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Abstract. We reduce the counting problem for the vacuum diagrams of a ¢*
theory to a moment problem. As a consequence we are able to give the generat-
ing function for the counting of diagrams on a torus with one hole, besides the
known result for planar diagrams. The method can be extended to ¢" theory
and also to the counting of diagrams on a torus with an arbitrary number of
holes.

I. Introduction

In their paper Planar Diagrams [1], E. Brézin, C. Itzykson, C. Parisi and J.B. Zuber
have discussed the combinatorics of Quartic Vertices, and found the generating
function E‘°(g) which solves the counting problem for the vacuum diagrams in the
planar approximation. The technic used was the saddle point method. Unfortunate-
ly this method does not provide an easy way to reach even the next generating
function EM(g) which solves the counting problem on a torus with one hole.

In this paper, we have obtained for this generating function a rather simple
expression:

EN(g)={510g(2 — a?), (L.1)
with, following the notation in [1]:
12ga* +a®> —1=0, L2

where the root to be taken (1.2) is the root regular at g = 0. Of course we have also
verified that the generating function E©(g) is given by:

EO(g)= — Jlog a® + 57(a* — 1)(9 — &?). (1.3)

The general case, the computation of E®(g) for k = 2 will be considered elsewhere.
As shown in [1], the generating functions E®(g) appear as coefficients in the
asymptotic expansion:
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where I,(g/n) is the integral:

+ 00 i=p
Lgm= | 1 @2y [[e 02%-Emitg, (15)
- 1Sisjsn i=1
We show that I, can be thought as the Hadamard determinant of order n associated
with the positive measure

dp(A) = e~ ¥12—@mdt g; (1.6)

By expanding in continued fraction the generating function of the moments
associated with the measure (1.6) we obtain a non linear recursive relation for the
coefficients of the continued fractions.

This relation is equivalent to a non linear recursive relation among 6 conse-
cutive [

We show that, in the limit n — o0, those recursive relations transform into an
infinite set of coupled differential equations, forming a triangular system which
can be analysed.

The method extends naturally to measures which are exponentials of an
arbitrary polynomial, and therefore to vertices with n lines.

Here we have only worked out the functions E©)(g) and E®(g) but, it seems
feasible with this method to get eventually E® in closed form: this will be discussed
in a near future.

II. The Moment Problem Formulation

Let us consider a positive measure du(x) defined on [ — oo, + o0, and its associated
moments:

+ o0

to= | xfdu(x) k=0,1,2,... (IL1)
The integral
top im=p
L= § [ldux) [l (=x,)? (I1.2)
—w i=1 15i<jzn

can be reexpressed in terms of the s, by the formula (see Appendix AI)
I.=n!D,_,, (IL3)

where D, is the Hadamard determinant of order (n+ 1), associated with the
moments p, :

Ho Hy - H,

Dy=|. i, (IL4)
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The generating function of the ,’s, has, for formal expansion in powers of 1/z:

6@ =2+5 . +,f‘f1+ (IL5)

We shall normalize the problem, by setting:

6= _ SO+ L. +k+1+ : (IL6)
Ho
with
So=+1
Hy
5, =—* .7
i IL7)

_ 81 Sy e Sy,4q
i (IL8)
Sp Sp1 "'SZn

D, and D, are connected by:
D, = ui*'b,. (IL9)

We shall, from now on, consider the case where the odd moments y,,,, are
identically zero, and therefore introduce the continued fraction expansion of
G(z) [2]:
G(z)= Py
z—R,
z— R,

z— ... (11.10)

The nth approximation to it, is a rational fraction, the [n — 1/n](z) Padé Approxi-
mation, that we write:

[n—1/n](z) = 8 (IL11)
where
M@2)=z2"+ ..., (I1.12)

is a polynomial of degree n in z with the highest degree coefficient normalized to 1,
and

N@)=72""+ ..., (1L.13)
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is a polynomial of degree (n — 1) in z with the highest degree coefficient normalized
to 1.
The first approximations read:

[o/1] =-IZ- (IL14)
1
1/2]= 11.15
[1/2] -y (IL15)
zZ
[2/3] = — 11.16
:=R, (IL16)
z—R,
V4
N, =1
M, =z (I1.17)
N,=z
M,=2—R, (IL18)
R, =3,
Ny=z-R,
M,=z[z2— (R, +R,)] (IL19)
S,— 82
R,=22"%
2 SZ
and
1
3/4]= —
341 =
z—R,
5,
with z (11.20)
N, =z[z*— (R, + R,)]
M,=z*—Zz*(R + R, + R,)+ R,R, 11.21)
_ 528 — 5
? $y(s4 — 53)
From D, =R R?_, ...R"~1(I1.22), we sce that:
D, =R =5,
D,=R,R2=(s, — s, (11.22)

Dy =R RIR} = (545, — $2)(s, — $3).

1 This is a consequence of R,D?_, =D, _,D, [13]
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Finally, combining (I1.3), (11.9) and (11.22), we get:
I,=nlgR7"'RE2...R*_,R,_,. (11.23)

The problem of evaluating I, is therefore reduced to the problem of computing
the R, from the measure du(x).

To end this paragraph we give for completeness the recursive relation among
the polynomials M,(z) or N,(z), the numerators and denominators of the nth
approximation fulfil the relation:

Y10 =zY{2) — R, Y,_,(2), (I1.24)
with

No(z)=0 N,(»)=1

Myz)=1 M,(z)="z.

As is well known the M (z) form the set of orthogonal polynomial with respect
to the measure du(x).

(I1.25)

III. Asymptotic Formulae

In the present situation the measure du(x) reads:

dpfx) = e~ M2 —Bx" (IIL1)
with
p=2. (I1L.2)
n
The moments of the measure:
+ oo
fo= | xte=¥127Fgx, (II1.3)

have the following properties:
s =0

(I1L.4)
@k + Dy =tory 2+ 4Bty
or
Soe+1=0
114
2k + sy =555 + 4ﬁ52k+4} ( )

The recursive relation (II1.4) shows clearly that G(z), the generating function of the

moments has to be the solution of a linear first order differential equation with

polynomials coefficients. We shall use this fundamental remark in Sect. IV.
Expanding for k even (II1.3) in powers of f§, we get:

( g)p
g =\ n K+ 2p+1/2
yz,c(_>= Y 26T UI (k4 2p + 1/2)

n p=0 p!



152

()
2 Y 135, 2k +4p—1).
p=0 P'

In particular:

g
figlg/my =129 _ §° " 135...4p—1).

HQ(O) -—pzo
Following reference [ 1], we want to evaluate the asymptotic expansion:
Lig/n) _ 1(9) E)g)
R TR n*
Setting
= R {g/n)
R, (g/n)=—%
Ao ="2
we have, from formula (I1.23):
1, I@m 1. _ 122" p _
— u =-1 ~ 1—=ji
87 0) ~u'°8 Polg/m)+— EO - Jlog R (g/n),

where we have set
R,=1.
It will be shown in the sequel that Rp(g/n) has the following expansion:

R (g/n)= p(p/n) + ;llzpz(p/n) + ...
with
p0)=1,

where p(x), p,(x) are holomorphic on [0,1].
By making use of the Euler formula, that we recall:
Let f(x) be of class C?? on [0,1], then:

23 Floim =] S+ L7 OS]+ S L5 O]

1
4] 4[fm(1) fll(o)]+ (_,..)P(zp 2)y “2p-2
L0 OO+ (-
TP +1P0e) + o 120 (x,)]
where
i—1

D. Bessis

(I11.5)

(I11.6)

(I1L7)

(IIL8)

(I1L9)

(II1.10)

(1Ll

(I1L12)

(IIL13)
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We get:

— Eolg) = } (1 — x)log p(x)dx (ITL.14)
and O

—E\(g)=—-3g+:[— PO —logp()]+ (})(1 —x? 2(( )) (IIL15)

where we have used (IIL6) to expand log Ji,(g/n) up to second order in 1/n, as
well as (ITL.11).
IV. A Recursion Formula

We shall now derive a recursion formula for the R (B). In the sequel we shall keep
p fixed independent of n. We consider the generating function of the 4, :

0 —x2/2 — px* dx
k+Oz —-Xx

As pointed out in the previous section, G(z) must fulfil a linear first order differen-
tial equation. It is not difficult to obtain the equation:

G'(2)+ [z + 4Bz%]G(2) = o + 4Buy + 4Buyz>. (Iv.2)
Therefore G(z) = G(z)/u, satisfies the equation:

W(z)G'(z) = 2V(2)G(2) + U(2), Iv.3)
where

W(zy=1

V(z) = — % — 2p7° (IV.4)

Ulz) = (1 + 4Bs,) + 4pz2

Here s, = §3 following (I1.7).

(1)
We must now expand in continued fraction the solution of (IV.3) which admits

the positivity representation (IV.1).
Following Laguerre [4] (we give in Appendix AII the necessary elements to
understand this construction), we consider the function:

V+%W—=—2ﬁ 3~§+— (IV.5)

to which is associated the polynomial Q, having the same term of highest degree
as the polynomial part of the previous function:
Q = -2 +7,z, (IvV.6)

where in £, there is no even part due to a parity argument. We also introduce,
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still using the same parity argument:
0, =cz*+d, (Iv.7n
0,=z (IV.8)
The Laguerre equations read:
R
Qn[Qn+1_Qn]+0n+1 —R . 97:——1 WQ;
n—1
0
Q. +0 = (IV.9)
Rn
O,=U; Q,=V; 0_,=0.
This system of equations reduces to:
Rn Rn
Zz(yn'f-l - ’yn)_’_ (cn+1 - Kcn—l)z2 + (dn+l - Rn‘ldn—l) =1
—4Bz3 4,y + )= — Ri(c,;2 +d,)
“¢oz? +dy=4Ppz% + 1 + 4Ps, Iv.10)
— 2B + oz = — 2823 ——;—
¢_Z22+d_,=0.
which by identification gives:
Vot1 = Tut Cor1— R, ¢, =0 whennzx1
Rn -1
RH
dn+1=1+Rn_1dn~l ngo
V.11
4f = }%’ nz0 ( )
d
yn+1+yn=_R—: nzo
The first relation in (IV.11) for n = 0 reads differently:
V1= Yo +c, =0 (Iv.12)
To the set of Egs. (IV.11) we have to add, the initial conditions:
c, =4f
dy = 1+ 4Ps,
Vo= —1/2 (Iv.13)
R,=1

Il

-1

¢ 0
d_;=0

Il
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From (IV.13) we get
¢, =4Ps,
d, =1
7, =1
v = — G+ 4s,) (V.14
R, =s,.

The value obtained for R, fits exactly the value in (I1.18), which shows correct-
initialization.

We shall rewrite (IV.11) as:

yn+1 —yn= “4B(Rn+1 “Rn) n; 1

c,=4pR,
Yav1 T V= “K’; av.13)
=
The first equation in (I'V.15) is immediate to solve and gives:
7.=71 +4PR, —4PR,= ~ 5 —4PR,. (1V.16)
Finally we have:
.= —3—4PR, nx1
c,=4pR, n=0 (Iv.am
d,=R,+4BR(R,+R, ) nz1
and

[R,,,—R]+4B[R,. (R, +R,.,)—R(R,+R,_)]=1 nz=2. (IV.1§)

This last relation is the one we need to obtain the asymptotic expansion of R,(g/n),
which will now be discussed.

Let us make a last remark, the relation (IV.8) holds only from n = 2, because
the last relation (IV.17) holds only from n = 1. Therefore it is necessary to compute
directly from (IV.15), R, and R, one gets:

d, = 1+b,+ 4ps}

o= 1—s,— 4Bs3
2= (IV.19)
V2 = (4552 + %32 - 1)351
R2=1—52—4ﬂs§
4ps,
12Bs2 + 5, — 1
cy =

B s;(1—5,— 48s3)
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_ 1—3s,+2G —6p)s3 + 2Bs]
BT sy(1 — 5, — 4Ps3)
R. = 12852+ s, — 1
> 4Psy(1 —s, — 4fs3)
It is easy to check that the values of R, and R, obtained in this way are the same
as the ones which one gets by making use of formulae (I1.19), (IL.21) and (ITL4).
However if one sets R, =0 in (IV.8) and R, =s,, the correct value of R, is

then obtained, for n = 0; then for n =1, also the correct value of R, is obtained.
Therefore we can consider (I'V.8) to be valid from n =0, provided we set R, = 0.

(Iv.20)

V. Estimate of the Generating Functions E(g) and E, (g)

To compute the generating functions Ey(g) and E,(g) from formulae (I11.14) and
(II1.15), it is necessary to have an asymptotic estimate of R (g/n).
When g = 0(8 = 0), Eq. (IV.18) reduces to:

R,.0)=1+R/0). (V.h)
That is, using the previous remark, that in fact (V.1)is valid from n = O with R, = 0:

R, 0)=n. (V.2)
Therefore R, = Ry(a/) satisfies the equation:

R0)

[+ DR,y — R+ + DR o[+ DRy, + ot DR 5]

—kRKkR,+(k—DR,_,]}=1 (V.3)
Setting:
_Pp
x==
n
= 1 (V4)
n
XR,. = y,(x)

Eq. (V.3) becomes:
Lyolx + €] = yo[x]] + 4gly.(x + &) [y.(x + &) + y(x + 28) ]

= v [yx) + ylx - )] =e. (V.5)
Expanding y,(x) in powers of ¢, we have:
) = y(x) + ey, (x) + €2y,(x) + £3y,(x) + O(e*), (v.6)

and

Vdx + &) = y(x) + e[y, (x) + ¥ (x) ]+ €[y, (%) + ¥, (x) + 31" (x)]
+ [y + y3(x) + 3¥1) + § ()] + ...
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yx — &)= y(x) + e[y, (x) — Y() ] + & [v,(x) — ¥y () + 3y"(0)] V.7
+ & [y500) — ¥ox) + 3110 — 5y " (x) ] + -
Yx +28) = y(x) + e[y, (x) + 2y () ] + 82[)’2(35) + 2y1(x) +3Y' ()]
+ E[y,(x) + 2y5(x) + 2y () + £y (x)] + -
Identifying the powers in ¢ in (V.5) we get, up to &* terms:
gterm :y'(x)[1 + 24gy(x)] =1 (V.8)
¢ term : {y"(x)[1 + 24gy(x)] + 249y ()} + 2¥,(0) + 48g [0}y, (0)] = 0. (V.9)

Equation (V.9) simplifies, if one takes into account (V.8); it reduces to:

[y,(x) + 24gy(x)y,(x)] =0, (V.10)
that is

y1(x) = K y'(x). (V.11)
However one has to take into account the boundary condition:

y{0)=0 (V.12)
or

¥0) = y,(0) = y,(0) = y;(0)= ... =0. (v.13)

Then integrating (V.8) we get:

o= —1+/1+48gx V.14
24g
and
y1(x)=0, (V.15)

taking into account (V.13).
The fact that y,(x) is identically zero simplifies the contribution of the &
term, which reduces to:

6y, + ¥ + 4g{y(36y, + 12y") + ¥ (36y, + 24y")} =0. (V.16)

However by differentiating twice equation (V.8), we can simplify (V.16), which
becomes:

[y, +4glyy” + 6yy,]1 =0; (V.17)
or
vy =K, —4gyy"1y. (V.18)
K, is fixed by the condition y,(0) = 0, which gives K, =0
Finally
9642 y(x 9692 y(x)
Vo(x)= g ) _ 969 ) (V.19)

[1+249y(x)]* (1 + 48gx)*
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And the corresponding functions p(x) and p,(x) read:

o(x) = y(x) -1+ 2\4/g1x—|— 48gx (V.20)
pz(x)=y2(x)_ig_(ﬂ1+~/1+48gx)' Va1

x  x  (1+48gx)?

As stated previously these functions are holomorphic in x on the closed interval
[0, 1] and strictly positive on this interval.
Formulae (V.20) and (V.21) give for R (g/n) the expansion:

R,(a/m) = pp/n) + (o) + .. (v22)
and
Rylg/m =1 +9622 + ..
2g g°

Rigm=1-—2+ 384 Z (V.23)

2

_ 24
R,(gm=1- Tg +1248 % +

2

_ 36
Rygy=1- ?9 + 2688 % +

R, (g/n), R,(g/n) can be checked to agree up to the order 1/n?, with the expan-
sions one can get directly from formulae (IV.19), (IV.20) combined with (IIL5).

Contrary to what we have stated in (IIL10) we do not find R, = 1, however
the first formula of (V.23) shows clearly that the correction to the final formulae
will be of order 1/n® which in the present situation is irrelevant.

Combining (V.20) and (II1.14) we get, integrating by parts:

- B = (1 - wtog s = 1og = Y L),

plx
(V.24)
- 3 11
—Eyg)=411o =1 +————1 +48 j(l + 48gx)~*2dx
24q
1 1
+ 3 (1 + 48gx) 2 (V.25)
0
- 301 1 J1+48
Pt e VA . P S -2 4 1209).
24g 8 485 3-(48g)F  3-(48g)
(V.26)
Setting
—14+ 1
2 —1+J/1+48 (V27)

24g
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we recover formula of reference [1]:

— =1 2 12 2 (21’ 1)
In the same way, combining (V.21) and (III.15) we get:
-1+ \/I + 48g x)dx
—EA)= —3 B A4
1@)=—39+7; [129 24g ] 5(1+48 X
(V.29)
or
—E()=—2lo 1+48g—/1+48g 1 i (— L2g) 4p_(2p)!
1 g)= 12 £ 24g - 2 e p (I) !)2
(V.30)
The first coefficients of the expansion of E,(g) are:
E,(g)=g — 309> + 1056g° — ... (V.31)
Using the variable a? defined in (V.27) we get:
E,(@*) = $5log(2 —a?). (V.32)
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Note Added in Proof. Dr. J. B. Zuber has worked out the E, function:

1{-a%

E,lg)= e—aF (82 + 21a* — 3a%).

6! 2—
Appendix I
We want to prove formula (I1.3). From the definition of a determinant we have:
= Z(-—)P(i”iz""i")ﬂ_ it sty B2y +i (ALl)
j’ i d,u(x )Z( )P(u Siz,. ln)x— 1 +11x12x1 +13 . Xg"_2)+i" (A12)
- j=1
1 ... 1
+w j=n X1 X2 Xu
= [ Y dule)xx3xg XM (AL3)
~—a j=1 x;; 1 x121~1 x:—-l

If one permutes in (AI3) the x; in all possible manners and adds up the results,
one gets:
1 1.1 2

+oo j=n
D,y = | X dulx)ix; x,...x, (AL4)
= j=1 X~ 1 xn—l
1 n

which is just (AL3).
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Appendix II

The Laguerre method.

We shall, for completeness explain in detail the Laguerre method for expanding
in continued fraction, the solution of a linear differential equation of the first order
with polynomial coefficients.

G(z), the generating function of the moments is the solution of:

W(2)G'(2) = 2V(2)G(z) + U(z), (AIL1)
where

Wi(z) =1

Viz)= — ; — 2853 (AIL2)

U(z) = (1 + 4Ps,) + 482>
and

G(Z)=S;°+z—1z+---szfq+-~- (AIL3)
with

5p=1

All4
Sak+1 =0 ( )

We see that G(z) is formally an odd function of z. Therefore the approximation

N,)

[n~ V)&= 375

(AILS)

has its polynomials M,(z) which are of parity (—)" and degree n while N (z) are
of parity (— )"~ ! and degree n — 1.
We have by definition of the [n — 1/n] Pade Approximations:

N,(2)

6@ =310

+0(z~ @+, (AIL6)

If we derive with respect to z, we get:
N2)M,(2) — M(2)N (2)
M)

and introducing (AIL7) into (AIL1):
U(2)MX(z) + 2V(z)N (2)M,(z) — W(2)[N(2)M,(z) — M(z)N (2)] = 4,0,(2),
(AILS)

where A, is a constant suitably chosen and 0,(z) a polynomial in z such that:
A,0,(2) = MA2){W(z)- 0z~ ®"* D) + V(2)-0(z~/>"* 1) (AIL9)

G(2)= + 0z~ @2y (AIL7)
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(AIL9) shows clearly that § (z) is at most of degree 2 in z, taking into account that
Wiz) is of degree zero and V{(z) of degree 3.
Therefore we can set:

02)=c,2*+d,. (AIL10)

There is no odd term in 6 (z) by the parity argument.
We recall that the polynomials M, (z) and N (z) fulfil: [5]

N i(@OM (&)= M, (N, (2) = Ay - (AIL11)

where we fix the previous constant which was arbitrary to be equal to the constant
in (AIL11).
Pluging the value of 4, from (AIL11) into (AILS), we get:

[U@M, (2) + V(z)N (z) — W(z)N(2)+ 6 ()N ,_,(2) IM (2)

=[0,(2M,_,(z2) — W(zIM.(z) — V(z2)M () N (2), (AIL12)
which implies due to the fact that N2) is an irreducible fraction®:
M,(2)
WM (z) = [2,(2) — V(2) ]M (2) + 0, (2IM,,_,(2) (AIL13)
W(ZN(2) = [2,(2) + V(2)IN (2) + 6 (2N, _ ,(2) + U(z)M (2) (AIL14)

where ©,(z) is a polynomial.
From (AIL11) written for 4, and 4, , one gets:

[AN,. @+ A, N,_ M, (2)=[AM,, (2)+ A, . M,_(2)]N,(2). (AILl5)
Setting

A +1
= AIL16
R” An ’ ( )
. . . o N (2) L
we see, using again the irreducibility of ) that (AIL15) implies:
atZ
N,.1(2)— Q2N (2)+ R,N,_,(z)=0, (AIL17)
M, (@) — QM)+ RM,_,(z)=0, (AIL18)

where Q, is a polynomial of degree 1, which by parity has no constant term,
furthermore here:

0(2)=1z, (AIL19)

because our polynomials are normalized following (I1.12) and (IL13).
We have now to fix the degree of Q,(z). From (AIL.13), one gets:

M) M)
ME DM

Sending z — + 0, we see that © (z) increases like the term of highest degree of the

Q2)=V()+ W(z) (AI1.20)

2 This is so, because the zeros of N (z) are separated by those of M, {z) [5]
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polynomial part of:

W(z)

V(z)+n (AIL21)

that is, here:
Q =—-2B+y,z2. (AIL22)

There is no even part in 2 by parity argument.
If we derive (AIL18) and multiply by W(z), we get:

WM, ; 1(z) — M2)Q, (DM (2) — W(2)Q,(2IM,(z) + W(R, M, _,(z) = 0.

(AIL23)
But using (AIL13) written for n — 1,n and n + 1, in (AIL23) we obtain:
( n-1 V)Mn+1 +[6n+1 WQ;—Qn(Qn_U V)]Mn
+[R&,_,—V)-00]M,_,+RO,_ M, ,=0. (AI1.24)
Substituting
M, ,,=QM —RM, _,, (AIL25)
we get:
[Qn(Qn+ 1 ) - Q Q’ + 9n+1]Mn - [Rn(QrH-l - Qn—l) + Qnen]Mn——l
+R6,_ M, _,=0 (AIL26)
This Eq. (AI1.26) must be compared with (AI1.18) written for (n — 1). And therefore:
R,
2.2, 2-22)+0,, .(2)— - {2)= W20 (2). (AIL27)
R
R 1(d) = 2, @) =0, Az)e,,-l(z) ~0,20,(2) (AIL28)
n—1
By adding up all Eqs. (AIL.28) we get:
0 0
@, +Q)=-"% @ +o)+ 2] (AIL29)
R, R_,
But initialization implies:
O,z)=U
f_,(z2)=0 (AIL30)
Qy(z)=V(z)
Q_(2)= - V),
and therefore
0
@, +92)= 00, (AIL31)

R

n

All the necessary machinery for section IV has been set up.
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