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Abstract. We reduce the counting problem for the vacuum diagrams of a ~b 4 
theory to a moment problem. As a consequence we are able to give the generat- 
ing function for the counting of diagrams on a torus with one hole, besides the 
known result for planar diagrams. The method can be extended to & theory 
and also to the counting of diagrams on a torus with an arbitrary number of 
holes. 

I. Introduction 

In their paper Planar Diagrams [1 ], E. Br~zin, C. Itzykson, C. Parisi and J.B. Zuber 
have discussed the combinatorics of Quartic Vertices, and found the generating 
function Et°)(9) which solves the counting problem for the vacuum diagrams in the 
planar approximation. The technic used was the saddle point method. Unfortunate- 
ly this method does not provide an easy way to reach even the next generating 
function E~l)(g) which solves the counting problem on a torus with one hole. 

In this paper, we have obtained for this generating function a rather simple 
expression: 

E°)(9) = ~2 log(2 - a2), (I.1) 

with, following the notation in [I]  : 

12ga 4 + a 2 - 1 = 0, (I.2) 

where the root to be taken (I.2) is the root regular at 9 = 0. Of  course we have also 
verified that the generating function E~°)(O ) is given by: 

E(°)(9 ) = - ½ log a 2 + ~ ( a  2 - 1)(9 - a2). (I.3) 

~,~k) for > 2 will be considered elsewhere. The general case, the computation ol r~ (g) k _ 
As shown in [1], the generating functions Etk)(9) appear as coefficients in the 

asymptotic expansion: 

1 I , (9/n)=Eo(g)+~ff )+E~ ) 
log I,(0) - -  + . . .  (I.4) 
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where I,(g/n) is the integral: 

+co i = .  

I.(g/n) = I 1~ ( 2 , -  2 )  2 ~ e-(1/z)~-("/"))4d2v (I.5) 
--co l<--i<--j<=n i = 1  

We show that I ,  can be thought as the Hadamard  determinant of order n associated 
with the positive measure 

d#(2) = e-  ~2/2 _ (0/,)~4 d2. (I.6) 

By expanding in continued fraction the generating function of the moments 
associated with the measure (I.6) we obtain a non linear recursive relation for the 
coefficients of the continued fractions. 

This relation is equivalent to a non linear recursive relation among 6 conse- 
cutive 1,. 

We show that, in the limit n ~ o% those recursive relations transform into an 
infinite set of coupled differential equations, forming a triangular system which 
can be analysed. 

The method extends naturally to measures which are exponentials of an 
arbitrary polynomial, and therefore to vertices with n lines. 

Here we have only worked out the functions E(°)(g) and E(')(9) but, it seems 
feasible with this method to get eventually E (k) in closed form: this will be discussed 
in a near future. 

H. The Moment Problem Formulation 

Let us consider a positive measure d#(x) defined on [ - ~ ,  + ~ ] ,  and its associated 
moments: 

#k = ~ xkd/*(x) k = 0, 1,2,... (II.1) 
--O0 

The integral 

+co i=n  

I .=  ~ 1-[ d#(xi) 1~ ( x i - x )  2 (II.2) 
--oo i = i  l<=l<j>=n 

can be reexpressed in terms of the/2k'S , by the formula (see Appendix AI) 

I .  = n [D._ , ,  (11.3) 

where D. is the Hadamard determinant of order (n + 1), associated with the 
moments Pk : 

I /*O /'1 . . . .  /*. 

D, = (II.4) 

/*, /*,+1.. . / '2,  [ 
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The generating function of the #k'S, has, for formal expansion in powers of 1/z" 

G(z) = #_qo + #_~ + + #k z z 2 "'" ~ + "'" (II.5) 

We shall normalize the problem, by setting: 

~(z) G(z) So s~ s~ 
. . . .  ~- z- ~ + . . .  + ~ + . . .  (II.6) 

#0 z 

with 

I 
s = + 1 

= #g (11.7) 
Sg #o 

to G(z) is associated the Hadamard determinant: 

S O S 1 . . . .  S n 

S1 $2  . . . .  Sn+ 1 

b = (II.8) 

Sn Sn+ l " "  S2n 

D. and D. are connected by: 

D. = #~+ lb . .  (I1.9) 

We shall, from now on, consider the case where the odd moments #zp+l are 
identically zero, and therefore introduce the continued fraction expansion of 
G(z) [2]: 

1 ~(Z)= 
z - R  1 

Z - -  R 2 

z - R 3 

z -- ... (II.10) 

The nth approximation to it, is a rational fraction, the In - 1/n] (z) Pad~ Approxi- 
mation, that we write: 

N.(z )  (II.11) [n- 1/n] (z)= M.(z)' 

where 

M.( z )  = z" + . . . .  (II,12) 

is a polynomial of degree n in z with the highest degree coefficient normalized to 1, 
and 

N. ( z )  = z n-1 A~ . . . ,  (ILl3) 
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is a polynomial  of degree (n - 1) in z with the highest degree coefficient normalized 
to l. 

The first approximations read: 

1 
[0/1] = - (ILl4) 

z 

1 
[I /2]  = - -  (II.15) 

z - - R  1 

z 

1 
[2/3] -- (ILl6) 

z - R  1 

z - -  R 2 

z 

M1 (II.17) 

N 2 :z 1 
M 2  = zZ - R 1  (ILl8) 

R 1 ---- S 2 

N 3 : z 2 _ R 2 ] 

M 3 = z [ z  2 - ( R ,  + R2)] t (ILl9) 
R - s 4 ~ - s ~  

2 $2 

and 

1 
[3/4] = 

z -  R 1 

Z - -  R 2 

z -  R 3 

z (II.20) with 

X 4 = z [ z  2 - (R 2 + R3)] 

M4 = z4 - z2(Rt + R2 + R3) + R 1 R 3  (II.21) 

R 3 - -  $ 2 s 6  - -  s I 

s2 ( s  4 - -  s 2) 

From D, = R , R  2_ 1 . . .  R ] -  1 (II.22), we see that:  

/)1 = RI ---- $2 

b 2  = R 2 R ~  = (s4 - s2)s2 (II.22) 
- _ _  2 3 

D 3 - R 3 R 2 R  1 = (s6s 2 - s~)(s  4 - s2). 

o -2 / 3 _ f l 3  [13] 1 This is a consequence f R . D . _  1 = 
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Finally, combining (II.3), (I1.9) and (II.22), we get: 

I, = n !#~R]-I R~- 2.. .  R 2_ 2R "-1" (II.23) 

The problem of evaluating I , ,  is therefore reduced to the problem of computing 
the R, from the measure d#(x). 

To end this paragraph we give for completeness the recursive relation among 
the polynomials M,,(z) or N,(z), the numerators and denominators of the nth 
approximation fulfil the relation: 

Yk+ 1(z) = zYk(z) - RkYk- x(Z)' (II.24) 

with 

No(z )=0  Na(z )=1 
(11.25) 

Mo(z )=1 Ml(z )= z. 

As is well known the M.(z) form the set of orthogonal polynomial with respect 
to the measure d#(x). 

III. Asymptotic Formulae 

In the present situation the measure d#(x) reads: 

d#(x) = e - ( 1 / 2 ) x z - # x 4 ,  (III.1) 

with 

fl = 9. (III.2) 
n 

The moments of the measure: 

+ao 

#k= S x%-X~/2-t~X'dx, (III.3) 
- o o  

have the following properties: 

#2k+ a = 0 
(2k + 1)#2k = #2k+2 ~- 4fl#2k+4 (III.4) 

o r  

S2k+ 1 = 0 } (IliA') 
(2k + l)s2/~ = S2k 2 -~ 4flSzk+4 

The recursive relation (III.4) shows clearly that G(z), the generating function of the 
moments has to be the solution of a linear first order differential equation with 
polynomials coefficients. We shall use this fundamental remark in Sect. IV. 

Expanding for k even (III.3) in powers of/~, we get: 

#2k n p[ + 2p + 1/2) 
p = 0  
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= x / ~  ~ 1.3.5 ... (2k + 4 p -  1). 
p! p=O 

In particular: 

~o(g/n ) = #o(9/n) = ~ P[ 1.3.5 ... (4p - 1). 
#o(0) p=O 

Following reference [1], we want to evaluate the asymptotic expansion: 

1 ,  I,(.q/n) E1(9 ) Ea(g ) 
n-- 510g / . ~  - Eo(9) - nZ - - -n4 ... 

Setting 

Rk(g/n) 
~(g/n)- R~(O) 

we have, from formula (II.23): 

1 ,  I,(q/n) l . . . . .  I P~-2 (1 P-'~ 
V l o g  . . . .  = - ' O g # o l q / n ) + -  2., \ - n )  l°gRp(9/n)' 

l n tU  ) n n p = o 

where we have set 

/~0 = 1. 

It will be shown in the sequel that Rv(o/n) has the following expansion: 

1 
Rp(g/n) = p(p/n) + -~ p2(P/n) + . . .  

with 

p(0) = 1, 

where p(x), p2(x) are holomorphic on [0, 1]. 
By making use of the Euler formula, that we recall: 

Letf(x)  be of class C 2v on [0, 1], then: 

1 B 1 1 _ , 
1 ~ "  f(p/n) = I f (x)dx + ~--~ If(O) + f ( 1 ) ]  + ~ .  ~-~ I f  (1) - f ' (O) ]  
1"/p=O o 

B 2 1 "(1) B p _  1 1 
4! n 4 [ f  -- i f (0)]  + ... + (--)P (2p -- 2)! n 2v-2 

1 Bp 1 
. [f(2p- 3)(1 ) _f(2t ,-  3)(0)] + ( _ )p+ (2p)! n =p+I 

• [f(zp)(x ~) + f(2V)(x2) + . . .  + f(zP)(xp)] 
where 

i - 1  i 
- - < x  i < - - .  

n n 

(III.5) 

(III.6) 

(III.7) 

(III.8) 

(III.9) 

(III.10) 

(III. 11) 

(IIL12) 

(III. 13) 



Topological Expansion 153 

We get: 

1 

-- Eo(g ) = ~(1 -- x)log p(x)dx (III.14) 
0 

and 
1 

- E l ( g )  = - 3g + ~ [  - p'(0) - l og  p(1) ]  + f(1 - x )  dx (IIIA5) 
0 

where we have used (III.6) to expand log ~o(9/n) up to second order in 1/n, as 
well as (IIIA 1). 

IV.  A Reeurs ion Formula  

We shall now derive a recursion formula for the Rp(fl). In the sequel we shall keep 
fl fixed independent of n. We consider the generating function of the #k : 

#k S® e-~'/z-a~4dx (IV.l) 
G ( z )  = = - z - x 

As pointed out in the previous section, G(z) must fulfil a linear first order differen- 
tial equation. It is not difficult to obtain the equation: 

G'(z) + [z + 4flz3]G(z)= #o + 4fl#z + 4~#o zz. (IV.Z) 

Therefore G(z) = G(z)/# o satisfies the equation: 

W(z)G'(z) = 2V(z)G(z) + U(z), (IV.3) 

where 

W ( z )  = 1 

= _ z _ 2flz3 (IV.4) V(z) - 2 

U(z) = (1 + 4fls2) + 4/~z z. 

Here s 2 = #~2 following (II.7). 
#o 

We must now expand in continued fraction the solution of (IV.3) which admits 
the positivity representation (IV. 1). 

Following Laguerre [4] (we give in Appendix AII the necessary elements to 
understand this construction), we consider the function: 

n W  z n 
V + = - 2/~z 3 + (IV.5) 

to which is associated the polynomial ~2 having the same term of highest degree 
as the polynomial part of the previous function: 

f2, = - 2flz 3 + 7,z, (IV.6) 

where in f2, there is no even part due to a parity argument. We also introduce, 
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still using the same parity argument: 

O n = CnZ 2 "-~ d. 

Q n -~- Z. 

The Laguerre equations read: 
R. 

Q , [ ~ , + I -  ~ . ]  + 0,+i 0,_1 = WQ',  
R n -  1 

0.Q. 
t~,+l + ~ .  = - - -  

R. 
0 o = U ;  ( 2 o = V ;  0 1 = 0 .  

This system of equations reduces to: 

z 2 ( 7 , + 1 - 7 , ) +  c,+1 R , _ l c . - 1  z2 + d,+ 1 R , _  1 

Z 2 -4~? +(~,.+~ +~.)z= -~(c.z +d.) 

• Co z2 + d o = 4flz 2 + 1 + 4fls 2 

_ 2fiz3 + Yo z = _ 2flz3 _ z_ 
2 

" c _ l z Z  + d _ l  = 0 .  

which by identification gives: 

R. 
7 , + i - y , + c , + 1 - ~ c . _ 1 = 0  w h e n n > l  

R, 
d,+l = 1 + - - d ,  1 n > 0  

Rn-  1 - -  

@ c. =~ n>=o 

d. 
7n+l+?n  = - - - -  n= >0. 

R .  

The first relation in (IV.11) for n = 0 reads differently: 

71 - -  YO "}- Cl = O. 

To the set of Eqs. (IVA l) we have to add, the initial conditions: 

c o = 4fi 

d o = 1 + 4fls 2 

2o = - 1/2 

R o =  1 

c_ 1 = 0  

d_x = 0 .  

(IV.7) 

(~V.8) 

(IV.9) 

(w.lo) 

(IV.ll) 

(IV.12) 

(IVA3) 
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F r o m  (IVA3) we get 

c 1 = 4 f l s  2 

d 1 = 1 

7: = I 
71 = - (½ + 4fls2) (IV.14) 

R 1 = s  2. 

The  value ob ta ined  for R 1 fits exactly the value in (II.18), which shows correct-  
initialization. 

We shall rewrite (IV.11) as:  

7 . + l - y . = - 4 f l ( R . + l - R . )  n ~ l  

c. = 4fiR. 

d. (w.15) 
Y . + 1 + 7 . =  R.  

R .  d 
d"+l = + R__~-7 . - 1 .  

n--1 

The  first equat ion  in (IV. 15) is immedia te  to solve and  gives: 

7.  = 71 + 4fiR1 - 4/~R. = - ½ -  4/3R. .  ( IV.16)  

Final ly  we have:  

? . =  - ½ - 4 f i R .  n >= 1 

c .  = 4 f i R .  n > 0 (IV,17) 

d . = R . + 4 f l R . ( R . + R . + I )  n > = l  

and  

[gn+ 1 - g . ]  + 4 f i [ g ~ +  : ( g . +  1 + R . + 2 )  - R.(R~ + R._ 1)]  = 1 n _>_ 2. (IV.18) 

This  last relat ion is the one we need to obta in  the asympto t i c  expans ion  of  R k ( g / n  ), 

which will now be discussed. 
Let  us m a k e  a last remark ,  the relat ion (IV.8) holds only f rom n = 2, because 

the last re lat ion (IV.17) holds  only  f rom n = t. Therefore  it is necessary to compu te  
directly f rom (IV,15), R 2 and R a one gets: 

d 2 = 1 + b E + 4 f l s  2 

1 - s 2 - 4 f l s  2 
C2 - -  

S 2 

72 -- (4f l  s2 + ½s2 - 1)s2 1 

1 - s 2 - 4 f l s  2 

R 2 - -  4 f l s 2  

1 2fls22 + s 2 - I 

c 3 = s2(1 - s 2 - 4 f l s  2) 

1 - s 2 
d 3 - 4 f l s  2 

(IV.19) 
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1 - ~-s 2 + 2(¼ - 6fl)s~ + 2fls~ 
])3 = S2(1 __ S2 __ 4flS2 ) (IV.20) 

12fls 2 + s 2 - 1 
R a - - - -  

4fls2(1 - s 2 - 4fls2)" 

I t  is easy to check that  the values of  R 2 and R 3 obta ined  in this way are the same 
as the ones which one gets by  m a k i n g  use of  formulae  (II.19), (II.21) and  (III.4). 

H o w e v e r  if one sets R 0 = 0 in (IV.8) and  R 1 = s 2, the correct  value of  R 2 is 
then obtained,  for n = 0; then for n = 1, also the correct  value of  R a is obtained.  
Therefore  we can consider  (IV.8) to be valid f rom n = 0, p rov ided  we set R o = 0. 

V. Estimate of  the Generating Ftmetions Eo(g ) and El (g  ) 

T o  compu te  the generat ing functions Eo(g ) and  El(g  ) f rom formulae  (III,14) and 
(IIL 15), it is necessary to have  an a sympto t i c  es t imate  of  Rp(9/n). 

When  g = 0(fl = 0), Eq. (IV.18) reduces to:  

Rn+ 1(0) = 1 + R,(0). (V.I) 

Tha t  is, using the previous  remark ,  tha t  in fact (VA) is valid f rom n = 0 with R o = 0: 

R,(0) = n. (V.2) 

There fore / ]k  = Rk(g/n) satisfies the equat ion:  Rk(0) 

[(k + 1)/~k+ 1 -- ki~k] + ~ { ( k  + 1)/~k+ : [ (k  + 1)/~k+ 1 + (k + 2)/~k+:] 

-- kRk(kR * + (k - 1)/~ k_ 1] } = 1. (V.3) 
Setting: 

P 
X ~ -  

n 

1 
e = - (V.4) 

n 

= y (x) 

Eq. (V.3) becomes :  

[y~[x + e] - y , [ x ] ]  + 49[y~(x + e)[y , (x  + e )+  y , (x  + 2e)] 

-- y~(x)[y~(x) + y~(x -- e ) ] ]  = e. (V.5) 

Expand ing  y~(x) in powers  of  e, we have:  

ye(x) = y(x)  "q- eyl(x ) -t-/32y2(x) q- e3y3(X) + 0(/34"), (7.6) 

and  

y~(x + e) = y(x) + e[Yl(X) + y '(x)]  + e2[y2(x) + y'l(x) + ½y"(x)] 
t33 ~ 1 ¢~ 1 rrt q- [Ya(X) q- Y2(X) -t- ~yl(x) q- ~-y (X)] -F. . .  
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y,(x -- 8) = y(x) + e[yl(x) -- y'(x)] + e.Z[Y2(X) -- y'l(x) + ½y"(X)] (V.7) 
3 t 1 tt 1 m + s [Y3(x) -- y2(x) + gyl(x)  -- gy  (x)] + . . .  

t 1 It y~(x + 2e) = y(x) + e[yl(x) + 2y'(x)] + s2[y2(x) + 2y1(x) + -£y (x)] 

+ e3[Y3(X) + 2Y2(X ) + 2y'i(x) + ~y"(x)]  + . . .  

Identifying the powers in e in (V.5) we get, up to 51 terms: 

term :y'(x)[1 + 24gy(x)] = 1 (V.8) 

s z term : {y"(x)[1 + 249y(x)] + 249y'Z(x)} + 2y'l(x) + 48g[y(x)y~(x)]' = 0. (V.9) 

Equat ion (V.9) simplifies, if one takes into account (V.8); it reduces to:  

[yl(x) + 249y(x)yl(x)]' = 0, (VA0) 

that  is 

yl(x) = Kly,(x). (V.11) 

However one has to take into account the boundary  condition: 

y~(0) = 0 (V. 12) 

or 

y(0) = yl(0) = y2(0) = y3(0) . . . . .  0. (V.13) 

Then integrating (V.8) we get: 

y(x) = - t + V/1 + 48gx (V,14) 
240 

and 
y~(x) = 0, (V,15) 

taking into account (V.13). 
The fact that  y~(x) is identically zero simplifies the contr ibution of the s 3 

term, which reduces to:  

6y' 2 + y" + 49{y(36y' 2 + 12y") + y'(36y 2 + 24y")} = 0. (VA6) 

However by differentiating twice equat ion (V.8), we can simplify (V,I 6), which 
becomes: 

[Y2 + 49[yy" + 6yy2] ] '  = 0; (V. 17) 

or 

Y2 = [K2 - 49YY"]Y'. (V.18) 

K 2 is fixed by the condit ion y2(0) = 0, which gives K 2 = 0 

Finally 

96g2y(x) 9692y(x) (V. 19) 
Yz(X) = [1 + 24gy(x)] 4 - (1 + 480x) 2" 
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And the corresponding functions p(x) and P2(X) read: 

p(x)= y(x)_= - 1 + ~/1 + 489x 
x 249x , (V.20) 

pz(x ) yz(x) _ 49 ( -  1 + ~/1 + 489x ) (V.21) 
x x (1 + 489x) 2 

As stated previously these functions are holomorphic in x on the closed interval 
[0, 1] and strictly positive on this interval. 

Formulae (V.20) and (V.21) give for Rp(g/n) the expansion: 

1 
Rp(9/n) = p(p/n) + ~ p2(P/n) + ... (V.22) 

and 
9692 

Ro(9/n) = 1 + ~ -  + . . .  

Rl(o/n) = 1 - 129 + 384 92 
n ~ + " "  (V.23) 

Rz(g/n ) 1 249 = - + 1248 + ... 
n 

Ra(9/n) 1 36g ng ~ = - +2688 + . . .  
n 

Rl(g/n), Rz(g/n) can be checked to agree up to the order 1/n 2, with the expan- 
sions one can get directly from formulae (IV.19), (IV.20) combined with (111.5). 

Contrary to what we have stated in (IILIO) we do not find/~0 = 1, however 
the first formula of (V.23) shows clearly that the correction to the final formulae 
will be of order 1In 3 which in the present situation is irrelevant. 

Combining (V.20) and (111.14) we get, integrating by parts: 

p'(x) , 
- Eo O) = l t l  - x ) l o g  p ( x ) d x  = ½ log  x -  

o 249 o ~ - ~  ax. 

(V.24) 
_ _  1 

_eo(o )=½1og  1 + x / ] - + 4 8 g  3 l l ( l + 4 8 g x ) _ l / Z d  x 
24g + 8 - 2 0 

+ x(1 + 489x )- 1/2 dx (V.25) 

= ½ 1 o g - l + x / l + 4 8 9  3 1 1 x / l +  - -  
249 + g +  4-~# + 3.(489)2 3.(4894)89(I + 1200). 

(V.26) 
Setting 

a2 = - 1 + x / 1  +489 
249 

(V.27) 
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we recover formula of reference [1]: 

. . . .  ( 2 p -  1)! 
- E o ( O )  = ½ log a 2 - ~ ( a  z - -  1 ) ( 9  - -  a 2) = L ( - I z g v  ¥ 

p = l  

In the same way, combining (V.21) and (III.15) we get: 

o r  

(V.28) 

1 [ - 1 +  x / - l + ~ 9 ]  ( 1 -  x)dx 
- E 1 ( 9 ) = - 3 9 + ] - ~  120-1og  ~ j + 9 6 0 Z i ( l + 4 8 0 x )  2 ' o  

(V.29) 

_ E l ( o ) = _ ~ l o g l + a 8 0 - x / / i + 4 8 9  1 ~ ( -120)P~4 p (2p)!~ 
249 - 2 4  P L - ( P ! ) 2 J  p = l  

(v.30) 
The first coefficients of the expansion of E l ( 0 )  a r e :  

E1(9 )  = 0 - 3002 + 1 0 5 6 0 3  - . . .  

Using the variable a 2 defined in (V.27) we get: 

El(a 2) = ~ 1og(2 - a2). 

(V.31) 

(V.32) 
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Note Added in Proof. Dr. J. B. Zuber  has  worked out  the E 2 function: 

1 (1 -- a2) 3 
E2(O) = ~ ~ (82 + 21a 2 - 3a4). 

A p p e n d i x  I 

We want to prove formula (II.3). From the definition of a determinant we have: 

D,,_ 1 = ~ (__)v(i,,i2,...i.) #_ 1 + il,ui2, u , + i3 .." la(,_ 2)+ in (hi. 1) 

+oo j=n 
I Z dlt(xj)Z(--)e~i"i~'"'~")x; i+i ' '~ ' l+'3 x("-2)+" (AI.2) ~2  "~3 . . . . .  n 

- ~ j = l  
1 1 . . .  1 

+co j=n X1 X2 Xn 

. -  1 ( M . 3 )  = I Z • . . . . . . . . . . . . . . . . . .  

-0o j = l  n - 1  n - 1  n - 1  
X 1 X2 Xn 

If one permutes in (AI.3) the xj in all possible manners and adds up the results, 
one gets: ! 

+o~ j=n t l  1 ... 1 2 
n [D._i = S ~ dll(xj) x 1 X2...X. (AI.4) 

- o o j = l  ] n - 1  - 1  
X 1 X n 

which is just (AI.3). 
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Appendix H 

The Laguerre method. 
We shall, for completeness explain in detail the Laguerre method for expanding 

in continued fraction, the solution of a linear differential equation of the first order 
with polynomial coefficients. 

G(z), the generating function of the moments is the solution of: 

W(z)G'(z) = 2V(z)G(z) + U(z), (AII.I) 

where 

W(z)  = l 

z 
V ( z )  . . . .  2 f i z  3 (AII.2) 

2 

U(z) = (1 + 4fis2) + 4flz 2 

and 

~(z) = so + sl sk 
z ~ + "'" z k+---i + "'" (AII.3) 

with 

So--- 1 
Szk+ 1 = O. (ALIA) 

We see that ~z )  is formally an odd function of z. Therefore the approximation 

N,(z) (AII.5) [n - 1/n] (z) = U,(z) '  

has its polynomials M,(z) which are of parity ( - ) "  and degree n while N,(z) are 
of parity ( - )"- 1 and degree n - 1. 

We have by definition of the [n - 1/n] Pade Approximations: 

N,(z) ~- O(z_(2,+ 1)). (AII.6) G(z) = M,(z) 

If we derive with respect to z. we get: 

G'(z) = N'z(z)M"(z) - M',(z)U,(z) ~ O(z-(2,+ 2)) (AII.7) 

and introducing (AII.7) into (AIL 1): 

U(z)M~.(z) + 2 V(z)N.(z)M,(z) - W(z)[N',(z)M.(z) - M'.(z)N.(z)] = A,O,(z). 

(AII.8) 

where A~ is a constant suitably chosen and O.(z) a polynomial in z such that: 

A,O,(z) = i 2 ( z )  { W(z)'O(z- (2, + z)) + V(z)" 0(z -/2, + 1)) (AII.9) 
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(AII.9) shows dearly that O.(z) is at most of degree 2 in z, taking into account that 
W(z) is of degree zero and V(z) of degree 3. 

Therefore we can set: 

O.(z) = c.z 2 + d.. (AII.10) 

There is no odd term in O.(z) by the parity argument. 
We recall that the polynomials M.(z) and N.(z) fulfil: [5] 

N.  + 1  (z)M.(z) - M.  +l(z) N.(z) = A. + l- (All. 11) 

where we fix the previous constant which was arbitrary to be equal to the constant 
in (AII.11). 
Pluging the value of A. from (AII.11) into (AII.8), we get: 

[ U(z)M.(z) + V(z)N.(z) - W(z)N:,(z) + O.(z)N. --1 (Z) ]Mn(z ) 
= [O.(z)M._ l(z) -- W(z)M'.(z) - V(z)M.(z)]N.(z), (AII.12) 

. ,  . U . ( z )  
which implies due to the fact mat - -  is an irreducible fraction 2: 

M . ( z )  

W(z)M.(z) = [~2.(z) - V(z) ]M.(z) + O.(z)M._ l(z) (AII. 13) 

W(z)N'.(z) = [(2.(z) + V(z) ]N.(z) + O.(z)N._ l(z) + U(z)M.(z) (aII.14) 

where O(z) is a polynomial. 
From (AII.11) written for A. and A.+ 1, one gets: 

[A.N.+ l(Z) + a.+ 1N._ ~(z) ]M.(z) = [A.M.+ t(z) + A.+ 1M._ ,(z) ]N.(z). (aII.15) 

Setting 

A. + 1 (AII. 16) 
R . -  A . '  

. N . ( z )  . . 
we see, using again the irreducibility o r - -  that (AII, 15) implies: 

M.(z) 

N.+ l(Z) - Q.(z)N.(z) + R.N._ l(Z) = 0, (AII.17) 

M.+ ~(z) - Q.(z)M.(z) + R.M._ a(z) = 0, (AII.18) 

where Q. is a polynomial of degree 1, which by parity has no constant term, 
furthermore here: 

Q.(z) = z, (AII, 19) 

because our polynomials are normalized following (II. 12) and (II. 13). 
We have now to fix the degree of •.(z). From (AIM 3), one gets: 

T , , M' . (z)  O.(z) M,,~_)(z) .  (aII.20) 
O.(z )  = V ( z )  + w tz~ m . ( z )  - t u . t z )  

Sending z ~ + ~ ,  we see that O.(z) increases like the term of highest degree of the 

2 This is so, because the zeros of N.(z) are separated by those of M.(z) [5] 
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polynomial part of: 

W(z)  
V(z) + n - - ,  (AII.21) 

Z 

that is, here: 

f2 = - 2fiz 3 + ~.z. (AII.22) 

There is no even part in f2  by parity argument. 
If we derive (AII.18) and multiply by W(z), we get: 

W(z)M'.+ ,(z) - Ve(z)Q.(z)M'.(z) - W(z)Q' .(z)M.(z)  + W ( z ) R . M ' . _  l(z) = O. 

(AII.23) 

But using (AII.13) written for n - 1,n and n + 1, in (AII.23) we obtain: 

( (2 .+  1 - V ) M . +  a + [ 0 . +  1 - WQ' .  - Q. ( f2  - V ) ] M .  

+ [R.(fJ._ a - V) - Q.O.]M._I  + R.O._ 1M._ 2 = 0. (AII.24) 

Substituting 

M.+ 1 = Q . M .  - R . M . _  1 , (AII.25) 

we get: 

[Q.(YJ.+ 1 - f2) - Q Q' + 0.+ 1]M. - [R.(I2.+ 1 - ( 2  1) + Q.O.]M.-1  

+ R.O._ 1M._ 2 = 0. (AII.26) 

This Eq. (AII.26) must be compared with (AII. 18) written for (n - 1). And therefore: 

Q.(z)(f2.+ l(z) - Q.(z)) + 0.+ l(z) - R .  0._ l(z) = W(z)Q'.(z). (AII.27) 
i n -  1 

+ ~(z) - o _ l(z)) = ~ Q ._  ~(z)O._ ~(z) - O.(z)O.(z) R.( (2. (AII .28) 

By adding up all Eqs. (AII.28) we get: 

( ~ 2 + ~ + O ) =  O.Q. [ Q _ 1 0 _ 1 1  R. ~- (f2-t + O°) + ~ " (AII.29) 

But initialization implies: 

Oo(z) - U 

0_ l(z) - 0 (AII.30) 

~o(Z) - -  V(z) 

~ _  l(z) - - V(z),  

and therefore 

(~C-~n+ 1 -~- ~'~n) -~- OnQn (AII.31) 
R. 

All the necessary machinery for section IV has been set up. 
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