Journal of Geometry Vol. 32 (1988)

ON CHEN SURFACES IN A MINKOWSKI SPACE TIME

Chorng Shi Houh

A-submanifolds of a pseudo-Euclidean space E_s^{m+1} are considered. A characterization for them is given. A theorem on A-submanifolds contained in a de Sitter space-time S_s^n or an anti-de Sitter space-time H_{s-1}^n is proved. A number of non-trivial examples of A-surfaces in a Minkowski space-time E_1^4 are studied. Some classification theorems are proved for A-surfaces contained in S_1^3 or H^3 .

1. PRELIMINARIES.

Let (E_s^{m+1}, g_0) be the flat (m+1)-dimensional pseudo-Euclidean space of signature (s, m+1-s). The metric tensor g_0 , if no specified mention is given, is $g_0 = -\sum_i^s dx_i^{-2} + \sum_{s+1}^{m+1} dx_j^{-2}$ where (x_1, \ldots, x_{m+1}) is a rectangular coordinate system of E_s^{m+1} . Let $S_s^m = \{x \in E_s^{m+1} / \langle x, x \rangle = 1\}$, $H_{s-1}^m = \{x \in E_s^{m+1} / \langle x, x \rangle = -1\}$, where \langle , \rangle denotes the inner product on E_s^{m+1} . S_s^m and H_{s-1}^m are called the pseudo-Riemannian sphere and the pseudo-hyperbolic space with their center at the origin of E_s^{m+1} . For s=1 S_1^m is called the de Sitter space-time and H_1^m the anti-de Sitter space-time. Both S_1^m and H_1^m are pseudo-Riemannian manifolds of signature (1, m-1). Let M be an n-dimensional pseudo Riemannian submanifold of E_s^{m+1} . By definition each tangent space $T_x(M)$ is a nondegenerate subspace of $T_x(E_s^{m+1})$ and $T_x(E_s^{m+1})=T_x(M)$

induces a Riemannian metric on M then M is called a space-like submanifold. Let $\tilde{\mathbb{V}}$ be the metric connection on \mathbb{E}_{s}^{m+1} and \mathbb{V} the in duced metric connection on M. Let D be the linear connection in duced on the normal bundle $T^{\perp}(M)$. Then for any vector fields X,Y tangent to M and any vector field $\boldsymbol{\xi}$ normal to M we have the following Gauss formula and Weingarten formula $\tilde{\nabla}_{\mathbf{X}} \mathbf{Y} = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}), \quad \tilde{\nabla}_{\mathbf{X}} \xi = \nabla_{\mathbf{X}} \mathbf{Y} + h(\mathbf{X}, \mathbf{Y}),$ $-A_{F}X+D_{X}\xi$, where h is the second fundamental form of M in E_{s}^{m+1} and A_{μ} is the Weingarten map with respect to ξ . A_{μ} is a self-adjoint (1.1) $\langle h(X,Y),\xi \rangle = \langle A_{\xi}X,Y \rangle$. Let $\{e_1, e_2, \dots, e_{m+1}\}$ be a moving orthonormal frame in E_s^{m+1} along M, with $\{e_1, \ldots, e_n\}$ being tangent to M and $\langle e_j, e_j \rangle = \varepsilon_j = \pm 1$. $A_e = A_r$ for r=n+1,...,m+1 and $h_{i,j}^r$ (i,j=1,...,n) be defined by $A_r e_i = \Sigma \varepsilon_j h_{ij}^r e_j$. (1.2)We also use A_{r} to denote the matrix $(h_{i,i}^{r})$: $A_{\mathbf{r}} = (h_{\mathbf{i},\mathbf{j}}^{\mathbf{r}}) .$ (1.3) A_r acts on TM according to (1.2). For A_r and A_c the matrix for the linear transformation A A $\mathbf{A}_{\mathbf{s}}\mathbf{A}_{\mathbf{r}} = (\Sigma \varepsilon_{\mathbf{j}} \mathbf{h}_{\mathbf{i},\mathbf{j}}^{\mathbf{r}} \mathbf{h}_{\mathbf{j},\mathbf{k}}^{\mathbf{s}}) \,.$ (1.4) $\boldsymbol{A}_{\boldsymbol{\xi}}$ can be diagonalized only when M is space-like. For the second fundamental form h the covariant differentiation $\overline{v}_{\mathbf{x}}$ h is defined $(\overline{\mathbb{V}}_{X}h)(\mathbb{Y},\mathbb{Z}) = \mathbb{D}_{X}(h(\mathbb{Y},\mathbb{Z})) - h(\mathbb{V}_{X}\mathbb{Y},\mathbb{Z}) - h(\mathbb{Y},\mathbb{V}_{X}\mathbb{Z}), \text{for} \quad \mathbb{X},\mathbb{Y},\mathbb{Z} \in \mathbb{T}M.$ by The Codazzi equation of M in E_{s}^{m+1} is $(\overline{\nabla}_{X}h)(Y,Z) = (\overline{\nabla}_{Y}h)(X,Z)$. A normal vector field ξ is said to be parallel if $D_{y}\xi=0$ for any XcTM. If F is an endomorphism of TM, let $F_{i,i} = \langle Fe_i, e_j \rangle$ then F is given by the matrix $F=(F_{i,j})$. The trace of F is defined by (1.5) $\operatorname{Tr} \mathbf{F} = \Sigma \varepsilon_i \mathbf{F}_{i i}$. By this definition and (1.4) we have $\operatorname{Tr}(\mathbf{A}_{\mathbf{s}}\mathbf{A}_{\mathbf{r}}) = \Sigma \left(\varepsilon_{\mathbf{j}} \varepsilon_{\mathbf{i}} \mathbf{h}_{\mathbf{i},\mathbf{j}}^{\mathbf{s}} \mathbf{h}_{\mathbf{j},\mathbf{i}}^{\mathbf{r}} \right).$ (1.6)The mean curvature vector H of M in \mathbf{E}_{*}^{m+1} is defined by (1.7) $H=(1/n)Trh=(1/n)\Sigma\varepsilon_h(e_e).$ M is said to be minimal if H=0 and pseudo-umbilical if $\langle H, H \rangle_{\neq} 0$ and $A_{H}=\lambda I$ for some function λ on M, where I is the identity transformation on TM.

Let M be a pseudo-Riemannian submanifold of S_s^m (or of H_{s-1}^m) in E_s^{m+1} . Let h, h' and \tilde{h} be the second fundamental forms of M in E_s^{m+1} , of M in S_s^m (or in H_{s-1}^m) and of S_s^m (or H_{s-1}^m) in E_s^{m+1} respectively. Let x denote the position vector of M in E_s^{m+1} , H and H' denote the mean curvature vectors of M in E_s^{m+1} and in S_s^m (or in H_{s-1}^m). Then the following relations are known (B-Y.Chen [2], Lemma 1):h(X,Y)=h'(X,Y)+\tilde{h}(X,Y), H=H'-x (or H=H'+x), $A_X=\tilde{A}_X=-I$, where \tilde{A}_X denotes the Weigarten map of S_s^m (or H_{s-1}^m) in E_s^{m+1} .

2. A-SUBMANIFOLDS.

Let M be an n-dimensional pseudo-Riemannian submanifold of \mathbb{E}_{s}^{m+1} . Let ξ be a normal vector field in $T^{\perp}(M)$ so that $\langle \xi, \xi \rangle_{\neq} 0$. The allied vector field $\mathbf{a}(\xi)$ of a normal vector field ξ is defined by the formula

 $\begin{array}{ll} (2.1) & a(\xi) = (|\xi|/n) \Sigma \varepsilon_r \operatorname{Tr}(A_{n+1}A_r) e_r \\ \text{where} & |\xi| = \langle \xi, \xi \rangle^{1/2}, \ \{e_{n+1} = \xi/|\xi|, \ e_{n+2}, \ldots, e_{m+1}\} \text{ is an orthonormal basis for } T^{\perp}(M). \end{array}$

DEFINITION 1. A pseudo-Riemannian submanifold M in E_s^{m+1} is called an *A*-submanifold or a Chen submanifold if its mean curvature vector H satisfied that H=0 or <H,H>=0 and a(H)=0. The notion of an *A*-submanifold in a pseudo-Riemannian manifold M is defined similarly. Riemannian *A*-submanifolds were first considered by B-Y. Chen in [1] and developed by other authors (for example see [3]) and subsequently were called Chen submanifolds. The definition given above is a pseudo-Riemannian version of Chen's definition. The class of Chen submanifolds of a Riemannian manifold contains all minimal and pseudo-umbilical submanifolds which are said to be trivial Chen submanifolds ([3]). Let M be an n-dimensional pseudo-Riemannian submanifold in S_s^m (or in H_{s-1}^m). Let $\{e_1, \ldots, e_n, e_{n+1}, \ldots, e_{m+1}\}$ be an orthonormal frame along M so that e_1, \ldots, e_n are tangent to M and $e_{m+1} = -x$, where x

is the position vector of S_s^m (or H_{s-1}^m) in E_s^{m+1} . We denote $\varepsilon_r = \langle e_r, e_r \rangle$, $(r=n+1, \ldots, m+1)$, $\varepsilon = \varepsilon_{m+1}$. $\varepsilon = 1$ for S_s^m and $\varepsilon = -1$ for H_{s-1}^m . If the mean curvature vector H'of M in S_s^m (or in H_{s-1}^m) satisfies $\langle H', H' \rangle \neq 0$, then we may choose $e_{n+1} = H' / |H'|$ or $H' = \alpha' e_{n+1}$ with $|H'| = \alpha' \neq 0$. Then $H = H' - \varepsilon x = \alpha' e_{n+1} + \varepsilon e_{m+1}$ and $|\langle H, H \rangle| = |\alpha'^2 \varepsilon_{n+1} + \varepsilon | = \alpha^2$, $\alpha \ge 0$. Now for points of M at which $\alpha \neq 0$, let

$$\begin{split} \mathbf{e}_{n+1}^{\prime} &= (1/\alpha) \, \mathrm{H} = (1/\alpha) \, (\alpha^{\prime} \mathbf{e}_{n+1}^{} + \varepsilon \, \mathbf{e}_{m+1}^{}) \,, \quad \mathrm{A}_{n+1}^{\prime} = \mathrm{A}_{\mathbf{e}_{n+1}^{\prime}}^{\prime} \,, \\ \mathbf{e}_{m+1}^{\prime} &= (1/\alpha) \, (\varepsilon_{n+1}^{} \, \mathbf{e}_{n+1}^{} - \alpha^{\prime} \, \mathbf{e}_{m+1}^{}) \,, \quad \mathrm{A}_{m+1}^{\prime} = \mathrm{A}_{\mathbf{e}_{n+1}^{\prime}}^{\prime} \,, \\ \end{split}$$

Then

$$\begin{split} & a(H) = (|H|/n) \left(\Sigma \varepsilon_r \operatorname{Tr} \left(A_{n+1}^{!} A_{r}^{-} \right) e_r^{-} + \varepsilon_{m+1}^{!} \operatorname{Tr} \left(A_{n+1}^{!} A_{m+1}^{!} \right) e_{m+1}^{!}, \ \varepsilon_{m+1}^{!} = \pm \varepsilon \varepsilon_{m+1}^{-}. \end{split}$$
 $Thus M \text{ is a Chen submanifold in } E_s^{m+1} \text{ if and only if } a(H) = 0, \text{ that} \\ \text{ is } \operatorname{Tr} \left(A_{n+1}^{!} A_{r}^{-} \right) = 0 \ (r = n+2, \dots, m) \text{ and } \operatorname{Tr} \left(A_{n+1}^{!} A_{m+1}^{!} \right) = 0. \text{ We define the} \\ \text{ following operator } \widetilde{A} \colon \operatorname{T}^{\perp} (M) \longrightarrow \operatorname{T}^{\perp} (M). \end{split}$

DEFINITION 2.
$$A(\xi) = \sum \langle h(e_i, e_j), \xi \rangle \varepsilon_i \varepsilon_i h(e_i, e_j), \xi \in T^{\perp}(M)$$
.

It is easy to show that \tilde{A} is defined independently of the choices of the orthonormal frames $\{e_1, \ldots, e_n\}$ in TM. By the above definition for a normal vector $\xi = \Sigma \varepsilon_p \xi_p e_p$,

(2.2)
$$\widehat{A}(\xi) = \Sigma \varepsilon_r \varepsilon_i \varepsilon_j \xi_r h_{ij}^r h(e_i, e_j) = \Sigma \varepsilon_r \varepsilon_s \varepsilon_i \varepsilon_j \xi_r h_{ij}^r h_{ij}^s e_s$$
$$= \Sigma \varepsilon_r \varepsilon_s \xi_r Tr(A_r A_r) e_s.$$

Especially if $\xi = H$, the mean curvature vector of M in E_s^{m+1} is $e_{n+1} = H/|H|$, then $\tilde{A}(H) = \varepsilon_{n+1} |H| \Sigma \varepsilon_s Tr(A_{n+1}A_s) e_s$.

Since M is a Chen submanifold in E_s^{m+1} if and only if $Tr(A_{n+1}A_s) = 0$ for s>n+1, we have the following Lemma which is proved in [3] for Riemannian case.

LEMMA. M, with $\langle H, H \rangle_{\neq} 0$, is a Chen submanifold in E_s^{m+1} if and only if $\tilde{A}(H)$ is parallel to H.

The definition of the operator A and the Lemma remain valid when we consider M as a submanifold of a pseudo-Riemannian manifold M instead of E_s^{m+1} . Now let M be a submanifold in S_s^m (or H_{s-1}^m) in E_s^{m+1} . We have an operator \tilde{A} for M in E_s^{m+1} . Let the operator of M in S_s^m (or H_{s-1}^m) corresponding to \tilde{A} of M in E_s^{m+1} be \tilde{A}' . Let h, h' and \tilde{h} be those considered in section 1. Let $\{e_1, \ldots, e_n, e_{n+1}, \ldots, e_m, e_{m+1} = -x\}$ be the orthonormal frame along M considered above. Then we have $h(e_i, e_i) = h'(e_i, e_i) + \tilde{h}(e_i, e_i)$, where $\tilde{h}(e_i, e_i)$ $\begin{array}{l} =-\varepsilon < \mathbf{e}_{i}, \mathbf{e}_{j} > \mathbf{x}. \ \, \text{From this relation it is easy to see that the Weingarten's map A'_{r} = A'_{e_{r}} \ \, \text{of M in } S^{m}_{s} \ \, (\text{or in } H^{m}_{s-1}) \ \, \text{and } A_{r} \ \, \text{of M in } S^{m+1}_{s} \ \, \text{satisfy} \\ (2.3) \qquad \qquad A_{r} = A'_{r} \ \, (n+1 \le r \le m), \ \, A_{m+1} = I = \text{identity}. \end{array}$

Now we can come up with a relation between $\tilde{A}(H)$ and $\tilde{A}(H')$. In fact taking $H' = |H'| e_{n+1} = \alpha' e_{n+1}$, $H = H' - \epsilon x = H' + \epsilon e_{m+1}$, $\tilde{A}(H) = \tilde{A}(\alpha' e_{n+1} + \epsilon e_{m+1}) = \sum_{n+1}^{m+1} \epsilon_{n+1} \epsilon_{n+1} \epsilon_{n+1} A_{n+1} A_{n+1} A_{n+1} e_{n+1} e_{n+1$

Thus if $\tilde{A}(H)$ is parallel to $H=H'-\varepsilon x$ then $\tilde{A}'(H')$ is parallel to H'. We have the following theorem.

THEOREM 1. Let M be a (pseudo-Riemannian) submanifold of S_s^m (or H_{s-1}^m) in E_s^{m+1} . If M is a Chen submanifold in E_s^{m+1} then M is a Chen submanifold in S_s^m (or H_{s-1}^m).

3. EXAMPLES OF A-SURFACES IN E_1^4 .

In Gheysens, Verheyen and Verstraelen [3], a series of examples of A-surfaces in E^4 is given. Here we consider some examples of their pseudo-Riemannian version.

Example 1. In E_1^4 with $g_0 = -dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2$, let f(u), g(u) be differentiable functions satisfying $f^{12} - g^{12} > 0$ and a(v), $\beta(v)$ are differentiable functions. Let M be the surface in E_1^4 given by (3.1) $x(u,v) = (f(u) cha(v), f(u) sha(v), g(u) cos\beta(v), g(u) sin\beta(v))$. Consider the following orthonormal frame $\{e_1, e_2, e_3, e_4\}$ along M so that $e_1, e_2 \in TM$: $e_1 = (1/(f^{12} - g^{12})^{1/2})(f^{1}cha, f^{1}sha, g^{1}cos\beta, g^{1}sin\beta), \langle e_1, e_1 \rangle = -1, e_2 = (1/(f^{2}a^{12} + g^{2}\beta^{12})^{1/2})(fa^{1}sha, fa^{1}cha, -g\beta^{1}sin\beta, g\beta^{1}cos\beta),$

$$\begin{split} &< e_2, e_2 >= 1, \\ &e_3 = (1/(f^{12} - g^{12})^{1/2}) (g^{1} cha, g^{1} sha, f^{1} cos\beta, f^{1} sin\beta), < e_3, e_3 >= 1, \\ &e_4 = (1/(f^2 \alpha^{12} + g^2 \beta^{12})^{1/2}) (g\beta^{1} sha, g\beta^{1} cha, f\alpha^{1} sin\beta, -f\alpha^{1} cos\beta), \\ &< e_4, e_4 >= 1. \end{split}$$

By straightforward computation we found that $h_{i\,j}^r$ are given by the following expressions:

$$\begin{split} & h_{1\,1}^3 = (f\, '\, g^{\,\prime}\, '\, -g^{\,\prime}\, f^{\,\prime}\, '\,)\,/\, (f\, '\, ^2-g\, '\, ^2\,)\, ^{3\,\prime\, 2}\,, \quad h_{1\,2}^3 = 0\,, \\ & h_{2\,2}^3 = (-fg\, '\, \alpha^{\,\prime\, 2}\, -f\, '\, g\beta\, '\, ^2\,)\,/\, (f\, ^{\,\prime\, 2}-g\, '\, ^2\,)\, ^{1\,\prime\, 2}\, (f\, ^2\, \alpha^{\,\prime\, 2}\, +g^2\, \beta^{\,\prime\, 2}\,)\,, \quad h_{1\,1}^4 = 0\,, \\ & h_{1\,2}^4 = \alpha^{\,\prime\, \beta}\, '\, (gf\, '\, -fg\, '\,)\,/\, (f\, ^{\,\prime\, 2}-g\, '\, ^2\,)\, ^{1\,\prime\, 2}\, (f\, ^2\, \alpha^{\,\prime\, 2}\, +g^2\, \beta^{\,\prime\, 2}\,)\,, \quad h_{1\,1}^4 = 0\,, \\ & h_{2\,2}^4 = fg\, (\alpha^{\,\prime\, \prime\, \beta}\, '\, -\alpha^{\,\prime\, \beta}\, '\, '\,)\,/\, (f\, ^2\, \alpha^{\,\prime\, 2}\, +g^2\, \beta^{\,\prime\, 2}\,)\, ^{3\,\prime\, 2}\,. \end{split}$$

If α , β , satisfy $\alpha''\beta'-\alpha'\beta''=0$ then $h_{22}^4=0$, $H=(1/2)(-h(e_1,e_1)+h(e_2,e_2))=(1/2)(-h_{11}^3+h_{22}^3)e_3$. Hence e_3 is the direction of H. For this situation $Tr(A_3A_4)=0$, so M is a Chen surface.

The following are special cases of example 1.

Example 1A. In example 1 let $f(u)=u, g(u)=1, \alpha(v)=\beta(v)=v$. Then $f^{12} - g^{12}=1>0, x(u,v)=(uchv, ushv, cosv, sinv)$ and $h_{11}^3=0, h_{12}^3=0, h_{22}^3=-1/(u^2+1), h_{11}^4=0, h_{12}^4=1/(u^2+1), h_{22}^4=0$. $H=(1/2)\Sigma\varepsilon_i h(e_i, e_i)=\{-1/2(u^2+1)\}e_3$. This Chen surface in E_1^4 is neither minimal nor pseudo-umbilical. Example 1B. In example 1 let $f(u)=shu, g(u)=chu, \alpha(v)=\beta(v)=v$. Then $f^{12}-g^{12}=1>0, x(u,v)=(shuchv, shushv, chucosv, chusinv)$ and

Since $A_3 = -1$, this Chen surface is pseudo-umbilical but not minimal. Furthermore, $\langle x, x \rangle = 1$, so $M \in S_1^3 \in E_1^4$. The matrix A_3 has double eigenvalue with repect to the induced metric in M.

Example 2. In E_1^4 with $g_0 = dx_1^2 + dx_2^2 + dx_3^2 - dx_4^2$, let f(u), g(u) be differentiable functions satisfying $f'^2 - g'^2 > 0$ and $\alpha(v), \beta(v)$ are differentiable functions. Let M be a surface in E_1^4 given by (3.2) $x(u,v) = (f(u)\cos\alpha(v), f(u)\sin\alpha(v), g(u)\sin\beta(v), g(u)\cosh\beta(v))$.

Consider the following orthonormal frames $\{e_1, e_2, e_3, e_4\}$ along M so that $e_1, e_2 \in TM$:

$$\begin{split} & e_{1} = (1/(f^{\prime 2} - g^{\prime 2})^{1/2})(f^{\prime} \cos \alpha, f^{\prime} \sin \alpha, g^{\prime} \sin \beta, g^{\prime} \cosh \beta), \quad \langle e_{1}, e_{1} \rangle = 1, \\ & e_{2} = (1/(f^{2} \alpha^{\prime 2} + g^{2} \beta^{\prime 2})^{1/2})(-f \alpha^{\prime} \sin \alpha, f \alpha^{\prime} \cos \alpha, g \beta^{\prime} \cosh \beta, g \beta^{\prime} \sin \beta), \\ & \quad \langle e_{2}, e_{2} \rangle = 1, \\ & e_{3} = (1/(f^{\prime 2} - g^{\prime 2})^{1/2})(g^{\prime} \cos \alpha, g^{\prime} \sin \alpha, f^{\prime} \sin \beta, f^{\prime} \cosh \beta), \quad \langle e_{2}, e_{2} \rangle = -1, \end{split}$$

$\mathbf{e}_4 = (1/(\mathbf{f}^2 \alpha^{\dagger 2} + \mathbf{g}^2 \beta^{\dagger 2})^{1/2})(\mathbf{g}\beta^{\dagger} \sin \alpha, -\mathbf{g}\beta^{\dagger} \cos \alpha, \mathbf{f}\alpha^{\dagger} \mathbf{c}\mathbf{h}\beta, \mathbf{f}\alpha^{\dagger} \mathbf{s}\mathbf{h}\beta),$

<e4 , e4 >=1.

By straightforward computation we found that $h_{i\,j}^r$ are given by the following expressions:

If α , β satisfy $\alpha'\beta''-\alpha''\beta'=0$ then $h_{22}^4=0$ and $H=(1/2)\times (h(e_1,e_1)+h(e_2,e_2))=(1/2)(h_{11}^3+h_{22}^3)e_3$, thus $Tr(A_3A_4)=0$ and M is a spacelike Chen surface in E_1^4 .

The following are special cases of example 2.

Example 2A. In example 2 let f(u)=u, g(u)=1, $\alpha(v)=\beta(v)=v$. Then $f^{12}-g^{12}=1>0$. x(u,v)=(ucosv,usinv,shv,chv), $h_{11}^3=0$, $h_{12}^3=0$, $h_{22}^3=1/(u^2+1)$, $h_{11}^4=0$, $h_{12}^4=-1/(u^2+1)$, $h_{22}^4=0$. This is a spacelike Chen surface in E_1^4 , neither minimal nor pseudo-umbilical in E_1^4 .

Example 2B. In example 2 let $f(u) = shu, g(u) = chu, a(v) = \beta(v) = v$, then $f^{12}-g^{12}=1>0$. $x(u,v) = (shucosv, shusinv, chushv, chuchv), h_{11}^3 = 0, h_{12}^3 = 0, h_{22}^3 = 1, h_{11}^4 = 0, h_{12}^4 = -sech2u, h_{22}^4 = 0, H = (1/2)(h(e_1, e_1) + h(e_2, e_2)) = -e_3.$ Since $A_3 = I$ this spacelike Chen surface is pseudo-umbilical but not minimal in E_1^4 . Furthermore since $\langle x, x \rangle = -1, M \in H_0^3 \subset E_1^4$. The matrix A_3 has double eigenvalues with respect to the induced metric in M. Let H' be the mean curvature vector of M in H_0^3 . For this example $x = e_3$ and $H = H' - x = -e_3$, thus H' = 0 and M is minimal in H_0^3 .

4. A-SURFACES IN S_1^3 (or in H_0^3) in E_4^4 .

In this section we consider a Chen surface M in S_1^3 (or in H_0^3) in E_1^4 . First let M be a surface in $H_0^3 \subset E_1^4$. Then M is spacelike and the mean curvature vector H' of M in H_0^3 is also spacelike. Let $H^1 = \alpha \cdot e_3$ and $e_4 = -x$. Then there is an orthonormal frame $\{e_1, e_2\}$ along M with $\langle e_1, e_1 \rangle = \langle e_2, e_2 \rangle = 1$ so that A_{e_2} is diagonalized:

$$A_{3} = A_{e_{3}} = \begin{bmatrix} \alpha_{1} & 0 \\ 0 & \alpha_{2} \end{bmatrix}, \quad A_{4} = A_{e_{4}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \langle e_{3}, e_{3} \rangle = -\langle e_{4}, e_{4} \rangle = 1$$

The mean curvature vector H of M in E_1^4 is $H=H^1-e_4=\alpha^1e_3-e_4=(1/2)(\alpha_1+\alpha_2)e_3-e_4$. Since our attention is on non-minimal Chen surfaces in E_1^4 , we may assume that $\langle H, H \rangle \neq 0$. Then $|H| = \{(1/4)(\alpha_1+\alpha_2)^2-1\}^{1/2} \neq 0$. Let $H^{\perp}=e_3-(1/2)(\alpha_1+\alpha_2)e_4$. Then H^{\perp} is perpendicular to H and $|H|=|H^{\perp}|$. Let e_3', e_4' be the unit vectors in the directions of H and H^{\perp} . $H=|H|e_3', H^{\perp}=|H^{\perp}|e_4'$. Then $\{e_3', e_4'\}$ is an orthonormal frame in $T^{\perp}(M)$ with $\langle e_3', e_3' \rangle = -\langle e_4', e_4' \rangle$ and

$$\begin{split} \mathbf{A}_{3}^{\,\prime} = \mathbf{A}_{e_{3}^{\,\prime}} = (1/|\mathbf{H}|) & \left[(1/2)\alpha_{1}(\alpha_{1} + \alpha_{2}) - 1 & 0 \\ 0 & (1/2)\alpha_{2}(\alpha_{1} + \alpha_{2}) - 1 \right], \\ \mathbf{A}_{4}^{\,\prime} = \mathbf{A}_{e_{4}^{\,\prime}} = (1/|\mathbf{H}|) & \left[(1/2)(\alpha_{1} - \alpha_{2}) & 0 \\ 0 & (1/2)(\alpha_{2} - \alpha_{1}) \right]. \end{split}$$

The condition for M being a Chen surface is $Tr(A_3^{\dagger}A_4^{\dagger})=(1/4)\times$ $(a_1 - a_2)^2 (a_1 + a_2) = 0$. That is $a_1 = \pm a_2$. If $a_1 = -a_2$, H' = 0. If $a_1 = a_2$ then M is umbilical in H_0^3 . For this case let $\alpha = \alpha_1 = \alpha_2$. Using the Codazzi equation $(\overline{\nabla}_{e_1} h)(e_1, e_2) = (\overline{\nabla}_{e_2} h)(e_1, e_1)$ for the frame $\{e_1, e_1\}$ e_2, e_3, e_4 we obtain that the connection form $\omega_3^2(e_2)=0$, $e_2(\alpha)=0$. Using the Codazziequation $(\overline{\nabla}_{e_1} h)(e_2, e_2) = (\overline{\nabla}_{e_2} h)(e_1, e_2)$ we obtain that $\omega_3^4(e_1)=0$ and $e_1(\alpha)=0$. Thus α is a constant and e_3e_4 . are parallel in the normal bundle. Hence H is parallel in the normal bundle. Furthermore $A_3' = (1/|H|)(\alpha^2 - 1)I$ shows that M is pseudoumbilical in E_1^4 . By the Limma 2 in [2] we conclude that M is minimal in H_0^3 .Next let M be a spacelike surface in $S_4^3 \subset E_4^4$. Let $H'=\alpha'e_3$ be the mean curvature vector of M in S_1^3 and $e_4=-x$. Then H' is timelike and $A_3 = A_{e_3}$ is diagonalized:

$$\mathbf{A}_{3} = \begin{bmatrix} \alpha_{1} & 0 \\ 0 & \alpha_{2} \end{bmatrix} , \quad \mathbf{A}_{4} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} , \quad \langle \mathbf{e}_{3}, \mathbf{e}_{3} \rangle = -1 , \quad \langle \mathbf{e}_{4}, \mathbf{e}_{4} \rangle = 1 .$$

The same argument as above yields that M is minimal in S_1^3 . We now have the following theorem.

THEOREM 2. M is a spacelike surface in S_1^3 (or in H_0^3) in E_1^4 . Then M is minimal in S_1^3 (or in H_0^3) if and only if M is a Chen surface.

Now consider a surface M which is pseudo-Riemannian with signature (1,1) so that $M = S_1^3 = E_1^4$. The mean curvature vector H' of M in S_1^3 is spacelike. Let $H' = \alpha' e_3$, e_3 is a unit vector. $A_3 = A_{e_3}$ may not be diagonalizable. However according to Petrov [4], A_3 can be put into one of the following three forms with repect to an orthonormal frame $\{e_1, e_2\}$ on M with the given inner product.

Case 1.
$$A_3 = \begin{bmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{bmatrix}$$
, $\alpha_1 \neq \alpha_2$, $\langle e_1, e_1 \rangle = -\langle e_2, e_2 \rangle = -1$,
Case 2. $A_3 = \begin{bmatrix} 0 & \alpha \\ \alpha & 0 \end{bmatrix}$, $\langle e_1, e_1 \rangle = \langle e_2, e_2 \rangle = 0$, $\langle e_1, e_2 \rangle = 1$,
Case 3. $A_3 = \begin{bmatrix} \alpha & \beta \\ \beta & -\alpha \end{bmatrix}$, $\beta \neq 0$, $\langle e_1, e_1 \rangle = -\langle e_2, e_2 \rangle = 1$.

These cases are devided according to the eigenvalues of A_3 with respect to the induced pseudo-Riemannian metric in M. The case 1 is for A_3 having two different real eigenvalues a_1 and a_2 . The case 2 is for A_3 having a realdouble eigenvalue a and the case 3 is for A_3 having complex eigenvalues $a+\beta$ i.

When case 1 takes place we have

$$A_{3} = \begin{bmatrix} \alpha_{1} & 0 \\ 0 & \alpha_{2} \end{bmatrix}, \quad A_{4} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \alpha_{1} \neq \alpha_{2}, \quad \langle e_{1}, e_{1} \rangle = -\langle e_{2}, e_{2} \rangle = -1.$$

 $\begin{array}{l} {\rm H}^{\,\prime} = (\,1/2\,)\,(\,-\alpha_{_{1}}\,+\alpha_{_{2}}\,)\,e_{_{3}}\,, \ \alpha^{\,\prime} = (\,-\alpha_{_{1}}\,+\alpha_{_{2}}\,)/2\,, \ {\rm H} = \alpha^{\,\prime} e_{_{3}}\,+e_{_{4}}\,. \ \ {\rm Now} \ \ {\rm let}\ \ e_{_{3}}^{\,\prime} = {\rm H}/\,|\,{\rm H}\,| = (\,\alpha^{\,\prime} e_{_{3}}\,+e_{_{4}}\,)\,/\,(\,\alpha^{\,\prime\,2}\,+1\,)^{\,1\,\prime\,2}\,, \ \ e_{_{4}}^{\,\prime} = (\,e_{_{3}}\,-\alpha^{\,\prime} e_{_{4}}\,)\,/\,(\,\alpha^{\,\prime\,2}\,+1\,)^{\,1\,\prime\,2}\,. \ \ {\rm Then} \end{array}$

$$\mathbf{A}_{e_{3}}^{*} = \frac{1}{(\alpha^{12}+1)^{1/2}} \begin{bmatrix} (1/2)\alpha_{1}(-\alpha_{1}+\alpha_{2})-1 & 0 \\ 0 & (1/2)\alpha_{2}(-\alpha_{1}+\alpha_{2})+1 \end{bmatrix},$$

$$\mathbf{A}_{e_{4}} = \frac{1}{(\alpha'^{2}+1)^{1/2}} \begin{bmatrix} (1/2)(\alpha_{1}+\alpha_{2}) & 0 \\ 0 & (1/2)(\alpha_{1}+\alpha_{2}) \end{bmatrix}.$$

Suppose M is a Chen surface; then $\operatorname{Tr}(A_{e_3}, A_{e_4}) = 0$. This implies that $(\alpha_2 - \alpha_1)(\alpha_1 + \alpha_2)^2 = 0$. Thus we have $\alpha_1 = -\alpha_2 = -\alpha'$. Again we apply the Codazzi equation $(\overline{\nabla}_{e_3} h)(e_1, e_1) = (\overline{\nabla}_{e_4} h)(e_2, e_1)$. Noticing that

 $\omega_{2}^{1} = \omega_{1}^{2} \quad \text{for this case where } \omega_{1}^{2} \quad \text{is the connection form for M, we} \\ \text{obtain that } \mathbf{e}_{2}(\alpha_{1}) = 0 \quad \text{and } \omega_{3}^{4}(\mathbf{e}_{2}) = 0. \quad \text{Similarly from } (\bar{\nabla}_{\mathbf{e}_{1}}\mathbf{h})(\mathbf{e}_{2},\mathbf{e}_{2}) \\ = (\bar{\nabla}_{\mathbf{e}_{2}}\mathbf{h})(\mathbf{e}_{1},\mathbf{e}_{2}) \text{ we obtain } \mathbf{e}_{1}(\alpha_{1}) = 0 \text{ and } \omega_{3}^{4}(\mathbf{e}_{1}) = 0. \quad \text{Hence } \alpha_{1}, \alpha' \text{ are} \\ \text{constants and } \mathbf{H} = \alpha' \mathbf{e}_{3} + \mathbf{e}_{4} \text{ is parallel in the normal bundle. } \mathbf{A}_{\mathbf{e}_{3}}^{*} = \\ (\alpha'^{2} + 1)^{1/2}\mathbf{I} \quad \text{implies that M is pseudo-umbilical in } \mathbf{E}_{1}^{4}. \quad \text{Again by} \\ \text{Lemma 2 of [2] we conclude that M is minimal in } \mathbf{S}_{1}^{3}. \end{aligned}$

$$\mathbf{A}_{3} = \begin{bmatrix} 0 & \alpha \\ \alpha & 0 \end{bmatrix}, \quad \langle \mathbf{e}_{1}, \mathbf{e}_{1} \rangle = 0, \quad \langle \mathbf{e}_{1}, \mathbf{e}_{2} \rangle = 1, \quad \langle \mathbf{e}_{2}, \mathbf{e}_{2} \rangle = 0.$$

We use a new orthonormal frame $\{e'_1, e'_2\}$ along M so that $e'_1 = (1/2^{1/2})(e_1 + e_2)$, $e'_2 = (1/2^{1/2})(e_1 - e_2)$. Then $\langle e'_1, e'_1 \rangle = 1$, $\langle e'_2, e'_2 \rangle = -1$. With respect to this frame let the Weingarten map in the direction e_3 (the direction of H') and e_4 be \overline{A}_3 and \overline{A}_4 . Then

 $\overline{\mathbf{A}}_{3} = \begin{bmatrix} \alpha + 1/2 & -1/2 \\ -1/2 & -\alpha + 1/2 \end{bmatrix}, \quad \overline{\mathbf{A}}_{4} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \langle \mathbf{e}_{1}^{\dagger}, \mathbf{e}_{1}^{\dagger} \rangle = -\langle \mathbf{e}_{2}^{\dagger}, \mathbf{e}_{2}^{\dagger} \rangle = 1.$

With respect to the frame $\{e_1', e_2'\}$ we find that $H=\alpha e_3 + e_4$. Thus α is the mean curvature of M in S_1^3 . Let $e_3'=H/|H|$ and $e_4'=(e_3-\alpha e_4)/|H|$, $|H|=(\alpha^2+1)^{1/2}$. Let \overline{A}_3' and \overline{A}_4' be the Weingarten maps in the directions of e_3' and e_4' with respect to the frame $\{e_1', e_2'\}$. Then $\overline{A}_3'=1/(\alpha^2+1)^{1/2} \begin{bmatrix} \alpha(\alpha+1/2)+1 & -(1/2)\alpha\\ -(1/2)\alpha & \alpha(-\alpha+1/2)-1 \end{bmatrix}$, $\overline{A}_4'=1/(\alpha^2+1)^{1/2} \begin{bmatrix} 1/2 & -1/2\\ -1/2 & 1/2 \end{bmatrix}$.

By (1.6) we obtain $\operatorname{Tr}(A_3, \overline{A}_4^{\dagger})=0$. This shows that M is a Chen surface. That is if $M \subset S_1^3 \subset E_1^4$, M is a pseudo-Riemannian surface with signature (1,1) and A_3 has real double eigenvalue, then M is a Chen surface.

When case 3 takes place we have

$$\mathbf{A}_{3} = \begin{bmatrix} \alpha & \beta \\ \beta & -\alpha \end{bmatrix}, \quad \beta \neq 0, \quad \mathbf{A}_{4} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \langle \mathbf{e}_{1}, \mathbf{e}_{1} \rangle = -\langle \mathbf{e}_{2}, \mathbf{e}_{2} \rangle = 1.$$

$$\begin{split} & H^{=}(1/2)(h(e_{1},e_{1})-h(e_{2},e_{2}))=\alpha e_{3}+e_{4}. \text{ So } \alpha \text{ is the mean curvature} \\ & \text{ of } M \text{ in } S_{1}^{3}. \text{ Let } H^{\perp}=e_{3}-\alpha e_{4}, e_{3}^{\perp}=H/|H|=\{1/(\alpha^{2}+1)^{1/2}\}(\alpha e_{3}+e_{4}), \\ & e_{4}^{\perp}=H^{\perp}/|H^{\perp}|=\{1/(\alpha^{2}+1)^{1/2}\}(e_{3}-\alpha e_{4}). \text{ Then} \end{split}$$

$$\begin{array}{c} A_{e_{3}^{\prime}}=1/\left(\alpha^{2}+1\right)^{1/2} \begin{pmatrix} \alpha^{2}+1 & \alpha\beta\\ \alpha\beta & -\alpha^{2}-1 \end{pmatrix}, \quad A_{e_{4}^{\prime}}=1/\left(\alpha^{2}+1\right)^{1/2} \begin{pmatrix} 0 & \beta\\ \beta & 0 \end{pmatrix}.\\ \\ \text{By (1.6) } \text{Tr}\left(A_{e_{3}},A_{e_{4}^{\prime}}\right)=-2\alpha\beta^{2}/(\alpha^{2}+1). \text{ Hence if M is a Chen surface} \end{array}$$

then a=0. M is minimal in S_3^3 .

Combining the above results we have the following theorem.

THEOREM 3. Let M be a pseudo-umbilical surface of signature (1,1) in $S_1^3 \in E_1^4$, e_3 be the direction of the mean curvature vector of M in S_1^3 . If A_{e_3} has a double eigenvalue then M is a Chen surface. If A_{e_3} has two different eigenvalues and M is a Chen surface then M is minimal in S_1^3 . Example 1B in section 3 is a Chen surface in $S_1^3 \in E_1^4$ which is pseudo-umbilical in E_1^4 but not minimal in S_1^3 . A_{e_3} has duble eigenvalue.

REFERENCES

- [1] B-Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
- [2] B-Y. Chen, Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J. 8(1985), 358-374.
- [3] L. Gheysens, P. Verheyen and L. Verstraelen, Characterization and examples of Chen submanifolds, Jour. of Geometry, 20(1983), 47-62.
- [4] A. Z. Petrov, Einstein spaces, Pergamon Press, 1969.

Department of Mathematics Wayne State University Detroit, Michigan, 48202 U. S. A.

(Eingegangen am 8. August 1986)

50