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In his Habilitationsschrift [12] published in 1939 H. Wielandt introduced the 
concept of a subnormal subgroup, generalizing the concept of a normal subgroup 
in such a way that the resulting embedding property becomes transitive. Since 
then subnormality has been the object of numerous investigations, see e.g. the 
recent monograph by J.C. Lennox and S.E. Stonehewer [5]. The concept of 
a modular subgroup originally comes from the theory of lattices. A subgroup 
M of a group G is called modular in G if the following equalities are satisfied: 

(UwM)c~V=Uw(Mc~V) forallU, V<G with U < V  
and 

(UuM)c~V=Mw(Uc~V)  forallU, V<G with M < V  

where X u Y= (X, Y) denotes the subgroup generated by X and Y Thus M 
is a modular element of the subgroup lattice of G. Detailed analysis of modular 
subgroups has been carried out by R. Schmidt (cf. [7], [8]). Like normality, 
modularity is not a transitive relation, i.e. a subgroup of G is not necessarily 
modular in G if it is modular in a modular subgroup of G. 

Our aim here is to study submodular subgroups in finite groups, defined 
in the obvious way: we call a subgroup T of a group G submodular in G 
if there exists a finite series 

T=Ta<T2< ... < T~< T~+I = G 

of subgroups Ti of G such that 7]/is modular in Ti+ 1 for all i= 1, ..., s. Thus 
submodularity is just the transitive closure of the embedding relation of modular- 
ity and hence it also generalizes the concept of subnormality. 

Observe that submodular subgroups naturally arise as images of subnormal 
subgroups under lattice isomorphisms of groups, because normal subgroups 
are mapped onto modular (not necessarily normal) subgroups under lattice 
isomorphisms. 

The paper is organized as follows. Basic properties of submodular subgroups 
are stated in Section 1. Although, in general, the join of two submodular sub- 
groups fails to be submodular, it turns out that a subgroup generated by a sub- 
modular subgroup and a modular or a subnormal subgroup is again submodular. 
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In the second section we study the structure of the factor group of a submodu- 
lar subgroup Tin a finite group G by the (uniquely determined) maximal modular 
resp. subnormal subgroup of G in T. We show, for instance, that the commutator 
subgroup of Tis subnormal in G. 

Submodular subgroups of solvable groups are investigated in Section 3. We 
prove that every minimal subgroup of a supersolvable group is submodular 
and characterize finite groups all of which submodular subgroups are subnormal 
or modular, respectively. 

If G is a finite group with trivial Frattini subgroup, then all subgroups 
of G are submodular provided that all maximal subgroups of G are (sub)modular. 
Groups having all their subgroups submodular are the object of Section 4. 

Finally, in the last section, we study groups with submodular Sylow sub- 
groups. These groups possess a Sylow tower and are characterized by some 
additional conditions. In contrast to finite groups with modular Sylow sub- 
groups, their Fitting length cannot be bounded. 

1. Definition and Basic Properties of Submodular Subgroups 

Definition. A subgroup T of a group G is called submodular in G if there exists 
a series 

(*) T = T I < T 2 <  ... <T~<T~+I=G 

of subgroups Ti of G such that Ti is modular in Ti+ 1 for i =  1, ..., s. Obviously, 
in a finite group the series (,) can be chosen in such a way that T~ is a maximal 
modular subgroup in T~ + 1 for every i = 1, ..., s. 

The following simple lemma does not require the finiteness of the group 
G and can be proved by using the corresponding properties for modular sub- 
groups (cf. [7] ). 

Lemma 1. Let G be an arbitrary group. 
(i) I f  T is submodular in G and U is a subgroup of G, then U c~ T is submodular 

in U. 
(ii) I f  T is submodular in G and N is a normal subgroup of G contained 

in T, then T IN  is submodular in G/N. 
(iii) I f  T / N  is submodular in G/N, then T is submodular in G. 
(iv) I f  T is submodular in G, then T ~ is submodular in G for every x6G. 
(v) I f  T1 and T2 are submodular in G, then T1 c~ T2 is submodular in G. 

If M is a modular subgroup of the group G, then M e is modular in G e for 
every homomorphism ~0 of G. It is therefore clear that submodularity is also 
preserved under homomorphisms, i.e.: 

I f  T is submodular in G, then T N  is submodular in G for every normal subgroup 
Nof6. 

More generally, (T, H> is submodular in G if H is a modular or subnormal 
subgroup of G. To show this we need 
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Lemma 2. Let U be a non-modular maximal subgroup of the finite group G. 
(i) The maximal subnormal subgroup of G in U is normal in G. 

(ii) The maximal modular subgroup of G in U is normal in G. 

Here statement (i) is due to Deskins [1] while (ii) was proved by Schmidt in 
[9]. 

Proposition 1. Let T be a submodular subgroup of the finite group G. I f  H is 
a modular or a subnormal subgroup of G, then <T, H )  is again submodular in 
G. 

Proof We argue by induction on [GI and may assume that IGI>I. Take a 
maximal subgroup U of G with <T, H)__< U. Obviously, one can assume that 
U is not modular in G. Since U contains the modular or subnormal subgroup 
H of G it follows from Lemma 2 that U contains a normal subgroup N of 
G with H < N .  Now T N  is submodular in G and as ITN[<IG[ it follows by 
induction that <T, H)  is submodular in TN. Hence <T, H> is submodular 
in G. 

The set of all submodular subgroups of a group forms a meet-semilattice 
by Lemma 1 (v). The join of two submodular subgroups, however, is not submo- 
dular in general. 

Example. Let G=<a, blaT=b6=l,  ab=ba  a) be the holomorph of the cyclic 
group A=<a)  of order 7. The subgroups Bl=<b 2) and B2=<b 3) are both 
submodular in G: Bi is modular in the normal subgroup Bi A for i= 1, 2. (It 
is easy to see that neither B 1 nor B2 is modular or subnormal in G.) The 
join (B1, B2) is the maximal subgroup (b) of order 6 which is not modular 
in G. 

2. The Subnormal and the Modular Kernel 
of a Submodular Subgroup 

The above example shows that submodularity is in fact a generalization of 
both subnormality and modularity. It seems therefore interesting to know how 
close the concepts of submodularity and subnormality resp. modularity are. 
In this section we investigate the structure of the factor groups T/S* and T/M* 
where Tis a submodular subgroup of a group G and S* and M* denote the 
subnormal and the modular kernel of G in T, respectively, i.e. the unique maximal 
subnormal and the unique maximal modular subgroup of G contained in T. 

It turns out, for example, that the commutator subgroup of a submodular 
subgroup is subnormal in the whole group, which implies that T/S* is always 
abelian. 

For a proof of this we shall make use of the following result due to Schmidt 
[7] which is frequently needed throughout the paper. 

Lemma 3. The subgroup M of the group G is a maximal modular subgroup in 
G if and only if M is a maximal normal subgroup of G or G/M~ is a non-abelian 
group of order p q, p and q prime numbers. 
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Lemma 4. Let T be a submodular subgroup of the group G. I f  K is the uniquely 
determined smallest normal subgroup of T such that T /K  is abelian of squarefree 
exponent, then K is subnormal in G. 

Proof. The assertion follows directly from Lemma 3 in case T is a maximal 
(sub)modular subgroup of G. Suppose T is properly contained in a maximal 
modular subgroup M of G. Induction on the order of G allows us to assume 
that K is subnormal in M, M is not normal in G, and T is not contained 
in M G. Therefore, by Lemma 3, T/Tc~ M G ~_ TMG/M e - - M / M  e is of prime order. 
This implies K __< Me,  i.e. K is subnormal in M e and hence in G. 

From Lemma 4 we obtain 

Proposition 2. I f  T is a submoduIar subgroup of the group G, then T/S* is abelian 
of squarefree exponent where S* denotes the subnormal kernel of G in T. In 
particular, the commutator subgroup T' of T is subnormal in G. 

In [7] Schmidt proves that a perfect modular subgroup of a finite group is 
already a normal subgroup. Proposition 2 gives an analogous result for submo- 
dular subgroups. 

Corollary 1. A perfect submodular subgroup is subnormal. 

We now want to show that an abelian group H of sqnarefree exponent occurs 
as a submodular subgroup of a group G such that H contains no non-trivial 
subnormal subgroup of G. Let 

H = C  m x ... x Cpr 

where C,~ is a cyclic group of prime order pl for i--1, ..., r. Choose primes 
ql, .-., qr such that Pi[q~- 1 and put 

K = C q l x . . . x C q .  

If at and b, are generating elements of Cp~ and Cq, respectively, define 

G1 = K 2 H  
by 

[a,, b2] = 1 if i =~j 
and 

bf * = b[, t ~ 1 (q~) and t p~ - 1 (qi). 

Then H is submodular in G~ since every term in the series 

H < Cq, H < (Cq~ x Cq2 ) H < ... < (C~1 x ... x Cq~_ 1) H < K H  = G~ 

is modular in the subsequent. 
Clearly, no subgroup U=t= 1 of H is subnormal in G 1. Now it might happen 

that H is modular in G 1. This is the case, for instance, if (Pi qi, Pj qj)= 1 for 
all i~ j ,  i, j =  1 . . . . .  r. We want to embed G1 in a group G in such a way that 
H is still submodular but not modular in G. 
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Lemma 5. Let A'L B = ( A  1 x ... xAn) 2 B = C  be the regular wreath product of  
A with B, [ B [ = n > l .  Then there does not exist a subgroup Mi:l: l  in Ai~-A, 
i= 1 . . . .  , n, which is modular in C. 

Proof  Take an arbitrary subgroup Mi :I: 1 of A i. For j + i,j ~ { 1 . . . .  , n}, Aj  contains 
a B-conjugate Mj of Mi. We have 

(B, M i )  (~ (M i • Mj) = M i • M j  > M i :- (Mi ,  B c~ (M i • M j)), 

i.e., with U = B ,  V = M  i • M~ and M = M i  the second modularity equation is 
not satisfied. Hence M~ cannot be modular in C. 

Take G1 from above and an arbitrary group B~: 1. By Lemma 5, H is not 
modular in G=G1% B, but H is submodular in the subnormal subgroup G1 
of G, hence submodular in G. This proves 

Proposition 3. An abelian group H ~-1 o f  squarefree exponent can be embedded 
in a group G such that the following conditions are satisfied: 

(i) H is submodular in G. 
(ii) H is neither modular nor subnormal in G. 

(iii) The subnormal kernel S* of  G in H is trivial. 

In order to obtain information about the factor group of a submodular subgroup 
in a group G by its modular kernel in G we consider - in view of Corollary 1 
- only non-perfect submodular subgroups. Here we have 

Proposition 4. Let K ~: 1 be a non-perfect group. Then K can be embedded in 
a group G such that the following holds: 

(i) K is submodular in G. 
(ii) K is neither modular nor subnormal in G. 

(iii) The modular kernel M*  of  G in K is trivial. 

Proof  Since K is not perfect, there exists a normal subgroup N of K such 
that ]K/NI =p, p a prime number. Choose a prime q such that p divides q - 1 .  
If C =  ( a )  is a cyclic group of order q and (x, N)  = K  we put 

G I = C 2 K ;  

a x : a  r, r@l(q) and r ' - l ( q )  

an=a forevery n~N.  

Obviously, K~I = N. Therefore K is a maximal modular but not normal subgroup 
of G1. Take a group B~: 1. Then K is submodular in G1% B = G .  Furthermore, 
K is not subnormal in G and, by Lemma 5, no subgroup U ~: 1 of K is modular 
in G, i.e. M* -- 1. 

3. Submodular Subgroups in Solvable Groups 

The aim of this section is to investigate solvable groups in which every submodu- 
lar subgroup is already a subnormal or a modular subgroup. We begin to 
study supersolvable groups since they contain " m a n y "  submodular subgroups. 
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Lemma 6. Every minimal subgroup of a supersolvable group G is submodular 
in G. 

Proof Suppose the assertion is true for all supersolvable groups of order smaller 
than ]G]. If U is a minimal subgroup and N a minimal normal subgroup of 
G, we can assume that UN/N is submodular in G/N, i.e. UN is submodular 
in G. Now UN is a group of order pq, p and q two (not necessarily distinct) 
prime numbers (unless U =N,  a trivial case). This implies that U is modular 
in UN and hence submodular in G. 

We remark that the converse of the above lemma does not hold. Using 
results of Gaschtitz [-31 one can show that every finite group is isomorphic 
to the factor group of a finite group in which all minimal subgroups are con- 
tained in the Frattini subgroup. 

Proposition 5. Let G be a supersolvable group. I f  every submodular subgroup 
of G is subnormal or modular in G, then every subgroup of G is subnormal or 
modular in G. 

Proof We prove the assertion by induction on ]G[. If U is a maximal and 
modular subgroup of G, then every subgroup of U is subnormal or modular 
in U and hence submodular in G. Therefore we may assume that G contains 
a non-modular  maximal subgroup V. By Lemma 6, a minimal subgroup of V 
is submodular in G and consequently subnormal or modular in G. Applying 
Lemma 2, we conclude that V contains a normal subgroup N of G. Now V/N 
is modular in GIN if ]G/N]<[G[ holds. This implies the modularity of V in 
G. If N =  1, then V itself is a minimal and, by Lemma 6, modular subgroup 
of G, contradicting our choice of V. 

Proposition 5 is not true for arbitrary solvable groups: every submodular 
subgroup of the alternating group A4 is subnormal and A4 contains a maximal 
non-modular subgroup of order 3. In the following we are interested in the 
question to what extent one of the two stronger conditions 
(1) every submodular subgroup is modular 
and 
(2) every submodular subgroup is subnormal 
restricts the structure of a finite solvable group. 

The next corollary is an immediate consequence of Proposition 5. A group 
is called an M-group if every subgroup is modular in the group. 

Corollary 2. Let G be a supersolvable group. 
(i) I f  every submodular subgroup of G is modular in G, then G is an M-group. 

(ii) I f  every submodular subgroup of G is subnormal in G, then G is nilpotent. 

Theorem 1. A solvable group G is an M-group if and only if every submodular 
subgroup of G is modular. 

Proof It suffices to show that a solvable group in which every submodular 
subgroup is modular is supersolvable. Corollary 2 (i) then proves the assertion. 

We proceed by induction on ]GI and may assume that G contains a unique 
minimal normal subgroup N and GIN is supersolvable. Now N = N1 x ... x % 
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where the N~ are cyclic groups of prime order. Each N~ is subnormal in G and 
consequently, by hypothesis, modular in G. It was shown by Heineken (cf. [8]) 
that a subgroup which is both subnormal and modular is quasinormal, and 
a result of Maier and Schmid [-6] implies that each N~ is either normal in G 
or is contained in the hypercenter of G. In the first case, N = N~ is cyclic whence 
G is supersolvable. If the Ni are contained in the hypercenter of G, then N 
is actually in the center of G since N is the unique minimal normal subgroup 
of G. Again we conclude that N must be cyclic of prime order. This proves 
the theorem. 

Remarks. a) The groups in question in the above theorem are just those finite 
solvable groups in which modularity is a transitive relation. From this point 
of view Theorem 1 has been also proved by A. Frigerio (see [-2]). 

b) The property that all submodular subgroups are modular is not inherited 
by direct products since direct products of M-groups may contain non-modular 
subgroups. (Take for example the direct product of two symmetric groups of 
order 3.) However, every subgroup of such a direct product is still submodular. 

Theorem 2. The following conditions are equivalent for a solvable group G. 
(i) Every submodular subgroup of G is subnormal in G. 
(ii) Every supersolvable subnormal section is nilpotent. 

(A subnormal section is a factor group of a subnormal subgroup.) 

Proof Since condition (i) is inherited by subnormal subgroups as well as by 
factor groups, it follows from Corollary 2 that (i) implies (ii). 

To prove the converse, suppose that every subnormal supersolvable section 
of G is nilpotent and let T be an arbitrary submodular subgroup of G. There 
exists a subgroup chain 

T = T I < T 2 <  ... < T~< T~+~ =G 

such that each T~ is a maximal modular subgroup in T/+ 1 for every i= 1, ..., s. 
Assume T is not subnormal in G. Then T2 is not subnormal in G as well. 
This follows from Lemma 3 because otherwise T2/(T)T2 were a supersolvable 
non-nilpotent subnormal section of G. Repeating this argument we conclude 
that none of the T~ is subnormal in G which is certainly a contradiction for 
i = s +  f. 

The property of solvable groups to contain only submodular subgroups 
which are subnormal is preserved by taking direct products. 

Proposition 6. Let G1 and G 2 be solvable groups in which every submodular sub- 
group is subnormal. Then all submodular subgroups in G1 • G2 are subnormal. 

Proof Suppose the result is false and let G = G 1 • G 2 provide a counterexample 
of least possible order. By Theorem 2 there exists a subnormal section H/K 
of G such that H/K is supersolvable and not nilpotent. We may assume that 
H/K is non-abelian of order pq, i.e. p]q-1 .  (A finite supersolvable group is 
nilpotent if every subnormal section of order pq is abelian !) 
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We may further assume that ~z ~ (H)= G1, 7~ 2 ( H ) =  G2,  and K c~ G a = K c~ G 2 

= 1, where rci(i= 1, 2) denotes the projection on G~. Since K is subnormal in 
G (of defect d, say), we have 

[z~ 1 (K), ..., lr 1 (K)] = [zr 1 (K), K . . . .  , K]  _< K r G 1 = 1, 
d + l  d 

whence rq(K) and (using the same argument for the second factor) 7c2(K ) are 
nilpotent. Now rq (H)/rq (K) and ~2(H)/zca(K) are isomorphic to a (proper) factor 
group of H/K, i.e. ]rci(H)/rci(K)l = 1 or p. In particular, if S denotes the normal 
subgroup of H such that K < S < H  and [S/K]=q, then ~i(S)=rc~(K) which 
implies that ~i(S) is nilpotent. 

Assume that q l Inl(S)l and put V= Oq(n~ (S))/(o(Oq(zc 1(S))). If (G0v~Sylp(G~), 
then V, regarded as a vector space, is the direct sum of 1-dimensional 
(G0p-invariant subspaces. Suppose (G1), does not centralize V. Then V= 1/1 | V2 
where 1/1 is a 1-dimensional subspace of Von which (G~)p does not act trivially. 
If Wa denotes the complete preimage of V2 in Oq(~z 1 (S)) and La = W 20q,(TC I (S)), 
then Ga/Lt is a non-abelian group of order pq, which is impossible. We conclude 
that (G1)p centralizes V Therefore (Ga)p centralizes Oq(zq(S)). Since 
Oq(rq (S))eSylq(G1), we have shown that a {p, q}-Hall subgroup of G~ is nilpotent. 
Analogously, a {p, q}-Hall subgroup of G 2 is nilpotent. But this implies that 
a {p, q}-Hall subgroup of G =  G1 x G 2 is nilpotent, which in particular means 
that H/K is abelian. This contradiction proves the proposition. 

It is well known that a group generated by solvable subnormal subgroups 
is itself solvable. Next we show that this is also true if the generating subgroups 
are submodular. More generally we have 

Proposition 7. Let G= (U, T )  be a group where U is a solvable and T is a 
solvable submodular subgroup. Then G itself is solvable. 

Essential for the proof of Proposition 7 is the following property of solvable 
submodular subgroups. 

Lemma 7. I f  T is a solvable submodular subgroup of the group G and N is a 
non-abelian minimal normal subgroup of G, then T< CG(N). 

Proof. Let G be a minimal counterexample to the assertion. It is not hard 
to see that N cannot contain a solvable submodular subgroup. Therefore 
Tc~ N = 1. 

Suppose T N  < G. By assumption, N = 741 x ... x Nr is the direct product of 
isomorphic non-abelian simple groups. Take i t  {1 . . . .  r} and t e T Then (Nit)" 
= (Ni"') t for all n~N, i.e. Ni t~N resp. Nit=Nk for some ke{1 . . . . .  r}. IfNi, Ni '1, .... 
N ts are the distinct conjugates of N under T, then N/r = N~ x Ntl x ... x N~ ~s is 
a minimal normal subgroup in TN. Since [TNI<[G[, we now conclude that 
r=< CrN(N r) for all i = 1 . . . .  , r whence T <  CrN(N) < C~(N). This implies G = TN. 
Now T is contained in a maximal modular subgroup M of G. In case M is 
a maximal normal subgroup of G, we get G = M x N and T__< M = C~(N). There- 
fore I G:MI = q and G/MG is non-abelian of order p q. Since N c~ MG = 1, it follows 
that [N I= [NMG/Md = p. This final contradiction proves the lemma. 
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Proof of Proposition 7. We argue by induction on the order of G where G = (U,  
T> with T=~ 1 + U. Since G contains a non-trivial submodular subgroup, it can- 
not be a simple non-abelian group. Assume G contains two different minimal 
normal subgroups Na and Nz. By induction and the fact that submodularity 
is inherited by homomorphic  images, both G/NI=(UN1/N1, TN,/NI> and 
G/N2 = (UN2/N2, TN2/N2> are solvable, which implies the solvability of G. 

Therefore G contains a unique minimal normal subgroup N. If N is abelian, 
we again conclude that G is solvable. The other possibility that N is non-abelian 
must be excluded in view of Lemma 7. Otherwise there exists a second minimal 
normal subgroup of G in CG(N) because 1 4= T< C~(N) and CG(N ) c~ N = 1. 

The following corollary is immediate from Proposition 7. 

Corollary 3. Let G = < Ta . . . . .  T~> be a group. I f  each Ti is a solvable submodular 
subgroup of G, then G is solvable. 

A finite group generated by nilpotent subnormal subgroups is nilpotent. A simi- 
lar result does not hold for submodular generating subgroups: the finite solvable 
group 

G = <x, y, a, b l xz : ya = a 7 = b 7 = 1, l-a, b] = 1, x y = yZ x, a x= b, a y = a 2, bY= b 4> 

is generated by a Sylow-2-subgroup of order 2 and a suitable Sylow-3-subgroup 
of order 3. Both are submodular in G, and G is not even supersolvable. 

4. Groups in Which Every Subgroup is Submodular 

In this section we consider finite groups in which every subgroup is submodular. 
Since in these groups all maximal subgroups are modular, they form a (proper) 
subclass of the class of supersolvable groups. 

In [10], Schmidt studies, among other things, finite groups all of which 
maximal subgroups are modular, so-called M(1)-groups. Obviously, every sub- 
group of a group is submodular if and only if every subgroup is an M(1)-group. 
We show that a subgroup of an M(1)-group is submodular if it contains the 
Frattini subgroup, i.e. if G is an M(1)-group, then every subgroup of G/~b(G) 
is submodular in G. 

A group G is called an LM-group if the subgroup lattice of G is lower 
semimodular, i.e. if for arbitrary subgroups U and V of G the intersection U ca V 
is maximal in V whenever U is maximal in (U,  V). 

Theorem 3. Let G be a group. Every subgroup of G is submodular in G if and 
only if G is an LM-group. 

Proof Suppose every subgroup of G is submodular and choose U, V< G such 
that U is maximal in (U,  V>. Then U is modular in <U, V>. Let R be a 
subgroup of G with U n V< R < V. From the first modularity equality we get 

(U,R> c~ V=(R ,  U ~ V>=R. 



554 I. Zimmermann 

Since R is not contained in U, we have (U, R ) =  (U, V) which implies R=  V. 
Hence U ~ V is maximal in V and G is an LM-group. 

To prove the converse, it suffices to show that every maximal subgroup 
M of an LM-group G is modular. We verify the validity of the modularity 
equalities. 

For the first one choose U, V< G such that U < V and U $ M. It is clear 
that G= (M, V) and since G is an LM-group, M c~ V must be maximal in 
V. This implies 

(M, U)n V=V=(U, Mc~ V), 
as required. 

The second modularity equality follows directly from the maximality of M. 

Finite LM-groups are characterized by It6 and Jones (cf. [11]). In particular 
every M-group and every direct product of M-groups is an LM-group. 

Let G be a finite M(1)-group. If $(G) denotes the Frattini subgroup of G, 
then dp(G)= ~Ma, where the intersection is taken over all maximal subgroups 
M of G. Therefore G/~(G) is isomorphic to a subgroup of the direct product 
• By Lemma 3, each factor G/M a is either of prime order or is a non- 
abelian group of order p q, p and q prime numbers. Hence G/(a(G) itself is a 
direct product of such groups. (For this result see also: P. Venzke: Finite groups 
whose maximal subgroups are modular. Atti Accad. Naz. Lincei, VIII. Ser., 
Rend., C1. Sci. fis. mat. natur. 58, 828-832 (1975).) Now G/(o(G) is a direct 
product of M-groups and therefore an LM-group. We obtain the following 
characterization of M (1)-groups: 

Proposition 8. The group G is an M(1)-group if and only if every subgroup of 
G/c~ (G) is submodular. 

5. Groups with Submodular Sylow Subgroups 

It is a well-known fact that nilpotency in finite groups is equivalent to subnorma- 
lity of the Sylow subgroups, and it is not difficult to prove that finite groups 
are supersolvable if all their Sylow subgroups are modular. The main purpose 
of this section is to obtain a characterization of finite groups in which all Sylow 
subgroups are submodutar. 

An arbitrary subgroup U of a finite group G has submodular Sylow sub- 
groups if this is true for G: every Sylow subgroup of U is subnormal in some 
Sylow subgroup of G and hence submodular in G. Also every homomorphic 
image of a group with submodular Sylow subgroups has submodular Sylow 
subgroups. Since a group containing a proper non-trivial submodular subgroup 
is not simple, we have 

Lemma 8. Groups with submodular Sylow subgroups are solvable. 

Our next step is to show that a finite group G with submodntar Sylow subgroups 
possesses a Sylow tower. Here we say that G has a Sylow tower if every homo- 
morphic image of G has a normal Sylow subgroup with respect to the largest 
prime divisor of its order, i.e. if p~ >Pz> ... > P, are the distinct prime divisors 
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of [G[, then there exist Sylow-pi-subgroups G m, Gp2 , . . . ,  Gp~ of G such that 
Gm @2... Gpk is normal in G for every k = 1 . . . .  , r. 

Proposition 9. I f  the Sylow subgroups of the group G are submodular, then G 
possesses a Sylow tower. 

Proof We argue by induction on ra]. Since the imposed condition is inherited 
by subgroups and homomorphic images, we may assume that every proper 
subgroup and every factor group of G has a Sylow tower. Furthermore, using 
the fact that Sylow tower groups form a saturated formation and a Fitting 
class (cf. [4] ), one may assume the following: 

(1) G contains a unique minimal normal subgroup N which, by Lemma 9, 
is an elementary abelian p-group, p a prime. 

(2) G contains a unique maximal normal subgroup K. 
(3) ~b(G)= 1. This implies that the Fitting subgroup F(G) coincides with the 

unique minimal normal subgroup N. 
If p is the largest prime divisor of lG[, then we are done because GIN possesses 

a Sylow tower. Of course, p is the largest prime divisor of Ig] (unless we have 
the trivial case K = 1). The Sylow subgroup Ks of K to the largest prime divisor 
s of [K[ is normal in K, i.e. Ks<=F(K)=F(G)=N and s=p. Therefore we may 
assume that [G/K[=q~ep is the largest prime divisor of [G[. By induction, the 
Sylow-q-subgroup Gq N /N  of G/N is normal in G/N. Hence Gq N is normal 
in G, and from q,f I K [ it follows that G = Gq N and [ G I = qpa. Since N is a minimal 
normal subgroup of G, we conclude that Gq is a maximal and, by hypothesis, 
modular subgroup of G. If Gq is not normal in G, then G ~-G/(Gq)~ is a non- 
abelian group of order pq, which is impossible in view of p<q. Therefore Gq 
is a normal subgroup of G, and the proposition is proved. 

Every nilpotent group has submodular Sylow subgroups. Therefore we can- 
not expect restrictions on the structure of the Sylow subgroups in case they 
are all submodular. However, we have the following 

Lemma 9. I f  G is a group with submodular Sylow subgroups, then all Sylow 
subgroups in G/F(G) are elementary abelian. 

Proof Let p be a prime divisor of ]GI and G1 . . . .  , Gr be the distinct Sylow-p- 
subgroups of G. By Proposition 2, Gi/S i is elementary abelian where Si denotes 
the largest subnormal subgroup of G contained in Gi. The subgroup 
S=(S~, ..., Sr) generated by the Si's is normal in G. Therefore S is contained 
in each Gi and coincides with the Sylow-p-subgroup Fp(G) of F(G). Now the 
assertion follows since Gi/Fp(G) is isomorphic to a Sylow-p-subgroup of G/F(G). 

The above lemma implies that in a supersolvable group G with submodular 
Sylow subgroups, G/F(G) is abelian of squarefree exponent. We show that the 
converse of this statement is also true. 

Proposition 10. The Sylow subgroups of the supersolvable group G are submodular 
in G if and only if G/F(G) is abelian of squarefree exponent. 

Proof We have to establish the sufficency of the condition. Let G be a finite 
supersolvable group such that G/F(G) is abelian of squarefree exponent and 
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assume the proposition is proved for all groups of smaller order having the 
same properties as G. Take two different maximal normal subgroups M1 and 
M 2 of G with F(G)<=MlnM a. Since F(Mx)=F(Mz)=F(G), the Sylow sub- 
groups of M1 and M2 are submodular and the proposition is proved if 
[G/M~I •IG/Mzl. 

Therefore we have to deal with the case that G/F(G) is an elementary abelian 
p-group. All Sylow-q-subgroups for q +p  are now submodular and it remains 
to show the submodularity of the Sylow-p-subgroups. Choose a minimal normal 
subgroup N of G. We may assume that INI =q+P. If Gp is a Sylow-p-subgroup 
of G, we have Gvc~F(G)< C~p(N), which implies that Gp/C~p(N) is elementary 
abelian and therefore cyclic of order p (or 1). Hence Gp is submodular in Gp N. 
Now Gp N is submodular in G by induction. We conclude that Gp is submodular 
in G. 

We now characterize arbitrary finite groups having all the Sylow subgroups 
submodular. For  abbreviation, denote by Gp,...w the product of Sylow subgroups 
Gpl, ..., Gvs. 

Theorem 4. Let G be a group and Pl>P2> ... >Pt the distinct prime divisors 
of I al. The Sylow subgroups of G are submoduIar in G if and only if the following 
conditions are satisfied: 

(i) G possesses a Sylow tower 

1 < G m < Gpx p2 < . . .  < Gm.. .p t  = G.  

(ii) I f  Gp~ is a Sylow-pisubgroup of G such that 

[Gm...w, Gpj] f~ Gm...p,_l for j > i, 
then Pj[Pi- 1. 

(iii) G/F(G) has elementary abelian Sylow subgroups. 

Proof. Suppose G is a finite group with submodular Sylow subgroups. Conditions 
(i) and (iii) were already shown in Proposition 9 and Lemma 9. To establish 
(ii) we argue by induction on [G[ and assume that (ii) holds in G/Gp,. 

Let j>  1 and [G w, Gpj] + 1. If Gmp ~ is a proper subgroup of G, we conclude 
pjlpa-1 by induction. Therefore we may assume G=Gwvj, and in addition 
qS(Gm)= 1, because [G m, Gvj ] #: 1 if and only if [Gm/(a(Gm), Gpj] ~= 1. Now Gpl 
is elementary abelian and, by Maschke's theorem, the direct product of minimal 
Gp~-invariant subgroups. Without loss of generality one can assume that G w 
is itself Gpj-invariant. But then Gpj is a maximal and hence modular subgroup 
of G. This implies the assertion: by Lemma 3, G/(Gpj)G is a non-abelian group 
of order Pl Pj, i.e. [Gw[ =Pl and PjIPt-  1. 

Conversely, assume G to be a finite group satisfying (i), (ii) and (iii). We 
want to show, again by induction on Ial, that the Sylow subgroups of G are 
submodular. 

Since the imposed conditions are also fulfilled in Gp~...p .... we only need 
to prove the submodularity of Gp,. By induction, Gp~m/G m is submodular in 
G/G w, i.e. Gv, m is submodular in G so that we may set G = Gptpc Furthermore 
we can assume that G m is a minimal normal subgroup of G as well as (Gv)G = 1. 
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Now (iii) implies that Gp~ is cyclic of order Pt and clearly [Gm, Gpt ] :I: 1. By 
(ii), Pt]pl -1  which leads to IGp~l--pl. Therefore G is of order PlPt and Gpt 
is (sub)modular in G. 

From the remark at the beginning of this section it is clear that the Fitting 
length f (G) of a finite group G in which all Sylow subgroups are modular 
is at most 2. However, the situation is different when we merely assume that 
the Sylow subgroups are submodular:  

Let Go=Cm2Cpo , P0lP~-I ,  be a non-abelian group of order PoP~. For 
i > j  define 

Gi= Ni A Gi_ l 
where 

(i) Ni is an elementary abelian pi-group such that pj]pi-1 for all j = 0 ,  
1, ..., i - 1 ;  

(ii) N/is a faithful irreducible Gi- 1-module. 
By construction, the group Gi satisfies the conditions (i)-(iii) from Theorem 4 

and has therefore submodular Sylow subgroups. The Fitting length of G~ equals 
i + 1 : F(GI) = N/and F(Gi/Nj) = N j_ 1/Nj for all j = 1, ..., i, N1 = Cpl and No = Cpo. 
Thus we have 

Proposition 11. For every natural number n there exists a finite group G, such 
that 

(i) f (G,) = n. 
(ii) G, possesses submodular Sylow subgroups. 
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