ON CHEN SURFACES IN A MINKOWSKI SPACE TIME

Chorng Shi Houh

 A -submanifolds of a pseudo-Euclidean space $E_{\rm e}^{m+1}$ are considered, A characterization for them is given. A theorem on A -submanifolds contained in a de Sitter space-time S" or an anti-de Sitter space-time H_{n-1}^n is proved. A number of non-trivial examples of A -surfaces in a Minkowski space-time E_4^4 are studied. Some classification theorems are proved for *M-surfaces* contained in S_4^3 or H^3 .

1. PRELIMINARIES.

Let(E_s^{m+1} , g_0) be the flat (m+1)-dimensional pseudo-Euclidean space of signature $(s, m+1-s)$. The metric tensor g_0 , if no specified mention is given, is $g_0 = -\sum_{i=1}^{8} dx_i + \sum_{i=1}^{m+1} dx_i$ where (x_1, \ldots, x_{m+1}) is a rectangular coordinate system of E $^{\mathrm{m}+1}_{\mathrm{m}}$. Let $\mathbb{S}^{\mathrm{m}}_{\mathrm{m}}=\{\mathrm{x}\in \mathbb{E}^{\mathrm{m}+1}_{\mathrm{m}}\}/\langle \mathrm{x},\mathrm{x}\rangle=1\}$ $H_{s-1}^{m}=\{x\in E_{s}^{m+1}/\langle x\,,x\rangle^{m-1}\}$, where \langle ,\rangle denotes the inner product on E_s^{m+1} . S_s^m and H_{s-1}^m are called the pseudo-Riemannian sphere and the pseudo-hyperbolic space with their center at the origin of E_s^{m+1} . For s=1 S_1^m is called the de Sitter space-time and H_1^m the anti-de Sitter space-time. Both S_4^m and H_1^m are pseudo-Riemannian manifolds of signature (l,m-!). Let M be an n-dimensional pseudo Riemannian submanifold of E_s^{m+1} . By definition each tangent space $T_{x}(M)$ is a nondegenerate subspace of $T_{x}(E^{m+1}_{s})$ and $T_{x}(E^{m+1}_{s})=T_{x}(M)$ $\oplus T_x^{\perp}(M)$, where the normal space $T_x^{\perp}(M)$ is also nondegenerate. If g_0

induces a Riemannian metric on M then M is called a space-like submanifold. Let \tilde{V} be the metric connection on E_{s}^{m+1} and V the in duced metric connection on M. Let D be the linear connection in duced on the normal bundle $T^{\perp}(M)$. Then for any vector fields X, Y tangent to M and any vector field ξ normal to M we have the following Gauss formula and Weingarten formula $\tilde{V}_{x}Y=\nabla_{x}Y+h(X,Y)$, $\tilde{V}_{x}Y=$ $-A_{\mu}X+D_{\chi}\zeta$, where h is the second fundamental form of M in E_{κ}^{m+1} and A_{μ} is the Weingarten map with respect to ξ . A_{μ} is a self-adjoint endomorphism of the tangent bundle $T(M)$. h and A_{γ} are related by (1.1) $\langle h(X,Y),\xi\rangle = \langle A_{\mu}X,Y\rangle.$ Let ${e_1, e_2, \ldots, e_{m+1}}$ be a moving orthonormal frame in E_s^{m+1} along M, with $\{e_1, \ldots, e_n\}$ being tangent to M and $\{e_i, e_j\} = \epsilon_j = \pm 1$. Let A_e = A_r for r=n+1, ..., m+1 and $h_{i,j}^r$ (i,j=1, ..., n) be defined by r, (1.2) $A_{\mathbf{r}} \mathbf{e}_{\mathbf{i}} = \sum \varepsilon_{\mathbf{j}} h_{\mathbf{i} \mathbf{j}}^{\mathbf{r}} \mathbf{e}_{\mathbf{j}}$. We also use A_n to denote the matrix $(h_{i,j}^r):$ (1.3) $A_{\mathbf{r}} = (h_{i,j}^{\mathbf{r}})$. A_r acts on TM according to (1.2). For A_r and A_s the matrix for the linear transformation $A_{R}A_{r}$ (1.4) $A_{\alpha}A_{\alpha}=(\Sigma\varepsilon_i,h_i^R,h_{i,k}^S).$ A_{μ} can be diagonalized only when M is space-like. For the second fundamental form h the covariant differentiation \overline{v}_{x} h is defined by $(\bar{\nabla}_X h) (Y,Z)=D_X(h(Y,Z)) -h(\bar{\nabla}_X Y,Z)-h(Y,\bar{\nabla}_X Z)$, for $X,Y,Z \in TM$. The Codazzi equation of M in E^{m+1} is $(\bar{\nabla}_{\mathbf{y}}h)(Y,Z)=(\bar{\nabla}_{\mathbf{y}}h)(X,Z)$. A normal vector field ξ is said to be parallel if $D_{x}\xi=0$ for any X ε TM. If F is an endomorphism of TM, let $F_{i,j}$ =<Fe_i,e_j> then F is given by the matrix $F=(F_{i,j})$. The trace of F is defined by (1.5) $T r F = \sum \varepsilon_i F_{i,i}$. By this definition and (1.4) we have (1.6) $Tr(A_{s}A_{r})=\sum(\varepsilon_{j}\varepsilon_{i}h_{i,j}^{s}h_{j,i}^{r})$. The mean curvature vector H of M in E^{m+r}_{s} is defined by (1.7) $H=(1/n)Trh=(1/n)\Sigma\varepsilon[h(e, e_i)].$ M is said to be minimal if $H=0$ and pseudo-umbilical if $\langle H, H \rangle \neq 0$ and $A_H = \lambda I$ for some function λ on M, where I is the identity *transformation* on TM.

Let M be a pseudo-Riemannian submanifold of S_{α}^{m} (or of $H_{\alpha+4}^{m}$) in E_{\circ}^{m+1} . Let h, h' and h be the second fundamental forms of M in \mathbb{E}^{m}_{s} , of M in \mathbb{S}^{m}_{s} (or in \mathbb{H}^{m}_{s-1}) and of \mathbb{S}^{m}_{s} (or \mathbb{H}^{m}_{s-1}) in \mathbb{E}^{m+1}_{s} respectively. Let x denote the position vector of M in E_n^{m+1} , H and H^+ denote the mean curvature vectors of M in E_s^{m+1} and in S_s^m (or in H_{s-t}^m). Then the following relations are known (B-Y.Chen [2], Lemma 1):h(X,Y)=h'(X,Y)+h(X,Y), H=H'-x (or H=H'+x), $A_v = \tilde{A}_v = -I$, where $A_\mathbf{X}$ denotes the Weigarten map of $S^m_{_{\mathbf{S}}}$ (or $H^m_{_{\mathbf{S}-1}}$) in $E^{m+1}_{_{\mathbf{S}}}$. By (1.1) and (1.2) we have $h(e_i, e_j) = \sum \varepsilon_n h_{i,j}^p e_r$, $\langle h(e_i, e_j), e_j \rangle = h_{i,j}^r$ and $h_{i,j}^r$ are symmetric in i,j.

2. **A-SUBMANIFOLDS.**

Let M be an n-dimensional pseudo-Riemannian submanifold of \mathbb{E}_{a}^{m+4} . Let ξ be a normal vector field in $T^{\perp}(M)$ so that $\langle \xi, \xi \rangle \neq 0$. The allied vector field $a(\xi)$ of a normal vector feild ξ is defined by the formula

(2.1) $a(\xi) = (|\xi|/n)\sum \varepsilon_r Tr(A_{n+1}A_r)e_r$ where $|\xi| = \langle \xi, \xi \rangle^{1/2}$, $\{e_{n+1} = \xi/|\xi|, e_{n+2}, \ldots, e_{m+1}\}\)$ is an orthonormal basis for $T^{\perp}(M)$.

DEFINITION 1. A pseudo-Riemannian submanifold M in $E_{\rm s}^{\rm m+1}$ is called an A -submanifold or a Chen submanifold if its mean curvature vector H satisfied that $H=0$ or $\langle H,H \rangle \neq 0$ and $a(H)=0$. The notion of an A-submanifold in a pseudo-Riemannian manifold M is defined similarly. Riemannian A -submanifolds were first considered by B-Y. Chen in [I] and developed by other authors {for example see [3]) and subsequently were called Chen submanifolds. The definition given above is a pseudo-Riemannian version of Chen's definition, The class of Chen submanifolds of a Riemannian manifold contains all minimal and pseudo-umbilical submanifolds which are said to be trivial Chen submanifolds ([3]). Let M be an n-dimensional pseudo-Riemannian submanifold in *Sm(or* in H_{s-1}^m). Let ${e_1, \ldots, e_n, e_{n+1}, \ldots, e_{n+1}}$ be an orthonormal frame along M so that e_i ,..., e_n are tangent to M and $e_{m+1} = -x$, where x

is the position vector of S (or $\text{H}_{s-1}^{\text{m}}$) in $\text{E}_{s}^{\text{m}+1}$. We denote $\varepsilon_{\text{r}}^{\text{m}}$ $\langle e_{p}, e_{p} \rangle$, (r=n+1,..., m+1), $\varepsilon = \varepsilon_{m+1}$, $\varepsilon = 1$ for S_{s}^{m} and $\varepsilon = -1$ for H_{s-1}^{m} . If the mean curvature vector H'of M in S_{ϵ}^{m} (or in $H_{\epsilon-1}^{m}$) satisfies $\langle H^+, H^+ \rangle \neq 0$, then we may choose $e_{n+1} = H'/|H'|$ or $H' = \alpha' e_{n+1}$ with $|H'|$ $=\alpha' \neq 0$. Then $H=H^1-\varepsilon x=\alpha' e_{n+1}+\varepsilon e_{n+1}$ and $|\langle H,H\rangle|=|\alpha'|^2 \varepsilon_{n+1}+\varepsilon|= \alpha^2$, $\alpha\geq 0$. Now for points of M at which $\alpha \neq 0$, let

$$
e_{n+1}^{t} = (1/\alpha) H = (1/\alpha) (\alpha^{t} e_{n+1} + \varepsilon e_{m+1}), \quad A_{n+1}^{t} = A_{e_{n+1}^{t}} ,
$$

$$
e_{m+1}^{t} = (1/\alpha) (\varepsilon_{n+1} e_{n+1} - \alpha^{t} e_{m+1}), \quad A_{m+1}^{t} = A_{e_{m+1}^{t}} .
$$

Then

 $a(H) = (|H|/n)(\Sigma \varepsilon_{\rm r} {\rm Tr}(A_{n+1}^{\dagger} A_{\rm r})e_{\rm r} + \varepsilon_{m+1}^{\dagger} {\rm Tr}(A_{n+1}^{\dagger} A_{m+1}^{\dagger})e_{m+1}^{\dagger} , \varepsilon_{m+1}^{\dagger} = \pm \varepsilon \varepsilon_{m+1}^{\dagger}$ Thus M is a Chen submanifold in E_n^{m+1} if and only if $a(H)=0$, that is $Tr(A_{n+1}^{\dagger} A_n^{\dagger})=0$ (r=n+2,...,m) and $Tr(A_{n+1}^{\dagger} A_{m+1}^{\dagger})=0$. We define the following operator $\tilde{A}: T^{\perp}(M) \longrightarrow T^{\perp}(M)$.

DEFINITION 2.
$$
A(\xi) = \sum \langle h(e_i, e_i), \xi \rangle \epsilon_i \epsilon_i h(e_i, e_i), \xi \in T^{\perp}(M)
$$
.

It is easy to show that \tilde{A} is defined independently of the choices of the orthonormal frames ${e_i, \ldots, e_n}$ in TM. By the above definition for a normal vector $\xi = \sum \varepsilon_r \xi_r e_r$,

(2.2)
$$
\tilde{A}(\xi) = \sum \varepsilon_{r} \varepsilon_{i} \varepsilon_{j} \xi_{r} h_{ij}^{r} h(e_{i} e_{j}) = \sum \varepsilon_{r} \varepsilon_{s} \varepsilon_{i} \varepsilon_{j} \xi_{r} h_{ij}^{r} h_{ij}^{s} e_{s}
$$

$$
= \sum \varepsilon_{r} \varepsilon_{s} \xi_{r} Tr(A_{r} A_{s}) e_{s}.
$$

Especially if ξ =H, the mean curvature vector of M in $\texttt{E}^{\texttt{m} \texttt{+} \texttt{1}}_{\texttt{s}}$ is $e_{n+1} = H/|H|$, then $A(H) = \varepsilon_{n+1} |H|\Sigma \varepsilon_{s} \text{Tr}(A_{n+1}A_{s})e_{s}$.

Since M is a Chen submanifold in E_{\circ}^{m+1} if and only if $Tr(A_{n+1}A_{\circ})=$ 0 for s>n+l, we have the following Lemma which is proved in [3] for Riemannian case.

LEMMA. M, with $\langle H,H \rangle \neq 0$, is a Chen submanifold in E_s^{m+1} if and only if A(H) is parallel to H.

The definition of the operator A and the Lemma remain valid when we consider M as a submanifold of a pseudo-Riemannian manifold M instead of \mathbb{E}^{m}_{s} '. Now let M be a submanifold in \mathbb{S}^{m}_{s} (or \mathbb{H}^{m}_{s-1}) in \mathbb{E}^{m+1}_{s} . We have an operator A for M in \mathbb{E}^{m+1}_{s} . Let the operator of M in S^m_s (or H^m_{s-1}) corresponding to A of M in E^{m+1}_s be A'. Let h, h' and h be those considered in section 1. Let $\{e_1, \ldots, e_n, e_{n+1}\}$ e_m , e_{m+1} =-x} be the orthonormal frame along M considered above. Then we have $h(e_i, e_j) = h'(e_i, e_j) + \tilde{h}(e_i, e_j)$, where $\tilde{h}(e_i, e_j)$

=- ε <e_i,e_i>x. From this relation it is easy to see that the Weingarten's map $A^{\dagger}{}_{F} = A^{\dagger}{}_{e}$ of M in S_{s}^{m} (or in H_{s-1}^{m}) and A_{r} of M in E_{1}^{m+1} satisfy

 $A_n = A_n^t$ (n+1≤r≤m), $A_{m+1} = I = id$ entity. (2.3) Now we can come up with a relation between $\tilde{A}(H)$ and $\tilde{A}(H^+)$. In fact taking $H' = |H'| e_{n+1} = \alpha' e_{n+1}$, $H = H' - \varepsilon x = H' + \varepsilon e_{n+1}$, $\tilde{A}(H) = \tilde{A}(\alpha' e_{n+1} + \varepsilon)$ $e_{n+1} = \sum_{n+1}^{m+1} \varepsilon_{n+1} \varepsilon_{s} \alpha' \text{Tr}(A_{n+1}A_{s}) e_{s} + \sum_{n+1}^{m+1} \varepsilon_{s} \text{Tr}(A_{n+1}A_{s}) e_{s} = \alpha' \text{Tr}(A_{n+1}^{2}) e_{n+1}$ $\hphantom{L}= \Sigma_{n+2}^{m+1} \alpha^t \varepsilon_{n+1} \varepsilon_{s} \operatorname{Tr} \left(A_{n+1} A_{s} \right) e_{s} + \varepsilon_{n+1} \varepsilon \alpha^t \operatorname{Tr} \left(A_{n+1} \right) e_{m+1} + \Sigma_{n+1}^{m+1} \varepsilon_{s} \operatorname{Tr} \left(A_{s} \right) e_{s}.$ Since $H' = (1/n)\Sigma \varepsilon$, $h'(\mathbf{e}_i, \mathbf{e}_i) = (1/n)\Sigma_{n+1}^m \varepsilon_n \operatorname{Tr}(A_i) \mathbf{e}_n$, we have $\operatorname{Tr}(A_i) = 0$ for $r=n+2,...,m$ and $Tr(A_{n+1})=Tr(A_{n+1}^+) = n\varepsilon_{n+1}^-\alpha$. Thus $\tilde{A}(H)=\alpha^+T r$ $(A_{n+1}^2) e_{n+1} + \sum_{n+2}^m \varepsilon_{n+1} \varepsilon_s a' Tr(A_{n+1}A_s) e_s + n \varepsilon a' e_{n+1} + nH' + n \varepsilon e_{n+1}$. On the other hand $\tilde{A}(H') = \sum_{n+1}^{m} \varepsilon_{n+1} \varepsilon_{s} \alpha' Tr(A_{n+1}^{\dagger} A_{s}^{\dagger}) e_{s} = \alpha' Tr(A_{n+1}^{\dagger}{}^{2}) e_{n+1} + \varepsilon_{n+1}$ $\Sigma_{n+2}^{m} \alpha^{\dagger} \varepsilon_{s}$ Tr($A_{n+1}^{\dagger} A_{s}^{\dagger}$)e_s. We then have $A(H) = (A'(H') + nH') - n\epsilon (a'^2 + 1)x$. (2.4)

Thus if $\tilde{A}(H)$ is parallel to $H=H'-\varepsilon x$ then $\tilde{A}'(H')$ is parallel to H'. We have the following theorem.

THEOREM 1. Let M be a (pseudo-Riemannian) submanifold of S^m (or H_{s-1}^{m}) in E_{s}^{m+1} . If M is a Chen submanifold in E_{s}^{m+1} then M is a Chen submanifold in S_{\circ}^{m} (or $H_{\circ-1}^{m}$).

3. EXAMPLES OF A -SURFACES IN E_1^4 .

In Gheysens, Verheyen and Verstraelen [3], a series of examples of A -surfaces in E^4 is given. Here we consider some examples of their pseudo-Riemannian version.

In E_1^4 with $g_0 = -dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2$, let $f(u)$, $g(u)$ be Example 1. differentiable functions satisfying $f^{1^2}-g^{1^2}>0$ and $a(v)$, $\beta(v)$ are differentiable functions. Let M be the surface in E_4^4 given by (3.1) $\mathbf{x}(\mathbf{u}, \mathbf{v}) = (f(\mathbf{u}) \operatorname{ch}(\mathbf{v}), f(\mathbf{u}) \operatorname{sh}(\mathbf{v}), g(\mathbf{u}) \operatorname{cos}(\mathbf{v}), g(\mathbf{u}) \operatorname{sin}(\mathbf{v})).$ Consider the following orthonormal frame ${e_1, e_2, e_3, e_4}$ along M so that e_1 , $e_2 \in TM$: $e_i = (1/(\frac{f^{i^2}-g^{i^2}}{1/2})^{1/2}) (\frac{f}{f} \cdot \text{ch}\alpha, \frac{f}{f} \cdot \text{sh}\alpha, \frac{g}{f} \cdot \text{ch}\beta, \frac{g}{f} \cdot \text{sin}\beta), \quad \text{ke}_i, e_i \geq -1,$ $e_2 = (1/(\frac{f^2 \alpha^{12} + g^2 \beta^{12}}{1/2}) (\frac{f \alpha^{1} + h \alpha}{h}, \frac{f \alpha^{1} + h \alpha}{h}, -g \beta^{1} \sin \beta, g \beta^{1} \cos \beta),$

$$
\begin{aligned}\n&\langle e_2, e_2 \rangle = 1, \\
&\theta_3 = \left(\frac{1}{f^2 - g^{12}} \right)^{1/2} \left(g' \text{ch}a, g' \text{sh}a, f' \text{cos} \beta, f' \text{sin} \beta \right), \\
&\langle e_3, e_3 \rangle = 1, \\
&\theta_4 = \left(\frac{1}{f^2 a^{12} + g^2 \beta^{12}} \right)^{1/2} \left(g \beta' \text{sh}a, g \beta' \text{ch}a, fa' \text{sin} \beta, -fa' \text{cos} \beta \right), \\
&\langle e_4, e_4 \rangle = 1.\n\end{aligned}
$$

By straightforward computation we found that $h_{i,i}^r$ are given by the following expressions:

$$
h_{1}^{3} = (f'g'' - g'f'') / (f'^{2} - g'^{2})^{3/2}, \quad h_{1}^{3} = 0,
$$

\n
$$
h_{2}^{3} = (-fg'\alpha'^{2} - f'g\beta'^{2}) / (f'^{2} - g'^{2})^{1/2} (f^{2}\alpha'^{2} + g^{2}\beta'^{2}), \quad h_{1}^{4} = 0,
$$

\n
$$
h_{1}^{4} = \alpha'\beta' (gf' - fg') / (f'^{2} - g'^{2})^{1/2} (f^{2}\alpha'^{2} + g^{2}\beta'^{2}),
$$

\n
$$
h_{2}^{4} = fg(\alpha'^{2}\beta' - \alpha'\beta'') / (f^{2}\alpha'^{2} + g^{2}\beta'^{2})^{3/2}.
$$

If α , β , satisfy $\alpha''\beta' - \alpha'\beta' = 0$ then $h_{22}^4 = 0$, $H = (1/2)(-h(e_1^4, e_1^4) +$ $h(e_2, e_2)$ }=(1/2)(- $h_{1,1}^3 + h_{2,2}^3$)e₃. Hence e₃ is the direction of H. For this situation $Tr(A_3A_4)=0$, so M is a Chen surface.

The following are special cases of example I.

Example 1A. In example 1 let $f(u)=u$, $g(u)=1$, $\alpha(v)=\beta(v)=v$. Then $f^{-2}-1$ $g'^2=1>0$, x(u, v) = (uchv, ushv, cosv, sinv) and $h_{1,4}^3 = 0$, $h_{1,2}^3 = 0$, $h_{2,2}^3 = -1/(u^2+1)$ 1), $h_{11}^4 = 0$, $h_{12}^4 = 1/(u^2+1)$, $h_{22}^4 = 0$. $H = (1/2)\Sigma\varepsilon_i$ $h(e_i, e_i) = (-1/2(u^2+1))e_3$. This Chen surface in E_1^4 is neither minimal nor pseudo-umbilical. Example 1B. In example 1 let $f(u)=shu$, $g(u)=chu$, $a(v)=\beta(v)=v$. Then $f'^2-g'^2=1>0$, $x(u,v)=(shuchv,shushv,chucosv,chusinv)$ and

$$
h_{11}^3 = 1, \quad h_{12}^3 = 0, \quad h_{22}^3 = -1, \quad h_{11}^4 = 0, \quad h_{12}^4 = \text{sech2u}, \quad h_{22}^4 = 0,
$$
\n
$$
H = (1/2) \Sigma \varepsilon_i h(e_i, e_i) = -e_3.
$$

Since $A_3 = -1$, this Chen surface is pseudo-umbilical but not minimal. Furthermore, $\langle x, x \rangle = 1$, so $M \subset S_3^3 \subset E_3^4$. The matrix A_3 has double eigenvalue with repect to the induced metric in M. Example 2. In E_1^4 with $g_0 = dx_1^2 + dx_2^2 + dx_3^2 - dx_4^2$, let f(u),g(u) be differentiable functions satisfying $f'^2-g'^2>0$ and $\alpha(v),\beta(v)$ are differentiable functions. Let M be a surface in E_1^4 given by (3.2) $x(u,v)=(f(u)\cos\alpha(v),f(u)\sin\alpha(v),g(u)\sin\beta(v),g(u)\cosh\beta(v)).$

Consider the following orthonormal frames ${e_1, e_2, e_3, e_4}$ along M so that e_1 , $e_2 \in TM$:

$$
e_1 = (1/(\t f^{12} - g^{12})^{1/2}) (\t f \cdot \cos \alpha, f \cdot \sin \alpha, g \cdot \sin \beta, g \cdot \cos \beta), \quad \langle e_1, e_1 \rangle = 1,
$$

\n
$$
e_2 = (1/(\t f^2 \alpha^{12} + g^2 \beta^{12})^{1/2}) (-\t f \alpha \cdot \sin \alpha, f \alpha \cdot \cos \alpha, g \beta \cdot \cos \beta, g \beta \cdot \sin \beta),
$$

\n
$$
\langle e_2, e_2 \rangle = 1,
$$

\n
$$
e_3 = (1/(\t f^{12} - g^{12})^{1/2}) (\t g \cdot \cos \alpha, g \cdot \sin \alpha, f \cdot \sin \beta, f \cdot \cos \beta), \quad \langle e_3, e_2 \rangle = -1,
$$

$e_{a} = (1/(\frac{f^{2}}{\alpha^{12}} + g^{2} \frac{\beta^{12}}{1^{2}})^{1/2}) (g\beta \sin \alpha, -g\beta \cos \alpha, f\alpha \sin \beta, f\alpha \sin \beta)$,

 $\langle e_4, e_5 \rangle = 1$.

By straightforward computation we found that $h_{i,j}^r$ are given by the following expressions:

 $h_{1,1}^3 = (f'g'' - g'f''')/(f'^2 - g'^2)^{3/2}$, $h_{1,2}^3 = 0$, $h_{2,2}^3 = (fg' \alpha'^2 + gf' \beta'^2) / (f'^2 - gf'^2)^{1/2} (f^2 \alpha'^2 + g^2 \beta'^2)$, $h_{1,1}^4 = 0$, $h_{1,2}^4 = \alpha^{\dagger}\beta^{\dagger}(\text{fg}^{\dagger}-\text{gf}^{\dagger})/(\text{f}^{\dagger2}-\text{g}^{\dagger2})^{1/2}(\text{f}^2\alpha^{\dagger2}+\text{g}^2\beta^{\dagger2})$ $h_{2,2}^4$ = fg($\alpha^{\dagger} \beta^{\dagger}$ ' - α^{\dagger} ' β^{\dagger}) /($f^2 \alpha^{\dagger}$ $2 + g^2 \beta^{\dagger}$ 2)^{3/2}.

If a, β satisfy $\alpha' \beta'' - \alpha'' \beta' = 0$ then $h_{2,2}^4 = 0$ and $H = (1/2) \times$ $(h(e_1, e_1) + h(e_2, e_2)) = (1/2) (h_{1,1}^3 + h_{2,2}^3)e_3$, thus $Tr(A_3A_4) = 0$ and M is a spacelike Chen surface in E_1^4 .

The following are special cases of example 2.

Example 2A. In example 2 let $f(u)=u$, $g(u)=1$, $\alpha(v)=\beta(v)=v$. Then $5^{12}-g^{12}=1>0$. $x(u,v)=(ucosv,usinv,shv,chv), h_{1,1}^3=0, h_{1,2}^3=0, h_{2,2}^3=1/$ $(u^{2}+1)$, $h_{1,1}^{4}=0$, $h_{1,2}^{4}=-1/(u^{2}+1)$, $h_{2,2}^{4}=0$. This is a spacelike Chen surface in E_4^4 , neither minimal nor pseudo-umbilical in E_4^4 .

Example 2B. In example 2 let $f(u)=shu$, $g(u)=chu$, $a(v)=0$ (v)=v, then $f'^2 - g'^2 = 1>0$. $x(u,v) = (shucosv,shusinv,chushv,chuchv), h^3_{1,1} = 0, h^3_{1,2} = 0$, $h_{2,2}^3$ = 1, $h_{1,1}^4$ = 0, $h_{1,2}^4$ = -sech2u, $h_{2,2}^4$ = 0, \qquad H=(1/2)(h(e₁,e₁)+h(e₂,e₂))=-e₃. Since $A_3 = I$ this spacelike Chen surface is pseudo-umbilical but not minimal in E_4^4 . Furthermore since $\langle x,x\rangle = -1$, $M \subset H_0^3 \subset E_4^4$. The matrix A $_3$ has double eigenvalues with respect to the induced metric in M. Let H' be the mean curvature vector of M in H_0^3 . For this example x=e₃ and H=H'-x=-e₃, thus H'=0 and M is minimal in H_0^3 .

4. A -SURFACES IN S_1^3 (OR IN H_0^3) IN E_1^4 .

In this section we consider a Chen surface M in S_1^3 (or in H_0^3) in E_4^4 . First let M be a surface in $H_0^3 \subset E_4^4$. Then M is spacelike and the mean curvature vector H^1 of M in H_0^3 is also spacelike. Let $H' = \alpha' e_3$ and $e_4 = -x$. Then there is an orthonormal frame $\{e_1, e_2\}$ along M with $\leq e_1$, $e_1 \geq \leq e_2$, $e_2 \geq 1$ so that A_{e_2} is diagonalized:

$$
A_3 = A_{e_3} = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}, \qquad A_4 = A_{e_4} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \langle e_3, e_3 \rangle = -\langle e_4, e_4 \rangle = 1
$$

The mean curvature vector H of M in E_1^4 is $H=H^1-e_4 = \alpha^1 e_3 - e_4 = (1/2)$ (α ₁ + α ₂)e₃ -e₄. Since our attention is on non-minimal Chen surfaces in E_4^4 , we may assume that $\langle H, H \rangle \neq 0$. Then $|H| = \{(1/4) (\alpha_4 + \alpha_2)^2 - 1\}^{1/2}$ **≠0.** Let $H^{\perp} = e_3 - (1/2) (a_1 + a_2) e_4$. Then H^{\perp} is perpendicular to H and $|H| = |H^{\perp}|$. Let $e_i^{\dagger}, e_i^{\dagger}$ be the unit vectors in the directions of H and H^{\perp} . $H=|H|e_3^t$, $H^{\perp}=|H^{\perp}|e_4^t$. Then $\{e_3^t, e_4^t\}$ is an orthonormal frame in $T^{\perp}(M)$ with $\langle e_3^1, e_3^1 \rangle = -\langle e_4^1, e_4^1 \rangle$ and

$$
A_3' = A_{e_3'} = (1/|H|) \begin{bmatrix} (1/2)\alpha_1 (\alpha_1 + \alpha_2) - 1 & 0 \\ 0 & (1/2)\alpha_2 (\alpha_1 + \alpha_2) - 1 \end{bmatrix},
$$

\n
$$
A_4' = A_{e_4'} = (1/|H|) \begin{bmatrix} (1/2)(\alpha_1 - \alpha_2) & 0 \\ 0 & (1/2)(\alpha_2 - \alpha_1) \end{bmatrix}.
$$

The condition for M being a Chen surface is $Tr(A_3^T A_4^T) = (1/4) \times$ $(\alpha_1 - \alpha_2)^2 (\alpha_1 + \alpha_2) = 0$. That is $\alpha_1 = \alpha_2$. If $\alpha_1 = -\alpha_2$, H'=0. If $\alpha_1 = \alpha_2$ then M is umbilical in H_0^3 . For this case let $\alpha = \alpha_1 = \alpha_2$. Using the Codazzi equation $(\bar{V}_{e_1} h)(e_1, e_2) = (\bar{V}_{e_2} h)(e_1, e_1)$ for the frame (e_1, e_2) e_2 , e_3 , e_4 } we obtain that the connection form ω_3^2 (e_2)=0, e_3 (α)=0. Using the Codazziequation $(\overline{\nabla}_{e_1} h)(e_2,e_2)=(\overline{\nabla}_{e_2} h)(e_1,e_2)$ we obtain that ω_3^4 (e₁)=0 and e₁ (a)=0. Thus a is a constant and e₃ e₄ are parallel in the normal bundle. Hence H is parallel in the normal bundle. Furthermore $A_3 = (1/|H|)(\alpha^2-1)I$ shows that M is pseudoumbilical in E_1^4 . By the Limma 2 in [2] we conclude that M $1s$ minimal in H_0^3 . Next let M be a spacelike surface in $S_4^3 \subset E_4^4$. Let $H' = \alpha' e_3$ be the mean curvature vector of M in S_4^3 and $e_4 = -x$. Then H^{\dagger} is timelike and $A_3 = A_{e_2}$ is diagonalized:

$$
A_3 = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}, \quad A_4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \langle e_3, e_3 \rangle = -1, \quad \langle e_4, e_4 \rangle = 1.
$$

The same argument as above yields that M is minimal in S_1^3 . We now have the following theorem.

THEOREM 2. M is a spacelike surface in S_4^3 (or in H_0^3) in E_4^4 . Then M is minimal in S_1^3 (or in H_0^3) if and only if M is a

Chen surface.

Now consider a surface M which is pseudo-Riemannian with signature (1,1) so that $M \subset S^3_4 \subset E^4_4$. The mean curvature vector H' of M in S_1^3 is spacelike. Let $H' = \alpha' e_3$, e_3 is a unit vector. $A_3 = A_{e_3}$ may not be diagonalizable. However according to Petrov $[4]_L$ A₂ can be put into one of the following three forms with repect to an orthonormal frame ${e_1, e_2}$ on M with the given inner product.

Case 1.
$$
A_3 = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}
$$
, $a_1 \neq a_2$, $\langle e_1, e_1 \rangle = -\langle e_2, e_2 \rangle = -1$,
\nCase 2. $A_3 = \begin{bmatrix} 0 & a \\ a & 0 \end{bmatrix}$, $\langle e_1, e_1 \rangle = \langle e_2, e_2 \rangle = 0$, $\langle e_1, e_2 \rangle = 1$,
\nCase 3. $A_3 = \begin{bmatrix} a & \beta \\ \beta & -a \end{bmatrix}$, $\beta \neq 0$, $\langle e_1, e_1 \rangle = -\langle e_2, e_2 \rangle = 1$.

These cases are devided according to the eigenvalues of A_a with respect to the induced pseudo-Riemannian metric in M. The case 1 is for A_3 having two different real eigenvalues a_1 and a_2 . The case 2 is for A₃ having a realdouble eigenvalue α and the case 3 is for A_3 having complex eigenvalues $\alpha+\beta i$.

When case 1 takes place we have

$$
\mathbf{A}_3 = \begin{bmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{bmatrix}, \qquad \mathbf{A}_4 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \alpha_1 \star \alpha_2, \qquad \mathbf{B}_1 \star \alpha_1 \star \mathbf{B}_2 = -\mathbf{B}_2, \qquad \mathbf{B}_2 = -1.
$$

 $H' = (1/2)(-\alpha_1+\alpha_2)e_3$, $\alpha' = (-\alpha_1+\alpha_2)/2$, $H = \alpha' e_3 + e_4$. Now let $e_3' = H/|H| =$ $(a'e_3+e_4)/(\alpha'^2+1)^{1/2}$, $e_4'=(e_3-a'e_4)/(\alpha'^2+1)^{1/2}$. Then

$$
A_{e_3^{'}} = 1/(\alpha^{12}+1)^{1/2} \begin{bmatrix} (1/2)\alpha_1 (-\alpha_1 + \alpha_2) - 1 & 0 \\ 0 & (1/2)\alpha_2 (-\alpha_1 + \alpha_2) + 1 \end{bmatrix},
$$

$$
A_{e_4'} = 1/(\alpha^{12} + 1)^{1/2} \begin{bmatrix} (1/2) (\alpha_1 + \alpha_2) & 0 \\ 0 & (1/2) (\alpha_1 + \alpha_2) \end{bmatrix}.
$$

Suppose M is a Chen surface; then $\texttt{Tr(A_{a}, A_{c},) = 0.}$ This implies that $(a_2-a_1)(a_1+a_2)^2=0$. Thus we have $a_1=-a_2=-a^T$. Again we apply the Codazzi equation $(\bar{\nabla}_{_{\mathbf{e}_1}} h)$ (e₁, e₁) = ($\bar{\nabla}_{_{\mathbf{e}_2}} h$) (e₂, e₁). Noticing that

 $\omega_1^1 = \omega_1^2$ for this case where ω_1^2 is the connection form for M, we obtain that $e_{2}(\alpha_{1}^{})$ =0 and $\omega_{3}^{}$ (e $_{2}^{}$)=0. Similarly from (V_e h)(e₂,e₂) $=(\vec{\nabla}_{e_2} h)$ (e₁,e₂) we obtain e₁ (a₁)=0 and ω_3^4 (e₁)=0. Hence α_1 , a' are 2 constants and $H=a'e$ +e, is parallel in the normal bundle. A_{a} ,= $(a^{12}+1)^{1/2}$ I implies that M is pseudo-umbilical in E_i^4 . Again by Lemma 2 of [2] we conclude that M is minimal in S_4^3 . When case 2 takes place we have

$$
A_3 = \begin{bmatrix} 0 & \alpha \\ \alpha & 0 \end{bmatrix}, \quad \langle e_1, e_1 \rangle = 0, \quad \langle e_1, e_2 \rangle = 1, \quad \langle e_2, e_2 \rangle = 0.
$$

We use a new orthonormal frame $\{e_i^+,e_j^+\}$ along M so that e_i^+ $(1/2^{1/2})$ (e_1+e_2) , $e_2'=(1/2^{1/2}) (e_1-e_2)$. Then $\langle e_1', e_1' \rangle = 1, \langle e_2', e_2' \rangle = -1$. With respect to this frame let the Weingarten map in the direction e_3 (the direction of H') and e_4 be \overline{A}_3 and \overline{A}_4 . Then

 $\overline{A}_3 = [\alpha + 1/2 \quad -1/2], \quad \overline{A}_4 = [1 \quad 0], \quad \langle e_1^+, e_1^+ \rangle = -\langle e_2^+, e_2^+ \rangle = 1.$ $[-1/2 \quad -\alpha+1/2]$

With respect to the frame $\{e_1^I, e_2^I\}$ we find that $H = \alpha e_3 + e_4$. Thus α is the mean curvature of M in S_1^3 . Let $e_3' = H/|H|$ and $e_4' = (e_3 - \alpha e_4)$ / $|H|$, $|H| = (\alpha^2 + 1)^{1/2}$. Let \overline{A}_3 and \overline{A}_4 be the Weingarten maps in the directions of e_3' and e_4' with respect to the frame $\{e_1', e_2'\}$. Then $\overline{A}_3' = 1/(\alpha^2+1)^{1/2} \begin{bmatrix} \alpha(\alpha+1/2)+1 & -(1/2)\alpha \\ -(1/2)\alpha & \alpha(-\alpha+1/2)-1 \end{bmatrix}, \quad \overline{A}_4' = 1/(\alpha^2+1)^{1/2} \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}.$

By (1.6) we obtain $Tr(\overline{A_3} \overline{A_4})=0$. This shows that M is a Chen surface. That is if $M\subset S_1^3\subset E_4^4$, M is a pseudo-Riemannian surface with signature (1,1) and A_3 has real double eigenvalue, then M is a Chen surface.

When case 3 takes place we have

$$
\mathbf{A_3} = \begin{pmatrix} \alpha && \beta \\ \beta && -\alpha \end{pmatrix}, \quad \beta \neq 0 \,, \quad \mathbf{A_4} = \begin{pmatrix} 1 && 0 \\ 0 && -1 \end{pmatrix}, \quad \langle \mathbf{e}_1, \mathbf{e}_1 \rangle = -\langle \mathbf{e}_2, \mathbf{e}_2 \rangle = 1 \,.
$$

 $H=(1/2)$ (h(e₁,e₁)-h(e₂,e₂))=ae₃+e₄. So a is the mean curvature of M in S_1^3 . Let $H^{\perp} = e_3 - \alpha e_4$, $e_3' = H/|H| = (1/(\alpha^2 + 1)^{1/2}) (\alpha e_3 + e_4)$, $e^{\prime}_{4} = H^{\perp} / |H^{\perp}| = (1 / (\alpha^{2} + 1)^{1/2}) (e^{\prime}_{3} - \alpha e^{\prime}_{4})$. Then

$$
A_{e'_3} = 1/(\alpha^2 + 1)^{1/2} \begin{bmatrix} \alpha^2 + 1 & \alpha \beta \\ \alpha \beta & -\alpha^2 - 1 \end{bmatrix}, \quad A_{e'_4} = 1/(\alpha^2 + 1)^{1/2} \begin{bmatrix} 0 & \beta \\ \beta & 0 \end{bmatrix}.
$$

By (1.6) Tr $(A_{e'_3}A_{e'_4}) = -2\alpha\beta^2/(\alpha^2 + 1)$. Hence if M is a Chen surface

then $\alpha=0$. M is minimal in S_?.

Combining the above results we have the following theorem.

THEOREM 3. Let M be a pseudo-umbilical surface of signature $(1, 1)$ in $S_1^3 \subset E_1^4$, e₃ be the direction of the mean curvature vector of M in S_1^3 . If A_{e_2} has a double eigenvalue then M is a Chen surface. If $A_{\rm e}$ has two different eigenvalues and M $_{\rm 3}$ is a Chen surface then M is minimal in S_i^3 . **Example 1B in section 3 is a Chen surface in** $S_1^3 \subset E_1^4$ **which is** pseudo-umbilical in E_1^4 but not minimal in S_1^3 . A_{e_2} has duble eigenvalue.

REFERENCES

- [I] B-Y. Chen, Geometry of submanifolds, Marcel Dekker. New York, 1973.
- [2] B-Y. Chen, Finite type submanilolds in pseudo-Euclidean spaces and applictions, Kodai Math. J. 8(1985), 358-3Y4.
- [3] L. Gheysens, P. Verheyen and L. Verstraelen, Characterization and examples of Chen submanifolds, Jour. of Geometry, 20(1983), 4?-62.
- [4] A. Z. Petrov, Einstein spaces, Pergamon Press, 1969.

Department of Mathematics Wayne State University Detroit, Michigan, 48202 U. S. A.

(Eingegangen am 8. August 1986)