogy group means that the f ~  can all be set to zero by superconformal 
coordinate redefinitions. The induction proceeds in this manner until the souls of 
the transition functions have all been set to zero. Equations (4.2) and (4.7) continue 
to hold at higher orders, so that no new cohomology groups appear. This completes 
the proof of uniqueness of the canonical SRS's SC*, SC, and SU. 

It is possible to generalize this analysis to SRS's whose bodies are nonsimply 
connected. After all, the dimensions of the cohomology groups which appeared 
are 69-6 and 49-4 for genus 9, which indicates that an alternative derivation of 
the dimension of super Teichmiiller space should be possible along these lines. It 
was by carrying out such a derivation that Hodgkin determined the dimension and 
structure of S T  o without making the metrizability assumption [22]. 

5. Super Beltrami Differentials  

The representation of Riemann surfaces in terms of Beltrami differentials is an 
extremely powerful technique which permits straightforward proofs of deep results 
which are difficult to obtain by other methods [24]. It is therefore important to 
develop the analogous representation for SRS's. Just as Beltrami differentials 
characterize the various possible Riemann surface structures on a given smooth 
2-manifold, super Beltrami differentials will describe different metrizable SRS 
structures on a given smooth (G ~) supermanifold. The G ~ structure of a SRS is 
obtained by relaxing the requirements that the transition functions be complex 
analytic and superconformal. They may instead be arbitrary functions of z, ~, 0, 
and ff which are polynomials in 0 and ff with coefficients admitting Taylor 
expansions in the souls of z and ~. In this section we will derive the super Beltrami 
equations and discuss their solution. We will then be able to exhibit the complex 
structure of STg via a Bers embedding theorem, show that metrizable SRS's can 
be represented by Schottky supergroups, and define the notion of universal super 
Teichmiiller space. 

Let (z, 0) and (w, q~) be two sets of coordinates on SU, related by a G ~ but not 
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necessarily superconformal transformation 

w=w(z,~.,O), 4 = 4(z,i,0). (5.1) 

Then the invariant metric which appears in one set of coordinates as 

(Imw + ½4~) -  l tdw + 4d 41 (5.2) 

will appear in the other set as 

)~(z, ~, o, g) W z + ~(z, e, 0)d~ + v(z, e, 0)d01. (5.3) 

Conversely, if the two Beltrami coefficients /~, v are given then the map which 
reduces (5.3) to the standard form (5.2) satisfies the super Beltrami equations, 

we+ 44e = #(Wz + 44~), - Wo + 44o = V(Wz + 44z), (5.4) 

where the subscripts indicate differentiation. 
We write the super Bettrami equations in terms of components by expanding 

w = w ° + O w  i, 4 = 4 i + 0 4  °, 

# = #o + O#l, v = v 1 + Ov °. (5.5) 

We then obtain four component equations 

o 1 1 o o we+ 4 4e = # 0% + 4i4~), (5.6a) 
w ~ +  o i 1 o o 1 o 1 4 i  o 1 o 

- 4 z ) + ~  ( w ~ +  4 4z 414~), (5.6b) 4 4 ~ - 4  O~ = # (Wz + 

_wi+4 i o i o 1 i 4 = v (wz + 4 4~), (5.6c) 

(40) 2 = v l ( -  w~ + 414 ° - 4°4~) + v°(w ° + (014~). (5.6d) 

Since all the functions entering these equations are G ~, one need only solve for 
their dependence on Zo, io to determine them completely. Therefore one can read 
Zo for z everywhere in the equations. The unknowns are two even and two odd 
BL- i-valued functions of z o, Zo- 

We will discuss the solution of the super Beltrami equations when the Beltrami 
coefficients are specified in all of SC. If they are only known in SU, as above, some 
extension into the rest of SC must be prescribed. In terms of the components 
defined in Eqs. (5.5) the appropriate extension is 

~°(~) = fi°(z), #~(~) = - i~l(z), 
v°(~) = g°(z), vl(~) = - ATi(z). (5.7) 

The symmetry of this extension implies that the solution in SC will fix the 
superboundary SR and will map SU to itself. 

One easily checks that all solutions of the trivial super Beltrami equations with 
/~ = 0, v = 0 are superconformal maps. It follows that the solution of the general 
equations is unique up to composition with a superconformal automorphism of 
SC. Here again we encounter the problem that SPL(2, C) is not the full group of 
superconformal automorphisms of SC. We will deal with this by imposing strong 
enough boundary conditions on the solutions at infinity to guarantee that 
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solutions actually extend to SC*. Such solutions will be unique up to SPL(2, C) 
transformations. 

How does one actually solve the super Beltrami equations given the functions 
#(z,i, 0)and v(z,g, 0)? The general technique for solving algebraic or differential 
equations involving Grassmann-valued functions is to solve the body of the 
equation first and do perturbation theory in the souls of all functions. Since the 
souls are nilpotent, the resulting perturbation series always terminate and give 
the exact solution. The generators vi of the Grassmann algebra play the rote 
of the "small" parameters of the perturbation. To begin, the body of Eq. (5.6a) is 

(w°L = p°(w°)z. (5.8) 

This is an ordinary Beltrami equation which can be solved for w ° provided that 
Ikt°(z)[ < 1 and given boundary conditions such as w°(0), w°(1), w°(oo). Then the 
body of Eq. (5.6d), 

0 2  0 0 (q~o) = Vo(WoL, (5.9) 

is a purely algebraic equation determining q~o °. Provided that v°(z) does not vanish 
there are two solutions differing in sign. The equations have now been solved to 
zeroth order in the vi. To proceed to first order, solve the algebraic Eq. (5.6c) for 
w 1 and substitute into Eq. (5.6b), obtaining to first order 

0 1 1 0 0 0 1 1 0 2 4'04~,~ = (v~ Wo~)~ + ~o [2q~o ~ - (v, Woz)z] + ~ W°z • (5.10) 

This is an inhomogeneous Beltrami equation which has a unique solution for q~] 
given the boundary conditions ~b~ (0) = ~b](~) = 0 [25]. Then w~ can be computed 
algebraically from Eq. (5.6c). This procedure can be continued until the map W(Z) 
is completely determined. At each order it requires the solution of one inhomo- 
geneous Beltrami equation. There are precisely two solutions given the values of 
wo(0), Wo(1), and Wo(OO), and the boundary conditions that the souls of w ° and ~b 1 
vanish at z = z o = 0 and ~ .  If W = (w, qg) is one solution, the other is I W  = (w, - q~). 

If we consider a family of Beltrami coefficients #, v which are G °~ functions of 
some parameters, then the solutions of the super Beltrami equations also have G ~ 
dependence on the parameters. This can be seen by treating the parameters as 
additional coordinates analogous to z and 0 when solving the equations. By 
expanding w, q~, #, and v in powers of the odd parameters as well as 0 in Eqs. (5.5), 
we obtain a set of equations similar to (5.6), whose solutions are determined when 
known for soulless values of z and the even parameters. These solutions have 
G ° dependence on z, 0, and all parameters. 

For the applications below we will need to solve the super Beltrami equations 
in cases where the Beltrami coefficients are discontinuous. Since w ° and ~b a are 
obtained by solving (inhomogeneous) Beltrami equations, they will be continuous 
even when the Beltrami coefficients are not [25]. However, w I and q~o are computed 
from algebraic formulas and need not be continuous. 

We will now use this machinery to exhibit the complex structure on super 
Teichmiiller space. We follow a standard argument due to Bets which shows that 
ordinary Teichmfiller space embeds as a bounded domain in a Banach space of 
quadratic differentials [24, 26]. This space has a natural complex structure. Our 
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proof will show that the double covering supermanifold of the sheet of STo(g > 1) 
corresponding to a particular spin structure embeds as a domain in a space of 
superconformal fields of weight 3/2, which is naturally a complex supermanifold. 

Let M and M' be two metrizable SRS's with bodies of genus g > i and the same 
spin structure. We represent them by uniformizations SU/G, SU/G' with a specific 
choice of generators for G and G'. We regard M as a fixed origin and M' as a 
variable point in STg. For simplicity we will assume that M is canonical, so that 
G = G 0, Although M and M' may be different as SRS's, they are equivalent as G ~ 
supermanifolds. This follows from Batchelor's theorem [27-29], according to which 
a G ~ supermanifold is completely characterized by its body and a vector bundle 
over the body. It can also be proven by an extension of the deformation theory 
of Sect. 4: since the transition functions f~(z~o) and ~,~¢(z~o) need no longer be 
holomorphic but merely smooth, the relevant cohomology groups are trivial for 
any genus [23]. Therefore any SRS can be reduced to canonical form by G ~° 
changes of coordinates. In particular there is a G ~ diffeomorphism W : M ~ M '  
which lifts to the covering space SU as a G ~ map 

w:(z, 0)-~ [w(z, ~, 0), ¢(z, ~, 0)], (5.1t) 

which for the present we assume independent of O. This map can be chosen to 
have G ~ dependence on the parameters of the group representing M'. 

If we choose coordinates on SU so that the metric of M lifts to the standard 
form (3.3), then the pullback to M via W of the metric of M' lifts to a Beltrami 
differential (5.3) which is G-invariant, and the map W satisfies the super Beltrami 
equations. We fix W up to the sign of q~ by w0(0 ) = 0, Wo(1 ) = 1, Wo(OO ) = o% and 
requiring the souls of w ° and ~b 1 to vanish at z = zo = 0, o% which we will call 
standard boundary conditions. If q is an element of G, the G-invariance of the 
Beltrami differential means that Wq also solves the super Beltrami equations. There 
is an SPL(2, R) element p such that p- ~ Wq satisfies standard boundary conditions, 
so by uniqueness p- 1 Wq = W or IW. Then Wq W -  ~ = p or pI, so W G W -  ~ is a 
Fuchsian supergroup which represents M'. Redefining G' by conjugation if 
necessary, we get G' = WGW- 1. 

Now we extend the Beltrami coefficients from SU to all of SC in a different 
way by defining # = 0, v = 0 in the region SL above the lower half-plane L. Let 
W u~ denote a solution to the super Beltrami equations with these new Beltrami 
coefficients which obeys standard boundary conditions. Then W "~ is super- 
conformal in SL and superconformally related to W in SU; W = HWu~ISU with 
H superconformal. W~"GW "'- 1 is a subgroup of SPL(2, C) by the same uniqueness 
argument that showed that WGW-~ was a subgroup of SPL(2, R). 

Since Wu~ISL is superconformal, it is reasonable to compute its super 
Schwarzian derivative. This is defined for any superconformal map Z(Z) by [7] 

Dgo` 2D30`D20` 
S ( Z ; Z ) =  DO"-  ~ " (5.12) 

It obeys the composition law 

S(Z; ~) = S(Z; Z) + (DO`)3 S(Z; ~), (5.13) 
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and it vanishes when Z(Z) belongs to SPL(2,  C). These properties imply that 
S(Z; WUV)(dz + OdO) 3/2 defines a G-invariant odd superdifferential of weight 3/2 on 
SL. If we expand S(Z; W ~'~) = Si(z) + OS°(z), then the components S°(zo) and S 1 (Zo) 
are Go-invariant differentials on the lower half plane of orders 2 and 3/2 respectively. 
Using the Riemann-Roch theorem we conclude that the space of all such 
superdifferentials is naturally a complex supermanifold of dimension (39-3, 29-2). 

This construction does not quite succeed in associating a superdifferential of 
weight 3/2 with each Beltrami differential (/~, v), because of the nonuniqueness of 
the solution of the super Beltrami equations. There are in fact four solutions 
satisfying standard boundary conditions, because the sign of q5 ° can be chosen 
independently in S U  and SL. If W ~v is one solution, the others are: W ~ in SU and 
W"~I in SL; IWu~; and I W  ~v in S U  and IWU~I in SL. Since multiplication by I on 
the left does not affect the super Schwarzian derivative, these four solutions produce 
two distinct super Schwarzian derivatives, namely S(Z; W u ~ ) = S I +  OS ° and 
S(Z; W " ' I )  = - S 1 + OS °. Thus each Beltrami differential is associated to a pair of 
3/2-superdifferentials differing in the sign of the odd component. As we will show, 
this association defines an embedding of the given sheet of STg in the space of 
superdifferentials rood Zz .  The embedding is G ~ because the Beltrami coefficients 
can be chosen to have G °~ dependence on the parameters of the group representing 
M', whereupon the solution W ~ and its super Schwarzian derivative will also have 
such dependence. This embedding defines the complex super-orbifold structure of 
S T  o. The image of the embedding has as its body the bounded domain in C 3g-3 

which represents the ordinary Teichmiiller space. It is unbounded in the soul 
directions, since we already know that the double cover of STg is a supermanifold 
with the DeWitt topology. 

First we claim that the same pair of super Schwarzian derivatives is associated 
to all Beltrami coefficients representing the same point of S T  9. If W and 17¢ are 
two G ~° maps representing M' as in (5.11), with corresponding Beltrami coefficients 
(#, v) and (/i, f), then we have 

W G W - I = G  ', VVGITV- i=qG'q  -~ (5.14) 

for some q in SPL(2, R). Combining these equations yields 

( W -  l q - ~ PV)G(~V- ~ q W )  = G, (5.15) 

so that conjugation by the map W-~q-x  ~ takes G into itself. Since the fixed 
points of the elements of the Fuchsian group G = G O are dense on the real axis 
z = z 0 = go, 0 = 0, we know that the map W -  1 q -  a ~ must fix every point on the 
real axis R. Therefore on SR it takes the form, 

W -  i q -  1 C/VI SR: ~ = z + O~(z), ff = Og(z). (5.16) 

Since W, 17V, and (5.16) all obey standard boundary conditions, so does q, so q can 
only be the identity or 1. 

Now define a map co on SC by 

co = W ~'~ W -  1 q-  1 I7¢ in S U, co = W ~ in SL. (5.17) 

Then co obeys standard boundary conditions, is superconformal in SL, and is 
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superconformally related to l~f in SU; and its 0 = 0 components are continuous 
across the real axis. Therefore co solves the super Beltrami equations defining 17V ;~ 
and must be one of the four solutions of these equations with standard boundary 
conditions. This implies that the super Schwarzian derivatives of W u* and i?V ~ in 
SL agree up to the sign of the odd components as claimed. 

Next we must verify that the map from a sheet of S T  o to super Schwarzian 
derivatives mod Z2 is invertible. Given a function S(z, O) one can reconstruct the 
superconformal map whose super Schwarzian derivative it is by solving the 
differential equation 1-14] 

D3F = - SF. (5.18) 

This equation has two independent even solutions and one odd one. ff e is the 
odd solution and x an even one, then direct calculation shows that 0" = e/x is the 
odd part of a superconformal map with super Schwarzian derivative S. Thus, given 
S(Z; W uv) in SL one can reconstruct W"vlSL up to an SPL(2, C) element which 
in turn is fixed up to composition with I by thes tandard boundary conditions on 
W "~. So let W ~ and W ~v be such that W ~ = q W  "~ in SL, with q the identity or I. 
What can be inferred about the relation between W and 12V? Define a map p on 
SU by 

p = (WW~,V- 1)q(~;,~12 V-  1). (5.19) 

Then p is superconformal and obeys standard boundary conditions. It also fixes 
the superboundary, because it sends the curve W(R) in SR to the curve W(R) in 
SR, and a superconformal map is determined up to a choice of sign by its values 
on such a curve transverse to the soul fibers. So p must be the identity or I. Now 
consider the rearranged equation 

W -  1 pI?V = W u~- 1 ql~V;~¢ (5.20) 

on the real axis. The right side is the identity because W u~ agrees with qW;~ there. 
Therefore W = pI4 z on R. But the knowledge of these maps on the real axis is 
sufficient to determine the conjugations W G W - 1  and ~GI?v'-1, since all the fixed 
points of elements of G lie on R. Therefore these conjugations do produce equivalent 
groups G' representing the same point of STg. Starting from a superdifferential of 
weight 3/2 we have succeeded in reconstructing uniquely a point of ST  o. This 
completes the proof. 

There is one loophole in this argument: we have not been able to justify our 
assumption that M' can be related to M by a G ~ map (5.11) with no Odependence, 
although we believe this is true. Fortunately the argument can be repeated allowing 
for the possibility of such dependence. The invariant metric (5.3) is generalized to 

2(z,~.,O,O)ldz+#(z,~,O,O)d~+v(z,~,O,O)dO+tT(z,~,O,O)dOI, (5.21) 

leading to the extended super Beltrami equations 

w~ + ~q~ = ~(w~ + Cq~), 

- wo + ~4)o = v(w~ + 4)¢~), 

- w~+ 0¢~= a(w~ + 00~). (5.22) 
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These equations can be solved order by order in the v~just as above, and the entire 
proof goes through with no change. Note however that when Eqs. (5.22) are 
written out in components there will be 12 component equations for only 8 
unknowns, namely the components of w and 4. This means that not every set of 
functions #, v, ~r can be the Beltrami coefficients of a SRS; they are constrained by 
4 consistency conditions which allow the solutions of Eqs. (5.22). This redundancy 
in the description is our main reason for believing that a map with no Odependence 
can always be found. 

The Schottky uniformization theorem for Riemann surfaces can also be proved 
using Beltrami differentials and will therefore extend to SRS's [30]. A Schottky 
supergroup is a subgroup of SPL(2, C) having g generators whose fundamental 
region in SC* has as its body C* minus the interiors of 20 nonoverlapping circles. 
This fundamental region represents the SRS after its body has been cut open along 
g of the 2g generating curves of re1 (Mo). If these g cycles are fixed in advance, not 
all spin structures can be represented, since the g generators of the Schottky 
supergroup allow only g choices of signs rather than the 29 choices needed. 
However, if the choice of cycles can vary with the spin structure, then all spin 
structures and all SRS's of genus g > 1 can be represented by Schottky supergroups. 

Using the ordinary Beltrami equation, one can define a universal Teichmtiller 
space which contains the Teichmfiller space for every genus g > 1 [24]. The relation 
between this space and the universal moduli space which has been proposed as a 
setting for string field theory [31] is unclear. Nevertheless, the analogous definition 
of universal super Teichm/iller space may be relevant to the ultimate formulation 
of superstring field theory. It is the space of all quasisuperconformal maps (maps 
obeying the super Beltrami equations with some choice of Beltrami coefficients) 
of SU to itself, fixing the superboundary, with two maps considered equivalent if 
they agree on the real axis. This infinite-dimensional space contains each sheet of 
ST o for every g > 1. We do not know whether it is a supermanifold or what other 
geometric structure it may possess. 

6. Toward a Uniformization Theorem for Rogers SRS's 

We have seen that the quotient of SC or SU by a Kleinian supergroup can be a 
SRS of Rogers type representing a boundary point of super moduli space. It is of 
interest to try to characterize the Rogers SRS's which can arise in this way. This 
should lead to an improved picture of the super moduli space and perhaps a more 
general uniformization theorem for SRS's. We will present a uniformization 
conjecture in this section and sketch some plausibility arguments for it. In this 
section the term SRS will be used in the general Rogers sense. 

There is no complete structure theory for SRS's, but elsewhere we have obtained 
several results in this direction [9, 10]. The major complication is that a SRS need 
not be a bundle over any associated Riemann surface; indeed a general SRS 
need not have a body at all. Instead of a bundle structure, a general SRS has an 
extensive nested set of foliations. The surfaces of constant Zo in the charts fit 
together smoothly to give the leaves of a global foliation, called the soul foliation. 
Additional foliations are obtained by fixing additional coordinates, for example Zo 
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and 0,  but they will not be important here. The space of leaves of the soul foliation 
is a topological space, but not generally a smooth manifold or even Hausdorff. We 
call this space the body of the SRS only when it is a smooth manifold. We have 
shown that the universal covering space of any leaf of the soul foliation immerses 
in the vector space C k, k = 2 r - 1. 

An important notion is that of completeness of the leaves. Intuitively a complete 
leaf contains no holes. The most suitable rigorous definition seems to be that a 
leaf is complete iff any smooth path of finite coordinate length in the leaf can be 
smoothly extended. Because the transition functions of a SRS are polynomial along 
the leaves, "finite coordinate length" is defined independent of the choice of charts. 
The universal cover of a complete leaf must be all of C k. If a SRS is obtained as 
the quotient of SC, SC*, or SU by a discrete supergroup, all its leaves will 
be complete. The strongest uniformization conjecture is simply the converse of 
this fact. 

Conjecture. Any SRS M whose leaves are all complete is covered by SC, SC*, or SU. 

Corollary. The Teichmiiller theory of Sects. 3-5 classifies all metrizable SRS's with 
complete leaves. 

We can only offer suggestions and plausibility arguments toward the proof of 
this conjecture. We immediately pass to the universal cover M of M, which is also 
a SRS with complete leaves. First one must prove that M has a body. We have 
no argument for this, but we know no example of a simply connected supermanifold 
with complete leaves which fails to have a body. Next it must be shown that the 
leaves of ~Q are all diffeomorphic. Since each leaf is covered by C k, its topology is 
completely characterized by its fundamental group nl.  One way in which the 
topology of the leaves can change is for a particular leaf to be diffeomorphic to a 
neighboring leaf minus one or more points. This possibility is ruled out by 
completeness. Another possibility involves limit cycles: a particular leaf may contain 
a circle representing a nontrivial element of nl ,  with the corresponding curve on 
a neighboring leaf being trivial in n 1 and represented by a spiral asymptotic to 
the circle [32]. But this contradicts the existence of a body, since the space of 
leaves is not Hausdorff if one leaf is asymptotic to another. It seems plausible that 
all possibilities for topology change can be similarly ruled out using completeness, 
existence of a body, and complex analyticity. If a body B exists and every leaf is 
diffeomorphic to a manifold F, then h~r should be a fiber bundle with fiber F over 
B. The homotopy exact sequence of this fibration reads [33] 

• ..--~Tz2(F)-o'n2(]~/i)-*Tr2(B)-*nl(F)--~Tcl(~'I)-*lrl(B)-*O. (6.1) 

Since n t (M)=  0, 7q(B)= 0 also and B is a simply connected Riemann surface. If 
B is C or U, then 7r2(B ) = 0 so 7q(F) = 0. Then M is a SRS whose body is B and 
whose fiber is C k, so 3~ r must be SC or SU. 

The case B = C* is more complicated. Since 7r2(C* ) = Z ,  (6.1) implies that 
n 1 (F) = 0, Z or Z v. Zp is ruled out because it has no fixed-point-free action on C k, 
so the only exceptional case has F homotopic to a circle and the fibration homotopic 
to the Hopf fibration. We have not been able to exclude this possibility or to 
construct an example of such a SRS. We think it likely that a proof of our conjecture 
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can be constructed along these lines, possibly with the Hopf fibration as an 
exceptional case. 

Finally we would like to discuss the physical relevance of SRS's of Rogers type. 
If our conjecture is true, then metrizable Rogers SRS's can be represented by 
Fuchsian supergroups and the super Teichmfiller space can be enlarged to include 
them. Should such SRS's be included in the Polyakov path integral for superstrings? 
In the absence of a proof of our conjecture, or some alternative characterization, 
we cannot rule out this possibility, but we can argue against it. Typically a Rogers 
SRS differs from a DeWitt SRS in that some leaves of some foliations are either 
compact or dense. We have shown elsewhere that any G ® function on a 
supermanifold must be constant along compact leaves [9, 10]. In particular, the 
G ~ map X~'(z, O) of the superstring world sheet into the ten-dimensional bosonic 
superspace with coordinates X u must send such leaves to points. Similarly, at least 
the body of a G ~ function is constant on any dense leaf, hence it is constant on the 
entire SRS by continuity. In either case the map X ~ cannot be an immersion, so 
there is no sensible theory of a Rogers superstring moving in ten dimensions. This 
is the physical explanation for the choice of the DeWitt topology: to ensure that 
the SRS represents a superstring moving in spacetime. 

7. Conclusions 

In this paper we have provided a rigorous foundation for the mathematical theory 
of super Riemann surfaces and for their physical applications. All the standard 
results of Teichmiilter theory were generalized to super Riemann surfaces: unifor- 
mization, representation by Fuchsian and Schottky groups and by Beltrami 
differentials, and the B ers embedding of STg in a space ofinvariant superdifferentials 
which defines its complex structure, The super Beltrami equations in particular 
should provide a powerful tool for the deeper study of the geometry of super 
moduli space. A proof of our conjecture that the Beltrami coefficients can always 
be chosen independent of ff would simplify this study. It should not be difficult to 
generalize such tools as Poincar6 series, theta functions, and the Selberg trace 
formula to super Riemann surfaces. A proof of our uniformization conjecture for 
Rogers SRS's is also an interesting mathematical problem, but probably has little 
physical importance. 

Throughout our work we made use of Rogers' theory of supermanifolds to 
make rigorous statements about topology and analysis in superspace. Many of 
our results have also been obtained in the supermanifold formalism of Berezin- 
Leites-Kostant (BLK) [-34-36]. Although the two formalisms are mathematically 
equivalent for SRS's with the DeWitt topology, the translation between them is 
not straightforward, and Rogers' theory is closer to the physicist's notion of 
superspace. In particular, in the BLK theory there is no concept of a SRS with 
specific nonzero values of the odd supermoduli parameters. There is instead the 
notion of a family of SRS's with the odd supermoduli being coordinates on the 
parameter space of the family. Therefore some statements which apply to individual 
SRS's in Rogers' theory must be translated into statements about families of BLK 
SRS's. 
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Ultimately one wants to use super Riemann surfaces to discover the mos t  
elegant and transparent  geometric formulat ion of  superstrings. Of  course, super- 
string theory can always be expressed in terms of  ordinary Riemann surfaces, just  
as supergravity can be expressed in terms of  componen t  fields. But we have learned 
that  the superspace formulat ion of  supergravity simplifies calculations, exposes the 
geometric content of  the theory, and reveals the origin of  "miraculous" divergence 
cancellations. The same should be true of  the superstring. The proof  of finiteness 
of  superstring amplitudes should be simplified by working directly-with super 
Riemann surfaces. One obstacle to such a proof  is that  finiteness depends on 
cancellations between the contributions of  different spin structures, which cor- 
respond to different sheets of  super modul i  space. I t  is clearly desirable to relate 
the geometries of  the various sheets. This m ay  involve a deeper understanding of  
the action of the modular  group on the sheets and particularly in the ne ighborhood  
of  the branch points. 
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