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Abstract. We report the explicit form of the quantum R matrix in the 
fundamental representation for the generalized Toda system associated with 
non-exceptional affine Lie algebras. 

1. Introduction 

It has been known for some time that the Yang-Baxter (YB) equations play a 
crucial r61e in classical and quantum integrable systems (see e.g. [1]). The structure 
of the classical YB equation is now fairly well understood [2-3].  In ref. [3] a 
classification of non-degenerate solutions related to simple Lie algebras is given, 
subject to the unitarity condition. Unfortunately such classification is yet un- 
available in the quantum case. One of the consequences of [3] is that the trigono- 
metric solutions, up to certain equivalence, are finite in number, and that they 
allow a neat description in terms of Dynkin diagrams. An immediate question 
would be whether it is possible to quantize all these solutions. The most typical 
ones among them are the classical solutions associated with the generalized Toda 
system (GTS). In this paper we report on the corresponding quantum solutions for 
the case of non-exceptional affine Lie algebras. 

To be more specific, we consider the solutions r(x) of the classical YB equation 

[rl2(x), rl3(xy)] -I- [rl2(x), r23(y)] Jr [r13(xy), r23(y)] = 0 (1.1) 

for the GTS of type A~, 1), Btl), ,~,c'~1), -,r~(l), A~22), A~22) 1 and D~,2+) ~, as given in Eq. (2.3), 
(3.1-4). Here the notations are standard: r(x) is a f5 ® 15-valued rational function, 15 
being a finite dimensional simple Lie algebra, and r ~ 2(x) = r(x) ® I, etc. The problem 
is to find an R(x)= R(x, h) containing an arbitrary parameter h, such that (i) it 
satisfies the quantum YB equation 

R 12(x)R 13(xy)R 2 3(y) = R 23(y)R i 3(xy)R 12(x), (1.2) 

and (ii) as h ~O, R(x,h) = x(x,h)(I + hr(x) + "  ") (1.3) 

holds with some scalar x(x,h). In contrast to the classical case (1.1), the quantum 



538 M. Jimbo 

Eq. (1.2) is formulated for a function R(x) with values in 11(~)® ~(~i), where L[(~) 
denotes the universal enveloping algebra of ffi. Existence of such a solution would 
imply that for any finite dimensional representation V~ (i = 1,2, 3) of ~i there 
correspond matrices R*J(x)eEnd (V~ ® V) satisfying (1.2)[4]. The main result of the 
present article is the explicit construction of R(x)sEnd(V® V), taking 171 = V2 = 
V a = V to be the fundamental representation. Construction of the "universal" 
( = lI(~b) ® a(6i)-valued) solution is an interesting future problem (cf. [4, 5]). 

The method of construction is described in Sect. 2. The line of arguments 
essentially follows that of ref. [5] (except for the examination of the sutficiency part). 
In Sect. 3 explicit forms of solutions are presented. The solutions for the type A~,~)[6] 
and A~2)[7] have been known. The quantum "spin" Hamiltonians obtained as the 
first tog derivative of the transfer matrix are also given. 

2. The GTS and the YB Equation 

First let us recall the formulation of the GTS and the corresponding classical r- 
matrix. Let ~ be an affine Lie algebra, and b be a Cartan subalgebra thereof. The 
GTS associated with (~ is the following equation for a b-valued function q = q(0 [8]: 

q, = - VqU, U = ~ e 2~¢q). 

Here 7~ denotes the set of simple roots of 8.  It is known to be representable in the 
Lax form Lt = t-A, L]. In terms of the standard Chevalley basis {e~, f~, ha}, L and A 
are given by [8] 

L = p + eOdqe + e-a~qf, 
(2.1) 

A = - e"dqe + e-anqf, 

where p=qt~I ) , e=  ~ e~ and f =  y.f~. 

In order to describe the corresponding classical r-matrix, we employ the 
homogeneous picture of ~; (cf. [9]). We find it simpler than the principal picture 
adopted in [3], for then the degree of the rational function r(x) will become 
independent of the rank of (~. Thus let 6} be a complex finite-dimensional simple Lie 
algebra, and let a be its diagram automorphism of order k( = 1, 2, 3). Put Nj = 
{ X ~ b / a ( X )  = a~JX}, where co is a primitive k th root of unity. Let ~ij = @ gi~.~ be 

aEdj 
its root space decomposition with respect to a Cartin subalgebra/o of gi o. Fixing an 
invariant bilinear form (,) on ffi, we choose Xj,~e~bj,~, and normalize them as 
(X~a, X_j _~)= 1. We write E~ = Xo,,, F:  = Xo_ ~ (a~rt0) , E o = X L _  o and Fo= 
X_ 1,o, where zt o is the set of simple roots of No and 0 denotes the highest weight 
of gi o in qJ-x. As is well known [10], if gi is of type XN, then the loop algebra 
ffi(k)[2, 2- 1] = @2j~jmodk gives a realization of the affine Lie algebra of type X~ ) 

j ~  
modulo the center. In this picture the Chevalley basis is given by 

eo = 2Eo,fo = 2-1Fo,e~ = E~,f~ = F~ ( ~ o ) .  (2.2) 

(With the above normalization the diagonal of the Cartan matrix is (a, a).) For an 
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orthonormal basis {I~} of 15, we set 
k - 1  

t = ~ I . ® I .  = ~ tj, (a® 1)tj=¢Mtj. 
j=O 

Set further 

r o =  ~ sgnaXo.~®Xo.-~. 
~ AO 

The classical r-matrix for the GTS of  type A Nv'¢k) is then given by the formula 

2 k-1 
r(x) = ro -- to + ~ j~=o xjtj" (2.3) 

This r-matrix is related to the L-operator of (2.1) through the fundamental 
Poisson bracket relation 

{L()0) ,@ L(#)} = [r(2/#), L(2) ® 1 + 1 ® L(#)]. (2.4) 

Here the 2-dependence of L is explicitly exhibited, regarding tg ® 1 and 1 @ tg as 
realized in 15~k) [2, 2-1] ® 1 and 1 @ 15~k~ [#, # -  1], respectively. In the left-hand side 
of(2.4) the Poisson bracket is introduced by letting p and q be canonically conjugate; 
namely, writing p = ~piH~, q = ~q~H~ for an orthonormal basis {Hi}of I)o, one has 
{Pi, q j} = •ij" 

To find the corresponding quantum R matrix, we quantize the relation (2.4) 
following the line of ref. [5]. Let now p and q denote Do-valued operators acting on 
some Hilbert space satisfying the Heisenberg commutation relations [Pi, q j] = hf~j, 
where h is an arbitrary parameter. We introduce further the elements/~, ff~ of 11(15) 
(or more precisely its completion) with the properties 

[H , /~ j  = a(H)/~, [H, ff~] = - a(H)F~ (H~Do), (2.5) 

[/~, lea] = 6~a sinh (2hH~)/sinh (2h), (2.6) 

/ ~ E ~ ,  le~--*F~ as h--*0. (2.7) 

Here H,  denotes the image of a~D~ under the identification ~1" ---D via the bilinear 
form ( , ). Eventually we shall restrict to the fundamental representation of 15 and 
identify/~,,le, with E~, F~. However the following arguments go through under 
(2.5-7). Define ~,,f~ as in (2.2) and put ~ = ~ , ,  f =  EL. In place of the classical L- 
operator (2.1) we use (cf. [5]) 

L(2) = eP(1 + e(e"dq~ + e-"dqf))e ~ 

= ( 1  + e~= e"q)(e={P)K.d=+e-='p'KJ~))e2~, 

where K= = exp(hH=). In the second line the operators are normal-ordered (q to the 
left, p to the right). For the quantum R matrix we require the relation 

R(2/#)Lt(2)L2(#) =- L2(NLI(,~)R(;~/#) mod ~2, 
L~(2) = L(X) ® 1, L2(#) = 1 ® L(/t). (2.8) 

Reducing the expressions L 1 (~)L2(#), L2(#) L 1 (2) into the normal-ordered form and 
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comparing the coefficients of e~(q)e +-~(p), we find that (2.8) is equivalent to 

JR(x), H ® 1 + 1 ® H] = 0 (Hel}o), (2.9) 

R(x)(O,®K2 t + K~® ~,) = (~, ® K ,  + K~ -~ ® 0,)R(x), (2.10) 

R(x)(f~®K2 ~ + K~®f~)=(f~®K~+ K;~®f~)R(x). (2.11) 

Here x = 2/# (recall that the 2 or # dependence enters through ~o ® 1 = 2£ 0 ® 1, 
1 ® 0o = 1 ® #/~0, etc.). Below we shall discuss the uniqueness of solutions of the 
system (2.9 11) and its sufficiency for the validity of the YB Eq. (1.2). In the sequel we 
fix finite-dimensional irreducible representation spaces Vi(i = 1,2) of t5 and consider 
(2.9-11) in End(V 1 ® V2). 

Proposition 1. For a general value of h, the dimension of the solution space of the linear 
system (2.10) is at most 1. 

Proof. It suffices to show that the dimension is 1 for the special value h = 0. In this 
case the proof reduces to the following lemma, which we formulate in a slightly more 
general way. Let Vi(i = 1 . . . . .  N) be finite dimensional irreducible 15-modules. For 

i 
Xs15 we write X ~i) = 1 ® . . .  1 ® X ®  1-.. @ 1. Consider the linear equations for 
ReEnd(V1 ® " ' ®  VN), 

[R,E~I) +.. .  + E~N)]=O (~E~r), [R,21E~ol) +... + 2NE(oN)]=O. (2.12) 

Lemma. For general values of 2~, the only solution of (2.12) is R = const I. 

Proof of Lemma. First we note that [~2~'X ''), ~27 Y(')] = ~2~'+"[X, Y]~'). Since Eo 
is the lowest weight vector of the ad irreducible 15o-module 151 [10], (2.12) implies 
that [R,21X(1)+ ... + 2N X~N)] = 0 for any Xe151. Hence we have 

JR, 2{ X (~) +...  + 2~X (m] = 0 (2. t 3) 

for any X s [ £ f l , [ ~  2 . . . . .  [5P~_1,2'~]. . . ]] ,  where ~ s  denotes either 151 or 
G CE,, and 151 appearsj  times in the sequence {5°,}. It can be checked that such 

~ H o  

elements generate 15jmodk" Takingj  to bej, j + k,j + 2k .... in (2.13), we conclude that 
[R,X(~)]=0 holds for any i and X~15j. In other words R commutes with 
11(15)®... ® 1i(15). The lemma now follows from the fact that, for an irreducible 
V,., t1(15) spans End(V~). 

Corollary. If(2.10) admits a non-trivial solution, it has the form R = I + hRt +...  up 
to constant multiple. In particular det R ~ 0, tr R ~ 0. 

Proposition 2. A solution of (2.10) satisfies both (2.9) and (2.11). 

Proof. It is enough to consider the case of a non-trivial solution R(x). Using (2.5) 
and (2.6), one checks that R 1 = [ R , H ® I  + I ® H ]  (H~Do), R z = R ( f ~ ® K ~ I +  
K , ® f , ) - ( f , ® K ~ +  K21 ®f~)R both solve (2.10). It follows that R~ = tqR with 
some scalar xv Taking the trace of R~R-1, we find x~ = 0. 

Prolmsition 3. Assume that (2.10) admits non-trivial solutions R/J(x)~End(V/® Vi) 
for (i,j)= (1,2), (1,3), (2,3). Then the YB Eq. (1.2) is satisfied. 



Quantum R Matrix 541 

Proof. Put  Q1 = Ri2(x)R13(xy)RZ3(Y), Q2 = R23(y)Ri3(xy)R12(x), where x=,~,/# 
and y = #Iv. The relat ion (2.8) implies tha t  bo th  Q~(i = 1, 2) have  the intertwining 
proper ty ,  

QiLI(2)Lz(li)La(v) - La(V)LE~)Li(2)Q i m o d  e 2. 

Hence  their  rat io Q = Q i- 1 Q2 should satisfy 

[ Q , H  m + H (2) -1- H (3)] = 0 (Hei)o), (2.i4) 

r n  K + I ~ K  +l +1 z.1 ^ ~ KZ-~. K ;  ® ~ ® K ~  +e~®K~ ~ ,  i - ~  ; ® ~ +  ® ~ j = O ,  

and  those obta ined  by replacing ~<--~L. Arguing similarly as above,  one can show 
that  (2.14) has the only solution Q = const I for a general h. 

Compar ing  the de terminant  we have 

R12(x)R13(xy)R2a (y) = ~ R 23 (y)R i a(xy)R12(x), 

where ( is a roo t  of unity. Lett ing h ~ 0 we find that  ( = 1. 

Thus  the YB equat ion  is reduced to solving the homogeneous  linear Eqs. (2.10) for 
R(x). In  the next section we give the result by taking V~ = V 2 = V to be the 
fundamenta l  representat ion of t5 and ~, = e~, f ,  = f , .  

3. Quantum R Matrix (Main Results) 

In  the sequel we adop t  the following realization of classical Lie algebras: sl(n) 
= {XEMat(n) l t rX  = 0}, o(n)= {Xesl (n) lX = - S ' X S } ,  sp(Zn)= {Xssl (Zn) tX = 

(0 Oia ramautomorp  - S - l t X S } ,  where S=(6~.,+l-#)ls,~z,  and ~ =  - S  " 

isms of  order  2 are given by a ( X ) =  - S t X S  for sl(n) and o-(X) = T X T - 1  for o(2n) 
with 

1 

T =  

1 
0 1 
1 0 

1 

1 

By convent ion  the indices a, fl run over  1, 2 , . . .  ,N, where N is the size of  the matrix:  
--(1) C(1), O(1), A(22) A(22)_1, N n + 1, 2n + 1, 2n, 2n, 2n + 1, 2n, 2n + 2 for ~ = ~t, , n(1) JOtl  , 

D(:)- We  put  a '  = N + 1 - a. E,p will denote  the matr ix  (6~6j~). Let  further e: = n+l" 

1 (1 < a < n), = - 1 (n + 1 < a < 2n) for ~i = C(. l) and  e, = 1 in the remaining cases. 
Under  these nota t ions  the classical r -matr ix  (2.3) reads as follows: 

= A(.1) :  
/ ~ \ / \ 

( 1 - x ) r ( x , = ( 1  + x ) ( y ' , E , , ® E , , - l I ) + 2 ( ~ + x ~ ) E , a ® E a , ,  (3.1) 
\ iv/ \,<# ,>#/ 
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¢ = A~22, A(22.)_, : 

4x I (1 --  x2)r(x) = (1 + x )2~E . .  ® E~  - (1 - x)2~,E~ ® E~,~, - ~ -  

( ~  _ / 3 ( 2 )  
- -  ~ n +  1 [ 

(1 - xgr(x) = (1 + x 2) X ( e .  ® e ~ -  e ~  ® E~,,,) 
a # n + l , n + 2  

+ 2x(En+ 1,n+ 1 - En+2,~+2) ® (E.+ 1,~+ 1 -- E.+2,~+ 2) 

kct<fl, o:,flq:n+l,n+2 a>fl,~,fl~n+l,n+2/ 

z +x z 
\~z<n+l,fl=n+l,n+2 ~>n+2,fl=n+l,n+2 

-- E~t ~ ® E~,~, + E~,~, ® E~,~, - E~,~, ® Ep:) 

\~.<n+l,#=n+l,n+2 a>n+2,~=n+l,n+2/ 

-- E~a ® E~, a -- Ea, ~, ® Ea, ~ + Ea, ~, ® E~,a). (3.4) 
C o r r e s p o n d i n g  q u a n t u m  R-mat r ices  are given by the fol lowing formulas  (k = e -ah 
deno tes  an  a rb i t r a ry  parameter) .  

¢=ap: 

~} = B~,, '), t..,,"(n, L,,'-'(')-, A~22. ~ , A<222_, : 

R(x) = (x -- k2)(x - ~) ~ E~  ® E~ + k(x - 1)(x - ~) ~ E ~  ® Eee 
~ '  ~ ~,/3 '  

\ ~< /b :#B '  ~,>/~,~ #,6" / 

+ ~a.lj(x)E.a ® E.,a,, (3.6) 
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where 

f 
(k2x-~)(x-1)  

a~p(x)= k ( x - O ( x - 1 ) + ( ¢ - l ) ( k 2 - 1 ) x  
(k2--1)(e~ep~k~-~(x--t)-5~,(x--~)) 
(k2-1)x(e~e~k~-~(x-1)-5~,(x-O) 

Here ¢ and ~ are given respectively by 

(c~ = / ~ ,  a ¢ ~')  

(~ = t~, a = a') 
(~ </~) 
(~ >/~). 

~ = k  2n- l ,  k 2n+2, k2n-2 _ k  2n+1, - k  2n, 

for 6 =B(. 1>, ~n~<l), /jnr~<l), A(22), A(22) 1; 

{ a - ½  (l_<~<n) 
~+½ (n+  1 _<a_<2n) 

for ~ = t~.r(i), and 

in the remaining cases. 

ffi-- n(2) --xSn+l: 

4 =  
a ( a = N ;  1 ) 

R(x) = (x 2 - k2)(x 2 - ~2) 
~n+l ,n+2 

e~.QE~+k(x 2 -  l)(x2- ¢ 2) Y~ 
~¢#,#' 

aorfl@n+ l,n+ 2 

ct,flC~n+l,n+2 a yn+l,n+2,fl=n+l,n+2 

• (b+~ (x)(E~ ® E~,p, + Ep,~, ® E~) + b] (x)(E~p ® E~,p + E~, ® E~)) 

+ ~ (c+(x)E~®E~,~, + c-(x)E~,®E~a 
a=n+l,n+2 

+ d+ (x)E~,® E~,~ + d-(x)E~,® E~,), (3.7) 
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whe re  for  ~ , f l # n +  1 , n + 2  

( ( k 2 x  2 - ¢2)(x2 - 1) (a = fl) 
a~(x)  = ~ ( k  2 - 1)(~2U ~(x 2 - 1 ) -  6.¢,(x 2 - ~2)) (~ < fl) 

{.(k 2 -  1)x2(k~-g(x 2 -  1 ) -  6.p.(x 2 ¢2)) (a > fl), 

~" -F k ~- 1/2(k2 - 1)(X 2 -- 1)(X -4- ~) (0¢ < n + 1) 

b~(x) = ( k , _ , _  5/2(k2 _ 1)(x 2 _ 1)x(x +_ ~) (a > n + 2) '  

c±(x) = ___ ½(k 2 - -  1)(¢ + 1)x(x T- 1)(x __+ ¢) + k(x 2 - 1)(x 2 - -  ¢2), 

d±(x) = +_ ½(k 2 --  1)(¢ --  1)x(x _+ 1)(x + ¢), 

a n d  ¢ = k " , ~ =  a +  l ( a < n +  1), = n +  3/2(a  = n + 1,n + 2), = ~ -  1(~ > n + 2). 
A m o n g  these,  the  so lu t ions  for  A~, 1) [6]  a n d  A~2 2) [7]  have  been  k n o w n .  In  

the case  A~, 1), R(x) spli ts  in to  a di rect  s u m  of  copies  of  1 x 1 a n d  2 x 2 e l e m e n t a r y  
b locks ,  

k ( x -  1)  
( x  - k 2 ) ,  - ( k  2 - 1 ) x  

Likewise  (3.6) consis ts  o f  b locks  

f k ( x -  1) 
( (x  - k~) (x  - ~))' ~ \ - (k ~ - 1)x 

- ( k  2 - 1) 

k ( x -  1)}" 

- ( k  2 - 1)  

k(x - 1 ) }  × ( x  - ¢ )  
(3.8) 

rL(2) the  e l e m e n t a r y  b locks  a re  (3.8) a n d  a n  N x N piece (a,p(x)). I n  the  case  ~ , + 1  
(with x, ¢ r ep laced  by  x 2 and  ~z), 4 x 4 pieces  

k(Xo-1) 0 ½(k2-1)(x-1)  
k(x2-1)  - ½ ( k 2 - 1 ) ( x + l )  

[--~(kZ-1)x(x--1) -½(kZ--1)x(x+l) k ( x 2 - - 1 )  

L - ½ ( k ~ - l ) x ( x + l )  -½(k~- l )x (x -1)  0 

-½(k 2 - 1)(x + I) 7 ½(k~-;)(x-1)lx(x2_ 
k(x ~ -  1) _1 

and  a n  (N  + 2) x (N + 2) piece. T h e y  are  all subjec t  to  the  s y m m e t r y  

[R(x),  H ® 1 + 1 ® H ]  = 0 (H~b0),  

PR(x )P  = (S ® S)R(x)(S ® S) = tR(x), 

R(x  - 1, k -  2) = 7(x, k ) -  ~'R(x, k), 

with  7(x, k) = - k2x(~ = A~.~)), = k 2 ¢ x 2 ( ~ i  = B(n I), C(n 1),  Dr. 1), . (2 )  -¢'x 2n 
k2¢2x4(~i=n(2)l).~,+ Aside  f r o m  these  symmet r i e s ,  they  have  the  
p roper t i es .  

(i) invers ion  re la t ion  

~ ( x ) ~ ( x -  1) = p ( x ) I ,  

( ( x  - k ~ ) ( x -  1 _ k ~) 

p (x )  = ~ (x  - k~ ) (x  - ¢ ) ( x -  ~ - k ~ ) ( x -  ~ - ~) 
((x  2 _ k2)(x 2 _ CZ)(x-2 _ k 2 ) ( x - 2  _ ¢2) 

where  we have  se t /~ (x )  = PR(x). 

~ )  

(3.9) 

A~22~)_ 1 ), = 
fo l lowing  

(3.1o) 

(~i = A(~ 1)) 
( ~  = B~I) . . . .  , At22.)_ l ) ,  

/ J n +  
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(ii) As k--* 1, 

R(x,k) = xl(x)(I + (k -- 1)(r(x) + xz(x)I ) +'" ") 

for appropriate scalars x~(x). 
(iii) As x ~ 1, 

l~(x,k) = ~l(k)(I + (x -- 1)(s(k) + t~2(k)I ) + ' " ) ,  

with some scalars t~i(k ). Here the tensor s(k) is given by 

*~rt * 

s(k) = ½(1 - k ~) y~ s g n ( / ~ -  ~)E,,,, ® E## 

+½(1 + k2)~E~,~,®E~,,, + k ~ E,,aOEa, ,, 

~(1) 

s(k) = ½(1 -- k2)(l - ¢) ~ sgn(fl -- a)E~® E#, 

+~(I +k~)(1-0 Y. G~®G~ 

+ (k(l - 0 -½(i - k~)(1 + O)F,,L~,G, ® G~ 

+ k(1 - ¢) ~ E~# ® E#a + (k 2 - 0 ~ E~,,e ® E~,~ 
~ # , # "  a ~ '  

= /"1(2) . 
" ~ n +  1" 

s(k) = (1 - k2)(1 - ~2) ~ sgn(fl - c0E~ ® E~a 
~ :p,&a,~ ~ n  + 1 , n + 2  

+ ½(1 - k2)(1 - ~2) ~ sgn(fl - g)((E~ + Ea,~) ® Ea# 
g=n+l,n+2,flon+l,n+2 

+ Ep.~, @ (G,~, + G~,)) 
+(1 + k2)(1 _~2) ~ E ~ ® E ~  

aS~n+ 1 , n + 2  

+2k(1 _~2)  ~ (E~a®E~+E~,®E~,~) 
a = n +  1 , n + 2  

a = n + l , n + 2  

+ (1 + 02(E~, ® E~,~ + Ea~® E~,~,)) 

(3.11) 

(3.12) 

~[1,fl' a ~ n +  1 , n + 2  
gor~5~n+ 1 , n +  2 

\ ~ < f l , a , f l g n +  1 , n + 2  ~z>,fl,~,fl~n+ 1 , n + 2  
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+ 
¢t>n+2,fl=n+ 1,n+2 / 

+ ( 1 - - , ) ( -  ~ , k ' - ' +  ~ k ' - ' )  
a<n+l,ll=n+l,n+2 a>n+2,~=n+l,n+2 

.(E~,# ® E~p + E~, ® E~) ). 

Remark 1. It can be shown that under the first condition of (3.9), R'(x) = (D(x) ® 1) 
R(x)(D(x) ® I)-  1, where D(x)eexp b0, D(xy) = D(x)D(y), is again a solution to the YB 
equation. Choosing an appropriate D(x) one obtains the R matrix in the principal 
picture. 

Remark2. Except for the case ~i n(2) = U , + l ,  our R matrix satisfies [/~(x), 
/~ (y ) ]=0  so that /~(x) is diagonalizable independently of x. This is 
a consequence of (3.10),/~(1) oc I and that degR(x)<  2. 

It is well known that a quantum R matrix gives rise to an integrable vertex 
model in statistical mechanics, whose transfer matrices 

T(x) = trvo(R ° 1 (x)RO2 (X)... R°N(X)) e End (V 1 ®--- ® V,v) 

commute among themselves: [T(x), T(y)] = 0. Hence their log derivatives provide 
a mutually commuting family of "spin" Hamiltonians. The first one is given by 

N dt~U+ l 
T(1) -1 (1)= ~ ~ ( 1 ) =  sJJ+l(k)+const  1. 

j = l  j = l  

In our case the tensors s(k)eEnd(V® V) are given by (3.11-t3). 

Acknowledgement. The author is indebted to stimulating discussions with Prof. T. Miwa and Prof. M. 
Hashizume. 
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