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CONVEX BODIES FORMING PAIRS OF CONSTANT WIDTH 

Hiroshi Maehara 

I~ INTRODUCTION 

All sets considered in this note are subsets of the n-dimensional 

Euclidean space E n. Let X be a nonempty compact convex set and u 

be a point in E n different from the origin o. The width of X in 

the direction ou, w(X;u), is the distance between the two 

supporting hyperplanes of X that are perpendicular to the line 

ou. In terms of the support function 

hx(U) = sup{<u~x>;x e X} 

we have 

w(X;u) = hx(U/lU[) + hx(-u/luE) , 

where I I and < > denote the Euclidean norm and inner product. 

A set of constant width is a nonempty compact convex set whose 

width is constant in any direction. 

We extend the notion of width to a pair (X,Y) of nonempty compact 

convex sets. Define the width of (X,Y) in the direction ou, 

w(X,Y;u), by 

w(X,Y;u) = hx(U/lUI> + hy(-U/[Ul). 

A pair (X,Y) of sets is called a pair of constant width if X and 

Y are nonempty compact convex sets and w(X,Y;u) is constant for 
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all u # o. It is clear that a set X is of constant width if and 

only if the pair (X,X) is of constant width. 

Pairs of constant width have certain properties in common with 

sets of constant width (see Theorems i and 2). Furthermore~ if 

(X,Y) is a pair of constant width r, then the 'vector sum ~ X + Y 

is a set of constant width 2r. 

Pairs of constant width are well described in terms of the 

following operation m r. For a nonempty set X and a positive 

number r, mr(X) is defined to be the intersection of all closed 

balls of radius r whose centers belong to X. Then it is proved 

that a pair (X,Y) is of constant width r if and only if 9r(X)=Y 

and ~ (Y)=X. Moreover, for a nonempty set X of circumradius r, 
r 

the pair (~r(X),~](X)) turns out to be of constant width r. 

Figure i shows two pairs of constant width constructed in this 

way from a line segment, and from a triangle, in the plane. 

Figure i. 

2. PAIRS OF CONSTANT WIDTH 

We first note that if (X,Y) is a Dair of constant width r, then 

r ~ 0. For 2r = w(X,Y;u) + w(X,Y;-u) = w(X;u) + w(Y~u) ~ @o 
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A sphere of largest diameter that lies in a compact convex set X 

is called an insphere of X. The sphere of smallest diameter that 

encloses X is called the circumsphere of X. The radius of the 

circumsphere of X is the circumradius of X. In general, a convex 

set may have many inspheres, but the circumsphere is always 

unique. 

Theorem I. Let (X,Y) be a pair of constant width r. Then any 

insphere of X is concentric with the circumsphere of Y (hence X 

has the unique insphere), and the sum of their radii equals r. 

In the case X = Y (then X is a set of constant width), the 

theorem is well known, see e.g. [i,p.125]. The proof of the 

theorem for X # Y is much the same, and is omitted. 

Theorem 2. (The plane case n=2) Let (X,Y) be a pair of constant 

width r in E 2. Then the sum of the perimeters of X and Y equals 

2~r. 

Proof. It ~s well known that for a compact convex set S in E 2, 

the perimeter of S equals 

27 
i 

I w(S;us)dS, u 8 = (cosS,sinS)~ 
0 

Therefore the Sum of the perimeters of X and Y equals 

27 27 
I I {w(X;us)+w(Y;us)}d 8 = I ~ I {hx(Us)+hx(-Us)+hy(Us)+hy(-Us)}d8 

0 0 

27 
1 

= [ I 2r d8 = 2~r. 

0 

Theorem 3. If (X,Y) is a pair of constant width r, then the set 

X + Y := {x+y;x e X,y c Y} is a set of constant width 2r. 

Proof. Since the support function hx+y(U) of X+Y equals 

hx(U)+hy(U) as easily verified, we have 
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w(X+Y;u) = hx+y(U/ ul) + hx+y~U/lUl) 

= hx(U/lU )+hy(U/lU!)+hx(-U/lU!)+hy(~U/iU!) 

= w(X,Y;u) + w(X,Y;,u) = 2r. 

3. THE OPERATION 
r 

We denote by B(x,r) the closed ball of radius r centered at x. 

Then fr(X) = n(B(x,r);x sX). The operation fr also appeared in 

[I] in connection with sets of constant width, but in rather 

restricted form and in different notation. 

By the definition, 2r(X) is compact and convex, ~r(X u Y) equals 

2r(X) n ~r(Y), and if X cy then fr(Y) c fr(X). 

Theorem 4. If X is a nonempty set of circumradius ~ r~ then 

f 2(X) is the intersection of all closed balls of radius r that 
r 

contain X, and 2r3(X) = 2r(X). 

Proof. Since 

X c B(y,r) +~ ly-xl ~ r for all x s X +§ y s 2r(X) ~ 

we have 

air f (X)  = n ( B ( y , r ) ; y  s f r ( X ) }  = n ( B ( y , r ) ; X  c B ( y , r ) ~ . .  

And 

y s f r ( X )  §247 X c B ( y , r )  §247 2 r f ( X )  c B ( y , r )  

f r  3 / ~  § iy-zl ~ r for all z ~ 2rf(X) § y ~ <X~o 

Remark I. The set f 2(X) is called the r-convex hull of X, see 
r 

[2,p.99]. 

Remark 2. If we restrict operands of f to nonempty compact sets 
r 

of circumradius -~ r, then 2 r is continuous with respect to the 
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~Hausdorff distance' 

4. PAIRS OF CONSTANT WIDTH AND THE OPERATION 
r 

Lemma. Suppose ~r(X) # Z and let H be a hyperplane Supporting 

2(X) at x. Let B be the closed ball of radius r which touches 
r 

H at x and lies on the same side of H as X. Then B containes X. 

Proof. First we note the following fact: If the two end points 

of a minor circular arc (or a semicircle) of radius r belong to 

a ball of radius r, then the arc is contained in the ball. 

Now suppose B does not contain X. Let y be a point of X not in B 

and let z be the center of B. Since Ix-yj ~ 2r and y is not in B, 

the points x,y,z are not collinear. Let P be the plane 

determined by x,y,z. Then the line L = P n H is tangent to the 

circle C bounding the disk P n B. So the line L cuts any circle 

of radius r on P passing through x and different from the circle 

C and its reflection in L. Hence, in the plane P, there is a 

minor circular arc (or semicircle) A of radius r with end points 

x,y which crosses the line L. Then the arc A intersects with both 

sides of the hyperplane H. Now, by the fact ~oted above, every 

closed ball of radius r that contains X also contains the arc A. 

Hence ~r2(X) contains A. But since H is a supporting hyperplane 

of ~r2(X), this is a contradiction. 

Theorem 5. A pair (X,Y) is of constant width r if and only if 

~r(X) = Y and mr(Y) = X. 

Proof. First suppose (X,Y) is a pair of constant width r.. Then 

Ix-yl ~ r for all x E X and all y ~ Y. Hence Y c ~r(X). Assume 

~r(X) r Y and take a point u of mr(X) not in V. Let v be the point 

of Y nearest to u. Then the hyperplane H through v and 

perpendicular to the line uv supports Y at v. Since the width of 



106 Maehara 

(X,Y) in the direction ~ is r~ there is a supporting hyperplane 

H' of X parallel to H at distance r apart and lying on the side 

of H opposite to u. Let w be the contact point of H' with X~ Then 

!u-wl > Iv-wl ~ r. Slnce w sX~ this implies u @ ~r(X), a 

contradiction. Hence ~r(X) = Y and similarly ~r(Y) = X. 

Now suppose ~r(X) = Y and ~ (Y)~ = X. Then ix-yl ~ r for all x ~ X 

and all y s Y. So the width of (X,Y) in any direction is s r. 

Therefore it is enough to show that for any direction ou, there 

are two points x c X and y s Y such that Ix-yl = r and ~x has the 

same direction as ou. Let H be the supporting hyperplane of X 

with exterior normal ou, and x 0 be the contact point of H with X. 

Let B be the closed ball of radius r that touches H at x 0 and 

lies on the same side of H as X. Then by the lemma, B contains Xo 

Hence the center of B, say Y0' belongs te ~r(X) = Y~ Clearly 

Ix0-Y01 = r and Y0X0 has the same direction as ~u. 

Corollary I. A set X is of constant width r if and only if 

(X) = X. 
r 

The 'only if' part of this corollary is also proved in [I~po123]. 

But no mention of the converse is made there. 

Corollary 2. _~or any set X of circumradius ~ r, (~r(X)~r~(X)~j 
I 

is a pair of constant width r, and ~(~r(X) + ~r2(X)) is a set of 

constant width r. 

Use Theorem 5 and the last assertion of Theorem 4~ 

The diameter of a nonempty bounded set is the least upper bound 

of the distance between any two points of the set. The following 

is also proved in [I,p.126]. 

Corollary 3. Every set of diameter r is contained in a set of 

constant width r. 
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Proof. Let X be a set of diameter r. Then since X c ~r(X) and 

I ~r(X ) + (x)) Xc ~r2(X)' we have X c~( ~r 2 
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