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Abstract. This paper is devoted in part to clarifying some aspects of the relation 
between quantum field theory and infinite Grassmannians, and in part to 
pointing out the existence of a close analogy between conformal field theory on 
Riemann surfaces and the modern theory of automorphic representations. 
Along the way we develop a multiplicative analog of the usual additive Ward 
identities of current algebra. We also reformulate the additive Ward identities 
in a way which may be useful, in terms of the residues of operator-valued 
differential forms. A concluding section is devoted to some remarks on string 
field theory. In an appendix, we attempt to clarify the recent construction by 
Beilinson, Manin, and Schechtman of what might be called global Virasoro 
algebras. 

The present paper consists of several sections. In Sects. (1) and (2), I will attempt to 
describe in physical terminology some aspects of the relation, surveyed in [1], 
between Riemann surfaces and infinite Grassmannians. This relation has been 
essential in recent studies of the Schottky problem [-2, 3], and its relation with 
quantum field theory and string theory have been the subject of recent discussions 
[4-6] from a physical viewpoint. In the first section we will consider the 
Grassmannian of [1] as the space of boundary conditions on the/3 operator. This 
way of looking at things really provides the essential link between Grassmannians 
and the theory of free fermions. In the second we introduce "multiplicative Ward 
identities." These are needed to describe the relation between the Baker function 
and the tau function. They also, I believe, shed considerable light on the whole 
phenomenon of bosonization of fermions. And they are a needed preliminary for 
the latter part of the paper. 

In the third section, we reformulate the Ward identities of conformal field 
theory, first described in [14], in terms of "operator valued differential forms," 
which will have already made their appearance in Sect. one. In particular, we will 
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show that the basic Ward identity is the statement that "the sum of the operator- 
valued residues of an operator-valued differential form is zero." Apart from other 
possible merits, the description of conformal field theory in these terms has the 
virture that it makes sense purely algebraically, with ordinary Riemann surfaces 
replaced by curves over an arbitrary ground field. Thus, we will go on in Sects. four 
and five to develop the rudiments of an algebraic description of conformal field 
theory in the simplest cases of free fermions and of current algebra on a Riemann 
surface. In doing so, we will find a close relationship between conformal quantum 
field theory on Riemann surfaces and the mathematical theory of "automorphic 
representations of ad61e groups" (see [7] for introductions). Thus a general 
quantum field theory observable is an arbitrary finite product 

N 

[I Oi(P,) (1) 
i = 1  

of local operators O i inserted at points P~ on a Riemann surface. The space of such 
observables forms what would in the mathematical theory be called an automor- 
phic representation (of the current algebra or Virasoro algebra appropriate to the 
quantum field theory in question). The Ward identities of quantum field theory 
assert the existence of a vector invariant under the global group (or Lie algebra), a 
standard condition in the theory of automorphic representations. 

Section six of the paper is devoted to a brief exploration of the possibility that 
the "field variable" of string field theory should actually be not a string field, as it is 
usually taken to be, but an arbitrary product of local observables, as in Eq. (1). The 
discussion will be intriguing but inconclusive. 

Finally, in an appendix, we express in physical language the global generali- 
zation of the Virasoro algebra which was presented recently in [19], and use it to 
describe the Virasoro analogues of some constructions carried out in the body of 
the paper for current algebra and for free fermions. 

I. Grassmannians and Determinants 

In attempting to elucidate certain of the ideas expounded in [1], we wiU essentially 
be concerned with some properties of the determinant of the Dirac operator on a 
Riemann surface with boundaries or punctures. The mathematical literature on 
fermion determinants was started in [8-10] and has a counterpart, of course, in the 
physics literature on effective actions and anomalies. 

To be specific, consider a one component chiral fermion ~p propagating on a 
disc D. We take D to be the region [z] < 1, with the center of the disc at z= 0. ~p is a 
section of L 1/2, L being the canonical line bundle. L is trivial topologically and 
holomorphically. Trivializing it, the Dirac operator is essentially the ~ operator, 
and the action is 

i 2 -- I = ~ -  5 d z~p0,p. (2) 

One can of course choose a flat metric on D (Fig. la), though in constructing a 
Hilbert space and comparing to a canonical formalism it is natural to think in 
terms of a metric in which the boundary S of D has zero extrinsic curvature 
(Fig. lb). 
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(a) (b) 

Fig. la  and b. A disc with flat metric a or embedded with zero extrinsic curvature b 
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Let us in fact pause to discuss the connection with the canonical formalism, 
before trying to make contact with Grassmannians. (The following remarks 
amount to determining which of the two spin structures on a circle is a spin 
boundary.) In describing the spinor field on D as a function ~ rather than a section 
of the line bundle L 1/2, we have essentially trivialized the line bundle L by the 

choice of a one form dz. The section of L 1/2 corresponding to ~p is just ~b = ~p~/dz 

q, d/&z is a formal symbol that transforms like the square root of dz). For comparing 
to the canonical formalism, it is not convenient to trivialize L by the one form dz 
since this is not invariant under rotations of the circle S. Introducing Cartesian and 
polar coordinates by z = x + iy = re i°, a section of L near S that is invariant under 
O-~O+cons tan t  is, e.g. dr+irdO. This choice, though not holomorphic (and ill- 
defined at 0 = 0), is well adapted to comparing with the canonical formalism. The 

relation between them is dz = ei°(dr + irdO). Thus, our section of L 1/2 is ~b = ~p ~/-dz 

= lpe i°/2]//(dr + irdO). Thus, the fermion field lp' of the canonical formalism is really 

lp' = Ipe i0/2 . (3) 

Since tp (which extends over D) is periodic under 0 ~ 0 +  27~, the factor e i°/2 in (3) 
means that q/is antiperiodic. Thus, free fermions on D correspond in the canonical 
formalism to the Neveu-Schwarz sector (antiperiodic boundary conditions) on 
S = OD. The spin structure of the Neveu-Schwarz sector is the one that is a spin 
boundary. 

Let H be the space of fermion wavefunctions on the circle, i.e., the space of 
smooth sections ofL 1/2 restricted to the boundary of the circle. On the vector space 
H, we can define the following structures. First, since the product of two spinors is a 
differential, which can be integrated along a curve in an invariant way, we have the 
natural bilinear form 

s 

Second, on the disc D there is no natural notion of taking the complex conjugate of 
a spinor field ~p, that is, of a section of L 1/2. But on restriction to S =  OD, L 1/2 
reduces to the complexification of the (Neveu-Schwarz sector) spin bundle, which 
is naturally real. Thus, on restriction to S, there is a natural notion of taking the 
complex conjugate of a spinor field. This gives us the hermitian inner product, 

(~;OP2) = ~ ~;~*~2, (5) 
s 

which endows H with the structure of a Hilbert space. This Hilbert space structure 
was essential in [ t] ,  entering, for instance, in the precise definition of the 
Grassmannian Gr. In our considerations, the Hilbert space structure will play a 
less extensive role. 
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Now let us discuss the quantum theory corresponding to (2). The quantum 
effective action is in some sense detS; however, the meaning of that infinite 
determinant must be clarified. The ~-operator on the disc has an infinite number of 
zero eigenvalues, 

U z " = O ,  n=0,  1,2, . . . ,  (6) 

unless they are eliminated by some suitable boundary condition. (The normaliz- 
able zero eigenvalues are z", n > 0, since our disc is Izl < 1.) This is a symptom of the 
fact that to obtain an elliptic operator on a manifold with boundary, such as D, it is 
necessary to adopt a suitable boundary condition, which will eliminate all but 
perhaps finitely many zero eigenvalues. 

A suitable boundary condition must remove roughly half the components. For 
a second order operator, such as the Laplace operator V 2, one can choose a local 
boundary condition. The most convenient local boundary condition is usually to 
require that the scalar field or its normal derivative should vanish on S. For a first 
order Dirac operator acting on a field with both chiralities, a local boundary 
condition is likewise possible. The two component Dirac eigenvalue problem 

(~ 0~ ( ; )  = 2 ( ~ )  (7) 

certainly admits the local boundary conditions ~o = ~3 on S - a condition familiar 
from the bag model and from the theory of open strings. However, for the one 
component chiral Dirac operator, there is no way to choose a local boundary 
condition. Instead, as in [11], one must in a generalized sense set "half'  the 
components of the field tp to zero. 

Let H + be the subspace of H generated by the boundary values of the functions 
z-  ~, z -  z, z -  a, .... And let H_ be the subspace generated by 1, z, z ~ . . . . .  Thus, H_ 
consists precisely of boundary values of zero modes of the Dirac operator. The 
factor e i°/2 in (3) means that in the canonical description, H+ is spanned by wave- 
functions 

e - i 0 /2 ,  

while H_ is spanned by 

e i0/2 , 

The functions 

e -  3i0/2 e -  5i0/2 , , . . . ,  ( 8 )  

e 3i°/2 , e 51°/z . . . . .  (9) 

v. -- z" (1 o) 

clearly form a basis for H, and in this basis [remembering the e ~°/2 in (3)], the 
quadratic form ~ is 

~(V,, Vm) = 2ua,+m+ 1. (11) 

A typical boundary condition that gives an elliptic ~-operator is to require that 
~p restricted to S should lie in H+. This removes all of the zero eigenvalues of J, 
since they have boundary values in H_.  More generally, we may consider any 
subspace W of H which is comparable to H+ in a sense described in [1]. Roughly 



Quantum Field Theory 533 

speaking, we wish to require that W differs from H + only by a finite dimensional 
amount. Rather than follow the definitions in [1], let us try to see on physical 
grounds what the requirements on W should be. 

Let Jw be the Dirac operator acting on functions whose boundary values are in 
W. One requirement on W must definitely be that the intersection W ~ H _  should 
be finite dimensional, so that Jw only has finitely many zero eigenvalues. In the 
theory of one component chiral fermions, with boundary conditions correspond- 
ing to a choice of W e  Gr, in addition to ellipticity of 8w, one also requires that the 
operator Jw should be skew symmetric - a property that corresponds to 
hermiticity of iJ w upon Minkowskian continuation. Thus, we require that 

i ~ d2z~laVo 2 (12) 

should be odd under lpl.~-~lp2. In fact, upon integrating by parts, we find 

d2z'#lJ 2 = - S a2z  l 2 + (13) 
D D S 

so skew symmetry holds only if ~(~1, tp2)=0. Here the only restriction on ~x and 
1132 is that their boundary values lie in W. Thus, in the theory of one component 
chiral fermions, the boundary conditions depend on a subspace W of H with the 
property that for all ~px, ~P2 ~ W, ~(~pa, ~P2)= 0. This condition means that W is an 
"isotropic" subspace of H with respect to the quadratic form ~. 

So far we have learned two conditions on W: 
(i) W m H _  is finite dimensional so that Jw only has finitely many zero 

eigenvalues. 
(ii) W is isotropic, so that Ow is skew-symmetric. 
A third condition is necessary, and we may guess what it is by thinking about 

the standard space W = H +. A look back to (10) reveals that H + is indeed isotropic, 
but also has the following more delicate property. H+ is a maximal isotropic 
subspace of H; if one added to H + any linear combination of the vectors 1, z, z 2 . . . .  
not in H+, the enlarged space would no longer be isotropic. With this in mind we 
are led to guess the following additional condition on W: 

(iii) W is a maximal isotropic subspace of H. 
To understand the need for this third condition, let us determine the conditions 

on W such that the Dirac propagator will exist. The Dirac propagator G(z, w) 

should be an inverse of the operator ~; that is, it should be a solution of the 

equation 

2~i~G(z, w) = 62(z- w). (14) 

The only singularity of G should be a pole at z = w with residue 1. Moreover, the 
statement that ~p has boundary values in W should mean the following. Regarded 
as a function of w for fixed z and restricted to Iwl = 1, G(z, w) is an element of H 
which we will call G~(w). The boundary conditions are 

Gz(w) ~ W, for all [zl < 1. (95) 
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Let us assess the existence ofa Dirac propagator in the special case W =  H+. In 
that case, the above conditions are obeyed by the standard propagator 

1 
= -  ~ z " . w  -("+1). (16) 

Z - - W  n = 0  

This series indeed converges for Iz[ < 1 and w on the boundary, and the terms in the 
series (regarded as functions of w) are all in H +, so (16) obeys (15) if W = H +. Notice 
that all of the basis functions w-~, w-2 . . . .  of H+ appear on the right side of (16), 
with coefficients (z") that are linearly independent as functions ofz. Thus, although 
the propagator exist with boundary conditions in H+, it would not exist if we 
required that the boundary values of the propagator should be in some proper 
subspace of H +. The fact that H + is a maximal  isotropic subspace of H is crucial for 
the existence of the Dirac propagator. 

It is true generally that a propagator obeying (I 5) only exists if W is a maximal 
isotropic subspace of H. Roughly, for a maximal isotropic subspace W the 
propagator exists and is unique ' ;  but if one replaces a maximal isotropic W with a 
proper subspace, then the boundary conditions (15) become too restrictive, and the 
propagator no longer exists. 

The space of subspaces of H obeying conditions (i), (ii), and (iii) above is what 
we will call the isotropic Grassmannian Gr'. It is an analogue for one component 
fermions of the Grassmannian considered in [1]. 

If we want to encounter the Grassmannian in a framework a little bit closer to 
that which was envisaged in [1], we must consider a fermion theory with doubled 
degrees of freedom, 

cS = ~ ~ dazlp&p. (17) 

What are suitable boundary conditions in (17)? Before answering this question, let 
us consider the following simple mathematical observation. 

For any subspace W of H, there is a dual space 7V defined as follows. ITg consists 
of all ~p e H such that 

~(~, Z) = 0 (18) 

whenever Z ~ W.. For instance, if W =  H+, then 17V= W =  H+. More generally, if W 
is the subspace of H with basis z -k, z - k -  ~ . . . .  , then W is the subspace with basis 
z k-  1, z k-  2,.. . .  Note that whenever one deletes a basis vector from W, 17V gains 
a basis vector, because one condition is removed from (18); and conversely, if W is 
enlarged, VV shrinks. 

What  boundary conditions on ,p and ~ will make the Dirac operator 
associated with (17) skew-symmetric? Evidently, if we require with ~Pls (i.e., ~p 
restricted to S = (?D) should lie in W, then ~ls must lie in W. Since the boundary 
conditions on ~ are in this way determined by those on ~p, it is possible (as in [-1]) to 
state the requisite conditions in terms of a single subspace W C H  rather than the 
pair W, l~. Thus, we require that W should obey the following condition: 

Except when 0-w has zero modes; then the propagator exists and is unique in a space orthogonal 
to the zero modes 
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(i') WnH_ is finite dimensional (so that there are only finitely many ~p zero 
modes); and its dual space ffV likewise is such that ffVnH_ is finite dimensional (so 
that there are only finitely many v~ zero modes). 

Conditions (ii) and (iii) above need not be restated explicitly; they are 
automatic if the boundary conditions on ~0 and u~ are given by a dual pair W, 17V,, 
since W@ ffV is automatically maximal isotropic as a subspace of the possible 
boundary values of the pair (tp, v~). The space of subspaces WC H which obey (i') is 
what Segal and Wilson call Gr. (The connection with the terminology of [1] is as 
follows. In [1], Gr is defined as the family of subspaces WCH such that the 
orthoprojection W~H+ has finite dimensional kernel and cokernel. Finite 
dimensionality of the kernel is the statement that WnH_ is finite dimensional, and 
finite dimensionality of the cokerned is the statement that 17VnH_ is finite 
dimensional.) 

The index of the Dirac operator ffw is defined as the number of W zero modes 
minus the number of ~ zero modes. Clearly, this is the integer n = dim(H_ n W) 
-dim(H_nlTV). It is well known that the index is a topological invariant. 
Therefore, the space Gr is not connected; its connected components are labeled by 
the integer n. n is called the "virtual dimension" of Win [1]. In what follows we will 
generally restrict ourselves to the n = 0 component of Gr. 

Of course, with tp~ = (~  + ~p)/l//2, ~P2 = i(t?-~p)/lf2, (17) is equivalent to 

5~' ----- / 5d2zOPlJ~pa + ~PzJ~p2) • (19) 

Allowed boundary conditions for (19) that do not "mix" tp~ and 1~2 would 
correspond to a choice of a point in Gr' × Gr'- that is, one point in Gr' for tpl and 
one for ~P2. More general elliptic and skew symmetric boundary conditions for (19) 
would "mix" ~Pl and ~P2. The most general boundary conditions would be 
described as follows. Let H~ and Hz be the spaces of boundary values for ~p~ and 
~P2; let fI=HI@H2. Then a general elliptic and skew symmetric boundary 
condition in (19) consists of a subspace I2Vc/~ which obeys (i), (ii), and (iii) above. 
Let d r  be the space of such ~ Inside dr, the Grassmannian Gr as we have defined it 
(or as studied in [1]) is the subspace of boundary conditions that are invariant 
under the U(1) symmetry 

~p--,ei~w, ~ e - ~ % ~ .  (20) 

Wbeing invariant under (20) means it must be of the form i f =  W O  ITv,, with W and 
17V being spaces of allowed boundary values for ~p and VS, respectively; and (ii), (iii) 
amount to saying that I~ must be the dual of W(it must be contained in the dual of 
W to obey (ii); and it must be the dual to obey (iii)). 

From the symmetry (20) follows a characteristic difference between (17) and the 
one component fermion theory (2). In (17) one may introduce an arbitrary line 
bundle E and consider ~p, v~ as sections of L~/Z®E and L~/Z®E-1, respectively. 
[This is equivalent to introducing a U(1) gauge field with opposite charges for lp 
and ~p.] In this way, the Grassmannian Gr emerges - as in [1] - as a natural 
framework for studying a Riemann surface endowed with a line bundle. By 
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contrast, in the one component fermion theory, there is no natural way to 
introduce a line bundle, and so the isotropic Grassmannian Gr' is a natural 
framework for studying Riemann surfaces that aremot endowed with such a line 
bundle. 

Having obtained elliptic and skew symmetric Dirac operators Jw, the next step 
is to attempt to define their determinants detJw. In fact, in the two component 
theory (11) we want det ~w, while in the one component theory (2) we want 
- the square root can be interpreted as the Pfaffian of the infinite dimensional skew 
form (antisymmetric bilinear form) Jw. 

Just as for compact Riemann surfaces, the Dirac determinant will be naturally 
a section of a holomorphic line bundle rather than a function. I will now briefly 
sketch how this comes about, at the same time using terminology that is 
appropriate for "fermion Pfaffians" as opposed to fermion determinants. 

For We Gr', let Uw=/'w(C~ 1/2) denote the space of sections of (~1/2 whose 
restriction to S lies in W. The expression 

<v)l, = I d2zwl  2 (21) 

defines a skew symmetric bilinear form on elements ,pl, ~P2 e Uw. We wish to 
compute the Pfaffian of this skew form. Before tackling the infinite dimensional 
situation, let us discuss Pfaffians in finite dimension. Let U be a finite dimensional 
vector space of even dimension 2k. A skew symmetric bilinear form A on U is 

(u,, u2) = Ai~u~ u~, (22) 

where u, and u2 are elements of U whose components (in some basis) have been 
denoted u] and u{, and where Ai~ = - Aji are matrix elements of A. The "Pfaffian" 
of A is up to normalization 

Pf (A) = g i l i z " ' i2~Ai , i zA i s i4 . . .  Ai2 k -  lizk" (23) 

Here d* i2~  is the completely antisymmetric tensor. However, if U is presented 
merely as a vector space, there is no natural way to normalize e, which is essentially 
a volume form on U. The possible choices of ~ form a one dimensional complex 
vector space which we may denote as V =/x  Zku, the antisymmetric tensor product 
of 2k copies of U. The Pfaffian of A is not naturally a number but rather an element 
of V*, the dual space of V. This is just a fancy way of saying that to define the 
Pfaffian as a number one must supply an element e of V (and the result, being 
proportional to g defines a linear map Pf(A): V-~IE; here II; denotes complex 
numbers). 

Suppose that U is presented as an n = 2k dimensional subspace of a larger 
vector space 0. In this case we may consider the family Gr,((I) of n dimensional 
subspaces of U. For each U e Gr,(g), we define the one dimensional vector space 
Vv = A 2ku. We will sometimes refer to /x Zku as det U. As U varies, det U or Vv 
varies holomorphically, giving a line bundle ~ on Gr,(U). Let X be some complex 
submanifold of Gr,(U), and { Ual2 ~ X} the corresponding family of subspaces of 0. 
If we are given a holomorphically varying family of skew bilinear forms Aa on the 
Uz, then the Pfaffian Pf(Ax) is a holomorphic section of ~ ,  restricted to X. 
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This is the finite dimensional situation that we wish to imitate in defining the 
Pfaffian of the Dirac operator or more precisely of the skew form 

i 2 - 
(~P,t~02) = ~ -  Sd zvhO~2. (24) 

First of all, we must define the determinant line bundle over the Grassmannian, 
since the Pfaffian is a section of this line bundle. 

Instead of getting into technicalities (proper technical treatmen| s can be found 
in [1] or, in a somewhat different context, in [9]), I would prefer to illustrate the 
basic idea of the determinant line bundle in a simple and concrete way. To simplify 
a few formulas, we will temporarily work with Gr instead of Gr' and fermion 
determinants rather than Pfaffians. 

Let ~, fi be a pair of complex numbers, not both zero, and defined up to 
multiplication by a non-zero complex scalar; thus the pair (~, fl) defines a point in 
the complex projective line P*. Let 2 = ~//~ (i. e., 2 takes values in gvo m, the finite 
complex plane g plus the point at infinity; this is a model for P*). For  every 2, let Wz 
be the subspace of H with basis consisting of the vectors z-  2, z -  a, z-  4,... plus the 
one additional vector 

~+fiz  -1 . (25) 

Note that at ~ = 0, W~ is simply H + ; for all 2, Wa obeys the proper conditions to be 
in Gr. (I leave it to the reader to figure out what is the dual of Wa.) So the family W, 
gives an imbedding of p1 in Gr. 

Note that WatcH_ is zero except at the one point fi = 0, i.e., 2 = oo. At fl = 0, W~ 
c~H_ is one dimensional, so ~-w acting on ,p in (17) has a single zero eigenvalue. 
Therefore, the Dirac "determinant" should have a simple zero. 

Consider on the Riemann sphere px an arbitrary smooth complex valued 
function f(w) which only has isolated zeros at points wl, . . . ,  wk. At each zero one 
can define a topological invariant, the winding number 

1 d l n f  (26) nr=  dw  
with C being a contour that only surrounds the r th z e r o .  One has the basic relation 

Z nr = 0 (27) 
r 

for any complex-valued function (as opposed to a section of a line bundle). We can 
now see that the Dirac "determinant" cannot possibly be a function, since it 
violates (27). The determinant, restricted to p1, has only a single zero, at 2 = 0% so 
the sum in (27) is 1, rather than 0. This shows us that the Dirac "determinant" must 
be a section of a line bundle, rather a function, and indeed we can see what the 
relevant line bundle must be, when restricted to p1 < Gr. Line bundles over P~ are 
classified (topologically and holomorphically) by a single integer, the "degree." A 
complex line bundle L over P1 is said to have degree k if [with the n r defined as in 
(26)] the zeros of any continuous complex valued section which only has isolated 
zeros obey 

Z nr = k. (28) 
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Thus, from what we have said, the determinant line bundle, restricted to p1, must 
be a line bundle of degree 1. 

In the above, we embedded p1 in the Grassmannian Gr rather than the 
isotropic Grassmannian Gr'. The sole reason to do so was to simplify the formulas 
slightly. An embedding of p1 in the isotropic Grassmannian can be obtained by 
taking W~ to consist o f z  -3, z -4, ... as well as 

+ flz- 2, and - c~z + f lz-  1 (29) 

This has been constructed to respect the isotropic condition. Notice that with this 
choice Wc~H_ is zero dimensional for finite 2 but two dimensional at 2 = oo. This 
latter fact is no accident. The isotropic condition permits us to define a skew form 
~-w with boundary conditions W, and the kernel of a skew form has a dimension 
which can only jump in dimension by a multiple of two 2 (and so in our situation is 
always even, at it is zero for W = H +). Thus, our embedding of P 1 in Gr' is such that 
the Dirac"determinant" would be a section of a line bundle of degree two; it is this 
which permits the determinant line bundle to have a square root, and the Pfaffian 
to exist, when restricted to Gr'. 

It turns out that the topology of the Grassmannian is such that holomorphic 
line bundles over it are uniquely determined (topologically and holomorphically) 
by their restriction to P~, so the determinant line bundle is uniquely determined by 
the above remarks. Instead of pursuing that line of thought, let us now think of the 
above example in a slightly different way. We will carry out the discussion in a way 
which is suited to fermion Pfaffians. The "standard" point H+ ~ Gr' has basis z-  1, 
z -  2, z-  3, . . . .  In general, another point in Gr' might have all of these basis vectors 
z -k  perturbed. Let us, however, restrict ourselves to the subspace Gr~ of Gr' 
consisting of subspaces of H which contain 

z - k -1  , z - k - 2 ,  z - k - 3  . . . . .  (31) 

(The collection of the Gr' k is dense in Gr', so in some respects restriction to Gr'k of 
finite but arbitrarily large k is not a big loss.) A point W e  Gr' k will have k additional 
basis vectors 

Ui= ~ ui~z J, i= l . . . k .  (32) 
j>  - k  

In general, the sum in (32) runs from - k to + 0% but let us consider the subspace 
Gr'k,m of Gr'k defined by saying that the uij are zero forj  > m. Again, the Gr'k,,, for very 
large k, rn, can be taken as an approximation to Gr'. 

2 To see this, note that an antisymmetric bilinear form A~j has the canonical form 

- ,  0 0 0 

A =  0 0 n 2 

0 - n  2 0 

(30) 

with skew "eigenvalues" nk. Clearly, the kernel of A jumps in dimension by two when one of the nk 

goes to zero 
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In principle, we would like to understand what we should mean by the Pfaffian 
of ~w for arbitrary We Gr', but let us restrict the problem to the case W e  Gr'k,,, for 
some k, m. In this case, the problem of defining the determinant line bundle is really 
a finite dimensional problem. Thus, let W0 be the space spanned by (31), and W' the 
space spanned by (32). We have W =  WoO W'. The determinant line bundle det W 
should then be in some sense 3 

det W = det Wo®det W'. (33) 

Here det Wo is ill-defined, because Wo is infinite dimensional, but as Wo is constant, 
we can ignore this factor in (33) and identify det W with det W'. W' is a finite 
dimensional (in fact, k dimensional) subspace of the finite dimensional vector space 
Hk,,, spanned by vectors z r for m > r > - k. This is precisely analogous to the finite 
dimensional situation which we discussed first, so by det W' we mean simply 

det W' = ^ gW', (34) 

i.e., the highest exterior power of the finite dimensional vector space W'. Equations 
(33) and (34), with det Wo replaced by 1, serve as a precise definition of a line bundle 
over Gr'k, m which we will call the Pfaffian line bundle PFAFF.  For  large k, m, this 
approximates a definition of a line bundle which in fact is defined over all of Gr'. As 
is indicated by our introductory comments about Pfaffians in finite dimensions, 
the Pfaffian of the skew form ~-w is a holomorphic section of the dual bundle 
PFAFF*.  

To follow [1, 9] somewhat more closely, we should aim to define a determinant 
line bundle DET over Gr rather than a Pfaffian line bundle over Gr'. Restricted to 
Gr'C Gr, DET is just P F A F F  2 (just as the determinant of a skew form is the square 
of the Pfaffian), but we must define DET over Gr, not just over Gr'. In doing so, we 
would mostly prefer to avoid Dirac "determinants." Our point of view is that 
because of anticommutativity of fermions, the Dirac kinetic energy is naturally a 
skew bilinear form, not an operator, and the Pfaffian is the natural concept. The 
effective action derived from (19) we would view as the Pfaffian of the skew form 

in the space of fields (~p, t~), not as the determinant of the "operator" Jw. In this 
spirit, we can define the DET bundle as the P F A F F  bundle in a larger space. Thus, 
given We Gr and its dual space I2/,, we think of W@ t~ as a subspace of HOI-1 [the 
latter being the set of boundary values of (% v~)]. Approximating Gr by some Grk,m 
as in the above, we have W =  Wo + W', W = W o + rV', and a reasoning just as above 
leads us to the conclusion that the Pfaffian of ~w is a section of 

D E T =  A kW'® A kf¢'. (36) 

This defines the desired line bundle DET over Grk, m, the idea being that the 
Pfaffian of the Dirac skew form (35) is a section of DET*. Equation (36) of course 

3 We are borrowing the following fact from finite dimensions. If A and B are finite dimensional 
vector spaces, say of dimensions p,q, then AP+~(AQB)= AVA®A~B, or in other words 
det(A @ B) = detA®detB 
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will serve as a definition only over the Grk,rn for finite k, m; to get to the completion 
Gr takes a little bit of analysis, as in [-1, 9]. 

Having studied the line bundle of which it is a section, the next goal should be to 
actually define Pf(Jw), the Pfaffian of the Dirac skew form. As W varies, Pf(Jw) 
should be a holomorphic section of the dual of the Pfaffian line bundle, restricted 
to Gr'. (It should be holomorphic because this is so in the finite dimensional case 
which we should aspire to imitate, unless this proves impossible.) As in the case of 
finite dimensional Pfaffians, Pf(~w) should have a zero of order r whenever Jw has 
2r zero "eigenvalues." (Recall that the number of zero "eigenvalues" of a skew 
bilinear form such as ~w is conserved modulo two under any smooth change of 
parameters. In the case of ~w this number is always even, as it is zero for W =  H+.) 
Actually, in view of the fact that there are no non-constant holomorphic functions 
on Gr', the above statement about Pf(Jw) characterizes Pf(Jw) uniquely, assuming 
it exists. 

To compare to [,1], we must consider the doubled skew form gw of (35). In [,1], 
the tau function o-(W) was defined as a holomorphic section of DET* that vanishes 
precisely when Wc~H_ ~ ¢ or in other words whenever gw has a zero eigenvalue. 
Since this property is also the defining property of Pf(~'w), it is clear that 
~r(W)=Pf(~'w). More central in [-1] than ~(W) is the tau function v(W), which is 
essentially a ratio of o- functions, and we will refer to the relation between o- and 
Pf(Jw) as the relation between the Dirac Pfaffian and the tau function. 

So far we have only discussed uniqueness of Pf(~-w) or Pf(~'w). As for existence, 
one approach is to follow [1] or [-9]. Alternatively, a down to earth and "physical" 
approach to defining Pf(Jw) is to calculate its variation with respect to a change in 
W, which could be expressed in terms of Green's functions. To compute Pf(Jw), one 
would pick a path ~ in Gr' running from H+ to W and compute the ratio of Pf(~w) 
to Pf(~u+) by integrating the logarithmic derivative of Pf(~w) along this path. 
Defining Pf(Jn) = 1 one thus obtains a definition of Pf(Jw). This will give a path 
dependent result for Pf(Jw), which is why the latter is to be seen as a section of a 
line bundle rather than a function. The program just suggested would be a 
counterpart of the standard procedure in physical discussions of chiral determi- 
nants on manifolds without boundary. It would be worthwhile to carry out this 
program for manifolds with boundary, but I will not attempt to do so here. 
However, after a few digressions, we will give later a fairly precise and concrete 
definition of Pf(Jw) along different lines. 

It is useful to first consider certain other questions. Pf(Jw) is a very canonical 
holomorphic section of the dual Pfaffian bundle PFAFF*, and has of course a 
Feynman path integral interpretation, 

i 
Pf(Jw) = ~ ~ P  exp - ~ ~ dZz~pJ~p. (37) 

W 

Here the symbol ~ @~p refers to a Feynman path integral over sections ~p of L 1/2 
W 

whose boundary values lie in W. While Pf([w) (as defined in (37) or in other ways 
discussed above and below) is a very canonical holomorphic section of PFAFF*, it 
is by no means the only one. On the contrary, let P be the center of the disc D and 
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let O(P) be an arbitrary local operator  at P e D.  4 Then 

Pfo(~w)= ~w D~ (exp--  ~--~ ~ ~p~Tp) . O(P ) (39) 

is a holomorphic  section of PFAFF*.  Indeed, the assertion that the path  integral 
depends holomorphical ly on the boundary  conditions and the "anomalies" which 
make it a section of a line bundle rather than a function only depend on local 
properties near the boundary,  and are unaffected by an operator  insertion at the 
center of the disc. 

Thus, there are a vast number  of holomorphic sections of PFAFF*.  Indeed, by 
a well known principle of conformal field theory, states in the quantum Hilbert 
space are in one to one correspondence with local operators that may be inserted 
at the origin (or any other prescribed point)fl Thus the ("second quantized") 
Hilbert space ~ s  of fermion states on S = 0D can be identified with F(PFAFF*) ,  
the space of holomorphic  sections of PFAFF*.  Actually, this might appear  to be 
only an embedding of ~ s  in F(PFAFF*) ,  but according to [ I ,  12], this is an 
isomorphism; all holomorphic sections of P F A F F *  are of the form we have 
described. 

Since this statement may require clarification, perhaps it is wise to return to our 
study of a finite dimensional vector space / ) ,  say of dimension N, with an n = 2k 
dimensional subspace U. Fixing a basis eu), j = 1... N of t), the components  of a 
vector ve  0 will be denoted as vJ: 

v = Zv~eu). (40) 

The space U is determined by giving n linearly independent vectors v,)~ U, 
i = 1... n. As in (40), the v(0 can be described explicitly by their components  v~0 in the 
basis eu). The wedge product  v(t ) ,x v(2)A ... A v(,) is an element of the highest 
exterior power det U = / x  "U that we considered earlier. If  expanded out in the basis 
eu), this wedge product, which is an n th rank antisymmetric tensor, has components  
which we may  write as (v m ^ v(2) ix.../x v~,)) j .... J". As U varies, these components  
are what we might naively call "functions of U," say 

a jl"" 4"(U)=(v(,)/x v(2 ) A.../x v(,)) j~'''~". (41) 

Actually - as U varies in Gr,(O) - the a i~'" j -  are not functions on Gr,(O) in the 
usual sense, since there is no natural  way to normalize the v(0. Rather, they are 

¢ Thus, O(P) is a linear combination of expressions 

~I (~(k)~p)u~=~(p)uo(Oq~(p))u,...(~(k)~(p)),~..., (38) 
k = O  

where each #k is 0 or 1 and all but finitely many #k are 0. Because of fermi statistics, the general local 
operator (i.e., polynomial in ~v and its derivation) is a linear combination of such monomials 
5 Explicitly, the correspondence is as follows. The quantum fermion theory has operators ~,~, 
m E Z + ½, with {%~, tp.} = 3,. +.. There is a vacuum vector 1~2> with tp,.l~> = O, m > O. The general 

co 

vector is a linear combination of 1] (tp _ k- I/Z)"~If~> with each/~k equal to 0 or 1, and all but finitely 
k = O  

many #k zero. The correspondence between operators and states is 

k = 0  k = 0  
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sections of (det U)*. It should be stressed that for e a c h  choice of the indices a i ' ' ' ' i" in 
(41) (subject to anfisymmetry a 11~''" *- = -- a i~ .... i", etc.), the "function" a ~ ' " * " ( U )  is 
a holomorphic section of (detU)*. And all sections of (detU)* are linear 
combinations of these. The latter is a standard and fundamental assertion about 
the finite dimensional problem which we will not prove here. 

The choice of n indices J t . . . J ,  in (41) is very similar to choosing a state in a 
fermion Fock space. Indeed, consider a system of free fermions, with the one 
particle states being arbitrary vectors in (7. A state with n particles present has a 
wave function which is an n th rank antisymmetric tensor. For  any choice of indices 
Jl--.J,  there is a very special n particle state c o , . .  4 , ) =  eul)  "~ ' / "  eu,)  in which the 
filled one particle states are exactly eu.1) . . . .  , eu, ). These states are in one to one 
correspondence with the sections a j ' ' "  J " ( U )  of (det U)*. The eu~...j,) are a basis of 
the n particle portion of the fermion Fock space, and the a ~ .... ~"(U) are a basis of the 
space of holomorphic sections of (det U)*. These are really dual to each other in a 
way we will be more precise about later. This is the basic relation between sections 
of DET* and quantum fermion states; its infinite dimensional analogue is the 
relation of ~ s  to the space of holomorphic sections of the appropriate Pfaffian 
bundle. 

We now return to quantum field theory to make this more explicit. In doing so, 
it is important to note that in the finite dimensional discussion in the last two 
paragraphs, we did not impose a condition of "isotropy" on the subspace U C U; 
indeed, there was no quadratic form in the discussion. To compare the results of 
the last two paragraphs to quantum field theory we have two options: we can 
repeat the finite dimensional discussion with an isotropic condition, and then we 
can compare to the quantum field theory (2) of a single fermion; or we can compare 
the above results as they stand to the two-component theory (17). We will choose 
the latter path; thus, we will study holomorphic sections of DET* over Gr, rather 
that PFAFF*  over Gr'.  We will consider only the component of G r  in which the 
Dirac index is zero. 

We will use the formula (4t) in infinite dimensions to give precise descriptions 
of holomorphic sections of the bundle DET* over Gr.  To be more exact, we will 
give precise formulas for holomorphic sections of DET* over the finite dimen- 
sional approximations Grk. , ,  to G r  that we considered earlier. The formulas will 
vary nicely with k, m, and in the spirit of this paper we will regard that as sufficient 
evidence that the formulas make sense on Gr. 

Let w~, w 2 , .  . . . . . .  be a basis of W. Because we will actually work on Gr~,, ,  for 
some k, m, we know that z - "  C W for n > k, and we thus choose a basis of W with 
w ,=  z - "  for n >  k. We want the "components" of the infinite wedge product 

w 1/x w 2 A w 3/x .. . .  (42) 

To do this, write 

wk = • 0~k,~Z r • (43) 
r 

Let S denote a sequence of integers in descending order s~ > s2 > s3 > . . . .  Expand 

w l  ^ w 2 / x  w3 A . . .  = • C~s(W)z ~t i', z ~2 /x z ~3 A . . . .  (44) 
S 
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Since in Grk. m, w,  = z - r for r > k, it is clear that as(W) as defined in (44) is zero unless 
sr = - r for r > k. Likewise, it is clear that as (W)  is zero if sl > m, as long as we work 
in Grk, m. On the other hand, these are the only restrictions, so a s ( W  ) defines a 
holomorphic section of DET* for every choice of k distinct integers st > . . .  > s, in 
the range m > s i >__ - k .  There is no problem in defining the a s ( W  ) rigorously, since 
they are finite polynomials in the ak, r. Taking k, m larger and larger, the restrictions 
on S become weaker. In fact, for every descending sequence S = {st}, r = 1... oe with 
s, = - r  for sufficiently big r, the formula (44) defines a holomorphic section of 
DET* over Grk,,, for sufficiently big k, m. The fact that the Grk,,, are dense in Gr 
shows that any holomorphic section of DET* over Gr is nonzero when restricted 
to some Grk,,,, so all holomorphic sections of DET* over Gr are of the form (44) 
provided that (41) gives all of the holomorphic sections of DET* in the finite 
dimensional problem. As already noted, the latter statement is a standard, true 
statement which we will not prove here. 

Let us now interpret our results "physically." We have alleged that the 
quantum field theory Hilbert space J(Ys is the space of holomorphic sections of 
DET* over Gr. What, indeed, is ~ s ?  The standard basis in ~ s  consists of states 
that are described by saying which one particle levels are filled and which are 
empty. Let us work in a basis in which the one particle levels are the z", n ~ Z. If we 
agree that at most finitely many states are to be removed from the Dirac sea, the 
occupied states must be exactly z ~-, n =  t ,2  . . . .  where the s,, which we may 
normalize so s 1 > Sz > .... are any descending sequence of integers with s~ = - r for 
large enough r. This precisely agrees with the counting of holomorphic sections of 
DET*, confirming the correspondence between states and sections of DET*. 

We return now to finite dimensions. In certain respects, the above description is 
not the most intrinsic. To give as in (40) the components of a vector v, one needs a 
basis e(1) . . . .  ,e(N) of 0.  These components were used later in (41). To proceed 
without ever choosing a basis of 0,  let V e G r N _ , ( t )  ) be an N - n  dimensional 
subspace of O. Let toe /x  N-"V be a volume form for V (i.e., co= f(1) ^ . . . / x  f(N-,) 
with f(j) a basis for V). Then 

C~v(U ) = v(l ) A ... A v(,) A 0) (45) 

is a volume form on 0.  (4)v(U) depends on c0 as well as V, but we suppress this in the 
notation.) If c~ is a fixed volume form on 0,  then 

ffv(U)=a- l Cv(U) (46) 

is, as U varies, a section of (det U)*. The point of describing things in this way is to 
make it clear that - without picking a basis or assuming a Hilbert space structure 
fo r / .3 -  it is in the most canonical way a "complementary subspace" to U, that is a 
space VC U of dimension N -  n, that defines a section of (det U)*. Instead of saying 
that one gets a holomorphic section ofdet  U* for every "set of indices" i~ . . . . .  i,, it is 
much better to say that one gets such a section for every N - n  dimensional 
subspace V C 0.  This is much better not just because the indices are suppressed but 
more importantly because in this form the statement is true without a choice of 
basis for U; it is indeed the N - n  dimensional subspace V, no more and no less, 
which is needed to define a holomorphic section of det U*. We could well suppress 
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Fig. 2. A Riemann surface with n boundary components 

the basis v(i) of V; if q is a volume form for V, our section is 

~v(U) = c~- it//x co. (47) 

The symmetry of this formula in q and co (or U and V) makes it clear that what we 
have is really a section of (det U)*®(det V)* (or of (det U)*®(det V)*®det t J,  in 
view of the dependence on e). It should be stressed that in this way of expressing 
things, we never require a Hilbert space structure on tJ. 

A section of (det U)* which is of the form ~v(U) for some V will be called a 
"primitive section" in what follows. A primitive section is one which is described by 
giving a list of one particle states (i.e. a basis of V). It is not the case that every 
section of (det U)* is a primitive section. Rather, the general section of (det U)* can 
be expanded as a linear combination of primitive sections: 

O(U) = • 2/. Crv,(U), (48) 
i 

where 2i are complex numbers and V/are some points in GrN_,(12). The expansion 
in (48) is far from being unique. It becomes unique if one fixes a basis e(1), ..., e(m of 
t), as in our initial discussion, and considers only spaces V;l...j~,_" spanned by 
subsets e(;1), ..., e(;N_,). This is essentially what we did (in infinite dimensions) in 
writing (44). 

In this description, a Hilbert space structure of t~ was never required. To 
specify a section of (det U)*, with dim U = n, dim t) = N, required a choice of an 
N -  n dimensional subspace V C U. If, however, t.? has a Hilbert space structure, the 
choice of the N - n  dimensional subspace V is equivalent to a choice of an n 
dimensional subspace 1/1 - its orthogonal complement. In our preliminary 
discussion with a chosen fixed basis e(l), ..., e(m of U, a natural Hilbert space 
structure was present implicitly - namely the one defined by (e~;)le~/))= 6j/. 

We now return to the infinite dimensional situation. We would like to describe 
the particular holomorphic sections of DET* that arise naturally in certain 
"physical" situations. 

Consider as in Fig. 2 a Riemann surface N with n boundary components, 
namely circles $1, $2 .. . . .  S,. Fixing on Z a square root L ~/2 of the canonical line 
bundle, we wish to study the chiral Dirac operator/5. 6 (As there is no convenient 
trivialization ofL  ~/2 on N, we refer to the Dirac operator as/) ,  and not J a s  in our 

6 We will study one component chiral fermions. In the two component case, we would be free to 
twist L alE by a line bundle 
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study of the Dirac operator on the disc.) On each S k, there is a Hilbert space/-/k of 
possible one particle states, a Grassmannian Gr'k of possible boundary conditions, 
and a determinant line bundle DETk over Gr'k. A "good" Dirac operator requires 
the choice of an element W1 x W2 x ... x W k of Gr'l x Gr~ x . . .  x Gr' k. The fermion 
Pfaffian Pf(D(w~. w2 ..... w,)) is then a holomorphic section of DET~' ®. . .  ®DET*. 

The fact that one obtains in this way a holomorphic section of the tensor 
product ®kDET~' is analogous to the fact that in finite dimensions (46) is really a 
section of (det U)* ®(det V)*. The subspaces Wk C Hk are complementary in a sense 
somewhat analogous to the role of U and V in our finite dimensional problem. The 
analogy perhaps can be sharpened slightly by considering a Riemann surface Z 
which is a sphere with two holes cut out. Let M be the cylinder 0 <  q~_-< 2re, 

- oo < t < oo. Z can always be embedded in M as the segment 0 _< t _< T for some 

T > 0  (Fig. 3). On Z, L 1/2 has a canonical trivialization and I5 reduces to aT' 

z = t + i~b. If we do not worry about boundary conditions, the 15 operator on Z has 
an infinite dimensional kernel. If continued from Z to M, the zero eigenfunctions 
blow up for t > T or for t < 0 (i.e. they have singularities either at finite t or for t 

_+ oo). Boundary conditions corresponding to the standard point H+(1) in Gr'~ 
would remove the wave functions that are singular for t - - , -  o% while a similar 
choice of H+(2) in Gr~ would remove the wave functions that are singular for 
t ~  + oo. Together, these remove the kernel of 15 on Z. More generally, the choice of 
general points W~ and V¢2 in Gr'l and Gr'z removes all but perhaps finitely many 
zero modes of 15(w, w2)- W~ and W2 remove in a sense complementary parts of the 
kernel of/5. The analogy with our finite dimensional situation is perhaps closest if 
one considers the intersection ker15c~ W~ to play the role of U, and the intersection 
ker15c-~ W2 to play the role of V. By ker15c~ W~, for i = 1, 2, we mean the subspace of 
ker15 consisting of wavefunctions whose restriction to Si is in W~. 

Let T be the thickness of Z. For any T, the formula 

(Dr(w1, ~ )  = P f  (15~wl, w~)) (49) 

(we denote the Dirac operator as 15r to stress its dependence on T) gives a section 
of DET*®DET*. Before attempting to compare to notions of Segal and Wilson 
we must note the following. H+mc~ker15 and H+(2)~ker15 (that is, the subspaces 
of ker15 with boundary values in H + m  or H+(2) ) are not comparable spaces, v since 
one consists of wave functions that decay as t ~  + oe and one consists of wave 
functions that decay as t ~  - co. However, if we recall the natural Hilbert space 

± in structure of, say, H(2), then H+(2) has an orthogonal complement H+(2) H(2). 

7 That is, they do not in any sense differ by a finite dimensional amount 
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Fig. 4. A Riemann surface with one boundary component and arbitrary genus 

Taking the orthogonal complement tends to reverse the direction in which the 
± functions grow, and indeed H+(z)nker/5 is comparable to H+(1)c~ker/?. Likewise 

W1 nker/5 and W2nker/5 are not comparable, but 1¥ 1 nker/5 and W21nker/5 are. 
For T-~0, Winker/5 and W~nker/5 reduce to W 1 and W2 l, and q~r(W1, W2) 
reduces to what Segal and Wilson would call the determinant of the orthoprojec- 
tion 2: WI~Wz a from W~ to W~. Indeed de t2=0  precisely if 

n w2 + (¢), (50) 

while qSr(Wl, W2)=0 precisely if 

W1 n W2 nker/5 + (qS), (51) 

since under this condition there is a Dirac zero eigenvalue which is not removed by 
boundary conditions at either end. Clearly (51) reduces to (50) as T~0.  As det2 
and limr~oCr(wI, w2) have the same zeros, they must coincide (up to 
normalization). 

We are finally ready to consider a situation that is closer to the essence of the 
ideas in [1]. Consider a Riemann surface X (Fig. 4) with one boundary component 
S and arbitrary genus. We wilt consider the case of one component chiral fermions. 
The Dirac operator b w depends on the choice of a point We Gr'. Its Pfaffian ~p(W) 
= Pf(Dw) is a holomorphic section of PFAFF* and thus is a state in the second 
quantized Hilbert space ~ s  associated with the free fermion quantum field theory 
on S. 

These facts are a somewhat exotic manifestation of some general principles of 
quantum field theory. For any quantum field theory, not necessarily conformally 
invariant, the process of"integrating out" the surface N will produce a state in the 
Hilbert space ~ s  associated with the boundary S. This always arises as follows. 
States ~p e oCt°s are always functionals of some kind on the boundary conditions that 
arise in the Feynman path integral. Performing the Feynman path integral on £ 
with varying boundary conditions on S, one gets a functional of the boundary 
values and thus a vector in ~s- 

The detailed realization of this general principle depends on the theory 
considered. In the relatively simple case of a real (non-chiral) boson, the Feynman 
path integral involves integration over real valued functions X : X ~ R  (R denotes 
the real numbers). In performing the integral, one can fix a function 
Y: S ~ R ( S  = ON), and integrate only over functions X whose restriction to S is Y 
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This gives a functional of Y, 

7J(Y)= ~ ~ X e  -~s~vx)~. (52) 
XIs=Y 

(The notation XIs = Y refers to integration over maps S-~R that equal Y on S.) As 
Y varies, ~(Y) is a functional on real valued functions on S or in other words a state 
in the second quantized Hilbert space of free bosons on S. 

For chiral fermions, the choice of boundary conditions is a more exotic choice 
of a point We Gr'. The Pfaffian Pf(Dw) describes the dependence of the Feynman 
path integral on the boundary values. As such it is a fit counterpart to the more 
obvious object ~(Y) which arises in the theory of real bosons. 

Now we would like to identify the particular state Pf(/)w) that arises for chirat 
fermions by "integrating out S." We will show that it is a "primitive state" in the 
sense described earlier; that is, it can be described by saying which single particle 
levels are filled and which are empty. (Recall that the general hotomorphic section 
of PFAFF* is not a primitive state in that sense, but a linear combination of 
primitive states.) And we will see that the particular primitive state that arises is the 
one studied in great detail by Segal and Wilson. 

In the chiral fermion theory of Eq. (2), ~ is an operator valued section of L 1/2. 
Its classical field equation is 

/)~p = 0 .  (53) 

This equation can be used inside the Feynman path integral 

i 
Z = ~ ~tp e x p -  ~-n ~ ~p/3~p, (4) 

w 

as long as there are no insertions of operators that do not commute with ~p. The 
argument for this is standard. 8 One makes the affine change of variables ~potp + e, 
which leaves the measure ~ p  invariant. (One requires ets to be in W so that this 
transformation preserves the boundary conditions.) To first order in e, the change 

in action is ~ eO~p, and the invariance of Z under the change of integration 

variables gives 
i 

0 = ~ @~p e x p -  2nn I ~pOw~" I e/3~p. (55) 

The assertion that this is true for arbitrary e is the statement/3~p = 0. The argument 
would not hold, of course, for a more general path integral 

i 
~ p  exp - ~ ~ ~pOw~. ~ Oi(Pi) (56) 

with operators II  Oi(Pi) that are not invariant under vg~p +e. We will discuss the 
i 

resulting modifications in Sect. (3). 
Let f be a c-number section o fL  1;2 which is holomorphic, i.e. Of  = 0. Then f~p 

is an operator-valued section of L, i.e. a differential form. In fact, f~p is 

8 It has been given independently in this context in [6] 
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holomorphic in the naive sense, i.e. D-(fp)= 0. (On differential forms/ )  reduces to 
J.) Thus 

i 
0 = I ~ P  exp - ~ ~ tp/)~p • ~ ~-(f~p). (57) 

W 

Integrating by parts, we have S ~-(f~)= ~f~P, so 
S 

i 
0 =  ~ ~ p e x p -  ~-~ f tp/)~p. ~ f~ .  (58) 

W S 

Now we must recall some basic ideas about  Feynman path integrals. The 
Feynman path integral ~ ~ p e x p - I  constructs a state IO~> in ~s- If 0 is an 

w 
operator on JC~s and one wishes to compute 0 7  ~, this is done in path integrals by 
computing ~ ~ ( e x p - I ) .  O. The right-hand side of Eq. (58) is precisely of this 

W 

form, with O = ~f~p, so we read off that 
S 

0 =  ~f~p. If~s}. (59) 
s 

Thus, the state lf2x} is annihilated by ~ftp whenever f can be extended to a 
s 

holomorphic section of L 1/2 on S. Thus the state l~?x} can be characterized 
(uniquely, as we will argue) by saying that the one particle states which are 
boundary values of holomorphic sections of L 1/2 a r e  the filled states. 

This state is thus the primitive state associated with a very particular point 
on the Grassmannian: Wx is spanned by sections f of L1/2ls that extend 
holomorphically over N. 

To check that this makes sense, we must (as we are studying here one 
component chiral fermions) verify that the point Ws so obtained is an isotropic 
point on the Grassmannian. Indeed if f and g are holomorphic sections of L ~/2 
over S, then 

0 = ~ g(fg)= ~fg. (60) 

This is the assertion that Wx is isotropic. That W~ is maximal isotropic will be 
verified presently. 

Wx is essentially the point on Gr that Segal and Wilson associate with the 
Riemann surface 2;. However, they are in effect considering two component chiral 
fermions. Their tp is a section of L1/~®E for some line bundle E. As a result f is a 
section of L~/2®E - ~. Although (59) still goes through, showing that IO~) is the 
primitive state associated with a point W~ ~ Gr, (60) has no analogue. [Indeed, fg  is 
a section of L ® E - 2  rather than a differential form, so iS(fg) cannot be integrated 
over S in an invariant way.] 

The fact that (59) uniquely characterizes the state los> depends on the 
following. Let ~,f = ~ftv. The canonical anticommutators are {tpr, %} = ~fg. The 
~v s for f e  W~ thus anticommute with each other. They form in fact a maximal 
isotropic (or anticommuting) subalgebra of the Clifford algebra; for g not in Wx, 
there is f in W~ with {~c,y,~%} = ¢fg--#O. Indeed, if g is the boundary value of a 
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section of L 1/2 that is meromorphic rather than holomorphic, 9 then (38) is replaced 
by ~fg = 2rci F, Resv(fg), where P runs over poles ofg and Res e denotes the residue 

S P 

at P; given g, one can pick a holomorphic f to make this nonzero. The Hilbert 
space H s  is an irreducible representation of the Clifford algebra of the ~Pc- In an 
irreducible representation of a Clifford algebra, a vector (IQx) in our case) 
annihilated by a maximal isotropic subalgebra is unique. The argument we have 
just sketched showing that the tp s, f e  W~ are a maximal isotropic subalgebra of the 
Clifford algebra shows at the same time that Wx is a maximal isotropic subspace of 
H, so we have verified that it obeys the conditions (i), (ii), (iii) above. 

To recapitulate this discussion, it follows from general principles of quantum 
field theory that integrating out Z will give an element of the Hilbert space Hs. 
What is striking about free fermion field theory is that there are special states, 
which we have called primitive states, which in some sense are particularly simple. 
These are the states associated with points in the nonlinear space Gr'. 1 o Integrating 
out ~ always gives one of these special states - it maps Riemann surfaces with 
boundary into Gr', not just into ~s.  One may ask whether there is in general 
conformal quantum field theory - and not just in the theory of free fermions - an 
analogue of the geometrically interesting nonlinear space Gr'. 

In a weak sense, one may argue that there is such an analogue at least for 
holomorphic conformal field theories. For simplicity, let us consider only the 
primary fields q~i, i = 1... N of a conformal field theory. (Descendants could be 
included, however, by treating observables as sections of a vector bundle that is not 
just a sum of line bundles.) Let Si be the spin of ~bi. Thus ~bi is an operator valued 
section ofL s'. Let f be a c-number holomorphie section o fL  1 -s ,  on Z, so that fq~i is 
a holomorphic operator valued differential form. The argument leading to (59) 
then shows that 

~ f~b~tf2x} = 0 .  (61) 
8 

Presumably, lf2x} is completely characterized (up to normalization) by this 
equation. Thus, in holomorphic conformal field theory the state tf2x} can 
presumably always be described by specifying which moments of conformal fields 
annihilate it. (It is necessary in general to use descendants as welt as conformal 
fields.) The space of states which are primitive in this sense may have an interesting 
geometrical structure in general and not just for free fermions. However, in the case 
of free fermions it is possible to give an economical description by focussing on the 
elementary field ~, only; for a general holomorphic conformal field theory there is 
no clear analogue of this. 

II. Multiplicative Ward Identities 

Symmetries in quantum field theory are usually studied by means of Ward 
identities. When we think of Ward identities, we usually think of infinitesimal 

9 It is enough to suppose that g is the boundary value of a meromorphic function, since every 
smooth function on the circle can be approximated by such 
lo Other states are linear combinations of primitive states 
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transformations- and thus we usually work at the Lie algebra level. It can happen, 
though, that a group of interest does not correspond to any Lie algebra. An 
obvious case of a group with no Lie algebra is a finite group. A subtler example of a 
group that does not correspond to any Lie algebra is the multiplicative group G of 
global non-zero meromorphic functions on a Riemann surface. There is no Lie 
algebra for this group, since a global meromorphic function which does have poles 
or zeros, say f(z)~,,(Z-Zo) n, for z~zo ,  is not the exponential of a single-valued 
function. In this section, we will formulate Ward identities associated with the 
group G. Of necessity, they will be "multiplicative Ward identities," relevant to a 
group action, as opposed to "additive Ward identities," associated with the action 
of a Lie algebra. 

There are several motivations for developing the notion of multiplicative Ward 
identities. First, such identities, as we will see, can illuminate some relations 
described in [1]. Second, multiplicative Ward identities shed a new light on 
bosonization of fermions, a subject which recently has been developed in a global 
context [13]. And third, multiplicative Ward identities are a crucial ingredient in 
the connection we will describe in Sects. four and five between current algebra on 
Riemann surfaces and the modern theory of automorphic forms. The identities we 
will develop are similar in spirit to one of the techniques used by D'Hoker and 
Giddings in their work on the relation between the light cone and covariant 
formulations of string theory [21]. 

We shall study, on a Riemann surface Z which may have boundary, the two 
component chiral fermion theory described by the Lagrangian 

£a= _i 5 ~5/)V). (62) 
r ts  

,p and ~? are operator-valued sections of a square root L 1/2 of the canonical line 
bundle L In what follows we will discuss certain aspects of the dependence of the 
fermion determinant on boundary conditions defined by a point We Gr. We will 
discuss the determinant simply as a holomorphic section of DET*, without 
worrying about the metric on DET*; from this point of view the conformal 
anomaly is immaterial and we will ignore it below. If one is uncomfortable with 
this point of view, one can imagine that we are really discussing ratios like 
Pf(D'w)/Pf(D'~ +) (H + is the standard point in the Grassmannian discussed in the 
last section); such ratios are free of conformal anomaly. Adopting one or the other 
of these viewpoints, we may proceed in what follows as if there is no conformal 
anomaly. 

Let f be a global non-zero holomorphic function on Z -  so [/3, f ]  = 0 and f has 
neither zeros nor poles. Then (62) is formally invariant under 

tp--+tp' = f~p, ~ 5 ~ '  = f -  ltd. (63) 

Of course for such a non-constant global function f to exist, Z must have a 
boundary. For  notational simplicity, we suppose the boundary to consist of a 
single circle S. In this case, though the action (62) is invariant under f, the boundary 
conditions are not. The boundary conditions are that ~p must lie in a subspace W of 
the space H of possible boundary values (and ~ must lie in the dual space 17V,, as 
described in the last section). Let the functions {/21, U 2 . . . .  }, be a basis for W. If,p lies 
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Fig. 5a and b. A Riemann surface 2: with boundary S and points Pi and Qj a. Upon deleting those 
points, a conformal rescaling that "projects them to infinity" can restore completeness in the 
metric sense b 

in the space W spanned by {ul, u 2 . . . .  }, then clearly ~p' = t ip  will lie in the space 
spanned by { fu 1, fu2 . . . .  } - a point in the Grassmannian which we will call f 14<. The 
transformation W ~ f W  is an action of the group G' of global invertible 
holomorphic functions (holomorphic, that is, on the surface-with-boundary S) on 
the Grassmannian. If S has several boundary components, G' acts on the relevant 
product of Grassmannians. This action of G' on the Grassmannian entered in [1] 
in the special case with 2: a disc. There it was shown that G' actually acts on the 
determinant line bundle, and not just on the Grassmannian. 

Thus, under the change of variables (63), the action is invariant, but the Dirac 
operator/)  w is transformed into Dsw. It therefore must be that the Dirac Pfaffian is 
invariant under the G action, 

f . Pf (Dw) = P f  ( l~ f W  ) • (64) 

(Here f denotes the lift of f to act on DET*, and could have been dropped if the 
Pfaffian were an ordinary function rather than a section of a line bundle.) Equation 
(64) is our simplest multiplicative Ward identity. As long as f has neither zeros nor 
poles, there is little more to say. 

We now move on to the case where f has zeros and poles - say simple zeros at 
points Ql . . .  Qt and simple poles at points P~... Pk. (As long as S has a boundary, 
there is no reason to have l=k.) Clearly, in this more general context, the 
transformation (41) is not a symmetry-  it is not even a well-defined transformation 
of the field variables. 

To remedy this situation, we will work on the Riemann surface S' which 
consists of X with the points P1-.-P~ and Q1... Qt removed. Of course, the surface 
X' is not "complete." However, conformal invariance makes it possible to treat S' 
rather like a complete surface at least from the geometric point of view. We simply 
pick on S' a metric (compatible with the complex structure of U) in which the 
missing points are "infinitely far away," as in Fig. 5b. 

According to conformal invariance, the fermion determinant on the compact 
Riemann X of Fig. 5a equals the determinant on the metrically complete but not 
compact surface S' of Fig. 5b provided that we specify the right class of functions in 
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taking the latter determinant. The right class of functions are simply the square 
integrable ones, 

[~pl z < ~ ,  ~ [~31 z < ~ .  (65) 
.~, I?, 

Now clearly, if we make a change of variables from ~p and ~5 to tp' and ~', the class of 
functions within which we should take the determinant is modified. The new 
conditions are 

I f -  11])[ 2 < oo, 5 lf~'l 2 < oo. (66) 

In practice, it is near poles and zeros o f f  that the allowed class of functions ~p' and 
v~' differ from the allowed ~p and ~. We have thus identified the "Ward identity" 
associated with multiplication by f A fermion determinant with boundary 
conditions described by We Gr on the boundary of S' and by the class of functions 
(65) on the "infinite ends" of S' is equivalent to a determinant with boundary 
condition determined by f W and the class of functions (66). 

This is our "multiplicative Ward identity" for the case that f has zeros and 
poles. What remains is to put it in a more tractable form, which we will do by 
projecting the "infinite ends" of Fig. 5b back to finite points, whereupon the exotic 
restriction (66) on the allowed class of functions will show up as operator insertions 
at the points P~ and Qj where f has poles or zeros. 

We first need a more concrete understanding of the exotic condition (66). To 
this aim, focus on a particular point P at which f has a single pole. Let z be a local 
holomorphic function with a simple zero at P. (Thus, f ~ z-  1 near P.) Instead of 
removing from S the single point P, let us remove a tiny disc, say the disc D~ defined 
by Izl < ~. At this point we need a boundary condition on the values o f~  on S = OD. 
The natural boundary condition which corresponds to (65) is that ~P[s should lie in 
H+, where H+ is the "standard" point in the Grassmannian with basis 
{1, z, zZ, ...}.11 Thus, H + consists of functions with no poles if continued inside the 
disc. Likewise, ~ls should lie in H+. 

Evidently, the transformation to ~p'= f~p and ~ ' =  f -  1~3 means that ~P'ls lies in 
the space z-lH+, with basis {z -a, l ,z,z 2 . . . .  } and ~qs lies in the space zH+ with 
basis {z, z 2 . . . .  }. 

Now, let us interpret this "physically." The functions {t, z, z 2 . . . .  } which are a 
basis for H+ are the wave functions of filled states of ~p particles in the negative 
energy Dirac sea. In z-all+, spanned by {z -a, l,z . . . .  }, there is one more filled 
state, with wave function z-1. This is clearly the wave function for the positive 
energy state of lowest energy. In conformal field theory, there is of course a vertex 
operator for every state. The vertex operator for a state in which the first positive 
energy excitation has been added to the vacuum is simply ~p. 

Thus, up to normalization, the exotic condition (66) at a point P where f has a 
pole is just an instruction to insert a factor ~p(P). We must worry about the 
normalization, however, since the conformal spin of ~ is not 0 but 1/2. From the 
data at our disposal-  a function f with a simple pole at P -  the only other factor of 

11 The role of H+ and H_ is reversed compared to Sect. (I), because now we are working on the 
region Izl > 5, while in Sect. (1) we were working on the Riemann surface Izl < 1 
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spin  1/2 that we can form is [ / ~ y U J -  ' . So it must be that the factor to be inserted at 

/ d f - q  \-1/2 
a pole of f is ~P(P))" (~-z,___ e), . Apart from the sign, which we will not try to 

clarify (and which is clearly linked to minus signs associated with fermi statistics), 
( d ~  1;2 

this is invariant under reparametrization of z, since ~o transforms like \ d z /  " 

It is now easy to see what happens at a point Q where ~0 has a simple zero. Pick 
a uniformizer z at Q, and remove the disc D~ given by z < e. Let ~p' = J~. On S = OD, 
,p' lies in the space zH+ spanned by {z, z 2 . . . .  }. The missing function 1 means that a 
negative energy particle has been removed from the Dirac sea or in other words an 
antiparticle has been added. The appropriate vertex operator is v~ or more exactly 

- allowing for normalization - it is ~(Q) \dz IQJ " 

Thus we arrive at the definitive statement of our multiplicative Ward identities. 
The transformation ~p ~f~, ,  t~ ~ f -  1 v~, in addition to shifting boundary conditions 
from W to fW, also brings about the operator insertions just described. So 

@ ~ p ~ e x p - I =  ~ ~ p ~ e  -x. H lP(Pi) ~(QJ) (67) 

Pi Qj 

Here Pi and Qj run over the poles and zeros of f which we have assumed to be 
simple. It is easy, though, to generalize the formula to allow for k-fold poles or 
zeros. A k-fold pole would give 

while a k-fold zero gives 

/ ' (68) 

Since (67) may seem unfamiliar, and the derivation could be faulted for lack of 
rigor, we will now pause to check (67) explicitly for the simplest case in which Z is 
the Riemann sphere-  without boundary. For  f we take a general rational function 

f ( z )=  l~ z -Qj  (70) 
j = l  z--Pj" 

The identity (67) reads 

1= I~ ~ ~P(Pj) (I Cp(Qj) , (71) 
j = l  pj Qj \ j = l  k=l  

or in other words 

[-[ (Pi-- P j) Y[ (Qi,- Q j,) 
i:~j i ' * j '  

[[ (Pk-- Qz) 
k,t 

(72) 
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The fight-hand side of (72) can be evaluated in terms of the propagator 
1 (tp(P)~,(Q)> = p_~ .  It is 

N 1 
2 (- j__r/1 ej- (73) 

where rc is a permutation of N objects, the sum runs over all permutations, and 
( -  1) ~ is + 1 for even or odd permutations. The left- and fight-hand sides of(72) can 
be seen to have the following properties. Both have simple zeros where P~=P~ or 
Q~ = Q j, and both have as their only singularities a simple pole at Pi--Qj with 
residue a function of the same kind with one less pole and one less zero. These 
properties characterize the left and right hand sides of (72) completely, verifying the 
claimed equality. 

The absolute value squared of (72) is often cited as a basic formula in 
bosonization of fermions, which lately has been treated in a geometric setting [13]. 
Thus, if q5 is a free bose field with propagator (qS(P)qS(Q))=-ln IP-QI z one 
computes 

< > 'P~-PjI2 ~I IQ~'-Qj'I2 
INI expiqS(P~)j~l exp-i~(Qj)  = ,.l~j "*"  (74) 

~=~ '= I ]  I e ~ - Q l l  ~ 
k,l  

On the other hand, if we introduce left moving as well as right moving fermions, 
then the absolute value squared of (72) is 

~(1 +y5)~p(Pj) l-I ~(1-75)~P(Qk . (75) 
j =  1 k = 1 

We have extracted the equality of (74) and (75) as a special case of a much more 
general multiplicative Ward identity for which we have given a conceptual 
explanation. It is in this sense that our considerations shed light on the 
phenomenon of bosonization of fermions. 

In case f has one zero and one pole, (67) reduces to 

PfDw (76) 
1 <~P(P)~o(Q)>fw- PfDfw" 

\ dz /~ 

Upon substituting W-->f-1W, this becomes 

PfDf-~w (77) 
1 <~P(P)CP(Q))w- PfDw df -~ 

Here G(P, Q) = (p(P)~p(Q)> is the Dirac propagator with boundary conditions W. 
It is uniquely characterized by the following: 12 

1.2 In what follows, we work on the Cartesian product 2; x £; L1 and L 2 denote the canonical line 
bundles of the "first" and "second" copies of S 
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(1) G(P,Q) is a meromorphic section of L1/2QL 1/2 (or more precisely of 
L 1/2r~11/2~ 1 , ,~2  , over ~ × ~ whose only singularity is a simple pole at P -- Q with residue 
one. (This notion of "residue" makes some since the restriction of L 1/2® L 1/2 to the 
diagonal in X x 2 is L.) 

(2) Regarded as a function of P for fixed (2 (or (2 for fixed P) the restriction of 
G(P, (2) to S = ~Z lies in W (or its dual FV). 

The first condition here is just the short distance behavior of the Dirac 
propagator, and the second was discussed in Sect. (1) [see Eq. (15)]. 

The relation (67) between the propagator and the determinant holds on any 
Riemann surface. If we specialize to the case in which ~ is a Riemann sphere with 
one hole cut out, then (76) is the relation between the Baker function and the tau 
function as developed by Segal and Wilson in [-1]. To compare with their results, 
note the following. They work in the region ]z] > 1 in the complex plane, and take 
P = ~, Q = ~ .  A function with a single pole at P and zero at Q is then (in the 
notation of [1]) q~-l(z)=(l-z/O -1. The "Baker function ''13 ~w(0 of their 
discussion corresponds to our G((, ~) .  Segal and Wilson describe t~w(0 as a 
"function" rather than a section of the spin bundle U/2. In doing so, they are in 
effect trivializing the spin bundle on the finite z plane by choosing a section whose 
only singularity is a simple pole at z=  oo. Thus, when they require t~w(0~l  for 
~ 0% this amounts to saying that G((, o9) has a pole of residue 1 for ~ oo. And the 
boundary condition at [zl = 1 of Segal and Wilson is precisely our condition (2) 
above. Thus, with f ~ q f  1 and z+-~Pf we recognize Eq. (76) as Proposition 5.14 of 
[I]. 

In Eq. (67), we see that operator insertions of ~p(P) and ~(Q) arise at poles and 
zeros of a meromorphic function f. It is natural to expect that a more general 
divisor 

Z'P~ - X Q j  (78) 

(which is not necessarily the principal divisor of a global meromorphic function) 
will similarly be related to operator insertions of ~p(P~) and ~(Qj). Let E be the line 
bundle with divisor (78). The ordinary Dirac propagator G(P, Q)= (q~(P)~(Q)> 
(with lp, t~ sections of L l/z) is - as we have already noted - the section of 

=(Ll/2)l Q(L1/2)2 over 2 x ~ whose only singularity is a pole of residue one on 
the diagonal. (5¢ is the line bundle whose restriction to either copy of Z is 
isomorphic to L1/2.) If we wish to study fermions ~p, ~ that are sections of L 1/2 (~E 
and L~/2®E - ~ respectively, the propagator Gr(P, (2) would be a section of 

~ = (L1/ZQE)I Q(L1/ZQE - 1)2 (79) 

over S x Z; that is, L,e E is the line bundle whose restriction to the first or second 
copy of S is isomorphic to (L1/2@E) or (L1/2QE - 1), respectively. G~(P, Q) is still 
required to have for its only singularities a simple pole of residue one on the 
diagonal. 

Instead of regarding G~(P, Q) as a section of the twisted line bundle 5~E with 
singularity only on the diagonal, we may regard it as a section of ~ with poles at 
P = Q or P = Qj and zeros at P = Pi or Q = Qj. (This is so because (78) is the divisor 
of E; a section of E is just a function which to be regular is required to have zeros at 
the P~ and permitted to have poles at the Qj.) But we may immediately write down a 

13 We suppress g, writing gW as W 
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section of ~ with those properties: 

G~(P, Q)= (lp(P)qp(Q) ~ ~p(P,) ~ qp(Qj)) . (80) 

This simple argument expresses GE in terms of G, since the right-hand side is a free 
field correlation function which can of course be expressed in terms of the free 
propagator G. (The formula is simply 

(-- 1) ~ I~ G(Pj, Q~(j)), (81) 
j=O 

where G(P, Q) is the ordinary propagator, not twisted by E, and we have taken 
P = Po, Q = Qo to simplify the notation.) The argument leading to (80) shows that 
the divisor of a line bundle corresponds to insertions of fermions and antifermions. 
This fact emerged in [13]. Its analogue for vector bundles will emerge in Sects. four 
and five. 

Apart from the motivations already indicated above, a further reason for 
formulating multiplicative Ward identities is that this is a crucial step if one wishes 
to work in an algebraic setting, over ground fields other than the complex 
numbers. Multiplicative Ward identities will be one ingredient of the purely 
algebraic description of the theory of free fermions that we will give in Sect. (4). 
Before plunging into this, however, we first pause to describe the physical 
reasoning behind the construction. 

IlL Operator Valued Differential Forms 

Our goal in this section is to express the Ward identities of conformal field theory 
[14] in terms of operator valued differential forms. These have already made an 
appearance in Sect. (1). We will only consider holomorphic conformal field 
theories, that is, theories in which all degrees of freedom are holomorphic. The first 
subsection of this section essentially explains the physical background to Sect. (4); 
then we continue and analyze more detailed properties of operator valued 
differential forms. 

Consider, in a conformal field theory on some Riemann surface S, a conformal 
field ~v of spin S. It is an "operator valued section of LS, '' with L being the canonical 
line bundle of Z, and L s its S th power. Let f be an ordinary c-number meromorphic 
section ofL 1 -s. Then fqJ is an operator valued section of L, or in other words an 
operator valued differential form. Notice that we permit f to be meromorphic, not 
necessarily holomorphic; an important part of the story has to do with the poles of 
f Let P~ be the positions of the poles of f 

Let us formulate the precise properties of Jip which entitle it to this name, 
operator valued differential form. Let us insert fp(z) in an arbitrary correlation 
function with insertions of other operators Oj(P}). Thus, we define. 

F(z) = .f ~X  e-t. H Oi(P))" ftp(z). (82) 

Here ~ X  is a shorthand expression for integration over the unspecified field 
variables of the conformal field theory in question. Now, the correlation function 
F(z) is an ordinary c-number differential form, which in a holomorphic conformal 
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field theory will be holomorphic except for certain poles. It will have poles at the Pi, 
where f has poles, and it may have poles at the P), because of possible short 
distance singularities in the operator products ~0(z)-O~(P}) for z~P}. What we 
mean in saying that f~p(z) is an "operator valued differential form" is precisely this: 
its correlation functions are ordinary meromorphic differential forms, with the 
poles just described. 

Let us delete the positions Pi and P} of the poles from 2 to make an incomplete 
Riemann surface Z' on which F(z) is holomorphic, i.e., obeys 6F(z)= 0. Then 

o= f JF(z)= E ~ F(z), (83) 
~ '  ~ C~ 

with c~ running over the poles of the differential form F(z), and C~ a contour that 
encloses the e~h pole. Equation (83) is simply the statement that the sum of the 
residues of the differential form F(z) is zero, i.e., 

Rest(F) = 0, (84) 

the residues being defined by 

Res~(F(z))= 2~t ~c F(Z). (85) 

Equation (84) is of course a fundamental statement about meromorphic 
differential forms on a Riemann surface and clearly has nothing to do with the 
interpretation of F(z) as a correlation function. The real story begins when one 
supplies the geometrical interpretation of the residues of F(z). 

We have considered two types of point at which F(z) has poles - points P) at 
which a vertex operator Oj was inserted, and points Pi at which the pole is entirely 
due to a pole in f We would like to discuss these two cases uniformly. To do so, let 
us adopt the convention that a vertex operator is inserted at each of the Pi and P}, 
but this vertex operator happens to be the identity operator I in the case of the P~. 
After all, 1 is a perfectly respectable vertex operator in conformal field theory - it 
represents the coupling to an SL(2, R) invariant "vacuum" state. Including 1 as one 
of our vertex operators, we henceforth treat the Pi and P) on an equal footing. 

As in Fig. 6c, let us project to infinity one of the points P~ at which F has a pole. 
In the infinite past, i.e., far out on the cylinder of Fig. 6c, there will then appear a 
quantum state ]A>. It is simply the state whose vertex operator is O~. (If O~ = 1, then 
[A> is the "vacuum.") ]A> is a state in the Hilbert space Hp~ of possible "in" states at 
P~. We can give a more physical description of the right-hand side of (85). It is 

Res~F(z)= ~Xe-~  [l OJ(PJ)'(1) ~ ~ c~ (86) 

The notation in (86) is somewhat hybrid. Writing the state ]A> as part of the 
argument of the path integral is meant as a reminder that the boundary condition 
at P~ is that the state ]A> is coming in from the far past. At the Pj withj 4=c% which 
are of no interest at the moment, we have projected the punctures back to finite 
points and restored the vertex operators O i. The contour C~ surrounds P~. 

Now we must recall the correspondence between Feynman path integrals and 
operators. The object ~ inserted in a path integral corresponds in the Hamiltonian 
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(b) 

Fig. 6a-e. Poles of the correlation function F(z) are indicated in a. Upon deleting the positions of 
these poles from S, we can write a contour integral formula picking up contributions from the 
"operator-valued residues," as in b. Projecting the position of one of the former poles to infinity, as 
in c, we see that the operator valued residues are really moments of suitable operators. A contour C 
surrounding one of the poles of F is sketched in b and again in e 

description to an operator,  which we will also call ~p, acting in the quantum Hilbert 
space Jfv~- The factor ~ (f~p) in (86) is simply an instruction to take the boundary 
condition at P~ to correspond not to insertion of IA), but rather to insertion of 

1 
2rci ~ (f~c,)[A). (87) 

The analogy with (85) suggests that the operator  which appears in (87) should be 
regarded as the operator  valued residue of the operator  valued differential form 
f~p. Thus, we define the residue of f~p at P to be the operator  

1 ~; (f~p), (88) Resv(f~) = ~ c 

regarded as an operator  on the space of possible quantum states (or equivalently 
possible vertex operators) at P; C is a contour  surrounding P but no other possible 
poles. 

Of  course, whatever can be said about  states can be restated in terms of 
operators, i f  the state IA) corresponds to the vertex operator  Oe, then the state 



Quantum Field Theory 559 

Resp(f~p)lA) will correspond to some other vertex operator which we may as well 
call Resp(f~p). O(P). Thus, we have a residue operation acting on operators, 

O (P)-~ Resp(flp) - O (P), (89) 

which has neither more nor less content than (88). In this section, we wish to 
formalize the basic properties of the residue operation. We can now state the first 
principle: 

(i) For O(P) = 1, Res~,(flp) • 1 = 0 unless f has a pole at P. 
This is just a restatement of the fact that the poles in (82) (which are the only 

points at which the residues may be nonzero) only occur at the Pi (where f has 
poles) or the P) (where O :~ 1). 

Consider now a product of observeables 

O~(P1)O2(P2)... ON(PN). (90) 
We have written this as a finite product, but one could equally well think of it as an 
infinite product 

I I o,(P), (91) 
Pe2 

which runs over all points in Z with the agreement that Op(P) = i for all but finitely 
many P. We will now in a trivial way extend the notion of Resp(fq~) so that it acts 
not just on operators at P but on arbitrary products (91). We simply declare that 
Res~,(f~p) will be considered to act as before on the P component of (91) while 
leaving the other components invariant, 

Res~,(f~p). ~ OQ(Q)= (Resj,(flp). Op(P)). I] OQ(Q). (92) 
Q Q * P  

Having defined Resp(J~) for arbitrary P as an operator acting on arbitrary 
products of observables, we now wish to study the "sum of the residues." Thus, let 

J =  (~  Resp(ftp)) • ~ Oe(Q). (93) 

It is important to note that (93) is a well-defined finite sum, since (92) vanishes 
unless f has a pole at P or Op =~ 1. 

We would now like to find the appropriate statement about operator valued 
differential forms which generalizes the statement that the sum of the residues of an 
ordinary c-number differential form is zero. Let us think of the Feynman path 
integral as defining a linear functional on the space of observables. Thus, for an 

arbitrary observable I~ Op(P), we will abbreviate 
P 

I ~X e-' 1-I Op(P) (94) 
P 

a s  

1-I Op(P), (95) 
P 

with f being a linear functional from observables to complex numbers. Then (84) is 
equivalent to the statement that 

O= S (~ Resp(J))) ~| Oe(Q). (96) 
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We have in fact defined the notion of the operator valued residue precisely so as to 
be able to express (84) in the form (96). 

We thus have our second axiom for operator valued differential forms: 
(ii) The expectation value of the sum of the residues of an operator valued 

differential form is zero, in the sense that (96) vanishes for all observables I~ OQ(Q). 
Q 

Equation (96) is a restatement of the usual (additive) Ward identities of 
conformal field theory, in terms of operator valued differential forms. The 
connection with the formulation of [14] is roughly that they discuss the operator 
product expansion 

(~(z). O(w))~_~,,.~ Z 0,-  (z-- w)" (97) 
; ~  - N  

and must, in principle, keep track of all terms on the right-hand side. [The 
correlation functions are in a sense determined just by the terms of n < 0, but the 
associativity conduction of the operator product involves all terms in (97).] We on 
the other hand consider products 

f (z)~p(z). O(w), (98) 

with arbitrary f, and we extract only the residue, that is, the coefficient of (z - w)- 1. 
Clearly, by picking f ( z ) ~ ( z - w ) - " - l ,  the operator O, of (97) will appear as the 
residue Res~(f~p) • O(w), so by considering residues of operator valued differential 
forms, we in fact repackage all of the information of the usual Ward identities. This 
means that like the Ward identities of [14], our Ward identity (ii) is powerful 
enough to determine the correlation functions (that is, the linear functional ~). 
Since (ii) has no content beyond the standard Ward identities, the only issue is 
whether one will obtain new insight by thinking in terms of operator valued 
differential forms and their residues. 

(ii) is recognizably a generalization of a conventional statement about residues 
of c-number differential forms. Another fundamental property of c-number 
differential forms is that the residues of an exact form 

co=d2 (99) 

are all zero. We would like to exhibit the statement analogous to (99) in the context 
of the operator valued differential forms of conformal field theory. To do so, the 
main obstacle is that we must explain the analogue of the exterior derivative "d" 
which appears in the formula co = d2. Here 2 is of course an ordinary c-number 
function, and d is the natural flat connection on scalar functions. To generalize d to 
operator valued scalars, it is necessary to show that operator valued scalars are in a 
suitable sense sections of a fiat vector bundle. We thus must plunge into a long 
digression about the bundle of observables in a conformal field theory on a 
Riemann surface. 

The Bundle of Observables 

We will have to systematically discuss arbitrary local observables, which are not 
necessarily conformal fields. Let P be a point in S, and Ve the space of all local 
operators that can be inserted at P. Except for conformal fields, most operators in 
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V e do not have a definite dimension. For  instance, the energy momentum tensor 
T(P) is a fundamental example of a field that is not a conformal field. Under global 
scale transformations, T(P) transforms as an operator of dimension two, but under 
a general change in local parameter at P, T(P) shifts by a multiple of the identity 
operator (which has dimension zero), so we describe T(P) as an operator of 
dimension at most two. 

To put this a little bit differently, what would be described in one coordinate 
system as a multiple of the energy momentum tensor, say eT(P)  (with e a complex 
number), would be described in another coordinate system as a linear combination 
of the energy momentum tensor and a c-number, say 

fi' + a 'T(P) .  (100) 

This means that in an invariant way, without choice of a coordinate system, one 
cannot think about  "inserting the energy momentum tensor at a point P on the 
Riemann surface S." One must always think in terms of inserting a linear 
combination of the pair of operators 1 (the identity operator) and T(P). Clearly, 
such a linear combination does not have a definite dimension, but it has maximum 
dimension two. To illustrate more fully some of the ideas of the present section and 
to make contact with [19], the system (1, T) will be discussed more fully in an 
appendix. 

For  convenience, we will assume in what follows that only the identity operator  
has dimension zero and that all other dimensions are positive integers. Let Ve,, be 
the subspace of Vp consisting of operators of dimensian at most n. Clearly, Vp,,, 
C Ve,,+ 1, and 

v,= U v,,,. (101) 
n 

Equation (101) is a filtration of V e by subspaces of finite dimension and is canonical 
- it does not depend on a choice of local parameter at p.14 If one chooses a local 
parameter z at P and defines the dimension of a field in terms of the transformation 
under the vector field z(d/dz) ("a global scaling near P"), then it is possible to define 
a definite dimension to the fields (for instance, T(P) has dimension two). Thus, 
upon choosing a local parameter, we get a direct sum decomposition 

Ve= @.Wp,., (102) 

where We,. consists of fields that transform with weight n under z(d/dz))  5 
In interesting holomorphic conformal field theories, the Vp,. are finite 

dimensional, but Vv is always infinite dimensional (since including descendants 
there are necessarily infinitely many fields). 

As P varies in S, the Ve are fibers o fa  holomorphic vector bundle yr* over ~16 
The Ve,, are likewise fibers of subbundles # '*.  Clearly, 

~ * =  U %*.  (103) 
n = 0  

14 A local parameter z at a point P on a Riemann surface is simply a function z which is 
holomorphic in a neighborhood of P and has a simple zero at P 
15 One can interpret We,. as the quotient Ve,./Ve,.-1, but there is no canonical splitting 
lie,. = Ve,. - ~ ® Wp, .. The obstruction is that fields such as the energy momentum tensor which are 
not conformal fields mix under change of local parameter with fields of lower dimension 
t6 ~/-. is the dual of .~r, which wilt appear later 
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Again, (103) is a filtration, and there is no canonical direct sum decomposition that 
induces it. 

What is the structure group of ~U* ? Let us answer this on physical grounds. Let 
be the Hilbert space of the conformal field theory under discussion. Given any 

point P on a Riemann surface, the space Ve of local operators that can be inserted 
at P is isomorphic to ~ ,  but there is no canonical way to make this isomorphism. 
To identify Vp with J¢~, one needs a local parameter z at P. Given such a local 
parameter, one has a natural way to project P to infinity, say by choosing a metric 

dzd~ 
ds  2 .~ - -  (104) 

In the metric (104), the Riemann surface Z is a flat cylinder (at least in a 
neighborhood of P where the local parameter z is well behaved), and P has been 
projected to the "far past," as in Fig. 6c. This gives us an identification with the 
canonical formalism, or in other words a specific identification of Ve with x¢. 

If z is a local parameter at P, then another local parameter z' would be of the 
form 

Z ~ -'~ a l z  q- a2 Z2 -t- a3 z3 q - . . .  (105) 

with a14:0. Such changes of coordinate are generated by the vector fields 
z "+ l(d/dz), n=0 ,1 ,2  . . . . .  These correspond to the usual Virasoro generators L,, 
with n >  0. If we denote the Lie algebra of the L,, n > 0 as N, and the group 
generated by ~ as R, then it is natural to call R the group of changes of local 
parameter. The fact that an identification of the fiber of ~ *  with a standard space 
~Vf arises on choice of a local parameter means that R is the structure group of ~ * .  

But in fact, V* is much more rigid than a generic vector bundle with structure 
group R. One side of this has to do with group theory. Let N+ be the Lie algebra of 
the L,, n > -- 1, and let ~ be the Virasoro algebra generated by all of the L,, n e Z. 
The fiber Vp of a vector bundle with structure group Y must be a representation of 
the Lie algebra N, but there is no general reason that that representation must 
extend to a representation o fN + or ~ .  But in conformal field theory, Vp is actually 
a representation of ~.  N ÷ is about to play a crucial role, but ~ will not (except in 
the appendix). This is one reflection of the fact that something crucial is missing in 
the present discussion (as from other existing discussions of conformal field 
theory). 

The other side of the rigidity of ~U* has to do with the following. If indeed z is a 
local parameter at P, then for all Q in some neighborhood of P, z -  z(Q) is a local 
parameter at Q, and the choice of metric 

dzdi 
ds 2 = (106) 

(z- z(Q))(s- ~(Q3) 

leads just as in our discussion of Vp to an identification of VQ with H. Thus, 
choosing a local parameter at P gives a trivialization of "U* not just at P but in a 
whole neighborhood of P. 

Pick a local parameter z at P and pick a basis of operators {~pk} in the space Vp 
of operators at P. For instance, in a theory of free fermions, these may be 

1, lp( P), d~( P), ~d~p( P ), d2~p(P), (107) 
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etc., with "d" being d/dz. As described above, the choice of parameter z gives a 
trivialization of ~ *  in a neighborhood ~0 of P, so we can erase the argument "(P)" 
in (107); without any further arbitrary choices, we have in a natural way the basis of 
operators 1, ~p, d~, ~pd~p, dZ~p,.., at any point in Zo. 

In this section we have been discussing "operator valued differential forms." 
We now wish to broaden our horizons a bit and discuss "operator valued 
meromorphic functions." An operator valued meromorphic function A(z) is an 
object with the property that its correlation functions are ordinary meromorphic 
functions. After trivializing "U* in a neighborhood No, a general operator-valued 
meromorphic function ~ can be expanded 

e=  Zak. ~pk, (108) 

with the ak being ordinary meromorphic functions in 2o. 
We now want to define the "exterior derivative" de of the operator valued 

meromorphic function e. Proceeding blindly, we write 

d e - -  ~ da  k • lp k -+- ~ a k • dip k . (109) 

By da k we mean (in the z coordinate system) simply dak/dz. But what is dlpk? It is 
crucial now that the ~/)k a re  a basis for all locat operators, and this includes all 
derivatives of local operators, as in (107). Therefore, the dip k are simply linear 
combinations of the ~p" with constant coefficients, say 

d~P k = Z Wk,~P", (110) 
m 

for some constants Wk,,,. Thus, (109) can be rewritten 

and in coordinates this is our formula for the exterior derivative of an operator 
valued meromorphic function. 

Let d be the space of operator valued meromorphic functions, and Yf the 
space of operator valued meromorphic differential forms. We want to interpret 
(111) as a natural definition of an exterior derivative 

d: d - ~ . ~  (112) 

with the property that i f f  is an ordinary meromorphic function, and ~ an operator 
valued meromorphic function, then 

d ( f u ) = d f . e +  f . de, (113) 

with df  the ordinary exterior derivative of functions. What is missing at the 
moment is that the definition of (111) seemingly depended on a choice of a local 
parameter z at a point P e 2. We would like to show that there is an intrinsically 
defined exterior derivative which in coordinates takes the form (111). 

First of all, the question can be reinterpreted in the following way. While we 
have spoken roughly of the ak in (108) as "functions," it is clear that this depended 
on a choice of trivialization of'~*, and hence the correct global description is that 
the family {ak} defines a global meromorphic section of the dual bundle ~ .  We 
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have arranged to call this bundle ~/', reserving the secondary name ~/'* for the 
"bundle of operators", because in a sense it is the a k that one really wishes to study. 
In formulas like (108), the ~pk play a bookkeeping role. If we were not guided by 
physical intuition, we might very well have defined ~ and neglected to mention the 
~p~ altogether. 

Let F (~ )  be the space ofmeromorphic sections o f ~  and F ( ~ ® L )  the space of 
meromorphic sections of gr®L.  These correspond to the spaces of operator 
valued meromorphic functions and operator valued meromorphic differential 
forms, respectively. Equation (111) is equivalent to a "holomorphic connection" 

D: r ( v ) - ~ r ( ~ ® L )  (114) 

obeying 

D ( f o ) = d f  o+ f " DO (115) 

for Q E F(¢/') and f an ordinary meromorphic function. In coordinates, D is defined 
by (111) with the symbols ~k erased. An element of d is locally a collection of 
functions {ak}, and D of this collection is 

A holomorphic connection on a holomorphic vector bundle on a Riemann surface 
is automatically fiat, since the dimension of the Riemann surface is one in the 
holomorphic sense, and there is no room for curvature. Thus we are asserting 
among other things that the bundle ~ is naturally fiat. 

It is possible to convince oneself that (111) and (116) are intrinsically defined by 
thinking about how things transform under change of local parameter. However, a 
much more incisive account has been given by D. Kazhdan, and I will follow his 
treatment. First of all, the crucial step in making sense of (111) was (110), which is 
the statement that the space of all operators is closed under the operation of 
differentiation. The derivative of an operator is the application of the Virasoro 
vector field d/dz, which corresponds to L_ ~. Thus, we recall that the structure 
group of ~ is R, generated by the Lie algebra N of L,, n > 0. The fiber Wp of V 
necessarily admits a .~  action, but this in fact extends to an action of N +, generated 
by L,, n > - 1 ,  and this is the basis for (1 t0) and thus for our other statements. In 
constructing the holomorphic connection D on the bundle U,  we must expect to 
use the ~ +  action on the fibers. 

The other key property of ~ is that it is trivialized upon picking a local 
parameter z at a point P e Z. Such a choice gives a canonical identification of the 
fiber g~ with the Hilbert space 3if of the conformal field theory.17 Thus, let 2 be the 
space of pairs (P, z) consisting of a point P ~ Z and a local parameter z at P. 2 is 
fibered over Z, and the pullback ~ of ~ from Z to ~ is canonically isomorphic to 
the product Z x Jg. 

Vector fields f (z)  (d/dz) = z"(d/dz) with n > 0 act on Z by moving the point P and 
shifting the local parameter. Explicitly, the action is 6P= - f (O) ,  6z=f(z) ;  this 

~v Since we have taken a dual from operators to coefficients of operators, it is ~*  that really 
appears here, but this is naturally isomorphic to 3¢ ~ as ~ is a Hilbert space 



Quantum Field Theory 565 

preserves the requirement z(P) = 0. This gives an action of the N+ Lie algebra on 2. 
We will refer to the vector fields z"(d/dz) with the action of ~ just described as 
L,_ 1.18 There is no way to exponentiate the N+ Lie algebra action to get a group 
action on 2. However, if we restrict to the subalgebra N o fN  + consisting of vector 
fields that leave P fixed (while transforming the local parameter at P), then the Lie 
algebra action exponentiates to an action of the group R. A section of ~// over S is 
the same as an R-invariant section of the trivial bundle Y? over X, where the R 
action on sections of yg is the diagonal action on the two factors in the product 
~t? = ~ x Yr. Thus, an operator valued function e on S is equivalent to a section ~ of 
the trivial bundle ~ x ~ over 2 which obeys 

L , ~ = 0 ,  n > 0 .  (117) 

The canonical line bundle L of £ likewise can be lifted to ~, where it becomes 
trivial, since given a pair (P, z) there is a canonical basis dz for the space of 
differential forms at P. Under a change oflocal parameter z ~ z '  = a,z + a2 z2 +..., a 
differential form at P is multiplied by a [  1 This means that a differential form co on 
2 lifts to a function ch on X which obeys 

Loeb=oh , L,ch=0,  for n > 0 .  (118) 

Since ~ and L lift to trivial bundles on 2, the same is true for their tensor 
product ~ ® L .  Combining (117) and (118), we see that an operator valued 
differential form A on S is the same as a section/] of the trivial bundle 2 x jvf which 
obeys 

Lo/]=/~,  L , ~ = 0 ,  for n > 0 .  (119) 

Now, to establish the geometrical nature of(l  11) and (116), we must show how 
to construct from a meromorphic section of "U a meromorphic section of ~ ® L .  
Lifting the discussion up to 2, the problem is to find, from an object ~ obeying 
(117), an object/1 obeying (119). The formula is painlessly simple: 

/ l = L - l ~ .  (120) 

From (117), (120), and the Virasoro algebra, (119) follows. 
Thus, while R is the structure algebra of:U, we have seen the importance of the 

fact that the ~ action on the fibers extends to ~+ .  A gap in the present paper is the 
failure to integrate the ,~ action into the constructions. 

Some More Axioms 

Let d be the space of operator valued meromorphic functions and ~ff the space of 
operator valued meromorphic differential forms. From the last section, we have an 
exterior derivative d: ~4 ~ J¢~. We consider an operator valued differential form A 
to be exact if it is of the form A =d~ for some operator valued meromorphic 
function ~. We can now state our third axiom for operator valued differential 
f o r m s  

(iii) I f  A=d~, then ReseA=O for all P. 

18 It is shown in the appendix to [-19] that if one is willing to work on the moduli space of surfaces 
of given genus rather than a particular surface L', one can actually extend this to an action of the 
whote Virasoro Lie algebra 
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Fig. 7. A contour argument which is used to compute the commutator I-Rest(A), Rese(B)], with A 
and B being two operator valued differential forms 

The justification for this is very simple. Picking a local parameter z at a point 
P e S, the formula A = d e  just means A = de/dz. So the residue at P is 

I de 
Rese(A)= ~ c~ dZ~z =0, (121) 

this being just the statement that the integral of a total derivative around the closed 
contour C is zero. This reasoning is indeed trivial; the only difficulty in the last 
section was to show that there is a geometrically defined object de which upon 
picking a local coordinate z reduces to de/dz. 

Having associated to a point P and an operator valued differential form A an 
operator Resp(A) in the Hilbert space Vp at P, it is natural to try to compute the 
commutators of these operators. Thus, let A and B be two operator valued 
differential forms, and let us study the commutator of Rese(A) and Rese(B). This 
can be done by a contour deformation argument which is familiar in conformal 
field theory (Fig. 7). Let C2 be a contour that encloses P, and Ct a contour that 
encloses C2, and such that Ct and C2 are small enough to enclose no poles of A and 
B except the possible poles at P. Then acting on some state tA) e l/e we have 

( 1 ) 2  A(zO ~ B(z2)'A~. (122) Rese(A)Rese(B)lA)= 2~i c~ c2 

Here zt and z2 are parameters along Ct and C2. To take the two operators in 
opposite order, let C'1 be a contour inside C2; we get 

(I)2~B(z2) ,A(z~) ,A) .  (123) Resp(B)Rese(A)lA)= ~ c2 cl 
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We want to consider the difference (Res1,(A)Resp(B)--Rese(B)Rese(A))lA>. This 
difference is of course a difference of double contour integrals. Doing the integral 
over z 1 first for fixed z 2, we see that the z 1 contour is C 1 - C'~, a contour which 
encircles z2 but not P. Thus, we define 

(Ao B)(z2) = ~ ~ A(z)B(z2), (124) 
Z7"¢1 C 

with C any contour (such as C 1 -  C'0 that encircles z z and no other poles of A. 
Then 

1 ~ (AoB)(zz)IA>" (125) [Resp(A), Rese(B)]lA > = ~ c2 

The right-hand side, however, is precisely the residue operation that we have been 
discussing, so we may state this more succinctly in the form 

[Rese(A), Res~,(B)] = Rese(A o B). (126) 

This is the desired formula for commutators of operator valued residues. We can 
now state the fourth axiom for such residues. 

(iv) Let A and B be operator valued differential forms. Let Q be a point at which B 
does not have a pole. Then the value of B at Q determines a state BQ in the space VQ of 
observables at Q. Let (A o B)Q = Rese(A). B a. Then there is a meromorphic operator 
valued differential form A o B which equals (A o B)Q except perhaps at finitely many 
Q where A or B has a pole. Moreover mResp(A), Resp(B)] = Resp(A o B). 

[In the above, the reason for avoiding poles of A and B is that BQ is not defined 
at a pole of B, and the Rese(A ) operation can be seen to depend meromorphically 
on P only if one keeps away from poles of A.] 

Now, A o B can be computed, say, from path integrals with insertions of 

A(z). B(w), (127) 
c 

with C a contour circling w. In this formula, B plays a relatively passive role. It is 
obvious, for instance, that i f f  is a meromorphic function, then A o ( f B ) = f ( A  o B). 
It is also clear that (127) still makes sense if B is replaced by an operator valued 
meromorphic function (9 rather than an operator valued differential form. We 
would simply study insertions of 

A(z) . (9(w) (128) 
c 

to compute A o (9. For operator valued functions we have a natural exterior 
derivative (9 ~d4~. Extracting this derivative clearly commutes with the operation 
of multiplying by ~ A(z), so A o(d(9)=d(A o (9). Likewise, the operation in (128) 

c 
clearly commutes with multiplying (9 by a c-number function or taking its tensor 
product with a c-number differential form. We can thus add the following to our 
list of axioms: 

(v) For A an operator valued differential form and (9 an operator valued function, 
there is an operator valued function A o (9 such that for all but finitely many Q where 
A or (9 has a pole, (A o (9)Q = ResQ(A). (gQ. This operation is compatible with the 
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operation A o B for differential forms A, B, in the sense that if co is a c-number 
meromorphic differential form, so that ~®o~ is an operator valued differential form, 
then 

(Ao 4))®o) = a o  (~b®~o). (129) 

(On the left of (129) there appears the composition of a differential form with a 
function, and on the right there appears the composition of  two differential forms.) I f  
moreover f is a meromorphic function, then A o ( f  ~)= f (A o d?). And finally, the o 
operation commutes with the exterior derivative in the sense that 

A o (d~)= d(Ao 4). (130) 

We will devote the rest of this section to discussing certain facts which follow 
from peculiarities of (126). The left-hand side is antisymmetfic in A and B, but the 
right-hand side is not manifestly antisymmetric. It follows from (126) that 
A o B + B o A must have zero residues. This does not mean that A o B + B o A is zero. 
We have learned that there is a large class of operator valued differential forms 
with zero residues, namely the exact forms. Computat ion in simple examples 
shows that A o B + B o A need not  be zero, but is an exact form. For  instance, let X 
and ,p be two free fermions, with propagator  (,p(z),p(w))= (Z(z)z(w)> = 1/(z-w) .  
Let A(z)=z&p(w) and B(w)=,p(w). To compute A o B  we take the operator 
product  

A (z) B(w) = E (z - w)n O.(w), ( 131) 
n 

and then A o B(w) = O_ 1- The singular part of A(z)B(w) is 

z(z) z(w) dz(w) 
- - -  + . . . .  (132) 

( z - w )  2 ( z - w )  z - w  

Evidently, O_ 1 = - dz, so 

A o B(w) = - dz(w). (133) 

On the other hand, to compute B o A, we express the same operator  product in an 
expansion around z: 

O', (134) A(z)B(w) = 
(w-z)""  

Then B o A = O'_ 1. But clearly 

z(z) 
B(w)A(z)= (w_z)2  + . . . .  (135) 

There is no single pole, so B o A = 0. Therefore, in this example, 

A o B +  Bo A =  - d ~ ,  (136) 

and as expected the differential form on the right-hand side is exact (being d of the 
operator valued function Z). This then illustrates the general rule which is needed 
for the consistency of (126): 

(vi) Let A and B be operator valued differential forms. Then A o B + B o A is an 
exact form, say A o B-~ B o A = dK(A, 13), where K(A, B) (defined up to an additive c 
number constant) is an operator valued meromorphic function depending on A and B. 
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Fig. 8. Contour integrals for three operator valued differential forms A, B, and C 

The exactness of A o B + B o A has a counterpart, in a somewhat different 
context, in recent work by Strominger on string field theory [-22]. The relationship 
deserves to be explored more fully. 

Finally, one more aspect of the consistency of (126) needs to be investigated. 
The equation [Resp(A), Resp(B)] = Resp(A o B) suggests that under the o oper- 
ation, operator valued differential forms (or at least such forms modulo exact ones) 
must form a Lie algebra. Let us try to understand the Jacobi identity. 

In Fig. 8 we consider contour integrals for composition of three operator 
valued differential forms A, B, and C. From the arrangement of contours in the 
figure, one can see that there is a Jacobi-like identity 

A o(Bo C)-Bo(Ao C)=(A oB) o C. (137) 

Equation (137) is not quite a Jacobi identity; in fact, the o operation cannot 
possibly be a Lie bracket, since it is not even antisymmetric. Even if we define a new 
operation [,, ] by [,A,B]=(AoB-BoA)/2, (137) does not become a Jacobi 
identify for [-, ]. To get a Lie algebra from (137), it is necessary to work not with 
operator valued differential forms JY~, but with the quotient ~¢g/dd of operator 
valued differential forms by exact ones. From our above axioms, we have 

(A+du)oB=AoB, Ao(B+du)=AoB+d(Aou). (138) 

Let us denote the equivalence class of a differential form A in JY'/dd as A. From 
(138) it follows that g A1 =A2, and/~1 =/~2, then 

(A1 o B1) =A2 ° B2). (139) 
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This meeans that the o operation on d induces a well defined operation A, B 
~ A  o B on oY'/&~. Since the o operation in JY/dd  is automatically antisym- 
metric, we denote it as [ ,  ]. 

Now, although (I 37) is not and cannot be a Jacobi identity for a o or [ ,  ] 
operation in ~{, it is easy to see that (137) induces the Jacobi identity for the [ ,  ] 
operation in ~ / d d .  Therefore, • / d d  has a natural Lie algebra structure. 

What is the center of this Lie algebra? In the vertex operator algebra of a 
conformal field theory, the center is the identity operator 1, the vertex operator for 
coupling to the vacuum state. In a general operator valued differential form 
A =  Zai~p i, one of the operators ~pi, say ~p0, is the identity operator, and the 
corresponding coefficient function ao is an ordinary c-number differential form. 
Since their "operator" part is the identity operator, such c-number differential 
forms are in the center of ~ / d d .  

Let f21 be the space of c-number meromorphic differential forms on the 
compact Riemann surface S under study. Before identifying the center of J'ff/dd 
with D 1, we must take the quotient off21 by the exact differential forms, since exact 
forms are equivalent to zero in 2/f/dd. Thus, let f2 ° be the space of c-number 
meromorphic functions on S. It is the quotient f2~/df2 ° which will be the center of 
S/dd. 

(vii) The o operation on :K induces a Lie algebra structure on :K/dd,  and the 
center of ~ / d d  is 01(Z)/dO°(Z). 

If~g is the quotient of oY'/dd by its center, then X / d ~  is a central extension of 
q /by  f21/d~2°(S): 

O~ O* /df2° ~ ~ / d d  ~ +O . (140) 

A central extension of the Lie algebra ofmeromorphic vector fields by O~/df2 ° was 
formulated in [19]. What we have described here is essentially the physical setting 
for that construction, as well as a generalization to the whole operator algebra of a 
conformal field theory. If one considers only the two operators 1 and T (the 
identity and the energy-momentum tensor), then ~/becomes the Lie algebra of 
meromorphic vector fields, and (140) is the extension constructed in [19]. This 
example is worked out explicitly in the appendix. 

IV. Quantum Field Theory on an Algebraic Curve 

A traditional and powerful way to construct a quantum field theory is to find a 
Lagrangian and then "quantize." In the case of quantum field theory on a Riemann 
surface, this method has two deficiencies. First (unlike the situation for quantum 
field theory in higher dimensions), there are many conformal quantum field 
theories on Riemann surfaces for which a suitable Lagrangian apparently does not 
exist. In fact, among holomorphic quantum field theories on a Riemann surface, 
the theory of free fermions is perhaps the only case in which one knows of a really 
satisfactory Lagrangian. 

Second, it is very tempting to believe that one should learn to formulate 
conformal quantum field theory not just on a Riemann surface over the complex 
numbers ~, but on a curve over an arbitrary ground field k. While one would wish 
to have an analogue of Lagrangians and quantization of Lagrangians in this more 
general setting, such notions appear rather distant at present. 
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When a Lagrangian is not available, one can attempt to describe quantum field 
theory in terms of Ward identities, an approach which in the case of conformal 
quantum field theory on Riemann surfaces was shown in [14] to be particularly 
powerful. The Ward identity approach is basically concerned with operator valued 
residues of operator valued differential forms, whose basic properties were 
described in the last section. Ordinary residues of ordinary differential forms make 
sense in an algebraic setting. This encourages us to believe that operator valued 
residues of operator valued differential forms - and thus the Ward identity 
approach to quantum field theory -  can make sense over an arbitrary ground field 
k. The purpose of this section is to work this out for some of the simplest conformal 
quantum field theories. 

We consider first the case of free fermions. We work on a smooth complete 
curve X over an algebraically closed ground field k. (For convenience, we take the 
characteristic of k not equal to two; otherwise, one must replace Clifford algebras 
by quadratic forms.) Let L be the canonical line bundle of X and let L 1/2 denote a 
chosen square root of L. 

The heuristic idea behind the construction has to do with ideas described in the 
last section. The fermion field ~p is on "operator-valued section of L 1/2." If then f is 
a rational section of L 1/2, the product wz=f~ p is an "operator valued differential 
form." We will then define the "operator valued residue" of w z, and require that 
"the sum of the operator valued residues is zero." The latter statement was one of 
the properties of operator valued differential forms formulated in th~ last section. 
Having already explained the physical ideas in the last section, we will here simply 
proceed with the mathematical constructions, presented hopefully in a self- 
contained way. 

Let Y be the space of rational sections of L 1/2. It is an infinite dimensional 
vector space over k. Let A Y be the exterior algebra on Y. As a vector space it is 

^ Y= 1G Y(~ A 2 y ( ~  . . .  (141) 

with A ky  the k th exterior power. (The symbol "1" stands for a one dimensional 
vector space.) 

Let us recall the notion of a Clifford algebra. Given a k vector space V with a 
nondegenerate quadratic form ( , ) ,  one defines a clifford algebra CV 
as follows. Elements v, w of V, regarded as elements of A V, anticommute, 

v A w+w, , , v=O.  (143) 

In the Clifford algebra, (143) is replaced by the Clifford multiplication law 

~ff + ff~ = - 2(v, w)c. (144) 

(Here c is the one dimensional center of the Clifford algebra. One may suppress it 
and set c = 1.) Here v~3  can be regarded as a natural"lift" of VC A V to C[~ this lift 
does not preserve the Grassmann algebra (143), the correction being the cocycle 
which appears on the right-hand side of(144) and gives the Clifford algebra C V as a 
deformation of the Grassmann or exterior algebra A V. 
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Now, on the space Y of rational sections of L 1/2, there is no natural quadratic 
form, and thus no natural way to make a Clifford algebra. However, let P be a 
point in X. For  f g in Y, the product  fg  is a differential form. Let Res e denote the 
operation of taking the residue of a differential form at P. The formula 

(f, g)p = Rese(fg ) (145) 

then defines a quadratic form ( , ) p  on Y 
In fact, let Yp be the completion of Y at P, or in other words the space of formal 

sections of L 1/2 defined by a formal power series near P. Upon trivializing L 1/2 in a 
neighborhood P, an element of Yp can be expressed as a formal series 

a,z" (146) 
n = - - N  

with z a uniformizer at P and a, ~ k. Since Y has a natural embedding in its 
completion Yp, the "global exterior algebra" /~ Y has a natural embedding in ^ Yp 
for each P. Different completions Y/, and YQ of Y for P =~ Q are very different spaces, 
since there is no way to reexpress a formal series at p t9  as a series at Q. The 
quadratic form ( , ) p  makes sense not just on Y but on its completion Yp, since it 
makes sense to compute the residue at P of a differential form which is defined just 
in a formal power series at P. (For Q ~= P, the quadratic form ( ,)Q cannot be 
defined in Yp, since there is no way to reexpand the formal series (146) around Q.) 
The Clifford algebra constructed from Yp with the quadratic form ( , ) e  (and c = 1) 
will be called C Yp. 

We next wish to construct a representation of CYp on a k-vector space Vp which 
in physical terminology is "the space of observables at P." The irreducible 
representation of a finite dimensional Clifford algebra is unique. This is not true in 
infinite dimensions. To specify a representation of CYp requires a choice of 
"polarization" of ( , ) p  - that is, a choice of a maximal subspace Y~ of Y/, such that 
(f, g)v = 0 for f, g e Ye +. For  Yp+ we choose the space of sections of L 1/2 (or rather, 
formal series (146)) which are regular at P. Up to isomorphism, there is a unique 
irreducible representation V v of CYv which contains a vector lv annihilated by Y+ 
(or rather the lift of Y~ to the Clifford algebra). 

A standard description of Vv would be the following. Pick a complement Y7 to 
Y+ in Yr. A standard and convenient way to pick such a complement is to trivialize 
L 1/2 in a neighborhood of P, pick a uniformizer z at P, and then take ¥7  to consist 

N 

of"polar"  series ~ a,z-". Then as a vector space one defines Vv by the formula 
n = I  

~ =  A Yp- = IpG Ye- G A 2Ye- @ .. . .  (147) 

Thus, V e is the sum of exterior powers of YT. [lv, whose analogue in Eq. (141) was 
simply called "1," denotes a one dimensional vector space with basis element lv.] 
Thus, Vv has a basis consisting of elements of the form 

v=f~ A f z A  ... Ark (148) 

19 Which is not necessarily a convergent series, even if we are working over cg where there would 
be a notion of convergence 
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with f , , ,eY7 and k=0 ,1 ,2 , . . . .  For feYp,  let f = f + + f - ,  with f +  e Yp+-. The 
action of f ,  or rather its lift f to CY,, on the vector v of (148) is then defined to be 

k 

f . v = f - : , v - 2  Z • (149) 
m = l  

(On the right the symbol f,, means that f,, is to be omitted.) This formula gives a 
representation of C Ye which up to isomorphism is independent of the choice of YT- 
While (149) may took cumbersome, it is actually the perfectly standard formula for 
the action of the Clifford algebra on a fermion Fock space. 

In the preceding, Ve is what usually would be called "the space of quantum field 
theory observables at P." We now wish to consider the space of"all observables on 

N 
X." In quantum field theory, an observable is usually a finite product I~ O~(Pi) of 

i = i  

observables at points Pi, or alternatively a product I-I O(P) which runs over all 
e 

P E X  with the restriction that O(P)=I  for all but finitely many P. Thus, the 
appropriate object is the restricted or adelic product of the Ve, 

V= II  Vp. (i 50) 
P 

An element of Vis an element ®j,v~, of the ordinary tensor product @eVe such that 
ve = le for all but finitely many P. (The bizarre-looking symbol II  means nothing 
more nor less than a "restricted" tensor product, restricted by the condition just 
stated that almost all v e equal le. We will often later use this symbol II  to denote 
similar although slightly different restricted infinite products.) The special vector 
1 = ( ~ p 1 p  is called the "vacuum" in physical discussions. A restricted product 
V = IIVe of local vector spaces Vp, one for each point P on a curve, is a standard 

e 
notion in the theory of automorphic representations [7], and one of our main 
points in this section and the next is to translate some physical concepts into the 
terminology of automorphic representation theory. 

Each Clifford algebra C Ye acts on V in a natural way. We just let C Ye act on the 
Ve component in V= L[ v~ according to the product taw (149), while leaving 

Q 
invariant the VQ components of Q + P. Thus, if v e V is v = ®eve, then for Ye E CYI,, 
we set 

ye. v = ® v~, (15t) 
Q 

where v~ = v e for Q # P and v~, = ye're. 
We consider an element y~, of CYe to be "regular at P" if it is constructed as in 

(148) from a wedge product of sections of L a/2 that are regular at P. We wish to 
define a sort of adelic product 

CY= LI CY,, (152) 
P 

of the individual Clifford algebras CYp. The adelic product [I CYp is defined as 
e 

follows. An element of CYis defined to be a formal sum @eye, with Ye in C Ye for all 
P, and Yv regular at P for all but finitely many P. Also, in forming the restricted 
product of the CYp, we identify their central elements, so that CY has only a one 
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dimensional center generated by an object c 2o. Likewise, we define the restricted 
product ] j  A Ye to consist of objects ®pYe with each yee /~  gp and almost all yp 

e 
regular at P. 

The motivation for the restriction in the definition of the global algebra C Y is 
to ensure that CY can act on the global space of observables V in a natural way. 
The point is that if Yv is regular at P, it is a sum of products of annihilation 
operators [since in (149) f behaves as an annihilation operator if it is regular at P, 
that is if f -  = 0]. Hence, if YI, is regular at P, it annihilates the vacuum vector le. 
This permits us to define an action of CY on V as follows. For  y = ®~,yp e CY  and 
v = ®eve e V,, we define 

y.  v=  ~ Yv" v (153) 
P 

with yp. v as already defined in Eq. (151). The definition makes sense because 
yp. v = 0  for all but finitely many P (since vp = 1p for all but finitely many P, and Ye 
is regular at P for all but finitely many P). 

Recall now that each CYe is a deformation of ^ Yp. For  each P, YC YeC ^ Yp 
has a natural lift to CY~,. This lifting does not preserve the exterior algebra. 
Rather, for f, g s Y, the lifts fp, ge do not anticommute, but obey the Clifford 
relations 

f e t e  + ~efe = - 2c Rese(fg ) . (155) 

To recapitulate what we have done so far, we began with a Grassmann algebra 
^ I(. Clifford algebras are such a natural generalization of Grassman algebras that 
we were tempted to try to find a Grassmann algebras as a deformation of A Y. 
Doing so requires a quadratic form on Y, and there is no natural global choice. 
However, picking P eX,  there is a natural "local" quadratic form ( , ) e  at P, and 
using it we constructed a "local deformation of /x Y at P," namely CYe. Since 
we wish to work globally, we then combine the CYe into a global object CY. This 
object is significant because on the one hand it is the Clifford algebra most 
naturally associated with the global curve X, and on the other hand its irreducible 
Clifford module V is "the space of observables of the free fermion quantum field 
theory." 

The next key element is the following. A Y has a natural embedding in each of 
its completions /x Ye. Therefore, given f s  A Y,, we can naturally regard f as an 
element of/x g~, for any P. Putting these together, we get the "diagonal embedding" 
of A Y i n  LI ^ Ye, 

P 
A : ix Y ~  H AYe,  (157) 

P 

defined as follows. Given f e  A Y, A ( f )  ~ L[ AYe is the object ®eft,, where fe = f for 
P 

all P. This makes sense because any f ~  ~, Y is regular at P for all but finitely many 
P. Since Y is embedded in A Y, this gives us in particular a diagonal embedding of 
Yin  H A Y  e. 

P 

20 The latter remark is of course unnecessary if the reader has mentally set c = I from the beginning 
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We want to interpret global rational sections of L 1/2, that is, elements of Y, as 
operators on the space V of observables. To this end, the diagonal embedding (157) 
of YC ^ Yin ] j  A Yp is not good enough. For  it is the Clifford algebra CY, not the 

e 
exterior algebra l [  AYe that has a natural action on V. We must lift Y from ^ Y 
to CZ e 

We already discussed in (155) a natural lift f - o r e  of YC A Y to CYe. Adding 
these componentwise, we get a natural lift 

f - o f =  Ere  (158) 
v 

of Y to CY. We now see for f, ge  Y by summing (155) over P that 

f~ + ~f  = - 2c • Rese(fg) = 0. (159) 
p 

Here we have used the fact that the sum of the residues of a differential form is zero. 
Equation (159) is one of the key equations in our present discussion. It means that 
the global exterior algebra A Y with which we began can be embedded in the adelic 
Clifford algebra C Y  while preserving the commutat ion relations, l i t  cannot be 
embedded in any (CY)e because of the Clifford relations. 

More generally, let A Y+ = Y® A z Y O . . ,  be the sum of the positive exterior 
powers of Y Since ^ Y+ is generated as an algebra by Y, the embedding Y ~ C Y  
extends to an embedding of /x Y+ in C Y  - which preserves the exterior 
multiplication in ^ Y + in view of (159). For  f e / x  Y + we denote the lift to C Y as f. 

We now wish to describe the "expectation value of a product  of observables." 
This is a linear functional on V, which we will call ~: V ~ k .  The functional is 
required to obey 

~ f . v - - 0  (160) 

for all v e V and f e  Y. Of course, since/x Y+ is generated by Y as an algebra, this is 
the same as saying 

3~. v = 0 (161) 

for all y e /x  Y+, v ~ V. Equation (160) or (161) is the "Ward identity of free fermion 
field theory" and is analogous to the statement that the sum of the residues of a 
differential form is zero. The rationale for such formulas in quantum field theory 
was discussed in Sect. (3). 

It is important  to observe that the possibility of imposing the Ward identities 
(160) depends on the validity of (159). If we had y, z e Y with {3~, £) nonzero, and 
equal, say to a non-zero element ~ of the ground field k, then (160) would imply 

0 =  5 { ~ , ~ } . v = ~ . I  v, (162) 

and therefore the operation 5 would have to vanish. The global formula (159) is 
necessary for the Ward identities to make sense. 21 

z, It may be that in trying to go "off shell" so as to formulate string theory geometrically, instead of 
considering non-conformally invariant field theories one should consider conformally invariant 
structures that are not field theories because some central extension does not split globally 
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To understand the content of (160) or (161), a key fact is the following. Let 
(A Y+)V be the subspace of V consisting of expressions ~pi-vi, with yie A Y+, 
v~ e V. Then the quotient space V/(/~ Y+) V is one dimensional. As a result, a linear 
map [:V-*k obeying (160) exists and is unique up to multiplication by a scalar. 

In showing that V/(^ Y+)V is one dimensional, 2z we will for simplicity 
(though it is not necessary) assume that the chosen square root L 1/z of L, which we 
have kept fixed in this discussion, has no global sections, i.e., H°(L)=0. 

Consider in Ve a general monomial w = f l /x  f2 A.../x fk" Each f,  has a pole at P, 
say or order n~, because of the way Ve is constructed [recall Eq. (147)]. We define an 
integer [w[ by writing [w[ = Z n,. A general vector in Ve is u = Zeiwi with e~ e k and w~ 

/ ,  

a monomial. We say u is of order juj=maxlw~[. If v~ V is v=  @/,vp, we write 
Ivl = ~ lvpI. Thus lvt = 0  if and only if v=  @vlp is the vacuum vector. Otherwise 

P 

Iv[ > 0. For v ~ V we write ~5 for the image of V in V/(/~ Y+) E We will show that if 
Iv[ >0, there is v' e V with [v'[ < Iv] and ff = g. Applied repeatedly, this will show that 
for every ve V there is e ~ k  with ~ = e - i ,  1 ~ V being the "vacuum" 1 = @elp. 

Given v with [vl > 0, to find v' with ~ = f' and Iv'[ < tvl we proceed as follows. Let 
v = ®pvp. It clearly suffices to consider the case with each vp a monomial, since any 
v is a linear combination of these. Pick P with lye[ >0, say vp=fl/x f2.../x fk. 
Define u = @ aue, where u a = v a for Q # P and up = fz A.. .  ^ fk. Let g be a global 
rational section o f L  1/2 such that g is regular except at P and g - f ~  is regular at P. 
Such a g exists by the Riemann-Roch theorem [for H°(L w2) = 0 as we assume]. 
Then v' = v -  ~u has the required properties Iv'l < Ivl and g' = g. The reason for this is 
as follows: in acting on u, ~ can behave as a creation operator only on the P 
component, this being possible because of the pole in g at P. Acting at P as a 
creation operator, ~ turns u into v. Otherwise, ~ acts as an annihilation operator, 
lowering lu[, which is already less than lv[. Hence [v -~ .  u[ < [vl. 

Repeating this process eventually gives an expression v = e - 1  +3~. 1 with 
y a  ^ Y+. This shows that V/(/x Y+)V is at most one dimensional. To show that 
V/( A Y+) V is in fact one dimensional, we must show that i +0,  i.e. that there is no 
relation 1 = 2y~, vi. Since each v~ can (as we have just shown) be written in the form 
v~=ei-1 +p~. 1, it is enough to show that a relation /~. 1 = y .  1, with / ~ k ,  
y ~ (/x Y) +, implies/~ = y = 0. This is straightforwardly proved somewhat along the 
lines of the above. For  f s  Y, let ]fl be the number of poles of f counted by 
multiplicity. I fe  e (/x Y)+ can be written as f l /x  f2 ^---/x fk we would like to define 
]el as Z [f~[. We must be careful here since the representation e = f l  A.../~ fk, if it 
exists, is not unique [-e.g. f l /x  f2 = f l /x  (f2 --f0]" To avoid such ambiguity, we pick 
a basis for Y. For each P and each n = 1, 2, 3 .... let fp,, be an element of Y (a section 
of L 1/2) regular except at P, and with a pole precisely of order n at P. From the 
Riemann-Roch theorem, it follows that the fp,, exist and are a basis for Y Then we 
consider only monomials of the form y = j~ a . . . /~  fk with each f~ one of the fe.,. 
We define [y[ = S [f~[. It follows immediately from the definitions that the vector 3~. 1 

22 This statement is no more and no tess than the statement that  the Ward identities of fermion free 
field theory determine the correlation functions uniquely, and what follows is an essentially 
standard argument expressed so as to make sense over any ground field 
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has 133-1[=1yl, so a nontrivial representation fl-1=3~.1 is impossible. More 
generally, if y = Se~yi, with ei e k and Yi a monomial of the form just considered, let 
]Yl = max lYit. Then again [33.1 [ = [y[, completing the proof that 1 #: 0 and thus that 
the e~(pectation value I:V-~k obeying (160) exists and is unique up to normali- 
zation. For  v ~ V, ~ v can be identified as ~7, the image of v in the one dimensional 
space 1,I,/( A Y) + E 

Since this description of free fermions may appear exotic, we will pause briefly 
to describe how to recover standard formulas. For each P, let f~, be a section ofL 1/2 
regular except for a single pole at P. By the Riemann-Roch theorem, fp exists and is 
unique up to a scalar multiple. Given n points P1.. .P, ,  let ve .... p, E Vbe the vector 
v = ®re, where vv = jj, i fP is one of the Pi, and otherwise vp = Ip. What in quantum 
field theory is usually called (~P(P0..-~P(P,)) (in a theory of one component chiral 
fermions) is in our terminology here ~vp1...p" or simply g,. .... p .  To see this 
explicitly for n=2 ,  we compute OPiP2- Let w=  ®we with w e = l  for P=]:P2 and 
we2 =fp~. Then one computes 

fpiw = vp~l,~ -- 2c. Resp2 fp, fv~. (163) 

Hence 6e,v~=i- 2c Rese~(fpJp2). Because of the dependence on the choice offv~ and 
fv~, Rese~(fe~ fp~) is really a section of L tl2® L 1/z over Z × S rather than a function. 
Evidently, this section has a single pole at P~ = P2 and is otherwise regular; this is 
the defining property of the Dirac propagator G(P1, P2), as discussed in Sect. 1. 
Thus we have retrieved the Dirac propagator from the adelic description of free 
fermion quantum field theory. 

This completes our discussion of free fermions on an algebraic curve. We would 
now like to discuss what one might call "current algebra on an algebraic curve." 
The discussion will be quite brief since it is analogous to what we have just 
described. 

Let q /be  a finite dimensional simple Lie algebra over k with a Killing form 
( , ) .  Let ff be the Lie algebra of rational maps of X into q/. A cocycle for a central 
extension of ~9 by k would be a k valued skew form ~b(21, 22) on ~ with 

q~(21, [22, )~3]) + q~();2, [23, )].i~) + q~(23, [)~1,/~2]) = 0. (I64) 

This equation is the appropriate one to permit the existence of a central extension 
of Lie algebras 

0--*k--re--it--,0 (165) 

such that for a certain lift 2 ~  of f# to ~, the commutation relations are 

[~a, ~2] = [~1, 2] + q~(Jq, 22). (166) 

To be more precise, (164) is the condition under which (166) obeys the Jacobi 
identity. 

There is no natural global choice of a cocycle obeying (164). But note that for 
/~1, /~2 E,~, (21, d22) is a differential form. Upon picking some point PsX,  we can 
use the residue at P of this differential form to define a cocycle: 

(]~P(/~D/~2) = Rese (21, d22). (167) 
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This makes sense on the completion f#p of f# at P, and is easily seen (using the fact 
that the residues of an exact differential form are zero) to obey (164). Thus, for each 
P, we obtain a central extension 

O ~ k  ~ v ~ v - - - + O .  (168) 

The importance of the completion ff~f~v is that the fie have a simple and 
general form. If z is a local uniformizer at P and k((z)) consists of formal series 

a,z", a, ek ,  then fqp~-qg®k((z)). In this, the details of the particular algebraic 
n= --N 

curve are irrelevant locally at P. Thus, a basis for f~v consists of expressions a®z  ", 
with n an integer and ~ ~ q/. In this basis, fgv may be described by saying that for 
c~,fl~ql and n, rn ~ Z,  

[~ ®z", f l®z" ]  = [~, fl] ®z"  + " + nc6 n + m (~, f l)  , (169) 

where 6k = 1 for k = 0 and zero otherwise, and c is a central element. Equation (169) 
is simply an affine Lie algebra over k. 

So far, we have only constructed what one might regard as a local central 
extension off# at P. To work globally, we wish to combine these. Thus, we form the 
adelic products 

= 11 ~p. (170) 
e 

An element o f ~  is a linear combination of objects ®e2v, where 2e is in ~e  for all P, 
and 2e is regular at P for all but finitely many P. Evidently ~ is a central extension 
of the analogous adelic product L[ fqe. We identify the central elements c in the 

e 
various fqp so that the adelic extension is 

0 ~ k ~  LI ~ e - ' 0 .  (t71) 
P 

To study global properties of the algebraic curve X, it is important to consider 
the natural diagonal embedding 

f#~ L[ fqP, (172) 
e 

which maps 2 e ~ - ,  @e2e, with 2p = 2 for all P. We map aj into ~ by embedding in 
[I f#p as in (172) and then lifting to ~. For 2 Ef¢, let ,~be the corresponding lift of 2 
e 

to f#. The commutation relations of the ~ are simply those of f¢, since 

P 

= [-~"23 + 2 Resp(21, d227, 
P 

-- E2~,/~23, (173) 

where we have again used the fact that the sum of the residues of a differential form 
is zero. Equation (173) shows that the central extension (171) splits (that is, 
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becomes trivial) when restricted to the "global Lie algebra" f#, or more exactly 
when restricted to the image of f# under the natural diagonal map to f#. This is 
quite analogous to the behavior we found in discussing free fermions. 

We now must consider representation theory of these Lie algebras. An 
irreducible representation We off~p is said to be a highest weight representation if it 
contains a vector v with 

( e ® z " ) - v = 0 ,  for n > 0  and c~eog. (174) 

We are interested in representations such that the space of vectors with that 
property is finite dimensional. We is said to be unramified if there is a vector le 
(necessarily unique up to multiplication by a scalar) such that 

(z"®~).le=O for n > 0  and ~ o / / .  (175) 

An automorphic representation of f~ is a family of highest weight irreducible 
representations { WpIP E X} such that We is unramified for all but finitely many P. 
One then forms the adelic product 

W =  II  We (176) 
P 

generated by sums @ewp with We ~ Wp for all P and we = le  for all but finitely many 
P. In physical terminology, W is the space of observables in a quantum field theory. 
Points P such that We is ramified are points at which there is an insertion of a "spin 
operator  ''23 or a non-abelian generalization thereof. 

W in this situation automatically furnishes a representation of the adelic Lie 
algebra f~. Thus for 2e ~ f~/, and w = @ewe, we simply let 2p act on the P component 
of w while leaving the others invariant; thus 2e" w = ® Qw~ with w~ = wQ for Q =~ P 
and w'p=2e'we. For  2 =  Gp2pEf~, we define 2. w=  Z 2v-w. This makes sense 
since 2e" w = 0 for all but finitely many P. P 

Next, as in the case of free fermions, we wish to define the quantum field theory 
expectation values. This means that we wish to define a linear functional S: W~k 
subject to certain conditions. For  2~f f  (embedded in ~ by the diagonal 
embedding) and w e W, one requires 

~. w = 0. (177) 

This corresponds again to the Ward identities of "current algebra on a Riemann 
surface." As in our discussion of free fermions, the linear functionals ~ which obey 
(177) form a vector space which can be regarded as the dual space of the quotient 
W/f#W. It seems (though I will not attempt to prove it here) that the latter quotient 
always has a dimension that is positive but typically greater than one. 24 Therefore, 

23 This concept originally appeared in the theory of the Ising model and lately has become 
important in string theory [15] 
24 An upper bound on the dimension of W/f~Wis g. dimq/, the product of the genus g of X with 
the dimension of the finite dimensional Lie algebra ~. This upper bound, which comes by using 
the Riemann-Roch theorem to count meromorphic functions with various poles, is exact if the 
representations W e are Verma modules, but in the more interesting case in which these are 
degenerate representations of the f#p, the dimension of W/f#W is smaller 
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maps 5: W--+k obeying (177) exist but are not uniquely determined, even up to 
multiplication by a scalar. In a particular physical context, one would usually have 
additional requirements beyond (177) that would enter in determining the map 5- 

It is clear that the two examples of quantum field theory that we have discussed 
- namely free fermions, and current algebra - are closely analogous. Actually, the 
former can be used to provide an example of the latter, in the following way. 

Let us first recall the spinor representation of the affine Lie algebra ~'O(n) [16]. 
Let R be an n-dimensional vector space, with a basis % i=  1... n and a non- 
degenerate quadratic form (e~lej)= 6~j. Form a Clifford algebra/~ by 

The operators 

{% e j} = - 26ij. (178) 

Jij = [% ej]/4 (179) 

obey the commutation relations of SO(n). They generate, of course, the spinor 
representation of SO(n). Let q /be  the Lie algebra spanned by the J~j. 

The analogous spinor representation of ~'0(n) is constructed from an infinite 
dimensional Clifford algebra with basis e~, i =  1... n and v ~ Z +  ½25. The anti- 
commutation relations are 

{ e'~, e~} = -- 2aij6 ~ + s . (180) 

We represent this Clifford algebra in a space ~ containing a highest weight vector 
Ira) with eylf2)= 0, for v > 0; this representation is un iqueup to isomorphism. 

Introducing a formal variable z, the affine Lie algebra f~ "-~_ ~ ( n )  is spanned as a 
vector space by q i Q k  [z, z-1] plus a central element (with q / the  Lie algebra of 
SO(n)). To represent SO(n) in the space 2 ,  let J i j® z  n be represented by 

n k n - k  J j- ¼ Z (181) [ei,ej ] .  
k 

This can be seen [16] to obey the ~'O(n) Lie algebra, with a central term. 
To make contact with our discussion of free fermions, we must systematically 

repeat our earlier discussion with L 1/2 replaced by L1/Z®R, R an n-dimensional 
vector space with basis ei and quadratic form (ei, ej)=tSij. 26 T h u s  w e  replace 
Y= {rational sections of L l/z} by Z = {rational sections of L I/z ® R }  and repeat the 
previous discussion. Completing Z at P e X, and calling the completion Zp, we 
form the exterior algebra/x Zp as before. We then define a Clifford algebra CZp as 
follows. For sections f ® e i  and g®ej of L1/E®R, we postulate the Clifford 
multiplication law 

{ / ®  % g ® e j} = - 25ij Resp(fg). (182) 

25 This will give an unramified representation. Choosing v E Z gives a ramified representation. The 
½ here has the same origin it did in Eq. (3) of section I 
z6 More generally, R maY be an N-dimensional vector bundle with a quadratic pairing R ® R--+ Ox. 
Since we will be exhibiting a GL(N, F) action (F = function field of X), and all vector bundles are 
equivalent over F, we content ourselves with the case of R trivial 
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Trivializing L 1/2 in a neighborhood of P and choosing a unitbrmizer z at P, a 

typical element of Zp is ~ a,z'. Thus (182) is equivalent to the statement that 
n = - - . N  

{z"® el, z"® e~} = - 26ii Rese(z "+ mdz) = - 2 6 i y  "+" + 1. (183) 

This coincides with (180) under ey+..,,z"-l/a®ei (for v sz+½). So the irreducible 
module V~, for the Clifford algebra CZe is also a highest weight module 27 for the 
affine Lie algebra f#e -~ ~0(n), with 

n 1 Jij+-~4 Z [ gr@ el, Zn - r -  1 (~ e j ] .  (184) 
r 

The adelic space V= IJ lip, which we originally introduced as an irreducible 
P 

module for the adelic Clifford algebra C Z =  IJ CZp thus also furnishes an 
e 

automorphic representation of the adelic Lie algebra ~ = [[ f~e- We therefore have 
e 

two notions of what we might require for the expectation value ~: V ~ k .  It may be 
compatible with the Clifford algebra in the sense of (160) or with the Lie algebra in 
the sense of(177). These two notions are consistent, however (this is well known in 
a different language in the physics literature), essentially because the global Lie 
algebra f# C f~ acts as an algebra of automorphisms of the global exterior algebra 
( ^  Z) + c CZ, The unique ~: V--*k compatible with the Clifford algebra is also 
compatible with the Lie algebra. 

The final subject that we will discuss here is one that is essential for making 
closer contact with the modern theory ofautomorphic forms. In addition to the Lie 
algebra of rational maps of X into the Lie algebra of SO(n), there is also a group G of 
rational maps of X into the group SO(n, k) (G consists of orthogonal matrices 
whose matrix elements are rational functions). Clearly G and ff are closely related, 
but ff is not the Lie algebra of G. (The exponential of a rational function in ff would 
not be rational; G has no Lie algebra and f# has no Lie group.) One precise relation 
is that G acts as a group of automorphisms of f¢; for g ~ G and 2 E f#, g maps 2 to 
g-12g, preserving the f# Lie algebra. It is natural to ask whether the f# (and f~) 
module V admits a G action compatible in this sense with the action of 2. 

This question is mostly a local question, and as such the answer is known. For 
P e X, let Gp be the completion of G at P. Rather like the Lie algebra f#~,, the group 
Ge has a central extension by the multiplicative group k* of k: 

O~k* ~Ge--*Gl,~O. (185) 

What is more, the highest weight modules Vp for the affine Lie algebra also admit a 
group action, with the Lie algebra and and group actions being compatible under 
conjugation 2-~g-12g [12, 17]. To be very explicit, this compatibility of the Lie 
algebra and the group means that if 2 ~ ffe and g ~ G1, are represented in V e by 
operators R(2) and S(g), respectively, then 

R(g- 12g) = S(g)-I R(2) S(g). (186) 

27 With two irreducible components 
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In the case of the spinor representation of S'O(n) the group action is also compatible 
in the same sense with the action of the Clifford algebra CZ e. This means that for 
f ~  A Ze, with f denoting the lift to CZp, we have 

S(g)- ifS(g) = g ~r~g. (187) 

Equations (186) and (187) are just the assertions that the S(g) transform the Lie 
algebra (q and the Clifford algebras CZv as one would expect. 

For  each P e X, let Kv by the subgroup of Gv consisting of rational maps of X 
to SO(n) (or whatever finite dimensional algebraic group we started with) that are 
regular at P. (If k is a finite field, Kv is the "maximal compact subgroup" of Gv.) In 
case Ve is unramified, the vacuum vector lv is invariant under Kp C Gv. 

These are the standard local facts. Passing now to the global situation, form the 
adelic product G = 11 Gv. d consists of products ®egv with gv ~ Gv for all P, and 

e 
gv ~ Kv for all but finitely many P. G acts irreducibly on V = [IVv, the action of 

P 
®vgv ~ G on ®QvQ E V being Qegv" ®QvQ = ®l,(gv" vv). (This definition is compat- 
ible with the "restricted product" definition of V, because vv = lv for almost all P, 
gv~K v for almost all P. and gv" 1v= lv  ifgvEK1,.) 

Of course, G is a central extension of [I Gp: 
P 

l_I (188) 
P 

We have also a diagonal embedding A : G ~ [I Gv. It is natural to ask whether (as in 
P 

the Lie algebra case) this can be lifted to A' : G ~ G :  

~'? G 
/ 

/ A 

/ 
g 

, II G,--,0.  (189) 
P 

Of course, we can always define a map A' making (189) commute. The issue is 
whether A' can be chosen to be a group homomorphism or in other words whether 
the central extension (188) splits when restricted to GC I] Gv. 

e 
To show that it does split, pick first any lifting A' of the diagonal embedding of 

~ h G in IJ Gv. For g s G, denote A'(g) as ~. In general g~+ g ; rather 
P 

~,f[= a(g, h)g'h, (190) 

where a(g, h) is a cocycle. One wishes to know whether this cocycle splits in the 
sense that a(g, h) = a(g)a(h)a- I(gh) for some a(g). If so, redefining ~ = a - l(g)~ 
will eliminate the cocycte from (190). 

A 
In the case of the spinor representation of SO(n), we can easily prove the 

existence of such a splitting by using one dimensionality of V/( A Z) + V and the 
compatibility of the group with the Clifford algebra action in the sense of Eq. (187). 
The latter implies that for geG, one has ~ - I ( A Z ) + ~ = ( A Z )  +. As a result, the 
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action of ~ on V induces an action on the space V/( ̂  Z) + V. Since that space is one 
dimensional, generated by the class i of the vacuum vector, it must be that for any 
g ~ G, ~i is a multiple of i ,  say 

~ i = a ( g ) i  

h~i = a(h)i 

~ i = a ( g h ) i .  (•9•) 

From the first two equations in (191), we see that ~h'i = a(g)a(h)i. Comparing to 
the last equation in (191) and to (190) we see a(g, h)= a(g)a(h)a-l(gh). This is the 
desired result, showing that the central extension (188) splits when restricted to the 
diagonal. 

This splitting of the central extension when restricted to the "global group," 
that is to G C G, makes it possible to impose Ward identities for the group action. 
Ward identities for group action are much more obvious intuitively than Ward 
identities for exterior algebra or Lie algebra actions as discussed earlier. One 
simply requires that the correlation functions should be G-invariant; in other 
words that for g ~ G and v e V, one requires 

~ . v =  iv-  (192) 

This is possible only because of the splitting of the central extension; if we had ~. 
= a(g, h)- g'~ with a(g, h) =~ 1, it would be impossible for correlation functions to be 
simultaneously invariant under g, h, and gh. 

I will conclude this section by briefly discussing the general context in which 
the discussion can be carried out. Let W be an O(N) bundle, that is a bundle 
endowed with a quadratic form ( , ) :  W®W~Ox (Ox a trivial line bundle). 
Consider a fermion field ~ which is a section of W@L 1/2. The Lagrangian is 

~ =  ~ ( ~ , / ) ~ ) .  (193) 
X 

Let F be the field of rational functions on X, and let U be the group O(N, k), i.e., 
orthogonal N x N matrices with entries in k. If W is trivial, let G = O(N, F) be the 
group o fN  x N orthogonal matrices with entries in F; and more generally, let G be 
the group of rational gauge transformations of the bundle W which preserve the 
quadratic form ( , ) .  For  g e G, consider the transformation 

~-~gkV. (194) 

Formally, this is a symmetry of(193), if we ignore the fact that g might have poles or 
zeros at isolated points P~ ~ X and so is not in general a well defined transformation 
of the field variables. In Sect. (2) we analyzed this problem rather explicitly for the 
case N = 2, and found that although not really a symmetry of the Lagrangian, (194) 



584 E. Witten 

does lead to a well-defined transformation law of observables. 28 The transfor- 
mation by g behaves as a "creation operator" at points P~ where g has poles. The 
resulting statements were the multiplicative Ward identities of Sect. 2. 

The global splitting of (189)just described means that we have also for N > 2 a 
rule for the transformation law of determinants and correlation functions under 
the group G. This transformation law is precisely a non-abelian generalization of 
the multiplicative Ward identities of Sect. 2 - though it would be hard to write 
them so explicitly as we did in the abelian case. 

In fact, we learned in Sect. 2 that the multiplicative Ward identities lead 
naturally to an understanding of free fermions that are sections of L1/Z®E (with E 
being some line bundle) in terms of free fermions that are sections of L 1/2. It is 
logical to ask whether likewise in the non-abelian case the muttiplicative Ward 
identities, or in other words the G action on the space V= L[ Ve of observables, 

e 
lead to a relation between free fermion theories constructed using different 
bundles. It is easy to see that this is so. The key point is that every vector bundle W 
is equivalent if one is only interested in rational functions and one does not care 
whether one's rational functions have zeros or poles. Very explicitly, let 7 ji be the 
components of ~P, and let gij, j = 1... N be N rational sections of W. (In other words, 
for each fixed j, the N component object gii, i = 1... N, is a rational section of W.) We 
then make the change of variables 

~i = glib") ' (195) 

The ~g~) are then sections of an N dimensional trivial bundle 17V, which will be 
endowed with some quadratic form which one finds by transforming the original 
quadratic form on W by (195). Thus, once one knows a transformation law for 
correlation functions under a rational change of variables, it is immediate that 
determinants and correlation functions for any bundle can be computed in terms 
of those for the trivial bundle with a suitable quadratic form. 

While the choice of bundle Wis irrelevant in this sense, this is far from true for 
the choice of quadratic form ( , ) .  If we trivialize Wby  a rational change of variable, 
Wisjust  Ox®R, with R an N dimensional vector space over k; and F(W), the space 
of rational sections of W,, is just an N dimensional vector space/~ over the field F of 
rational functions. Likewise F(Ox), the space of rational sections of Ox, is a one 
dimensional vector space O over F. If f and g are rational sections of W, a 
quadratic form ( , )  on W gives a map f, g ~ ( f ,  g) of F(W)®F(W)~F(Ox). This map 
is just a quadratic form ( , ) v  on the F-vector space/~, i.e. a symmetric F-linear map 
/ ~ ® / ~ 0 ,  or more explicitly a symmetric N x N matrix M with entries in F. While 
all bundles are equivalent over F, it is not so for quadratic forms. The quadratic 
form ( , )  has a discriminant S = d e t M  and is nontrivial if S is not a square in F. 
(Depending on k, ( , )  may have other invariants as well.) 

The essential generalization of the theory of free fermions as described above is 
thus that one can consider a nontrivial quadratic form ( , ) .  If, say, N =  1, a 

zs In Sect. (2), we studied G = U(1), and considered zeros and poles of g separately; for G = O(2), 
the determinant of every g e G is I so the zeros and poles occur at the same points Pi (in different 
matrix elements of G). The difference is that what in Sect. (2) were called tp and ~ are here being 
combined in a column vector 
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quadratic form is just a rational function S; the Lagrangian is just 5¢ = ~ S-  1 ~p/5~p 
and the canonical commutation relations (145) (in the space Ve of observables at P) 
are replaced by 

( f  g)e = - 2 Rese(Sfg). (196) 

If S is a square in the completion Fe o f F  at P, this can be absorbed in f ~ S -  1/2f, 
g~S-  i/2g. If, however, S has a zero of odd order at P, say S = z" with n odd and z a 
local uniformizer at P, then the formula (f, g)e = - 2 Rese(z"fg ) is for definitely not 
equivalent to (145). If say, n =  - 1 ,  then (196) becomes 

{z", z"} = - 2 6  "+" , (197) 

and this shows that at P one is working in what physically would be called the 
Ramond sector. (The Neveu-Schwarz sector is {z", z"} = - 2 6 "  +" + 1. Here m and n 
are integers.) In mathematical terminology, what happens for odd n is that the 
local module Ve is "ramified" in the language of the theory of automorphic forms. 
Again in physical terminology, recalling that V~, is the space of observables at P, we 
observe that the ramification points are points with insertion of a "spin operator." 

Though I will not try to do so here, it is a natural guess that i fX is a curve over a 
finite field k, then the quadratic reciprocity law for the quadratic extension field 
F[y]/(yZ--f), with feF,  should have a proof  by studying free fermions with 
discriminant S = f. To prove higher order reciprocity laws (and conceivably non- 
abelian ones), one must probably study other quantum field theories on X. 

V. Back to Grassmannians 

In Sects. I and II, we developed certain aspects of the relation of quantum field 
theory with the infinite Grassmannians studied in I-1]. In Sect. III, we formulated 
the simplest quantum field theories in an algebraic language, closely related in fact 
to the modern theory of automorphic forms. In this section, we will attempt to 
discuss the relation between these subjects. 

Let F be the field of global meromorphic functions on S. For  P ~ S, let Fe 
consist of functions meromorphic in a neighborhood of p,29 and let Kp be the 
subring of Fp consisting of functions regular at P. Let GL(N, F) be the group of 
invertible N × N matrices with entries in F. Likewise, let GL(N, Fp) and GL(N, Kp) 
be the group of invertible N x N matrices with values in Fp or Kp. Thus Kp, F C Fp 
and GL(N, Kp), GL(N, F) C GL(N, Fp). Finally, define the addic  ring A = IJ Fe to 

e 
consist of products life, with fe ~ Fp for all P and all but finitely many jp ~ Ke. 

e 
There is a diagonal embedding F-+ A given by f ~  LI fP with fe = f for all P;  this is 

e 
allowed since each f~F  has only finitely many poles. Let GL(N,A) consist of 
invertible N × N matrices with entries in A. The embedding of F in A gives an 
embedding of GL(N, F) in GL(N, A). 

29 TO work over an arbitrary ground field k, one must take Fe to consist of formal power series 
around P, i.e., the completion at P. In this section, for brevity, we will permit ourselves where 
convenient to assume that the ground field is the field of complex numbers 
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We work on a Riemann surface ~ (over C) with the GL(N) invariant theory 

5e = / ~ ~,/5~p,. (198) 
TC 

Here ~h, i =  1... N are N sections of L 112, transforming under GL(N) as ~p~g-1~ 
(the use of g -  ~ rather than g will standardize later formulas), while ~ ,  i = 1... N are 
N sections of L 1/2, transforming under GL(N) as ~--+grv~. [The theory (198) really 
has an O(2N) symmetry, but considering only the GL(N) subgroup will be 
adequate for illustrative purposes and simpler. We could more generally regard ~p, 

as sections of L~/2® W, L1/2@ 17V with W an arbitrary rank N vector bundle and 
17V its dual. Because of the GL(N, F) action proved at the end of the last section and 
the fact that every vector bundle is trivial if one works with meromorphic rather 
than regular sections, this generalization is not too essential; the dependence on W 
is really implicit in the GL(N, F) action.] 

Suppose that we delete a point P from S. We then need boundary conditions on 
the ,p~ (and dual boundary conditions, which we will not discuss explicitly, on the 
~ )  near P. The standard boundary conditions are to require at each P 

[~pi[ 2 < oo (199) 
D 

with D a small disc around P. The theory with these boundary conditions is 
equivalent to the theory with P not deleted. More generally, we can take 

I Ig- ~012 < oo (200) 
D 

for some g E GL(N, Kv). (D is chosen, depending on g, to contain no singularities of 
g except perhaps at P.) The boundary condition (199) is equivalent to (200) if and 
only if g is regular at P, i.e. if and only if g ~ GL(N, Ke). More generally, if 
g, g' ~ GL(N, Fv), the use of g or g' in (200) gives equivalent conditions on tp if and 
only if g = g'h with h regular at P, i.e. h e GL(N, Fv). Thus, the space of boundary 
conditions that we can obtain in this way is isomorphic to the quotient space 
GL(N, F p)/GI4 N, Kp). 

This quotient space, which we will call Grv, does not coincide with the 
Grassmannian as studied in Sect. I, but is closely related. In fact Grv corresponds 
to the subspace of the Grassmannian of Sect. I that Segal and Wilson call Gr ~"). 
Thus, we can immediately restrict the construction of the DET bundle reviewed in 
Sect. I to give a line bundle over Grv which we will call DETp. What is more, 
according to our discussion in Sect. 1, the space Vv of holomorphic sections of the 
dual bundle DET~ over Grv is isomorphic to the Hiibert space of the quantum field 
theory (198) or in other words to the space of observables that can be inserted at P. 
We recall that there is a particularly natural "vacuum" section of Grv which we will 
call 1 v. 

Now we wish to delete not just a single point P but an arbitrary finite collection 
of points P1--- P,. A uniform way to describe the resulting freedom in choice of 
boundary conditions is to say that we pick for each P ~ S a point 2p ~ Grv, with the 
proviso that for all but finitely many P, 2v is the standard point He(+) in Grv, 
corresponding to (199). Thus, an allowed boundary condition is a point in 

G-7= L[ Grv = L[ GL(N, Fv)/GL(N, Kv). (201) 
P P 
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The symbol L[ Gre simply refers to products [I  21, with almost all 2e equal to 
P P 

Her+). Over Gr, we define the line bundle D E T =  ®pDETp.  Gr is a union of 
N 

subspaces Grel...p,= I] Gre~" 17 He(+), and a section of D E T  is consi- 
i= 1 Q¢(PI. , .  Vn) 

dered holomorphic if it is holomorphic on each Grel...e. 
The group GL(N, F1,) does not act on DET e, but only a central extension of it; 

and likewise, it is a certain central extension of GL(N, A) that acts on DET. 
However, if GL(N, F) is embedded in GL(N, A) by the diagonal embedding 
( g ~  ~ ge with g e = g  for all P t '  then the central extension of GL(N,A) becomes 
\ / 

trivial when restricted to GL(N, F), as we saw at the end of the last section. This 
means that upon dividing Gr by GL(N, F), the DET line bundle descends to a line 
bundle on the quotient. Explicitly, the quotient of Gr by GL(N, F) is the double 
coset space 

= GL(N, F)\GL(N, A)/~e GL(N, KI,). (202) 
& 

An element of ~ is an element [I gl,~ GL(N,A) with [I  gp equivalent to 
P P 

[l (hgpkv), for any h E GL(N, F) and kp e GL(N, Ke). It is a standard fact that J¢/is 
e 

isomorphic to the moduli space of rank N vector bundles over S.3o 
A holomorphic section of DET* over ~'d is a section of DET* on Gr that is 

GL(N,F) invariant. There is one such holomorphic section that arises in a 
completely natural and canonical way. Observing ~hat a point in Gr corresponds 
to a system of boundary conditions on the / )  operator, the fermion Pfaffian P f  (/)) is 
a natural section of DET* over Gr. It is GL(N, F) invariant, this being essentially 
the content of the multiplicative Ward identities of Sect. II. 

More explicitly, let L[ ge define a point in Gr. The corresponding boundary 
e 

conditions are that g~a~v should be square integrable near P for each P. For  
h EGL(N,F), the transformation ~p~h-~tv, ~ h r ~  preserves the Lagrangian, 
once we delete a finite set of points at which h or h - ~ is not regular, and maps the 
condition of square integrability of g~ l~p to square integrability of (hgp)-~v. This 
is the boundary condition associated with L[ hgpeG-7. So the action of 

P 
h ~ GL(N, F) on Gr changes the Dirac boundary condition in a way that can be 
absorbed in ~v~h-~p,  ~ h r ~ .  As a result, the Dirac determinant is invariant 
under the action of GL(N, F). 

30 The vector bundle W associated to I~ gp E GL(N, A) may be described by saying that an N-plet 
P 

of meromorphic functions ~p~ is to be considered a regular section of W at P ifge- t~0 is regular at P 
in the usual sense. The vector bundle associated in this way with L[ gP is readily seen to be 

P 

isomorphic to the one associated with LI hgpke, the isomorphism being ~p--*h~p. Thus a point 
P 

m e Jg gives rise to a unique isomorphism class of vector bundles over S. That every vector bundle 
W over S arises from some mE ~¢ is proved by first finding N linearly independent global 
meromorphie sections ~v =0Pl ..... ~PN) of W: Then one picks at each P a basis up =(uf... uf¢) of 
sections of W regular and linearly independent at P, and defines gp by up = gp~p 
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These observations have ctose counterparts in the theory of automorphic 
representations. (See [7] for an introduction.) The adetic space V= II of 

P 

holomorphic sections of DET* over Gr is an automorphic representation of the 
adele group GL(N,A), and the Dirac determinant Pf(D) is a distinguished 
GL(N, F) invariant vector in this space which plays the role of an automorphic 
form associated with a given automorphic representation. The double coset space 

is analogous to double coset spaces that arise in the theory of automorphic 
representations. While these observations do not constitute the solution of any 
problem concerning either automorphic representations or conformal field theory, 
the observation of the existence of a relation between these fields, which we have 
tried to make in this section and the last one, comes as a surprise and may 
hopefully help stimulate further developments in future. 

VL Some Remarks on String Field Theory 

String field theory is usually formulated in terms of a string functional A(XU(cO, 
b(a), c(a)) (b and c are the ghosts). Although some structure playing the role 
sometimes postulated for string field theory is presumably necessary, string field 
theory as presently formulated involves ugly elements like delta function overlaps 
of strings which hopefully can be eliminated in the future. To eliminate them it is 
probably necessary to introduce new" degrees of freedom. Such new degrees of 
freedom must of course enlarge the gauge invariance without changing the 
physical content. 

One line of thought begins with the observation that the ghosts are really left 
invariant differential forms on the Virasoro group manifold, i.e. the manifold of 
G = diffS 1. If G were a compact Lie group, the de Rham cohomology of the G 
manifold would coincide with the cohomology of the Lie algebra f~ (computed by 
studying the left invariant differential forms). Thus, this is a situation in which "new 
bosonic degrees of freedom," the motion on the group manifold, can be introduced 
without changing the "on shell physical theory," i.e. the cohomology. And the 
cohomology of the group manifold is surely a more "geometrical" notion than the 
formal Lie algebra cohomology of left invariant vector fields. Unfortunately, in the 
case of G=diffS 1 it seems that the group and Lie algebra cohomology do not 
coincide. More generally, in this discussion we could consider a homogeneous 
space diffS1/H, H a subgroup of diffS I. Again, introducing the motion on diffS~/H 
as a new degree of freedom in string field theory seems to change the physical 
content unacceptably. 

Recently, Bowick and Rajeev [18] attempted to formulate string field theory 
on the manifold diffS~/S 1. Their very interesting proposal is in a rather different 
direction from including the group manifold as a dynamical degree of freedom; 
they require left invariance under diffS t and reduce everything to computation at 
the origin in diffS1/S 1. 

A related line of thought begins with the observation that the space of string 
fields A IX, b, c] is equivalent to the space of local operators that can be inserted at 
a point P on a Riemann surface ~. To actually pick an identification of A IX, b, c] 
with observables at a point on a Riemann surface requires, however, not just a 
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choice of P but also the choice of a uniformizer or local parameter z at P. The latter 
is needed because (except for conformal fields of spin zero) a local operator O(P) at 
P is not invariant under reparametrizations that might be carried out at P. Instead 
of regarding the string field as a mere functional A I-X, b, c], one might try to let it 
"come to life" as an actual operator on a surface ~. One might suppose that in the 
"classical string field Lagrangian" N should have genus zero, while higher genus 
counterparts of whatever geometrical structures are used in the classical theory are 
likely to enter in the quantum perturbation theory. 

This idea is closely related to the suggestion made above about including the 
motion on the group manifold as a dynamical degree of freedom, since according 
to the appendix of [19], the moduli space Y of a Riemann surface S of genus g 
with a point P and a local parameter z at P admits a formally transitive action of 
the Virasoro algebra (i.e., the tangent space at a generic point x e ~Ar is spanned by 
the vector fields that generate the Virasoro algebra). This means that Y is formally 
G/H, with G the Virasoro group and H the subgroup of G that leaves fixed x e Y .  
Thus, trying to let the string field "live" at a point P on S with arbitrary choice ofz 
is very similar to including the group manifold, or at least a homogeneous space 
thereof, as a dynamical degree of freedom. 

Once one tries to think of the string field as an observable O(P), it is natural to 
go a little bit farther and do what one actually does both in quantum field theory 
and in the modern theory of automorphic forms, namely introduce an arbitrary 
product 

[I Oi(Pi) (203) 
i 

of local observables O~ at points Pi on S. Of course, at this stage, we are including 
infinitely many copies of the basic physical space which is already adequately 
represented by a single local operator O(P). Therefore, we will need gauge 
invariances that create and annihilate the points P~ at which there are operator 
insertions, to tame the redundancy in describing the space of physical observables 
in string theory by a product such as (203). The gauge invariances that would 
create and annihilate the Pi would presumably be along the lines of the 
multiplicative Ward identities of Sects. 2 and 4, though I do not have a specific 
proposal to make here. 

In one approach to string field theory [20], one describes that subject in terms 
of a generalized cohomology ring, the basic ingredients being a derivation Q, an 
integration 5, and a product *. Let us see how far we can get along these lines if the 
string field is to be an arbitrary adelic product of local observables as in (203). 

For Q we have no problem. Given the basic linear transformation O(P) 
~QO(P) of individual local operators, we extend to arbitrary finite products by 
requiring Q to be a derivation, 

Q (I~i oi(Pi) ) = ~ (01(PO...(Qoj(Pj))... 0,(, ,)).  (204) 

Likewise, for integration there is a completely natural candidate, namely the 
Feynman path integral, 

5 01(Pt)... O.(P.)= 5 ~X~b@ce-S l-I Oi(P~). (205) 
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This integration is such that "the integral of a total derivative is zero," i.e. 
I Q(I-I O~(Pi))=0. 

What about multiplication? Given A = ~ O~(P~) and B = l-I Ox(Qj), as long as 
Pi # Qs for all i,j there is a perfectly natural candidate for A * B, namely the product 

]-I O~P,). 1-I Oj(Q~) (206) 

in the naive sense. Clearly Q as defined above is a derivation of this multiplication 
law. Expression (206) breaks down, however, i fP  i = Qj for some i,j, because there is 
no natural way to multiply quantum field operators at coincident points. As a 
result, I cannot propose a general definition of *. Nevertheless, it is plausible that 
there may eventually be some way to overcome these problems and formulate 
string field theory "adelically." 

Appendix 

Let S be a Riemann surface and 5 ° the Lie algebra of meromorphic fields on S. In 
[19], a certain central extension 5 ~ of Y was described. The construction made use 
of formal pseudo-differential operators. Our purpose here is to give an alternative 
explicit description of the central extension St. Apart from making contact with the 
results of [19], this will enable us to illustrate in a concrete and interesting context 
the properties of operator-valued differential forms described in Sect. (3), and to 
repeat for the Virasoro algebra the purely algebraic description of conformal field 
theory which was given in Sect. (4). 

The starting point is the Lie algebra diffS 1 of diffeomorphisms of the circle. A 
generator of this Lie algebra is a vector field f(O)(d/dO), with 0 an angular 
parameter, 0 < 0 < 2n. The Lie bracket is of course 

The universal central extension of this Lie algebra is described by a cocycle 

ICi 
The normalization is conventional. Concretely, then, an element of the central 
extension ~ l  is a pair (a, f) ,  with f a vector field on S 1 and a a real number, and 
the Lie bracket being 

[(a, f) , (b,g)]= c . ( a ( f g ) , f  -d~ ) dO g " (A3) 

Here c is an arbitrary real number, known in the physics literature as the "central 
charge." Equation (A3) obeys the Jacobi identity because ~b obeys the cocycle 
condition 

~b(f [g, h]) + ~b(g, [h, f ] )  + q~(h, [f, g]) = 0, (A4) 

for any three vector fields f, g, h on S 1. 
It is well known that the Lie algebra (A3) is closely related to a certain Lie 

algebra of meromorphic vector fields on the Riemann sphere P1. The usual 
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Virasoro algebra is the subalgebra of diffS1 consisting of pairs (a, f )  in which f has 
a finite Fourier expansion 

+ N  

f =  ~ a,e i"°. (A5) 
n =  - - N  

Such vector fields are finite linear combinations of 

Ln = iein o d 
dO" 

The commutators of the latter in ~ a  are 

(A6) 

cn 3 
[L,,,Lm] =(n-m)Ln+m + ~ 6n+m (A7) 

with 6 k = I for k = 0 and zero otherwise) x If one introduces the variable z = e i°, then 
such vector fields have an analytic continuation throughout the complex z plane, 
with possible poles at z = 0 and z = ~ .  Consequently, the Virasoro algebra may be 
interpreted as a central extension of the Lie algebra of meromorphic vector fields 
on the complex projective line P~ with poles only at those two points. 

We will here describe, for any compact Riemann surface S, a central extension 
5~ of the Lie algebra 5 p of meromorphic vector fields on X, such that (i) the 
definition of ~ is local and intrinsic, not depending on arbitrary choices; (ii) if 
Z = P~, and we restrict ourselves to the subalgebra of 5 e consisting of vector fields 
with poles only at 0, ~ ,  then 5 a reduces to the Virasoro algebra. The construction 
gives a different perspective on the results of E19]. 

The main problem is to determine the correct generalization of the cocycle 
(A2). The most naive idea is to try to interpret ~b(f g) as a residue of a differential 
form. Let 

g ) ,  (A8) 

and let U be the differential form 

Then clearly 

U=u(z)dz .  (A9) 

qS(f, g) = Res~ = o U. (AI0) 

Although the formulas above are correct, they cannot serve as an intrinsic local 
description of the Virasoro cocycle, because they depend on the local parameter z 
at the point z = 0 in p1. The problem is that, although once we are given the vector 
fields f, g and the local parameter z, no one can stop us from defining a differential 
form U by (A8) and (A9), the definition of U definitely depends on the local 
parameter z. In fact, consider a charge of local parameter from z to w(z). A vector 

31 The Virasoro algebra is usually written with a cocycle n 3 - -  n in (A7) instead of n 3 ; the difference 
can be absorbed in a shift ofL o (in other words, the two cocycles differ by a coboundary), and the 
formulas in this appendix will be shorter and more canonical if we work in the form (A7) 
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field f ( z )  (d/dz) transforms to f(~o) (d/dw) with f = f .  (dw/dz). A little computation 
shows that u(z)dz transforms to ~(w)dw, with 

a(w)= f .  d3~" d 3 f .  g + 2 f d f  
dw 3 dw 3 dw ~" {z,w}. (All )  

Here {z, w} is the so-called Schwarzian derivative, 

d3z/dw 3 3 (dZz/dw2) 2 
{z,w}= (dz/dw) - 2 ' (dz/dw) 2 " (A12) 

The first two terms on the right-hand side of (AI 1) are precisely what would be 
needed for U to be a well-defined differential form, but the {z, w} term ruins this. 

If the {z,w)~ term were not present in (A11), then the desired global 
generalization 5 f of the Virasoro algebra would be obtained as follows. An element 
of 5 ~ would be a pair (2, f) ,  with f a vector field and 2 a differential form, and the 
composition law 

[(2,f),(t/ ,g)]= \24 \ dz 3 dz 3 g ' f  dz dz g " 

Of course, we have used a local coordinate z in writing this. In the second term on 
the fight-hand side of(A 13), the expression f g ' - f ' g  is intrinsically defined object, 
independent of the choice of local coordinate z - it is simply the commutator of 
vector fields f g. But the f g ' " -  f ' "g  term on the right-hand side of (A 13) depends 
essentially on the choice of coordinate z - as we have seen in (A 12). 

It turns out that (A 13) should be reinterpreted (in a slightly different framework 
in which it is intrinsic and geometrical) rather than discarded. Let us recall the 
composition law for the Schwarzian derivative. If u, w, and z are three local 
coordinates, the respective Schwarzian derivatives are related by 

{u, z} = {u, w} (dw/dz) 2 + {w, z} . (A 14) 

This means that if we define 

then 

( c t ( d w / d z )  - 1  -(2 {w,z) ( d w / d z )  - I 

U .... = 0 (dw/dz) / , (AI5) 

U.,wUw,~=U. ~. (A16) 

wherever u, w, and z are all defined. Equation (A 16) is a cocycle condition, which 
means that the U's can be interpreted as transition functions of a vector bundle. To 
be more exact, if we choose an open cover Z = U Si, with a local coordinate z~ on 

Z~, then (A16) permits us to interpret the U~,~j as transition functions on the 
intersection regions S i n Z  j. We will call the vector bundle so defined ~K'o; it is a two 
dimensional sub-bundle of the infinite dimensional vector bundle called ~U in 
Sect. (3). 
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We will denote a section of "/r o as 

( f )  or (2,f) .  (AI7) 

Locally, upon choosing a coordinate z, the objects 2 and f are just a pair of 
complex functions. What is the right global description? In view of the form of the 
transition functions, what in the z coordinate system is (2, f )  is in the w coordinate 
system 

( (dw/dz)-12+c-i2 (dw/dz) -~{w,z} f (dw/dz) f )  . (A18) 

If one sets c = 0, then (A 18) is simply the transformation law for a differential form 2 
and a vector field f ;  thus, at c = 0, the pair (2, f )  is a section of the bundle L O  T, with 
L the canonical line bundle of Z, and T =  L-  1 the tangent bundle. At c ~ 0, the pair 
(), f )  are a section of a deformation ~o of L(~ T. 

The transition matrices (A 15) are triangular, and this means that ~0 is a vector 
bundle of a very special kind; it is an "extension of T by L." In other words, there is 
an exact sequence 

O~ L ~ Vo ~ T ~O . (119) 

This is simply the assertion that there is a natural map a from sections of L to 
sections of ~o, namely 2~(2,0); and a natural map fl from sections of ~o to 
sections of T, namely (2, f ) ~ f  (Moreover, fl o ~ =0  and the image of a is the kernel 
of ft.) For instance, the existence of fl is the statement that even at c ~ 0, f in (A 18) 
transforms as a vector field, although 2 does not transform as a differential form. 
There is, however, no natural map f-~(?, f )  from sections of T to sections of #'o, 
because there is no natural way to decide what ? should be (if ? is zero in one 
coordinate system, it will not be zero in another). There is likewise no natural map 
(2, f ) ~ ?  from sections of ~o to sections of L. 

Let us pause for a slight digression. Actually, the extension (A 1 9) is trivial. This 
is closely related to the uniformization theorem for Riemann surfaces. A 
uniformization of a Riemann surface Z gives a covering by open sets Si with local 
parameters zi such that on Zic~Z~ the transformations from z i to zj are SL(2) 
transformations zj = (az i + b)/(cz, + d). For such transformations the Schwarzian 
derivatives {zi, z j} vanish, so the transition matrices (A 18) become diagonal, and 
the extension ¢/o is split as L•  T. 32 Although the extension Vo can be trivialized or 
split, there is no intrinsic or natural way to do this. There are many ways to express 
this. On the one hand, although Riemann surfaces can be uniformized, there is no 
local way to find a uniformization; on the other hand, ~o actually has many 
splittings, which differ by global holomorphic sections of Hom(T,L) or in other 
words by holomorphic quadratic differentials. That the triviality of ~o is a more or 
less non-trivial global fact is also illustrated by the comment in the footnote. Since 
~o cannot be split by any intrinsic local construction, the fact that it can be split 

32 It is also possible to turn this around and use the extension ¢/~0 as a tool in proving the 
uniformization theorem. In this approach, one first shows on cohomological grounds that #'o 
must split in genus >_- 2, and then one uses a splitting of ~0 in constructing a uniformization of 27 
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globally is irrelevant in our aim of giving an intrinsic local description of a central 
extension of 5 p. 

The introduction of "it o makes it possible now to give a satisfactory 
interpretation to the previous formula (A 13), which we repeat for convenience: 

[(2,f),(rl, g)]=( / ( \ f T j  d3f g ) ' f  3 d f g ) .  (A20) 

We saw in (A 11) that if (2, f )  and (t/, g) are regarded as sections of LO T, then (A 20) 
is not an intrinsic formula, but depends on the coordinate z. if, however, we 
interpret F = ( 2 , f )  and G=(q,g) as sections of ~U 0, then (A20) is coordinate 
independent. In other words, if one computes [F, G] in the z coordinate system by 
(A20) and then transforms to the w coordinates by (A 18), one gets the same result 
as if one transforms F and G to the w coordinates by (A18) before using (A20) to 
compute IF, G]. To verify this is a relatively short calculation which we leave to the 
reader, a 3 

Thus, we have managed to find a locally defined bracket operation [ ,  ] on 
sections of ~U o, but does it obey the Jacobi identity? Let F = (2, f) ,  G = (~/, g), and 
H = (Q, h) be three sections of ~o- One readily computes that 

[F, l-G, H]] + [G, In ,  F]]  + [H, IF, G]] = (dU. c/12, 0), (A21) 

where 

U(fg, h)=det g' h' = f dg d2h +permutat ions . (A22) 
\ f" g" h" dz dz 2 - 

It is easy to see that for meromorphic vector fields f, g, h, U is a well-defined 
meromorphic function on S, independent of the choice of coordinate z. In (A21), 
dU denotes the ordinary exterior derivative of the function U; this is a well-defined 
differential form, and as we have discussed earlier there is a well defined map 
~b-+(q~,0) of differential forms ~b to sections (q~,0) of ~/@ 

Clearly, (A21) shows that the [ ,  ] operation is not a Lie algebra structure on 
sections of Uo. However, the error is the "exact form" (dU, 0). If we introduce an 
equivalence relation ,-- on sections of ~0 by writing F ~ G if F -  G = (du, 0) for 
some meromorphic function u, and denote the space of equivalence classes as ~ ,  
then (A 21) is the Jacobi identify for o&. Indeed, if we write the equivalence class of a 
section F of ~0 as F, then clearly (A21) gives 

[F, [G, H]]  + [G, [/7, F]]  + [H, [F, G]] = 0 .  (A23) 
5 ~ with the Lie bracket [ ,  ] is, finally, the Lie algebra that we have been aiming 

for. Its center consists of expressions (c~, 0) with c~ a differential form, and e ~ fl if 
e- f l  =du. Thus, let f2 a denote the space of meromorphic one forms on S, and O ° 
the space of meromorphic functions; and let dr2 ° be the space of exact one forms, 
that is, one forms co that can be written co = du, with u e O °. Then the center of 5 ~ 
can be identified as f21/df2 °. 

33 While the operation F, G---, IF, G] is thus coordinate independent, we have made heavy use of 
coordinates in describing this coordinate independent operation. Recently, a more obviously 
coordinate independent description has been given by P. Deligne (private communication) 
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What about the quotient of ~ by its center? Since a central element of 5 ~ is an 
element of the form (a, 0), taking the quotient by the center means identifying 
(a, f )  ~ (fl, f )  for any ~, fi, and f. The equivalence class of (c¢, f )  in 5#/(center) is thus 
uniquely determined by f, and the quotient of 5 ~ by its center can be identified as 
the Lie algebra 50 of meromorphic vector fields on Z. Thus, we have constructed a 
central extension of Lie algebras of the form 

0~01/d~° ~ ~---, 5: ~0.  (A24) 

This is the extension of Lie algebras described in [19], but quantum field theory 
is still lurking in the background. The real goal of the present appendix is to exhibit 
(A24) as a manifestation of the more general framework described at the end of 
Sect. 3. To this end, we consider instead of the sections F = (2, f),  G = (t/, g) of ~U o the 
operator valued differential forms 

F = 2 . 1  + f -  T, G='7" 1 + f -  T. (A25) 

Here "1" is the identity operator and T is the energy momentum tensor. To 
compute P o G according to the recipe of Sect. (3), we must compute 

if(z). G(w)= Z O,(w). ( z -  w)". (A26) 
n=> -N 

Then ff o ~(w)= O_ l(w). To compute O_ 1, note that there are no short distance 
singularities in operator products 1 - 1 or 1 • T, while the singular part of the 
operator product T(z). T(w) is well known to be 

c 1 2T(w) dT(w)/dw 
T(z). T(w),,, 2 (z -w)  4 + (z-w) 2 + (z-w) + .... (A27) 

With the aid of this, we can evaluate 

c 
F o G(w)= i2  \dw3,] g(w). 1 + 2 g. T(w)+fg-dT(w). (A28) 

In particular, the appearance of dT(w) on the right-hand side of (A28) shows that 
the sections of ~Uo do not close under the o operation. We could generalize ¢:o to 
include dT as well as 1 and T; this would require a 3 x 3 generalization of (A 15), 
using higher order analogues of the Schwarzian derivative. One would still not get 
a closed system under the o operation, since the o operation applied to operator 
valued differential forms containing dT would generate still higher operators. 

However, we can get a closed operation on sections of ~o by defining 34 

(A29) 

Clearly, under (2, f ) ~ 2 -  1 + f .  T, (A29) corresponds exactly with (A 20), which we 
have thus placed in its quantum field theoretic context. That the [ ,  ] operation 
defined in (A29) is well-defined is thus a consequence of the general properties of 

34 The minus sign in this definition is not essential in getting a Lie algebra, but makes the resulting 
formulas more standard 
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the o operation discussed in Sect. (3). We also know from Sect. (3) that to get a Lie 
algebra it is necessary to take the quotient of the space F ( ~ )  by the space of exact 
operator valued differential forms. Since d(u.  1 + 13. T ) =  (du.  1 + dfl .  T +  13. dT) ,  
an operator valued differential form of the type (2.1 + f .  T), with no d T  
component, can be exact only if f = 0 and 2 is exact in the usual sense. Therefore, 
we can identify from the rules of Sect. 3 the equivalence relation on the space of 
operator valued differential forms P = 2.1 + f .  T that will lead to a Lie algebra 
structure. It is exactly the relation P,-~ G if i f - ~  = du .  1, with u an ordinary 
meromorphic function. The space of sections of ~o subject to this equivalence 
relation is precisely the space 5 ~ introduced above. The general analysis at the end 
of Sect. 3 correctly identifies 01/d f2  ° as the center of5 ~. Thus, we have succeeded in 
exhibiting the extension (A24) as a consequence of a more general framework. 

Clearly, the restriction to a finite dimensional subbundle ~o of ~ is not very 
representative of quantum field theory. Consideration of ~ instead of ¢/-o would 
lead to Lie algebras much "larger" than (A24), but it is hard to be very explicit 
because regrettably one does not have a useable, concrete description of the 
complete operator algebra, i.e., the o operation on arbitrary sections o f ~ ,  even for 
free field theories. I will however briefly illustrate one simple example of a 
generalization of (A24). Consider the two component free fermion system with 
Lagrangian 

4 

= f (A 30) L 

It is easy to see that identity operator together with the operators 

Tn,m=dn~).dm~p, n,m=0,  1,2,... (A31) 

are closed under the o operation. Let ~1 be the subbundle of 'C  corresponding to 
the operators 1 and T,,,,. So a section A of ~UI®L is a meromorphic differential 
form which in a local coordinate system can be written 

N 

A = e z .  1 + y, a,,,,,,T,.". (A32) 
n , m = 0  

We will not try to describe here the generalization of the Schwarzian derivative 
that enters in the transformation of A under change of coordinates. 

Before trying to identify a Lie algebra, let us ask which are the exact forms. It is 
not too hard to see that any A of the form (A32) can be written 

N' 

A = e . I  + ~ a ' , ,To, , ,+du,  (A33) 
m = 0  

with u some operator valued scalar. This means that taking the quotient by exact 
forms permits one to eliminate the T,,,,, for n > 0. To see this, note that 

an. mdnCpd"tp = - (da,,, m)dn - 1~ . d"~p - a,,,"d" - 1~ . d"  + lip + d(an,,,,d"- 1~ . d " ~ ) .  

(A34) 

Repeated application of (A 34) permits one to eliminate all derivatives from ~b and 
write A in the form (A33). 

Next, what is the operator algebra of the operators To,,.? The answer is very 
striking and is perhaps most easily obtained in a canonical formalism. Working on 
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a circle with angular parameter O, and using {Cp(O),~p(O')}=rc6(O-O'), one 
immediately sees 

~ dOf(O) To,,.(O), ~p(0')] = f(0') (A35) 
dmlp 

dO" " 

This means that f dOf(O) To,m/z generates the transformation of ~p(0) that we would 
usually associate with the differential operator 

d m 
f(O) dO"" (A36) 

We can thus expect that under the o operation, the operator valued differential 
forms 

A = a .  I + 2 a'CP 
m 

obey the algebra of the differential operators 

dr, 

a" dz"' 

d"~o 
(A37) dz m 

(A38) 

More exactly, the correspondence between (A37) and (A38) only holds up to a 
central extension due to the identity operator "1." We therefore reach the following 
expectation: 

Let S, be a Riemann surface, and DIFF the Lie algebra b.Lq~o f meromorphic 
differential operators on S,. Then there is a central extension DIFF of DIFF, with 
center f21/df2 °. 

O~ f21/dg2 ° oD-- - - i~oDIFF~0 .  (139) 

The central extension if' of 6 ~ constructed in (124) is naturally a Lie sub-algebra of 
DIFF. 

Clearly, much should be done to elucidate this more fully. 

Some Applications. We conclude by briefly considering the Virasoro analogues of 
some constructions in Sects. 4 and 1. Thinking first of Sect. 4, let us formulate the 
Ward identities for the energy-momentum tensor in a way which 

(i) makes sense on a Riemann surface of arbitrary genus; 
(ii) makes sense over an arbitrary ground field k. 
To this end, we simply imitate some of the definitions of Sect. 4. Thus, for every 

P e Z, let 6~e be the completion of6 ~ at P. The 6~e are all isomorphic to a standard 
object, namely a certain completion of the Virasoro algebra in which one considers 
sums of L,'s of the form 

a,L, (140) 
n =  - - N  

with n bounded below but perhaps not above. A representation of 6~p is said to be 
of highest weight if it is of highest weight in the usual sense of Virasoro 
representation theory, and it is said to be unramified if it contains a unique vector 
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1 e annihilated by the L,, n > - 1. An automorphic representation of me is a family 
{ Ve} of highest weight representations of the me, with a common central charge 
and all but finitely many of them unramified. 

One then defines the restricted product 

V= [IVe, (A41) 
P 

consisting of products ®pve, with yes Ve for all P and almost all re= 1~,. Likewise, 
let us define the adelic Lie algebra 

m = U me (A42) 

to consist of formal sums ®eSe, with see me for all P and se regular at P for all but 
finitely many P. Then the "space of observables" V admits a natural 5 ~ action; 5P 
simply acts on V componentwise, just as in similar situations considered in Sect. 4. 

The Lie algebra 5 ~ cannot be embedded in any of the rex,, because of the central 
extension. In fact, upon picking a local parameter at P, one can map f s  50 to 

f~,= (0, f )  e m e , (A43) 

but the fe do not obey the cj  Lie algebra (but a central extension thereof). In trying 
to work globally we have a problem that did not have an analogue in Sect. 4: the fe 
are not canonically defined, but depend on a choice of a local parameter at P. One 
way to proceed is to uniformize the curve ~; this will induce a family of local 
parameters {z~,JP e Z} which are uniquely determined up to SL(2) transformations 

Zp ~ ze = (%ze + be)/(CeZl, + de). (A44) 

Since the Schwarzian derivative {ze, ze} is zero if ze and ~e are related as in (A44), 
this indeterminacy in the ze is limited enough so that the fp s m e are uniquely 
defined. Then there is a well defined map 

f ~ f  = GeL (A45) 

of 5:--.,~, and this is an embedding of Lie algebras since 

[fq ~] - Efg] = ~ ~ Respa) = 0. (A46) 
P 

Here to is the differential form which for any P can be written 

{ d3g d3fdz~ ~3 co= ~f  ~z3 P g dz e (A47) 

in a neighborhood of P. It may seem that we are cheating to use a global 
uniformization (or a global splitting ~K 0 = L@ T) after refusing to use this in the 
original definition of m. The point is that it is essential to define m in an intrinsic, 
local way, but in investigating its properties one is free to use global methods like 
the uniformization. 

Now we can define the Virasoro Ward identities, that is the identities for the 
global group 50, embedded in 5 ~ according to (A45). The "Feynman path integral" 
should be a linear functional ~: V-~k. The Ward identities are the assertion that for 
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f e2Z  and v~ V, 

Since this implies 

Sf" v =0 .  (A4S) 

o = ( [ f , ,  - • v ,  (A49) 

consistency of the Ward identities depends on the absence of a c-number cocycle 
on the right-hand side of(A46). Such a cocycle being absent, we have accomplished 
our goal of formulating the Virasoro Ward identities in a global context. 

Finally, we briefly return to a situation that we studied in Sect. 1. Let S be a 
circle that bounds a Riemann surface S. Let ~ s  be the Hilbert space of states of 
some conformal field theory formulated on S. Let tf2s) be the state obtained by 
"integrating out S." We would like to formulate the Virasoro Ward identities 
obeyed by the state If2s). 

Let N be the Lie algebra of complex valued vector fields on S, and let Nz be the 
subalgebra of N consisting of vector fields on S that extend holomorphically over 
Z. Nz is a Lie algebra, since i f f  and g are holomorphic on N, so is [-f, g] = fg ' -  f'g. 

If the energy momentum tensor were a conformal field, we would follow 
precisely the argument that led to Eq. (159) in Sect. (1) to show that for f ~ N s  

dOfr(O)lf2z) = 0. (A50) 
s 

This is too naive, however, since ~ dOfr(O) is (because of the conformal anomaly) 
only well defined modulo a c-number; more exactly, ~ dOfT(O) changes by a 
c-number under a change in the variable 0 by which we parametrize S. 

What is going on? Recall from (159) that the idea in proving a statement like 
(150) is to interpret f T  as an "operator valued differential form" and write 

0=  f J ( f T ) =  ~fT. (151) 
s 

Recall our extension of Lie algebras: 

O~f21/df2°-~,~ ~Se ~O. (152) 

The problem with (A 50) is that Nz is naturally a subalgebra of 50, 35 but to reason 
as in (A 51) one must interpret Nz as a subalgebra of the Lie algebra 5 ~ of operator 
valued differential forms. To do this, it is necessary to find a lift N z ~ @  of N from 
5 ~ to 5~. More explicitly, we need a splitting ~/f0 = L O T  so that a section f of T can 
be interpreted as a section (0, f )  of ~K o. A uniformization of S induces just such a 
splitting of ~o. Using the definition of the energy momentum tensor that would 
come from a coordinate system corresponding to a uniformization of S, (A 51) and 
(A 50) are valid. 

The existence of any coordinate system in which (150) is valid implies an 
interesting statement about the subalgebra Y2z of N. The Lie algebra N has a non- 
trivial central extension, corresponding to the Virasoro cocycle (12). However, the 
cocycle (12) must split when restricted to the subalgebra Nz of N (that is, upon 

s5 In fact, ~ is precisely the subalgebra of 6 a consisting of vector fields that  are holomorphic on S; 
recall that  6 e is a Lie algebra of meromorphic vector fields 
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restriction to N~ it must  be possible to eliminate the cocycle by adding  c-numbers  
to the operators  ~fT). For  this cocycle must  be absent with any definition of  T 
such that  (A 50) is valid. 
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