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ON NEAR-MDS CODES 

Stefan Dodunekov t and Ivan Landgev ; 

1. INTRODUCTION 

In the present paper we study a family of codes obtained by weakening the restrictions 

in the definition of classical Maximum-Distance-Separable (MDS) codes. This family 

of codes, which we call near-MDS (NMDS), contains remarkable representatives as the 

ternary Golay codes, the quaternary quadratic-residual [1!, 6, 5], the quaternary extended 

quadratic-residual [12,6, 6] code, as weI1 as a large amount of algebraic geometric (AG) 

codes. Interesting connections of NMDS codes with arcs in finite projective planes, as weit 

as with combinatorial designs, can be established. 

The paper is written in the following way. In Section 2 we recall some necessary notions 

and results from coding theory. In Section 3 we introduce several definitions of an NMDS 

code and describe some of the basic properties of such codes. At the end of the section 

all binary NMDS codes are determine& The weight distribution of an NMDS code is 

calculated in Section 4. In Section 5 we investigate the maximum possible length of an 

NMDS code of fixed dimension and present some bounds on it. In the last Section 6 

we study some geometric properties of NMDS codes, in particular, their connection with 

projective geometries. We improve on the bounds from Section 5 using some classical 

results on arcs in projective planeso 
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2. P R E L I M I N A R I E S  

At the beginning we recall some definitions and results about linear codes over an arbitrary 

finite field Fq = GF(q), q = pro, p_ a prime integer. For all notions and results not 

introduced here we refer to [9], [12], and [14]. 

Let C be a block code over Fq. Denote by supp0  the set of coordinate positions, where 

not all codewords of C are zero and call it the support of C. The support of a codeword is 

the set of its nonzero coordinate positions. 

Let • be a linear In, k] code over Fq, or an [n,k]q code for short [12,Ch.1]. The r-th 

generalized Hamming weight d~(C) [16] is defined to be the cardinality of the minimal 

support of an In, r] subcode of g, 1 < r < k, i.e. 

(2.1) d~(C) = min{ IsupplP I : 19 is [n,r]q subcode of c}. 

Obviously, d~ (C) = d(C) is the minimum Hamming distance of C. 

For completeness we list below some results from [16] which we use throughout  the paper. 

LEMMA 2.1.[16] For every linear In, k]q code C 

(2.2) 0 < d~(C) < d~(C) < . . .  < d~(C) < n. 

LEMMA 2.2.[16] Let He  be a pari ty check matrix of a linear code C. Then dr(C) = 6 if 

and only if 

(a) any 6 - 1 columns of Hc  have rank greater or equal to 6 - r; 

(b) there exist 6 columns in Hc  of rank 6 - r. 

LEMMA 2.3.[16] Let C be a linear [n, k]q code and let C • be its dual. Then 

(2.3) { < ( c ) j ~  : 1 , 2 , . . , ~ }  u { , ~ + 1 - < ( c •  : { <2 , . . .  ,n}. 

LEMMA 2.4.[16] (Generalized Singleton bound) 

(2.4) dr(C) < n - k + r ,  r =  1 , 2 , . . . , k .  

Let us recall also the Assmus-Mattson theorem [1], [2], or [12,Ch.6]. To emphasize that 

the minimum Hamming weight of an [n, k]q code C is equal to d we write its parameters 

as [n, ~, ~q. 
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THEOREM 2.5.(Assmus and Mattson) Let C be a linear [rt, ~g,d]q code. Suppose-we can 

find an integer t, 0 < t < d, such that there are at most d - t non-zero weights cq with 

0 < ai _< n - t in C • the dual of C. Then the supports of the codewords of weight d in g 

form a t-design. 

3. NEAR-MDS CODES 

A linear [n, k]q code g is said to be n e a r - M D S  if 

(3.1) de(C) = n - k  + i ,  f o r i = 2 , 3 , . . . , k ;  

(3.2) dt(C) = n -  k. 

It follows easily from this definition that  C is near-MDS iff dl(C) = n - k and d2(C) = 

n - k + 2. Note that  the near-MDS codes are codes of genus at most 1 in the terminology 

of [15]. 

Lemma 2.2 yields the following useful result. 

LEMMA 3.1. A linear [n, k]q code C is near-MDS if and only if a parity-check matrix of C, 

say He ,  (and consequently everyone of its parity-check matrices) satisfies the conditions 

(N1) any n - k - 1 columns of Hc are linearly independent;  

(N2) there exist n - k linearly dependent columns; 

(N3) any n - k + 1 columns of He are of full rank. 

LEMMA 3.2. If a linear In, k]q code is near-MDS then so is its dual. 

P r o o f .  It follows from Lemma 2.3 that 

whence 

d , _ k ( C "  ) = ~, d n - k - l ( C  • ) = ,, - 1 , . . .  ,d2(C l )  = ~ + 2, d~(C i )  = ~, 

i.e. C • is an [n, rt -- k]q near-MDS code, as asserted, o 
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COROLLARY 3.3. A l inear In, k]q code is near-MDS if and only if d(C) + d(C • = n. 

Note tha t  Corol lary  3.3 provides an a l ternat ive  definition for near-MDS codes. 

Lemma 3.2 implies tha t  the generator  ma t r ix  Gc  of a l inear In, k]q near-MDS code C must  

satisfy some condit ions similar to (N1)-(N3): 

(N1 ~) any k - 1 columns of Gc  are l inearly independent ;  

(N2 ~) there exist k l inearly dependent  columns in Gc ;  

(N3 ~) any k + I columns of Gc  are of full rank. 

Let us note tha t  not every In, k, n -  klq code is necessarily a near-MDS code. The construe- 

t ion given below is a modif icat ion of a construct ion from [15,Ch.1.1] and yields In, k, n -  k]q 

codes which are not  near-MDS. 

We s tar t  with an In; k, n - k + 1]q MDS code C with par i ty  check mat r ix  Hc .  Adjoin a row 

to Hc  which is not  a l inear combinat ion of its rows and which is of weight less than  k - 1. 

Denote the ma t r ix  ob ta ined  by Hcl  and consider it as a check mat r ix  of an In1, kl ,  dl]q 

code C1. The  code C1 has parameters  

nl  = n, k~ = k -  1, dl > n l -  kl. 

Obviously, d(C1 • < h - 1 = /r  whence dl = n l  - -  k l  and according to Corollary 3.3 C1 is 

an In1, hi, nl  - kl]q code which is not near-MDS. 

However, as the next s ta tement  shows, if n is large enough, every In, ~, n - k]~ code is 

near-MDS code. 

T H E O R E M  3.4. If n > k + q every In, k, n - k]q code is near-MDS code. 

P r o o f .  Let n > h + q and supose that  C is an In, k s n -/~]q code with par i ty  check mat r ix  

H c  which is not near-MDS. Then H c  satisfies (N1) and (N2), but  does not satisfy (N3), 

i.e. there exist n - h + 1 columns in Hc ,  say h i ,  h 2 , . . . ,  h ~ - k + l ,  which are of rank n - k - 1 

or less. It follows from (N1) tha t  h i ,  h 2 , . . . ,  h n - k + l  a r e  of rank exact ly n -  k - 1. Assume 

for concreteness tha t  the first n - h - 1 of the h i ' s  are l inearly independent .  Then we can 

wri te  

n - - k - - 1  

( 3 . 3 )  = 

i = 1  
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t ~ - k - 1  

(3.4) h . - k + l  = E fiihi, 
i = 1  

* ~ - -1  where c~i, fli E Fq = F q \  {0} , i  = ! , 2 , . . . , n - k - I .  Now consider the set ~oeifli l i = 

1 , 2 , . . .  ,n  - k - 1}. It contains elements from F~ and since n -  k - 1 > g - 1 at least two 

of them coincide, say 

ai,5F~ 1 = c~i~flF~ ~ = 7 c F*~. 

Hence at least two of the coefficients in the r ighthand side of 

n - - k - - 1  

(3.5) hn -k  - 7 h n - k + l  = E (a i  -- 7fl i)h,  
i = l  

are zero. Thus we obta in  n - k - 1 l inearly dependent  columns of He ,  a contradic t ion to 

(N1). o 

T H E O R E M  3.5. Let C be a [n, k, n - k]q code with k >__ 2. Then 

(i) n _ 2q + k; 

(ii) C is generated by its codewords of weight n - k and n - k + 1; if ra > q + k 

C is generated by its min imum weight codewords. 

P r o o f .  (i) One gets from the Griesmer bound  [8] 

k - - 1  

(3.6) n >_ g ( k , n - k )  = E{=oF--7~--ln-k >_ n - k + . s + k - 2  = n + s - 2 ,  

rt--k where ~ = F~---I (Fzl denotes the smallest  integer _> z). Hence s = 1 or 2, and [ ~ k  l < 2 

implies n < 2q + k. 

(ii) From (i) n _< 1 + g ( k ,  n - k )  and hence the code g is generated by its codewords of 

weight not  greater  t i tan n - k + 1 (see [5]). If n > q + k the code C meets the  Griesmer 

bound  and is generated by its min imum weight codewords [5]. o 

In contrast  to the s i tuat ion with MDS-codes there exist some non-tr ivia l  b inary  near-MDS 

codes. In the rest of this section we present the complete list of all b inary  near-MDS codes. 

Let C be an [n, k]~ near-MDS code and let Gc  = [gl, g 2 , . - - ,  g,~] be its generator  matr ix .  

Here gi E F2 k, i = 1 , 2 , . . .  ,n  denote the columns of Gc .  According to Lemma 3.2 C -L is 

an [n, n -  k]2 near-MDS code. Applying Theorem 3.5(i) we get immedia te ly  tha t  k <_ 4, or 
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dual ly  k >_ n -  4. Wi thou t  loss of general i ty  we can assume tha t  g l ,  g 2 , . . . ,  gk are l inearly 

independent .  For every i E {1, 2 , . . . ,  n - k} we have 

(3.7) gk+  = g j ,  
jEor~ 

where Ji C { 1 , 2 , . . . , k } ,  IJil = k - 1, or k. Suppose tha t  n > k + 1 and suppose there 

exist i n d i c e s j l , j z  E { 1 , 2 , . . . , n -  k} with l J i l l  = k, [J/~l = k -  1. Then 

gk+j~ -}- gk+j2 + go~ = O, 

where {o4  = Yj~ \ Jj~ and 0 is the k-dimensional ~ero vector. Hence in this case ~ < 3. 

If for every j E { 1 , 2 , . . . , n -  k}, [Jj[ = k - 1, then 

gk+a + gk+2 + g~ + g~ = 0, 

where {c~,/~} = { 1 , 2 , . . .  ,k} \ (J1 (3 ,/2). Therefore, k _ 4. Below we list all [n,k]2 near- 

MDS codes. Because of the dual i ty  (Lemma 3.2) it is sufficient to consider codes with 

n > 2 k .  

C a s e  k = 1. The  only code here is the t r ivia l  [n, 1, n - 1] code. 

C a s e  k = 2. F rom Theorem 3.5(i) n _< 6. Let 

1 . . . 1  0 . . . 0  1 . . . 1  

\ l~ 12 Iz / 

It follows from (NT)  tha t  at least one of 11, I2,13 is greater  or equal to 2. On the other 

hand  (N3')  implies ll _< 2,/2 _< 2,13 _< 2. Now, if n = 6, then explici t ly ll = 12 = 13 = 2 

and the unique [6, 2]2 near-MDS code is generated by 

(1010 0 
(3.9) Gc  = 0 1 1 1 " 

If n = 5, one of the  li's must be equal to 1. Up to equivalence 

( 1 1 O O 1 )  
(3.10) Gc  = 0 0 1 1 1 " 

generates  the unique [5,2,312 near-MDS code. Similarly, for n = 4 we get two non- 

equivalent [4, 2, 2]2 near-MDS codes, generated by 

( 010 0) (3.~,1) Go, = o i i ' 
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and by 

(3.12) G o - =  0 0 1 " 

C a s e  k = 3. According to Theorem 3.5(i) n < 7, and (NU) implies tha t  any two columns 

of Gc are l inearly independent ,  i.e. there are no repeated  columns. Therefore, if n = 7 

the only near-MDS code is the simplex code: 

(3.13) Gc = 1 0 1 0 1 
0 1 1 ! 0 

If n = 6 there exists one (up to equivalence) [6, 3]2 near-MDS code which has generator  

mat r ix  

(3.14) Gc  = 
i 0 0 0 1 1 )  

1 0 1 0 1 . 
0 1 1 1 0 

C a s e  k = 4. From Theorem 3.5(i) n _< 8. On the other  hand  according to Lemma 3.2 it 

suffices to consider n - k k 4, i.e. the case n = 8. There exists one [8,4,4]~ code - the 

extended Hamming code. One generator  mat r ix  of this code is 

(3.15) Gc = 
1 0 0 1 0 1 
0 1 0 1 1 0 ' 
0 0 1 1 1 i 

4. THE W E I G H T  DISTRIBUTION OF A NEAR-MDS CODE 

Given a l inear In, k]q code C denote by Ai the number  of codewords in C which are of 

Hamming weight i, i = 0, 1, 2 , . . . , n .  The set {Ai t i  = 0 , 1 , . . . , n }  is called the weighe 

distribution of C. 

Similarly to the MDS codes, the weight d is t r ibut ion of a near-MDS code can be completely 

determined.  The only small  price we have to pay in this case is tha t  the numbers  Ai, i = 

n - k + 1 , . . . ,  r~ are l inear functions of A~-k .  
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T H E O R E M  4.1. Let C be an In, k]q near-MDS code. Let fur ther  { A ~ ] i  = 0, 1 , . . . ,  n} be 

its weight d i s t r ibu t ion  and { A ~ I i  = 0, 1 , . . ,  n} be the weight d is t r ibut ion  of C • Then for 

every s E { 1 , 2 , . . . , k }  

(4.1) A n - k + s  =" k - -  S j=0  J 

( 4 . 2 )  ' ( ~ )  Ak+~ = k + s j=0 J (q~-~ -1) + (-1y ~ -  

P r o o f .  We s tar t  with the  equal i ty  

= A i 
l., - i 

/=0 i=0 

(see [12], P rob lem (6) on p.131, res ta ted  for a rb i t r a ry  q). To prove (4.1) we use induct ion 

on s. For  s = I it  can be ob ta ined  from (4.3) by set t ing ~ = k - 1. Now suppose tha t  (4.1) 

holds for every s = 1 , 2 , . . .  ,rr. Set t ing ;J = k - c~ + t in (4.3) one gets 

k - - G + 1  (q~+l 1) k - - G - - 1  An-k+(r+l  
j=o  

whence after some tedious but  s t ra ightforward calculations the desired expression for 

A n - k + r  can be obtained.  

The  formula (4.2) can be proven in the same fashion, set t ing L, = n - I% n - k - 1 , . . . ,  2, 1 

in (4.3). 

R e m a r k .  Note tha t  (4.3) yields A n - k  = A~ for y = k. Hence the weight dis t r ibut ions  of 

C and C • coincide for n = 2k, i.e. the code C is formally self-dual [15,Ch.1.1]. 

COROLLARY 4.2. For an In, k]q near-MDS code C 

(4.4) A . - k  < k -  1 k ' 

with equal i ty  iff A ~ - k + l  -= 0. By dual i ty  

(4.5) A~ < k + l  n k '  
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with equality iff A~+ 1 = 0. 

Proof .  The inequality (4.4) follows from 

An-k+l = ( ] r  >- O. 

Similarly, (4.5) is derived from (4.2) and A~+ 1 > 0. <~ 

Remark .  Note that Theorem 1.1.!6 from [15] yields the inequality A~_~ _< \k)tq - 

which is worse than (4.4). 

COROLLARY 4.3. For an [n, k]q near-MDS code with An-k+1 = 0 we have k _< ~. 

Proof .  It follows from Corollary 4.2 that 

n q 1 > A~  = A ~ - k  = 
\ k + l  n k -  k - 1  k ' 

whence k < ~ <> 

5. NEAR-MDS CODES OF MAXIMAL LENGTH 

One of the most fascinating problems connected with MDS codes is the following: given k 

and q, find the largest value re(k, q) of n, for which there exists an [n, k, n - k + 1]r MDS 

code over Fq (see [12,Ch.11] and the references there). A general upper bound is 

(5.1) ~(~, q) < q + ~ - 1. 

Define m'(k, q) as the maximum possible length of a near-MDS code of fixed diinension 

over a fixed field Fg. 

PROPOSITION 5.1. mr(k,q) < 2q + k. 

In case of equality An-k+1 = O. 

Proof .  The first part follows from Theorem 3.5. We give an alternative proof below. One 

gets from (4.1) 

{k 2 An~ 

The inequality (4.4) implies 

q - l (  n ) ( 2 q + k - n ) =  ( n ) (  ( k ) (  n ~ q - 1  > Ar~-~+2 > 0  
2 k - 2  k - 2  q-1)(q+k-n-1)+ 2 k - 1 / - ~ - -  - -  
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whence (5.2) follows. 

If n = 2q + k the above inequality implies An-k  = (k~_l)(q - 1) /k  and by Corollary 4.2 

An-k+1 = O. 

A near-MDS code meeting the bound from Proposit ion 5.1 will be called extremaI. 

P R O P O S I T I O N  5.2. It holds ml(k,q) = k + 1 for every k > 2q. 

P r o o f .  The existence of [k + 1, k]q near-MDS codes is obvious for every prime power q. 

Suppose that  C is an In, k]q near-MDS code with n > k + 1 > 2q + 1. Let 

(5.2) Ge = [glg2 . . .  gn], gi eF/k 

be its generator matrix and let the first k columns g~, g2 , - - . ,  gk be linearly independent. 

Then 

(5.3) gk+l = 2.a ~ cti e F* q~ 

iE J1 

(5.4) gk+2 = E / 3 i g i ,  /3i E Fq, 
iGJ2 

where J1 and J2 are subsets of {1, 2 , . . . ,  k} of cardinality at least k - 1. Since ]J1 • J2i _> 

k - 2  > 2 ( q - 1 )  there exist indices Zl,' i2, ia such that  ah f l~  1 = o : i 2 / ~  1 = a,~fli~-i = # E F*q. 

Then 

(5.5) gk+l -- #gk+2 = Z g i g i '  ~2i C F* q~ 

iCJ 

wehre J C {1, 2 , . . . ,  n}, IJI _< k - 3, a contradiction to (NI ' ) .  <> 

Extremal near-MDS codes with k = 2 exist for every q. To check this take two vectors 

from every one-dimensional subspaee of the vector space of all pairs over Fq. The matrix 

having these 2(q 2 - 1)/(q - 1) = 2q + 2 vectors as columns is a generator matrix of an 

extremal near-MDS code. 

P R O P O S I T I O N  5.3. The existence of an [n, k]q near-MDS code C implies 

(i) the existence of an In - 1, k - 1]q near-MDS code; 

(ii) the existence of an In - 1, k]q near-MDS code. 
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P r o o f .  (i) Delete a column from the par i ty  check mat r ix  of C, preserving a set of n - k 

l inearly dependent  columns. 

(ii) Delete a column from the generator  mat r ix  of 6, preserving a set of k + 1 columns 

which contains k l inearly dependent  columns. 

COROLLARY 5.4. For every integer a ,  0 < a < k, it holds m'(k,  q) <_ rn~(k - <~, q) + o~. 

In par t icular ,  the existence of an ext remal  near-MDS code of dimension k over Fq implies 

the existence of extremal  near-MDS codes for every dimension k ~ _< k. 

P r o o f .  Propos i t ion  5.3(i) implies m'(k - 1, q) >_ m'(k ,q)  - 1. Applying  this ~ t imes 

we get (5.3). If m ' (k ,  q) = 2q + k then m'(k  - a ,  q) >_ 2q + k - a ,  and hence by (5:2) 

m ' ( k - ( ~ , q ) = 2 q + k - ~ . o  

E x a m p l e .  The t e rnary  [12, 6, 6] extended Golay code [7] is an ext remal  near-MDS code 

and yields ext remal  near-MDS codes over F3 for every k _< 6. 

It is known that  one can construct  algebraic geometric [ n , k , n -  k]q codes (q = pro) of 

genus at most  I (i.e. MDS, or near-MDS codes) for every n for which 

< f q + [2v/~] if p divides [2v~ ] and m > 3 is odd,  (5.6) n 
- [ q + [2v/~] + 1 otherwise, 

and a rb i t r a ry  k = 2, 3 , . . . ,  n - 2 [15,Ch.3.2]. Therefore near-MDS codes of length greater  

than  the one given by (5.6) are of special interest.  One such example is the quaternary  

[12, 6, 6] code [6], as well as the codes derived from it by Propos i t ion  5.3. 

Compar ing  the bound  (5.1) with Proposi t ion 5.1 we see tha t  there exist near-MDS codes 

which are considerably longer than  the longest possible MDS code with the same/c and q. 

We close this section with the observation tha t  near-MDS codes can sometimes produce 

t-designs. 

P R O P O S I T I O N  5.5. Let C be an In, ]c]q near-MDS code. Suppose there exists an integer 

s _> 1 such that  A n - k + ,  = 0. Then the words of weight k in C • form a (k - s)-design . In 

par t icular ,  the words of minimal  weight in the dual  of an extremal  near-MDS code form a 

Steiner system S(k - 1; k,2q + k). 

P r o o f .  Use the Assmus-Mat t son  theorem (Theorem 2.5) with t = k - s. For the second 

par t  note that  in the design obta ined from the dual  of an extremal  near-MDS code each 
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(~ - 1)-tuple is contained in 

block, o 

q-1 ( ~ + ~ )  

Steiner systems S(t; k,v) with large t are extremely rare. Therefore, one might expect 

that  so are extremal near-MDS codes. Later on we shall prove that  the [12, 6, 6] ternary 

extended Golay code and the codes obtained from it by Proposit ion 5.3(i) are the only 

extremal near-MDS codes with q >_ 3, k _> 3. 

6. NEAR-MDS CODES AND PROJECTIVE GEOMETRIES 

Let C be a near-MDS code with k _> 3 and let Gc  = [gl g2 -. .  gn] ,gi  E F~ be its generator 

matrix. The columns of Gc  can be looked at as different (because of k >_ 3) points in the 

projective geometry P G ( k  - 1, q). In other words a near-MDS code of dimension k > 3 is 

always projective (cf. [4]). The existence of an In, k] near-MDS code is equivalent to the 

existence of a set ,5 of points in P G ( k  - 1, q) having the properties 

(NI")  every k - 1 points from S generate a hyperplane in P G ( k  - 1, q); 

(N2") there exist k points in S lying on a hyperplane; 

(N3") every k + 1 points from S generate P G ( k  - 1, q). 

These properties become very simple for k = 3. In such case the existence of a near-MDS 

code is equivalent to the existence of a set S of points in the projective plane PG(2 ,  q) 

having the properties 

- there exist three collinear points in S; 

- no four points from S lie on a line. 

A (n, u)-arc in the projective plane PG(2 ,  q) is a set ,5 of ec points such that  each line 

meets ,5 in at most u points and there exists a line meeting it in exactly u points. For 

every (~c, ~)-arc in PG(2, q) we have 

(6.1) ~ _< (p--l)q -F ~, 

(of. [11], p.322). It is clear that  near-MDS codes of dimension 3 over Fq are equivalent to 

(n, 3)-arcs in PG(2 ,  q). The inequality (6.1) coincides with (5.2) for k = ~ = 3. 
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Let ri, i = 0, ! , . . . ,  u denote the number of lines meeting S in exactly i poits. The ~mmbers 

ri determine the weight distribution of the corresponding near-MDS code by 

(6.2) (q - 1)~-{ = An-i ,  i = O, 1, 2, 3. 

E x a m p l e .  Consider a Desarguesia.n configuration 7) in P G ( 2 ,  7). The set of the intersect- 

ing points of the 10 lines of D which are not in 7) is a (15,3)-arc with 

(6.3) To = 12, ~-1 = 0, r2 = 15, ra = 30. 

Therefore, there exists a [15, 3, 12Iv near-MDS code C with A14 = 0. Proposit ion 5.5 implies 

that the words of weigh t 3 in C • (which is a [15, 12, 3]7 code) form a 1-design. 

The bound (5.2) can be strengthened using a well-known result of Thas [13] (see also [11, 

p.335]). 

P R O P O S I T I O N  6.1. For every (~c, 3)-arc in PG(2, q) with q > 3 we have n < 2q + 1. <> 

P R O P O S I T I O N  6.2. If q > 3 then 

(6.4) m'(k,  q) _< 2q + k - 2. 

The only ternary extremal near-MDS codes are the extended Golay code and the codes 

with parameters [12 - i,6 - i,6]a, 1 < i < 5. 

P r o o f .  From every [n,k]q near-MDS code we can construct (see Proposit ion 5:3(i)) an 

I n -  k + 3, 3]q near-MDS code and hence an ( n -  k + 3, 3)-arc in PG(2, q). Now Proposition 

6.1 yields 

(6.5) n - k + 3  < 2 q + 1 ,  

which proves (6.4). The rest follows from Proposition 5.2. It has to be noted that  all the 

codes with parameters [12 - i, 6 - i, 613, i = 0, 1, .~. ,  5, are unique~ o 

The maximal cardinalities for 3-arcs are known for q = 4, 5, 7, 8, 9 [3],[10]. (The cases 

q = 2, and q = 3 are trivial and have been already discussed.) This implies that  rn'(3, 4) = 

9, m' (3 ,5)  = 11, m' (3 ,7)  = 15, m' (3 ,8)  = 15, m'(3 ,9)  = 17. It follows from_ [3] that  

21 _< m'(3 ,11)  < 23, 23 <_ m'(3,13)  _< 27. It is conjectured that  for every (~c,3)-arc in 
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PG(2, q), where q >_ 8, t~ _< 2q - 1. This is only known to be true for q = 8, 9. Of course, 

every restriction on the number of points in a maximal 3-arc would imply an improvement 

o n  (6.4). 
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