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H a m i l t o n i a n  e n e r g y  surfaces  a n d  the i r  p e r i o d i c  t r a j ec to r i e s  a n d  s h o w  

tha t  t hese  quen t i t i e s  sat isfy severa l  n o n t r i v i a l  r e l a t ions .  I n  p a r t i c u l a r  we 

s h o w  t h a t  t h e y  can  be  used  to  p r o v e  mu l t i p l i c i t y  resul ts  fo r  t he  n u m b e r  o f  

p e r i o d i c  t ra jec tor ies .  
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I. Introduction and Statement of the Main Results 

1.1. Dynamical and Geometrical Formulation of the Problem 

Denote by ( . ,  .) the usual inner product on ~R 2" and let J be the standard complex 
structure on R2,  given by the matrix 

J =  --1, O, " 

Associated to ( . ,  .) and J is the symplectic form f2 given by 

~:<J.,.>. 

Assume H :IR2~-+~-. is a smooth map. The so-called associated Hamiltonian 
vectorfield is defined by the formula 

dH = Xn~t-2. 

The corresponding differential equations 

(HS) 2=Xn(x)  

is called a Hamiltonian system. If x solves (HS) then 

d 
d-t x = o ( X ~ ( x ) ,  x , , ( x ) )  = o 

so that H is constant on x. Therefore it is natural to ask for periodic solutions of 
(HS) having a prescribed energy/-t. 

Though the problem of finding a periodic solution with a prescribed energy 
seems to belong to the theory of dynamical systems, it is possible to formulate it in 
purely geometrical terms. This can be done in great generality (see I-W 2]). Here, 
however, we shall restrict ourselves to the cases we shall in fact study, namely 
convex smooth hypersurfaces in IR 2". More precisely we say S c ] R  2" satisfies 
condition (~f) if the following holds: 

S e N  2" is a compact C~°-manifold bounding a convex region. 
Moreover S has a nonvanishing Gaussian curvature and S 
encloses 0 e I~ z". The collection of all S satisfying (Yf) will be 
denoted by ~f. (~(f) 

The condition that 0 e ]R 2" is enclQsed by S is only some kind of normalisation and 
has nothing to do with the results obtained. 

We defined a l-form 0 on 1R 2" by 

O(x)h = ½( Jx, h). 

Then dO=f2. Denote by 2 the restriction of 0 to S and put c0=d2. Then kern(o)) 
must be nontrivial since dim(S) is odd. In fact, 

kern (e)x) = Ndn(x), 

where n(x) is the outward pointing normal vector at x e S and moreover 

2(Jn(x)) = ½(Jx, Jn(x)) = ½(x, n(x)) > O, 
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since ( ~ )  holds. Therefore 2 A CO"- 1 is a volume on S. Hence (S, o9) is a manifold of 
contact type in the sense of Weinstein, [W 2]. As a consequence of our previous 
discussion we have the following 

Lemma 1. Let  S ~ )~t °. Then o9 = f21S defines a canonical line bundle Lf  s---) S, where the 
f ibre over x e S  consists of  all those vectors v annihilating ogx, i.e., v_Jogx=0. 
Moreover £ f  s possesses a canonical orientation induced by the unique vectorfield ~ on 
S satisfying 

~ 2 - - 1 ,  ~_Jog-O. (1) 

See [W 2] for the easy proof. Since ~ s  C TS we have a one dimensional and 
therefore integrable distribution on S. 

Definition 1. Let S e ~ .  A periodic Hamiltonian trajectory on S is a submanifold F 
of S which is diffeomorphic to S t, satisfying 

T F  = & I V .  

The collection of all Hamiltonian trajectories will be denoted by Y(S). 
If H :  ]1t 2" ~]R is now a Hamiltonian having S e ~ as a regular energy surface, 

say H = 1, then the periodic solutions of the corresponding Hamiltonian system 
with energy 1 on S are just parametrisations of Hamiltonian trajectories F e Y-(S). 
In fact each Xo e F is the initial data for a periodic solution x lying entirely on F. 

By results of Weinstein [-W 1] and Rabinowitz [R 13 it is known that 3-(S)4:0 
for S e ~ .  Knowing that 3-(S)4:0 for S e ~ one can ask for its cardinality. Let 
cq > 0, i = 1 . . . .  , n, so that the cq's are independent over Z. Define S = S(~t . . . . .  ~,) by 

One easily shows that # Y'(S) = n. As far as the cardinality is concerned this is the 
worst known example. Hence the following conjecture. 

Conjecture 1. If S ~ ~ ,  then # ~"(S) > n. 
A few partial results are known to be true [E-L, E-La,  E 1, B-L-M-R] ,  see 

also [A-M, H 1]. 
In this paper we shall associate to S e ~ its index interval a(S) which is a 

compact interval in (0, oo). We show in particular that ~r(S) degenerates to a point if 
#~--(S)< oo. To the Hamiltonian trajectories F e3-(S) we shall associate two 
positive numbers 7(F) and °7(F) which are independent. They are called the total- 
and the mean-torsion at F. In the main result of this paper we shall prove that o-(S) 
and the collections {7(F)} and {~7(F)} are not independent and that always certain 
inequalities and equalities have to hold. The inequalities turn out to be optimal. 
This new approach gives besides new results for Hamiltonian systems a much 
deeper insight to the problem of periodic Hamiltonian trajectories than previous 
results. Several open problems are mentioned. For instance, it is shown that if ~--(S) 
is finite, then 

E ~'(r)-~ 1, 
y = a  
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where a(S) = {a}. Moreover 7(F) > 1 for all F E @(S) if n > 2. So in particular the 
above inequality implies that # ~-(S)~ 2 for n > 2, thus improving the results of 
[E-La],  where this was proven for n ~ 3. Further it will be shown that the above 
inequality is optimal in the sense that there exists an S for which we have equality. 

1.2. The Index Interval of  an Energy Surface and Torsion Indices 
for Its Hamiltonian Trajectories 

We start with a definition 

Definition 2. Denote by ~ the collection of all maps H :IRZ"-+IR such that 

H E C~(]R2"\ {0}, ]R)nC 1~2, ,  IR), 

H(2x)=22H(x) for 2 > 0  and x e N  z", (1) 

H"(x)>eRId Vx eN2"\{0}, c~u > 0 .  

Here H"(x) is the linearization of the gradient H' of H at x e]R2"\{0}. 
The following lemma is obvious: 

Lemma 2. There is a natural bijection :~f ~ f t  ° associating to S e ~ the unique 
H s e f t  ° such that 

HsI(1)=S. [] 

Let H e o@. Its Fenchel conjugate is the function H * e  k defined by 

n*0,) = m a x  ((x, y )  - H(x)). (2) 

We equip a f  with the metric d:a/f  x ~ N .  + defined as follows: 

d(S1,Sz)=max inf [ x - y [ + m a x  inf f x - y l ,  
x~S1 YeS2 y~S2 X~L,~,I 

which is the Haussdorff metric. The map H-+H* induces a map ovg-+ ~vf which is 
continuous for the topology induced by d. Next we introduce a Hilbert space E by 

= Ix :  S x = IR/Z-~N2"[x is absolutely E continuous 
k 

with square integrable derivative and ! x(t)dt = 0 . (3) 

The inner product on E is given by 

1 
(x, y) = f (2(0, ~(t) )dt .  (4) 

o 

We associate to S e ~ a C L 1-Hilbert manifold Ms, Ms  C E, by 

M s = x ~ E ! H * ( -  J2(t))dt = 1 and 0 (J2(t), x(t))dt < 0 . (5) 

Here C a' 1-Hilbert manifold means that there exists an atlas so that the overlap 
maps a,  o a f  1 are C ~ with a locally Lipschitz derivative. Ms is actually a C a, ~- 
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submanifold of E. The natural St-action on E by phase-shift denoted by 

S 1 x E ~ E : ( a , x ) - - * a * x  

induces an Sl-action on Ms. Hence M s belongs to the category of paracompact 
St-spaces. We define a smooth map A e C~(E, IR) by 

t 

A(x) =½ ~ (J2(t) ,  x ( t ) )d t ,  (6) 
o 

and denote by A s the restriction of A to M s. For d e ( -  ~ ,  0) we define 

M~: = A s 1((_ 0% d]). (7) 

Note that A is Sl-invariant. In the following we write (most of the time) 

G = S  t , E ~ = S  °~ , B o = t E P  °~ , p:S°~ ~ t E P  ~° projection. 

Then (EG, p, BG) is the universal bundle for G-actions. Denote by M d the S,G 
"G-quotient" of M~, that is 

d d Ms, ~ = ( m  s × EG)/G , (8) 

where G acts freely in the obvious way on M~ x EG. Hence we have principal 
bundles 

M~ × EG~Mds, ~. (9) 

Denote by f s : M s , ~ - ~ B 6  the up to homotopy uniquely defined classifying map. 
From the diagram 

incl ~S 
Mas x E~ c ' M s  x E G ~ E G 

M a c incl fs  
S,G ) Ms, ~ ) B~ 

and the properties of classifying maps, see [Hu], it follows immediately that the 
restriction of f s  to a Ms, ~ denoted by fs a can serve as a classifying map for 

d d M s x E~-~Ms,  ~. Denote by/-7 the Alexander-Spanier-Cohomology with coeffi- 
cients Q. One knows that 

H(B6)-~ Q[t/], t/e/4Z(B6)\{0}. (11) 

We define for S e W  a map a s : ( - ~ , 0 ) o N ,  N =  {0,1,2 .... } by 

as(d) = inf{k e NJ(fs d) * (t/k) = 0}, (12) 

where (f[)* : H(Be)~I](Mas,  ~). It requires of course some proof that as(d ) < ~ .  This 
will be provided later. For specialists this is clearly the Fadell-Rabinowitz index of 
M~, see [F-R]. We define a subset a(S) ofIR + = [0, + ~ )  called the index interval of 
S by 

t e a(S) , ~  lJm inf as(d ) ldl _-< t_< lim sup as(d ) td[. (13) 
d~o a~o 

Denote by cg the collection of all compact intervals in (0, + ~ )  which we equip with 
the Hausdorff topology and Hausdorff metric. As we shall see later the following 
holds: 
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Lemma 3. For S ~ ~ the index interval of S, denoted by a(S) belongs to oK. 

A first result which will be proved later is 

Theorem l. (i) The mapping ~ ~c~ :S~a(S) is continuous for the Hausdorff 
topologies 

(ii) if # Y(S) < ~ ,  then a(S) = {point}. 

We mention now an important open problem. 

Problem 1. Does there exist S ~ W with a(S)# {point} ? 
A positive answer would be extremely interesting because then there exists 

6>0 such that for all R e W with d(S, R)< 6 we have #~--(R)= ~ in view of 
Theorem 1. If there would exist a dense set X in W with a(S) # {point}, then in view 
of Theorem 1 we would have for an open and dense set in W (for the Hausdorff 
topology) infinitely many periodic trajectories. Another problem is 

Problem2. Can a(S) be computed without the detour over equivariant 
cohomology? 

Sometimes it is possible to compute a(S). For example for S = S(al, ..., ~,) with 
a~ > 0, we have 

as we shall see later. 
Next we introduce the torsion indices for F E ~-(S), where S s ~ .  Fix S s ~ and 

denote by ( the associated vectorfield defined by 

( ~ 2 = I  and (~co -O  (15) 

One easily verifies that 

((x)=JH'(x), x e S ,  (16) 

where H'(x) is the gradient of H = Hs in ~.2,. The right-hand side of (16) defines a 
Hamiltonian system on ~2,. Let x : I R ~ F E N  2~ be a solution of 2=((x) with 
minimal period T > 0. Then 

T 
IXlr=Ix*X= ld t= T.  

0 

Definition 3. The volume V(F) of F ~ ~-(S) is defined by 

v(r):---Izlr. (17) 

Sometimes V(F) is also called the action of F. 
Note that by (15) and the fact that TxF=IR((x), hie is a nonvanishing 1-form 

on F and defines therefore a volume-element. Linearizing the Hamiltonian 
system (HS) around x : ] R ~ F  gives 

p(t) = H"(x(t))y(t). (LHS) 
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Denote by (R(t))telR, R(0)=Id the fundamental solution of (LHS). Then 
R ~ C~(N, Sp(n,N)). Denote by R* the adjoint of R defined by 

(R(t) . , . )  = ( . ,  R*(t ) . ) ,  

and define 
B(t) = (R(t)R*(t))- 1/2R(t). (18) 

Then B is the "unitary part" of R, see [C-Z 1]. That is, B(t) commutes with J and 
[B(t)y] = [y[ for every t ~ IR and y ~ IR 2". J defines a complex multiplication on 1/2" 
by 

iy" = Jy,  

turning IR 2" into a complex vectorspace of dimension n. Denote by det: (N2")"~C 
a non-zero complex determinant function. We find a unique continuous map 
Ar : ~ ' - ' R  characterized by 

d~(O)=O , 

det o (B(t) x ... x B(t)) = exp(2rciAr(t)) det. (19) 

Definition 4. Let S ~ ~ and F e ¢-(S). The total torsion at F is the real number 

7 ( r )  = Ar(v (r ) ) .  (20) 

The mean torsion at F is the number 

f (r):  = : ) / v ( r ) .  (21) 

Now we formulate our main result. 

Theorem 2. Let S ~ Jr% We have: 
(i) I f  n > 2 then 7(F) > 1 for every F ~ ~-(S), or equivalently ~(F) > V(F)- 1 

(ii) Given t E ~r(S) there exists a sequence (F(k))c ~--(S) such that y(F(k))--*t as 
k--, oo. 

(iii) Given any e > 0  denote by o(S), the open e-ball around o(S). Then the 
following inequality is valid. 

Z ~ ( r ) - '  ~ 1. 
e E ~-(S), '7(r) e a(S)~ 

Theorems 1 and 2 have an obvious 

Corollary 1. I f  S e ~ ,  n ~ 2, then 4# Y ( S) > 2. Moreover, if # ~-( S) < oo, then, with 
o(S)={I}  (Theorem 1), 

for two suitable 1"1, F2 e 3-(S), F~ 4= F2. 

Proof. Since 7(F) > 1 for n > 2 we infer by (iii) that # 5-(S) > 2. If now # J ( S )  < oo 
then o-(S) = {I} by theorem 1. Then taking e sufficiently small in (iii) of Theorem 1 
we obtain 

Z ->1, 
~(r) = I 

which gives the desired conclusion. [] 
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Let us also note that Theorem 2 (ii) implies Theorem 1 (ii). Namely if a(S) is 
different from a point then the set 

is dense in o-(S). Therefore 4t: Y-(S) = oo in this case. So if Y-(S) is finite a(S) consists 
of a point, which proves Theorem 1 (ii). 

So Corollary 1 implies conjecture 1 for the case n=2.  In [E-La]  this was 
claimed too, however due to a faulty argument it was actually unproved (the 
arguments in [-E-La] hold only for n >  3.) Under the general hypotheses of 
Theorem 2 the inequality in (iii) is optimal. Namely let S = S(c~, ..., c~,) with c~ i > 0 
independent over Z. Then as we shall see later 

Hence (22) implies 

9-(s) = r,}, so : ( s )  = n,  

/ " 

o-(S) = {I}, I =  ~ -  i__~10~i, 

'7(Fj) = I ,  

i = l  ~ j  

2~ 
v ( o  = - - .  

~j  

(22) 

X = f  = i .  (231 
~(F) = I 1 i 

Problem 3. Is it true if J - (S)= {F1 ..... Fh}, i.e., # J ' ( S ) <  o% that 

~7(Fj) = ~(/3 for all i,j. 

We mention another conjecture. Denote by z~ the topology on ovt ~ which is 
induced from the weak Whitney topology on C~(IR2"\{0},IR) via ~ .  Then we 
have 

Conjecture 2. For a residual subset ~t" 1 of J :  the following holds: For S ~ N'] the 
map : ' (S) - ,P , :F~f(F)  is injective. 

A simple corollary of this conjecture is that # Y'(S)= + o0 for S ~ N1, because 
~: Y ' ( S ) ~ N  cannot be injective if # Y'(S)< oo by Corollary 1. Finally we men- 
tion the following. 

Problem 4. How does ~7 behave on periodic Hamiltonian trajectories close to a 
generic elliptic one? Is it injective? 

There is of course some connection between Conjecture 2 and Problem 4. 
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II. Variational Set Up 

II.1. Critical Point  Theory 

Consider the Cl ' i-functional A s = A I M s  on Ms.  As Riemannian metric on Ms 
we take the one induced by ( . , . ) .  Then one verifies easily that for d e ( - ~ ,  0) 

If 1[ gradAs(xk)[[ --*0 and As(xk)--+d < 0, then (Xk) C Ms  is precom- 
pact in Ms. (PS)d 

Solving the differential equation 

x' = - grad A s( x) 

on M s in forward time we obtain a continuous map, 

IR + x M s - - * M s : ( t , x ) ~ x  * t ,  

which is the restriction of a not necessarily globally defined flow. The map 
t -*As(x  * t) is non-increasing for fixed x ~ Ms.  A well-known consequence of (PS)d 
is the following 

Lemma 4. Given an arbitrary neighborhood U of  

Cr(d) = {x ~ MslgradAs(x)  = 0, As(x) = d} 

there exists e > 0 such that 

(Mds+~\ U) * 1CMds -~ . (1) 

Define a semigroup 0 by 

O=S 1 x N* ,  N* = N \ { 0 }  (2) 

with multiplication 

(a, k) x (b, l) = (kb + a, kl), (3) 

where we take S i =]R/Z.  0 operates by isometrics on E via 

1 
((a, k) * x) (t) = ~ x(kt  + a). (4) 

One easily verifies that 0 * M s = Ms.  Moreover if Cr(S) denotes the set of critical 
points of As then 0 * Cr(S) = Cr(S). But caution, note that A s is not (!) 0-invariant. 
In fact 

As((a, k) * x) = k As(x)" (5) 

Moreover 0 induces by restriction to S 1 ,-~S ~ x {1} the usual Si-action. Denote by 
"-,~" the smallest equivalence relation containing the relations 

x ~ - ( a , k ) * x  for all (a,k) E0 and x e E .  

Denote by Ix] the equivalence class of x 
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Lemma 5. (i) I f  x • Cr(S), then Ix] C Cr(S). 
(ii) Given Ix] with x • M s there exists a unique Sl-orbit  S 1 * y such that for  every 

z • S 1 * y we have 0 * z = Ix]. We call such a z a minimal representative for  [x]. 
(iii) There is a canonical bijection q~:Cr(S)/ .~J ' (S)  which associates to 

Ix] e Cr(S)/~ the F defined as follows: Let  z be a minimal representative for  Ix], 
then there exists a unique constant c • R 2" such that IA s(z)[ - ~ z( t) + c fi S for  all t • R .  
Put  

r =  {As(z)-  lz(t) + clt • IR}. 

Clearly F does not depend on the choice o f  the minimal representative. 
(iv) I f  Ix] e Cr(S)/--~ and z is a minimal representative for  Ix], then Ms(Z)[ 

1 
= V(F)-  1, where F = ~0([x]). Moreover  [As((a, l) * z)I = IV(F)" 

Proo f  (ii) Let u ~ Ix] and denote by G, the isotropy group of the Sl-action 

G , = { a • G l a * u = u } .  

Pick y • I-x] with 

G r = min { 4t= G, lu • Ix]}. 

One verifies easily that S ~ * y has the desired properties. In fact :~ Gy = 1. 
(i) If xeCr(S) then we have for some number 6+0,  

A'x = 6 ~'(x), 

where 7~(x) = S H * ( -  J2(t))dt and the prime denotes the gradient in E. Let k = ~ Gx. 
o 

Then y defined by y(t) = ky  ~ is a minimal representative for Ix]. One computes 

easily 
A'y= k,~'(y). 

Hence y e Cr(S). Moreover with u = (a,/) * y, 

A'u = ~ ~'(u), 

so that again u e Cr(S). 

(iii) Let Ix] e Cr(S)/~ and z a minimal representative. We have Gz = { 1 } and 
for some 6 + 0, 

A' z=67~'(z) .  (6) 

Taking the inner product with z and using that A' and ~P' are positively 
1-homogeneous we infer since 7~(z)= 1, 

As(Z)=~. (7) 

Using (6) we find that for arbitrary h • E, 

1 1 

I <J~(t), h(t)>dt = 6 1 <H*'(-J~(t)), -JI~(t)>dt.  (8) 
o o 
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Since h has mean value zero we find a constant c~ , sN  2" such that 

z(t) + c 1 = [6[H*'(-  J~(t)). 

Hence by the Legendre reciprocity formula 

161 - 1H,(z(t ) + cl) = _ J ~ )  . 

So, defining zl( t  ) =z(16]t)+ c 1 we see that 

- -  J i  1 = H'(zO. 

Therefore the map 

is constant. Hence the map 

t-*H(zl(t)) 

429 

(9) 

(10) 

(11) 

1 
IAs((a ,1)* z)]= As(z) - IV(F)" [] 

Definition 5. Let S e 3/g and r e Y(S). The tower of  F, denoted by tow(F), is the set 

tow(r)=~0-x(r). 

Hence in order to show ~ f ( S )  > n we have to show that # (Cr(S)/~) > n, or 
that there are at least n towers! 

Moreover 

H(16[-l(z( t)+cO)= 1 V t e N ,  

and with z2(t ) = [61 - ~(z(16[t) + Cl) 

- J i  2 =H'(z2),  H(z2(t))= 1, t e N .  (12) 

By (7) again we conclude from this that 

t-* [A(z)l- lz(t) + c 

with c = ]61- tc~ parametrizes an element in ~-(S). 
Now starting with some r and doing the whole procedure backwards we end 

up with a class Ix] e Cr(S)/~.  
(iv) Using (12) and the definition ofz2 we see that the minimal period T ofz  2 is 

161- ~ = IAs(z)l- ~ and that 

T T 
V(F) =½ S (--Jzz(t) ,  z2(t))dt=½ ~ 2dt 

0 0 
= T=  [61-1 = [As(z) ] - 1 

Therefore 

t ~ H(z(t) + q )  

is constant. Using this and taking the U-inner  product of z(t)+ cl with (10) given 
by (7) 

16l- 1H(z(t) + cO = I~l. 
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We use now the Fadell-Rabinowitz index IF-R] ,  denoted by ind. We have 
already seen that (formula 1.12) 

ind(M~)=~s(d). (13) 

Ikmma 6. (i) d ~ s ( d )  is non-decreasing and N-valued. 

(ii) lira ~s(d) = ~s(do). 
d ,~ do 

(iii) ind(Cr(d))>~s(d)-~s(d-  ) VdE(-- ~ , 0 ) .  

In particular if ~s is discontinuous at d, then Cr(d)+0. Moreover if ~s(d) 
- ~s(d-) > 2, then Cr(d) contains infinitely many S ~-orbits. Consequently in this case 

(iv) lira ~s(d) = + ~ . 
,/TO 

Since the proof is essentially contained in IF R] we can be sketchy. 

Proof d ~ s ( d )  is non-decreasing by the monotonicity property of ind. To see that 
~s(d) < + ~ ,  decompose E as follows 

± 
E = E - G E  + , 

where x e E ± is given by 

x(t)=k~O ~--~exp(2~ktJ)Xk • 

If d e ( -  ~ ,  t3) one easily finds N e N such that x ~ M s and As(x ) < d implies 

- 1  

Z Ikl Ixkl2* 0- 
k= - N  

Hence the orthogonal projection PN:E-~E~, where 

E~ = { x ~ E - I x k = O  for k <  --N} 

induces an equivariant map 

Hence 
as(d) = ind(M~) =< ind(E~ \{0}) < oo 

by a result in [F-R] .  This proves (i). 
• ,a(m ~S- the In order to see (iv) note that there is an equivariant map a ~ 1 V l s  , ~ 

unit sphere in E~) of the form 

x ~ f ( x ) x ,  

where f :  S ~  -o(0, + oo) is a continuous map. Again by a result in IF -R]  it follows 

ind (M~ tN)) > ind (SE~). 

Here d(N)-oO as N--*~. Since ind(SE~)--,oo as N ~ o o ,  (iv) follows. 
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(ii) By the continuity property of the F -  R index we find for given d e ( -  ~ ,  0) 
an open neighborhood U of M~ such that 

ind(U) =ind(M~). (14) 

By a variant of Lemma 4 we find e > 0 such that 

M~+~* I CM~-~uUC U. (15) 

By the properties of ind we infer from (14) and (15), 

ind(M~) = ind(U) > ind(M~ +" * 1) 

> ind (M~ +") > ind (M~). 
This proves (ii). 

Assertion (iii) is standard and simple to derive from the properties of ind. []  

Lemma 7. Let c~e ( -  o% O) be a point of discontinuity for a s. Define k and j by 

k = %(d-) + 1 = lira %(d) + 1, 
d~d 

k +j=as(d~). 

Denote by ~o > 0 a number which is smaller than the distance of c~ to the closest point 
of discontinuity dl of a s with d 10ecT. Then we have Jbr e ~(0, eo] and i=k , . . . ,  k +j, 

t s,~,Ms, G)+ -0.  (16) 

Moreover denote by f :  Ms, a-~BG a classifying map and let 

f+"  ~'*a+~B and f -  d-~ • zr~s,G G "Ms, G---~B~ 

be the restrictions. Let 

• ~/a-e ~/a+~ r . , . a + ,  , , ,a+e Ms, c)a-" a . , , , s ,G~, , s ,G and O.J.VIs, G"~J3/IS, G~ 

be inclusions. Consider the commutative diagram with exact top row 

Ht~a+, ~ - n  b, _ a+~ ~* > H(Ms, G ) t " s , ~ , " s , ~ J  ' H(Ms,~) - a-~ 
S+) * / S - ) *  (17) 

B(B~)" . 

Then there exists a cohomology class 

t s,c, Ms, o) 

with b*(a)=(f+)*(~k-~). We have moreover 

(f+)*(t/m)ua:~0 ]'or m=O,. . . , j .  

Proof. Equation (I 6) follows from our second assertion. Since k = %(d-) + 1 we see 
that 

( f - ) , (qk-  a)= 0. (18) 

By exactness of the row in (17) we find using (18) and 

a*(f  +),(qk-~)= ( f - ) , ( t lk-  ~) 
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- a+~ ~-~ 
that for some aeH(Ms, e,M~,e), 

b*(a) = ( f  +)*(t/k - ~). (19) 

Now for m e {0,...,j} we compute 

b*((f +)*(t/m)w a) = ( f  +)*if/m) u b*(a) 

= ( f  +)*(tf")w(f + ) * ( I / k -  1) = ( f  + ) , ( t / k  + , ,  - ,). 

By our hypothesis ~s(a)= k +j. Hence 

( f  + ) * ( t / k + J -  1) ~= O. 

Since m < j  we infer therefore that 

b*((f +)*(t/m)w a) # 0, (20) 

implying our assertion. [] 

I. Ekeland and H. Hofer 

II.2. A Finite Dimensional Reduction 

Recall the definition of the Hilbert space E. For N e N* we denote by EN the 4nN- 
dimensional nullspace (G-invariant) defined by 

EN= xeEtx(t)= ~. x--exp(2rctk)Jxk~. 
J 

The orthogonal projection E ~ E  N is denoted by PN- Moreover we put 
QN=Id-PN.  Define as before TeCI ' I (E,  IR) by 

1 
T(x) = f H*(-- J2(t))dt. 

0 

For N e N* we define an open C 1' 1-submanifold of A s = {x e E] T(x) = 1} by 

Ms, N = {X e Ms]PNx 4= 0}. 

For do s ( - 0 %  O) we put moreover 

~do _ ~ do Ms, N-Ms ,  NnMs . 

Lemma 8. There exists a G-invariant C 1' ~-map 

~ : &  x (ENF-*(0, + oo) 

such that 
a: SN(EN)~Ms, N : o'(y, z) = z(y, z)(y + z) 

is a C 1' 1-diffeomorphism onto. Here SN is the unit sphere in EN. 

ProoJ~ Define z(y, z) by 

z(y, z) = T(y + z)- 1/2 (I) 

Then z(y, z) > 0 since y + z # 0, and moreover it is a C 1' 1-map since this is true for 
on E\{0}. Consequently a is C 1"1. It is clear that PNa(y,z)#O, so im(a)C/~rs, N. 
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Moreover  if u~Ms,  N, define Y=PNu/{{PNuIf and z=QNu/HPuutI. Then 

a(y, z) = u . 

Clearly the map u~(y ,z )  is C 1'1 and an inverse to o-. [ ]  

Next we need 

Lemma 9. Given d o ~ ( -  oo, 0), there exists Nl(do) ~ IN* such that 

M~° C/~s, N1(go) • 

Proof, We find c I > 0  such that 

~(x)>=c~llxll 2 V x ~ E .  

Hence if x ~ 2~ s we infer 
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(2) 

IIxll ~ c 7 1 .  (3) 

Now let x E M~ °. Then 

A(PNx ) = A ( x ) -  A(QNx ) < do + 1 II (2NxII 2 

<=do+ L flx))~ <_do + ~ <0,  
N - caN 

1 
if N >  - ~ .  So define 

c~taol 

1 
N l ( d o ) = ~ + l .  []  (4) 

Denote by c > 0 a monotonicity constant for 7 j, that is 

( ~ ' ( x ) -  ~"(yO, x -~ )>=c l l x -Y~ l l  2 Vx, x e E .  (5) 

We shall express ~ = AI29I s by "local coordinates" in SN x (EN) l, that is we consider 
the map of class C 1' 1 given by 

(y, z)--, A o ~(y, z). 

Define 

6(z)  = A o ~r(y, z), %(z) = G(y, z), 
(6) 

~,(z): ~(y, z). 

We equip the vectorbundle SN x (EN)±~SN with the metric [ - , - ]  induced from the 
inner product on E 

[(y, z), (y, ~)] : = (z, e). 

Lemma 10. The fibrewise gradient F~(z) with respect to [., .] is given by 

f](z) = ~r(z)QN[A'(a,(z)) - Fr(z ) ~'(ar(z)) ] . (7) 
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Proof. We compute 

E/-;(z), (y, h)] = OFy(z) (h) 

= (A'(%(z)), y + z) (r'y(z), h) + (A'(%(z)), r,(z)h) 

2 
t t -- zr(z) Fy(z) (~:y(z), h) + zr(z ) (A (a,(z)), h). 

Moreover 

Hence 

(z'y(z), h) = -½~(y  + z)- 3/2(~,(y + z), h) 

= - ~ , ( z ) - i  7'(y + z)- 1/~)3z,(z)3(~"(y + z), h) 

= - W(G,(z)?~r(z)2(~e'(~,(z)), h) 

= - ~ r ( z ) 2 ( ~ % ( z ) ) ,  h ) .  

(8)  

(9) 

G(z) -- - ~,(z)2QN ~'(~,(z)).  (10) 

Combining (8) and (10) yields 

Fr'(z ) = (y, zy(z)Q u [ A'(ay(Z)) - Fy(z) ~'(a,(z))]). (11) 

Lemma 11. Given d o ~ ( - 0 %  O) there exists a number Nz(d0)~N* and a constant 
c¢ = ~(do) > 0 such that 

a[[y-~[[ > [Izr--z~H (12) 

whenever zr is a solution of  

Fy'(Zy)= 0, Fy(zy)<=d o (similarly for zy). (13) 

Proof. Assume Fy'(z)= 0 and Fy(z)__< d o. Then 

A' z =  Fy(z)QN~P'(y + z), 

where we used the positively l-homogeneity of 7/'. Hence 

(A'z, z) = ~ (z ) (~ ' (y  + z), z) 

= Fr(z ) (7~'(y + z ) -  7~'(y), z) + Fy(z) (~P'(y), z) (14) 

<- # ( z ) c l l z l l  2 + ] U z ) l  II ~ ' (y ) l l  IIzjT 

<docllz[] 2 + Ir~(z)l tl ~'(y)N Hzl[. 

Now, for some constant c2 > 0  independent of x we have 

[I ~ '(x) rl _-< c2 I[xIF. (15)  

Since tlylT = 1, we infer combining (14) and (15), 

(Z' z,z) < docllzlr2 + c21Uz)l Ilzll. 

Now %(z)e A s and by (3), 

II%(z) rl < c; 1 
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Therefore 

(A'z, z) ~ do cllz II z + c2lA(%(z))I I Iz ti (16) 
~docllzlIz-4-c21I%(z)ll21IzlI ~docllz!t2 + c2c; Zllzll . 

1 
Moreove r  (A 'z ,  z ) ~  - ~ IIzII2. Hence  

( Idolc-N) ,lzllZ<c2c12Hzll=:½c31lzll. (17) 

So for all N ~ N  1, for some suitable N 1 we have the a priori bound  (which is 
independent  of  N, y or  z) 

IlzlI<c3 if F;(Z)=0 and Fy(z)<-do. (18) 

N o w  assume 

r;(z)= 0, r,'(~)= 0, 

Fy(z) = : d, F~'(i) = : d,  with d, d <  do. 

Then 

(2[A' z - dA'~,  z - ~) = (gt,(y + z) - ~P'(y + ~), z - ~)dd 

= d g ( ~ " ( y  + z)  - e ' ( y  + ~), z -  ~) 
+ M(~'(y + z-)- ~'(y + ~), z -  ~). 

N o w  ~ '  is globally Lipschitz continuous.  Hence  for some constant  c 4 > 0  
independent  of y, z and N > N 1: 

[(7Qy +z--)-- 7J'(y + if), z--ff)] <c4[ [y -y [ [  [[z--~[[. (20) 

Combining  (19) and (20) gives 

d~clIz- ~II2 <Mc~IIy- Y, ll IIz-~l[ +(dA'z-dA'~ ,z -  ~). (21) 

Moreover  

](dA'z - dA'~,  z - ~)[ < ] d(A'(z - O, z - O[ + [ d -  d[ [(A'~, z - z-)] 

- 2  ~2 2 
<Idl~IIz-~l~ + l d - d l  c311z-~lI. (22) 

Combin ing  (21) and (22) yields 

2 _ 2  
d g c l l z - ~ l [ 2 N d d c 4 l l y - Y l l  Ilz-e][ + [ d l ~ l [ z - f f l l 2 + [ d - d l ~ c 3 l [ z - i l l .  (23) 
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Id- dl= I~,(z)2 A(y + z)-  z~(z-)e A(y + z)l 

_~ [~r(z) 2 - ~(ff)2l IA(y + z)[ + ~(g)ZIA(y + z)-  A(fi + if)l, 

by  (18) < c5 lzr(z) + z,(~)[ Izr(z) -'cy(~)l 

+ ~(e)~lA(y) - A(37)1 + z~(e)elA(z) - A(z-)l. 

We  have by (3) and (18) 

~(e)~ = ~e (y+  e)__< Cl ~ fly + e!i2 __< c6,  

and Izr(z ) + z~(5)[ < c 7 . 

So combining (24), (25), and (26) we obtain 

Id- ~ < c5c7 [z~.(z) - z~(5)l + c6 ]l Y - 37 II + C 6  II Z - -  ZiI. 

(24) 

(25) 

(26) 

(27) 

N o w  for a suitable constant  cs using that [lY + z][ is bounded  and bounded  away 
from zero 

I~,(z) - ~(e)l  2 = I~(y  + z ) -  1 _ ' e ( ;  + .~) -  q 

< ~'(y+ z) -~(y+ e)-ll~(y+ z)-  ~(37+ ~)i (28) 

_-__cslly-3711 +cs l lz -~[I  • 

Using (26) and (27) yields 

Izy(z)- zy(ff)l =< c9 IIY- 37il + c9 t l z -  eiI. (29) 

N o w  combining (27) and (29) yields 

[ d -  2/][ __< clo 11Y-371[ + Cto [Iz-el[ .  (30) 

N o w  combining (23) and (30) we obtain 

( 2 
difc-I~ I[z-~11 <ddc4ily-Yll + ~C3Cl, Hz-~II + -~cac~a I1y-3711 • 

Therefore for a suitable constant  c~2, 

2 
(ddc-[d[ 2 -  ~clz)  ,[z-~,, <c12,lY-37,,, (31) 

so for a suitable number  N2(do) > N 1 we find e = e(do) > 0 independent  of y, z, and 
N > Ng(do) such that 

IIz-~ll _-<<ty-YlI, (32) 

where z is a solution of Fy'(z) = 0, Fy(z)__< do and similarly for 37 and ft. [ ]  
Define N(do) by 

N(do)=max{Nl(do),N2(do),z(H2)]do[}, (33) 

where e(H) = e(Hs) such that H"(x) > e(Hs) Id, Vx 4= 0. 
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Lemma 12. Let d o • ( -  ~ ,  O) be given and N > N(do). Assume y • Su and (z,) C (EN) ± 
such that 

r;(z,)~0, r,(z.)--,d__< do. 
Then (z.) is precompact. 

Proof Since (TJ(y+z.)) is bounded away from zero the sequence (~y(z.)) must be 
bounded. Let us also show that (L,(z.)) is bounded away from zero. Arguing 
indirectly and eventually passing to a subsequence we may assume 

Hence 

Consequently 

So 

~/z.)~0. 

II ~ , ( z . ) -  ~,(z.)z.II = II~,(z,)y II - , 0 .  

M(zr(z.)z.)-- A(ay(z.))l = IA(~r(z.)y)I ~ 0 .  

A(zy(z.)z.)~d. (34) 

On the other hand we have the estimate 

a('cr(z")z")[ <- N'Cr(z")2 II z. tl 2 

<1 1 
[~,(z.)2 I I z. I I 2 _ I I %(z,) I151 + ~- I I %(z.) II 2 (3 5) 

1 

<~"+ Ne~'  

where e . - ,0  as n-~oe. Therefore taking the limit n ~ o e  we conclude 

1 
[d[ < Nc~'  (36) 

which gives a contradiction since by (36), 

tdolc 2 = ldlc~ >= N [by (33)] 

>=Nl(do) 

1 
= l d l  " 

0 ¢ 

Therefore (~y(z.)) is bounded away from zero and Fy'(z.)~0 implies 

QN[A'(%(z.))- d~'(%(z.))] 4 0 .  (37) 

Put  u. = o'y(z.). Eventually taking a subsequence we may assume that 

an : = P N [ A '  un - d ~'(Un) ] (3 8) 
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converges to some a ~ En [recall d i m e  N < oo and clearly (ll A ' u , -  d~'(u,)JI) is 
bounded].  Consequently for a suitable zero sequence (e,)C E we find combining 
(37) and (38), 

A' u. -- d~P' u. = a. + e.-* a. (39) 

Since (u.) is bounded we may assume eventually taking a subsequence that 

u. ---'-u weakly in E,  

A ' u . ~ A ' u  strongly in E. 

So (39) gives using that 7J ' :E~E is a homeomorphism, 

So (u,) is converging strongly. Hence, with ay(z,)=u, we find z , ~ z  strongly for 
some z and Fy'(z)= 0, ~(z )= d. [] 

Therefore we have just proved that Fy satisfies (PS)a for all d ~ ( - c o ,  do] if 
N > N(do). Hence if inf~((EN) l) <__ d o the infimum is attained. Define 

/~(y) = infFr((EN) ±) (40) 

for every y ~ SN such that the right-hand side in (40) is less than or equals do. So by 
the previous remark there exists zr~(E~¢) ± with F(y)=Fr.(zy ). Moreover zy is 
uniquely determined by Lemma 11 and the map y ~ z y  as globally Lipschitz 
continuous. 

Define for N > N(do) a subset ~/a,° N of M s by 

Sas°~¢ = { ay(zy) ~ Msl~(y ) < do}. 

Moreover put A~/~ ° = {x ~ MslA(x) < do). Then f-do ~- a;tdo The following lemma is z . , ~ S , N  ~ . . l r~ t  S • 

crucial. 

Lemma 13. Let d o ~ ( -  0% O) and N ~ N(do). Then Sa°,N is a strong G-deformation 
retract of  Mao by a G-homotopy r:[0,  i ]  × i~ /~°~ /~  ° such that 

• s~A(r(s,  x)) is nonincreasing, 

• r(O,x)=x Vx, 

• r (s ,x )=x Vt~[0,1]  Vx~S~°N, 

• r(s,.) is G-equivariant. 

Proof. Consider the C a, 1-map 

. ± ____~ ~ d o  a. SN x (EN) Ms, N(D Ms,u). 

The preimage of ~ °  N consists of all (y, z) ~ SN × (EN) ± such that 

r#)<d0. 
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We solve the parameter dependent differential equation 

z '=  -Fy'(z) (F/(.) is locally Lipschitz continuous), 

z(0)=zo 

where Fy(z) < do. By the (PS)d-condition, d < do, since Fy is bounded from below and 
has only one critical point zy with 

Fy'(zy) = 0, Fy(z,)< do, 

we infer that lim z(t)= zy. Define 
t-~oO 

~: [0, a] x 0 d o ~ 0  do 

with 0 a° = {(y, z)lFy(z) < do} by 

y , z  if s~ [0, I) 

f(s, (y, zo) ) = L(y, zy) if s = 1. 

Then f is a continuous G-equivariant homotopy. Define fl  by 

~(s, (y, z)) = (y, ~l(s, (y, z))). 

Then 
s~Fy( f  l(sl(y, z))) is non-increasing. 

Defining r ' [0 ,1 ]  x A)/~°~l~ ° by 

r(s, x) = ~o  r(s, ~ -  l(x)) 

gives the desired map. [] 

By our construction Z~° N is G-homeomorphic to an open subset of SN, say U, 
by the map 

u-~ 2~,~: y-~ ~,(z,)(y + ~,). (41) 

Since U carries as an open subset of S N the induced C~-differentiable structure 
coming from the standard differenfiable structure, we can equip Z~° N with a 
smooth differentiable structure uniquely characterized by the requirement that the 
map in (41) is a C~-diffeomorphism. From now on we think of Z~° N as being 
equipped with this differentiable structure. 

"go ts Moreover the critical points of  AI2~°N are exactly Lemma 14.A]Zs, N " of  class C 1' 1. 
the critical points o f  AIA;/~ °. Moreover the G-action on Zds° N is smooth near to critical 
orbits. Also AIZas°N is smooth near a critical orbit. 

Proo f  By the definition of the differentiable structure on Z~° N we have to show that 
1 1 do 1 1  the map y ~ F ( y )  = Fy(zy) is of class C ' in order to establish that At2s, N is C ' . For  

this we equip S N with the Riemannian metric induced by our inner product (,) on 
E. We shall show that 

F'(y) = zy(zy)P s[  A'(cry(Zy)) - A(ay(zy)) 7/'(ay(zy))] . (42) 
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F r o m  this we shall infer since z and cr are C I and y-->z r is Lipschitz cont inuous,  that  
/~' is of  class C O, 1, i.e.,/~ is of  class C 1' ~. We compute  with ~P'(x) def ined by (42), 

F ( Y l ) - -  F(Yo) --  (F'(Yo), Y l  - -  Yo) = F~,l(z 1) - -  Fyo(Zo) -- (F'(yo), Yl -- Yo) 

< Fr l(Zo) - Fyo(Zo) - (F'(yo), Y~ -- Yo) 

= (~,,(Zo) 2 - ~ ,o(Zo)2A(yl  + Zo) 

+ vro(Zo)2(A(YO - A(yo)) - (/~'(Yo), Yl - Yo) 

= (7 t -  l(y I + Zo)-- ~ -  l(y ° + Zo))A(yl + Zo) 

+ "rro(Zo)2(A(YO- A(yo)) - (/~'(Yo), Yl -- Yo). 

N o w  dividing the above  inequali ty by [tYt -Yot[ and taking the tim sup for Y ~ Y o  
we infer 

lira sup (~(y 1 ) -  F(Yo)--  (1~'(Yo), Y ~ --  Yo))/1t Y~ -- Yo t] < 0,  (43) 
Yl "*Yo 

where we use t hat (tP - l(y a + z o) - 7~ - 1 (y o + z o))/II y ~ - y o 41 can be replaced in the 
limit by 

( - - t / ' (Y°+Z°)-2 7J'(Y°+Z°)' [lY~-Yoll  " 

Similarly one proves that  

lim inf ( /~(yl)- /~(Yo)-  (F'(yo), Y ~ - Yo))/[IYl - Yo II > 0 .  (44) 
Yl -~YO 

Note  that  we had in principle to work in local coordinates  to establish tha t /~  is 
differentiable at Yo and has iP'(yo) given in (42) as gradient. However ,  taking an 
exponential  chart  

exp~ol : eXPro(W)~ WC TyoU 

for a suitable small zero ne ighborhood  W,, we see that  

TexP~ol(Yo): TyoM ~ ToTyoM ~- TyoM 

is the identi ty so that  actually (43) and (44) imply the assertion in the approach  
using local coordinates.  So we have fill now proved  that  (42) gives indeed the 
gradient. Since by const ruct ion  of /~  we have 

ON[A'(ar(zr) ) -  A(ar(z,))  T'(ar(zy))] = 0, (45) 

we infer that  

gradAs(ay(zy)) = 0, (46) 

if F ' (y )=0 .  On  the other  hand  if g r a d A s ( x ) = O  with A s ( x ) < d o ,  then writing 
x = ay(z) we see that  z is a critical point  of Fr(z), so that  by our  previous discussion 
z = z r Hence  y is a critical point  of F. 

Next  we have to prove the assertion concerning the smoothness  of  the G-action 
and of AI2~°N near  a critical orbit. 

By const ruct ion 

A'  z r - A(ay(zr))Q N 7J'(ay(zr) ) = 0. (47) 
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Define for k e N*, 

A~ = {x ~ C~(S 1, lg2")n EI:~(t) :~ 0 Vt ~ S'}.  

One verifies easily that we have the following commutative diagram: 

Ak , xeCk(St ,  IR 2" x(t)dt=O =Ck(S1,N2")c~E 

i,~l f fin°, 
E .__.__2 E 

where the top arrow is a smooth map. We have to exclude x with 2(0 = 0 because 
H" and H*" do not exist at zero. Here the space Ak and ck(s  1, ]RZn)c~E are of course 
equipped with the ck-topo1ogy. Define a map by 

(y, z) ~ A' z - A(ay(z))Qu ~'(y + z) 

for ysSN and Z~AkC~(EN) ± such that (y+z)'(t)~=O V t e S  1. So the map is in 
particular smooth around pairs (y, z) such that ay(z) is a critical point of AIA~/~ °. The 
partial differential with respect to z at ay(zy) is given by 

(y, (z, h))~ A'h - A(ay(zy))Qz,, TJ'(y + zy)h, (48) 

where tP"(y + zy) is given by 

t 

h ~ S JH*"(--  Y(p(r) + ~y(z))) ( -  Jl~(z))dt 
0 

By the definition of N it follows that the E-extension of the map (48) 

(EN) ± ~(EN)± : h ~ A'h - A(ay(z,))QNT~"(y + z,)h 

is an isomorphism. Now let ~ e (En)±nCk(S 1, RE"), and pick h e (EN) l with 

A'h - A(ay(zy))QN TJ"(y + zy)h = ~. 

By a simple regularity argument it follows that h ~ Ck(S 1, ]RZ")c~(En) ±. So by the 
open mapping theorem the map given in (48) as a map of the h-variable is a 
topological isomorphism. By the implicit function theorem there exists a smooth 
map C k ~ C  k : y ~ y  defined for y close to a critical orbit of/~ such that 

A'2, = A(ay(2,))QN~'(y + 2,). 

By uniqueness zy=2y. Since k e N* was arbitrary we see that the points in Zs. u'a° 
dose ("close" is independent of k) to a critical orbit belong to C°~(S ~, R:")c~E. 
Moreover the map y--+Fy(ay(zy))is smooth for y close to a critical orbit. So AI2~°N is 
smooth near critical orbits. S 1 acts smoothly on Su, so it acts smoothly on {ay(zy)}, 
provided the y are close to a critical orbit. In fact, close to a critical orbit the map 
y~ay(zy) is smooth and 

a *  %(z , )  = ~o, ,(zo, ,) ,  

implying our assertion. [] 
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Recall that a critical point x of As satisfies 2(t)+-O, t eS  I. Therefore the 
following definition makes sense. 

Definition 6. Let x be a critical point of A s. The (formal) Hessian at x is the 
quadratic form 

1 1 

Q~(h) = ½ f (Jl~(t), h( t))dt-  ½A(x) f (H*" ( -  J2(t))Jft(t), Jt~(t))dt, (49) 
0 0 

where h ~ T~Ms. 
Clearly Q:, has a finite index re-(x) which is the maximal dimension of a linear 

space in T~Ms on which Qx is negative definite, and a finite nullity m°(x), which 
must be of course bounded by 2n. We call re-(x) and m°(x) the formal index and 
m°(x) the formal nullity of the critical point x. 

We shall show that there is a close relation between m-(x), m°(x) and the index 
and nullity of x as a critical point of AI2~°N for do sufficiently close to 0, do <0.  
More precisely, 

Lemma 15. Let d o < 0  and N>>_N(do)._ Let x~2~°N be a critical point of AIZS.N'd° 
and denote its index and nullity by i-(x) and i°(x) respectively. Then 

i - (x)=m-(x)  and i°(x)=m°(x). (50) 

This is quite standard and we will be somewhat sketchy. See also [E 1] for a 
related result for a different reduction method. 

Proof By definition we have 

~'(y) = zy(zy)PN[A' , -- F(y) ~'(y + zy)]. (51) 

Let Yo + Zyo = x. Then/~ is smooth near Yo by our previous discussion. Differentiat- 
ing (51) at Yo gives for he  TyoSN, 

Z P ~ t/ Z t , F"(yo)h = ~,o( yo)Pu[ A (h)-  (Yo) 7" (Yo + to) (h + zyoh)] (52) 

On the other hand by the construction of F we have 

0 = z,(z,)Qu[A'zy- P(y)~P'(y + z,)]. (53) 

By the proof in Lemma 14 the map y~zy  is smooth in the Ck-setting ify is close to 
Yo. So we infer differentiating (53) 

0 =  ,o(Z,o)QN[A'z',oh- r(yo) + z,o) (h + z;oh)]. (54) 
Combining (52) and (54) gives therefore 

~r"(yo)h, h) = Vyo(Zro)Qx(h + Z',oh ) . (55) 

This implies in particular that 

index(/~"(yo))= i-(x) since/~is a local coordinate description of AIZ~°N 

<re-(x) by (55), 

nullity(r"(yo) ) < toO(x). (56) 
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On the other hand assume X is a linear subspace of TxM s with Q~ being negative 
definite on X. Then by the definition of N we infer that PNu ~e 0 for u e X \  {0}. Note 
that Z'roh is defined by the minimum problem [as a unique solution which follows 
from the definition of N(do) in (33)] 

1 tt min (A(v) -  F(yo)~(~ (Yo + Zro) (h + v), h + v)). 
w(EN) ± 

Let vh = Z'yoh. Then defining a subspace X of TxMs by 

= {Psu + ve~ulu ~ X } ,  

we see that QxlX is negative definite and by construction dim JT= dimX. So 

and similarly 

(57) 

index (P'(Yo) > m- (x), (58) 

nullity(/~"(yo)) >m°(x). [] (59) 

11.3. Critical Points with Prescribed Formal Index 

Definition 7. The discontinuity sequence (ak)k~N, for as, S ~ ,~ ,  denoted by dis(S), is 
the non-decreasing sequence consisting of all points d < 0 at which as is not 
continuous. Moreover each point d is repeated according to its multiplicity as(d) 
-as(d-). 

The aim of this section is to prove the following: 

Proposition 1. Let k ~ N*, j ~ N and define a o = - oo. Assume 

. . . . .  (1) 

Then there exist Fk, ..., Fk + j ~ J-(S) mutually different and numbers lh, ..., lk + j in N* 
such that 

1 
Id, I = v(131,' Im-(x~') - 2i[ _< 2n + 1 (2) 

for every ie  {k, . . . ,k +j}. Here xi denotes a minimal representative for ~, and 
xl' : = (1, ll) * xi denotes the l'i th iterate of  xi. 

The rather involved proof is based on a sequence of Lemmata. 
We fix do>dk+j+l ,  N>N(do)  and denote by Co>0 a number satisfying 

0 < e o < min {dk +j+ 1 --C~k+ j, ~k -  4 - - 1 } "  (3) 

Proposition 1 will be a consequence of the following: 

Proposition 2. Under the assumptions of Proposition 1 there exist for i ~ { k .. . . .  k +j} 
critical points X~ of  A s with A(X~) =d,  d: =dk = ... =dk+i, such that 

m-(xi) < 2(i-- 1) <= m -(Xi) + m°C~i)- 1. (4) 
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I f  j > 1, we have in addition 

Given any integer b and positive number 60>0 ,  the xi can be 
chosen in such a way that a ~o-ball around xi contains at least b 
critical points on different orbits on level d.  (5) 

We don't claim that  the 2i are mutual ly  different. 

Proof  o f  Proposition I assuming Proposition 2. Assume first j = 0 .  Then  by 
L e m m a  5 we find that  the first par t  of (2) holds for F k = ~O([2k] ). Moreove r  f rom (4) 
we infer 

Im- (xk) -  2kl < 2n + 1. 

If Xk is a minimal representat ive of [Xk] we may  assume for some 

and the second par t  of (2) is proved.  If now j > 1 we can argue as follows. Define 

xk: = ~k, r~ = q~(Ex~]). 

Then (2) holds for i=  k. Assume Xk . . . . .  X~ are constructed so that Fk . . . . .  F~, where 
= cO(Ix,I), satisfy (2) and are mutually different. We have to find xi + 1 if i < k + j  so 

that ~ , - . . ,~+1 are mutually different and verify (2). Pick the )Zi+l from 
Proposition 2. If the G-orbit of 2~+ 1 is different from the orbits belonging to 
Xk, ..., X~ we define x~+ 1 : = 2i + 1 and are done. So assume 37~ + 1 belongs to G * X~o for 
some io~ {k,..., i}. 

Pick b > j  + I and c~ 0 > 0 such that  all critical points on level a~ being c~0-close to 
Xk,..., Xi have a Morse  index m -  satisfying 

m - ( x l ) < m -  < m - ( x t ) + m ° ( x z ) - i  for l = k , . . . , i .  (6) 

(The - 1 comes from the fact tha t  we have a nontriviat  St-action.) N o w  according 
to (5) we can take a new 2~ + 1 corresponding to b > j  + 1 and c~ o as above. If 2~ + 1 
coincides again with some of the xk . . . . .  x~ we find a critical point  x~+ 1 different f rom 
the orbits G * Xk . . . . .  G * x~ on level cTwhich is c5 o close to one of  the critical points in 
{Xk,..., Xi}. It satisfies by (6) 

m -  (xi + 1) < m -  (x i + 1) < m -  (~2 i + 1) + m°('2i + i) -- 1. 

N o w  combining (4) and (6) gives 

2i + 1 - m°(,2i + 1) < m-  (x~ + 1) < 2i + m°(~ + 1) - 1. (7) 

Since m°(xi+ 1) < 2n, this yields 

Im-(xi+ 1 ) -  2( i+  1)1 < 2 n +  1. 

We take xi+l  for our  new xi+l and the second par t  of(2)  is proved.  
Define 

s ao (8) ~:----- S ,N ,  

and let for d ( - c o ,  do) 

S a : = {x ~ NIA(x) < d}, (9) 
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where 

For  c < d < do the inclusion 
A=AIZ.  

(Z a, X~)~(Mas, M~s) 

445 

(lO) 

(11) 

where is a G-homotopy equivalence by Lemma13.  Denote by Cr(d), 
~: =dk =-  . . . .  dk+j, the set of critical points of ~ on level d. 

Given 6 > 0 we define an equivalence relation on Cr(d ~) by 

:¢ 7 ~  iff there exists a finite sequence (x~)~=0-.m+ 1 C Cr(d ~) with 

~o=:¢, 2 , ,+1=2  and I[~i-~i+,[] <6. (12) 

By the compactness of Cr(d') there are only a finite number of equivalence classes. 
The Riemannian metric on SN induced by the inner product on E induces a 
Riemannian metric for S. We denote by 

lR + x X ~ X : ( t , x ) ~ x * t  (13) 

the restriction of the minus-gradient flow associated to .4, that is 

x '=  -g radA(x) .  (14) 

We shall also denote by x • t for t < 0 the image ofx  in backward time as long as the 
flow is defined on [t, 0]. Note  that X a is compact for every d < do. 

Now fix 6 > 0 and denote by [u 1]~, ..., [u , , t jo  the mutually disjoint equivalence 
classes of Cr(d). Note  that every [ui]o is G-invariant, open and closed in Cr(d). 

We find e(5)e(0, Co) and compact G-neighborhoods Ki in Z of [uJa such that 

The G-action and .4 are smooth on an invariant neighborhood 
of K i, (15) 

KinKi=O for iq=j, (16) 

dist(OKi,[ui]~)<6 and ind(Ki)=ind([uJ~),  (17) 

~K,c~{x ~ Zl~(x) ~ [ a -  ~(6), a +  ~(6)], O74(x) = 0} 
(18) 

c ~K¢~{x ~ zl~(x) = d -  ~(6) or ~(x) = d+  ~(6)}, 

If a, b ~ 0, x ~ Ki and for t E [ -  a, b]Zt(x * t) C [ d -  e(6), d+ e(3)], 
then x * [ - a ,  b] CKi. (19) 

We define K~- = K~nZ a-~(6). 

Lemma 16. The inclusion 

IJ (K~, Kd)-*(Xa° + ~(~), Xa - ~(~)) (20) 

induces an isomorphism in equivariant cohomology. Here LI denotes disjoint union. 

Results of this type are well known if the critical orbits are isolated. That they 
are isolated is however not assumed here. 
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Proof We use the strong excision property of Alexander-Spanier cohomology. 
Since we shall work in the finite-dimensional manifold Z we can define equivariant 
cohomology by taking the G-product with E~ = S 2k- 1 instead of E G for some 
sufficiently large k. The inclusion (20) induces a bijection 

(II K,)\(LI K :~ )--*( Xa- ~°)w LI Ki)\ X;~-a~) . (2•) 

Moreover if we take the G-product of the data involved in (21) with E~, k large, we 
obtain a similar assertion to (2•): 

([I Ki, o)\(U KT,~)-4(Z~-"O)u LI Ki, o)\Z~ -~0) . (22) 

Moreover the inclusion 

U Ki, G-~X~ -a~)w U Ki, c, 

is a closed map since a closed set in the left-hand space is compact. Recall that the 
suffix G means product with E~ for k large enough. By the strong excision the 
inclusion in (20), say j = {Ji}, induces an isomorphism 

Ha( Za -"°)w LI K,, Z a-'O))--* @ IT~(Ki ' K?). (23) 
i 

Here /7~(X): =/7(X~) by definition. H e is called an equivariant cohomology 
theory. This construction is due to Borel, [13]. By condition (18), using the map 
*:JR + x Z ~ X ,  we can easily construct a continuous map 

r:[O, 13 x 1:a+~(~)--,~r a+'¢~ 

such that 

r(O,. ) = Id,  

r(t,x)=x VtE[0,1] VxeX a-~(°), 

r(1, x) e Z a- ~°)u [[  K i Vx e X a +~°), (24) 

r(t,. ) is G-equivariant, 

r([0,1] x (Z a- ~o)w(I ] Ki) ) C Za-ao)w(~ Ki). 

Using (24) we obtain the following G-homotopy commutative diagrams: 

(Za-aa)u(L IKi) , z  a-aO)) ~ ~ i" " ' d ~  '(xd +z(a)' xd-e(O) 
~/ /r(1, ') r( 1,, )o inel 

(Xa-~°)W( L[ Ki), X a-"O)) 

( Za + ~o), Z a- ao)) ~( i' . ) , ( X a_ ~o) w (~  Ki), Xa - ~o)) 

So incl is a G-homotopy equivalence. Combining this fact with (23) we see that the 
inclusion 

~[ (Ki, KF)__. (Xa + ~o), Za- a~)) 
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induces an isomorphism in equivariant cohomology. Denote the inclusion 

( Ki, K F) ~ (  Z a + ~), ,S a - ~(~)) 

by Ji. Hence 

Ha(Na+~(~),Z a-"{~)) .' ,~ . .~ tKi ,  Ki  ). [ ]  (24) 
i 

By Lemma 13 the inclusion 

(Za+~(~), Za-~(~h-~Ma+~(~)~ ~ s , Ma-~)~s ~ (25) 

induces an isomorphism in equivariant cohomology. We can combine this with 
(24). Consider the commutative diagram [recall Lemma 7, (24), (25)] 

i ~  [ l l~ l+e(O ) ll/1~l_e(g~) ~ b* ^ a* ~t~" s ,~"s , ' H~(M~ +~(°)) ' Ha(Mas -~°)) 

(~H~(Ki'K[-) ' (~H~(Ki) ' <u',)*,...,cr,.,~,)*> H(Ba) 

(26) 

where f~, f -+ are induced by a classifying map (see Lemma 7), everything else is 
induced by an inclusion. Recall the cohomology class o- exhibited in Lemma 7. We 
easily infer from (26) that for some ioe {1 ..... m(6)}, 

j*((f+)*(rl')u~r)4:0 for m=O,. . . , j .  (27) 

Hence, using that '* + * -  +" * -  * Jio(f ) - (Jo  Jio) - f io ,  and defining 0"io ff lqg (k- a)(Kio , K~) by 
O-io =j*o(a) we infer 

fi*(~/'~)U~ho@O for m=O ..... j .  (28) 

Moreover the nontrivial cohomology given in (28) "lives" above or on level a, 
namely we have the commutative diagram (de [d-e(6) ,  d +  e(6)]), 

It 
GI4G(Ki, K[-) , OHo(Kf,  K~-) 

That the vertical arrow on the right is a isomorphism follows as in the proof  of 
Lemma 1 6. Now if d < d the cohomology classes ( f  +)*(t/m)~o - are mapped to zero 
by the top-horizontal arrow. Consequently, the restrictions of the f/o*(t/'~)UO~o to 
HG(Kdo, K~) for d < ~  are zero. Moreover if d>d ,  the cohomology classes 
(f+)*(t/m)u~r are mapped to a nonzero class, since everything remains true if we 
replace 67+ e(6) by d. Hence we have proved the first part of 

Lemma 19. For m ~ {0,...,j} the cohomology classes 

~:,~.~u,~ = ~2~k- 1 +m)(Kio ' K~o) Jio ' , t l  / ~'io ~ . t~tG 

are nonzero. However the restriction for d < d  to /T2(k-~+'°tg a ¢4-~ is zero. t ~ i o ,  -~ io  

Moreover if j ~  1 then Kio contains infinitely many critical orbits on level d, in fact 
i n d ( [ u j )  > j  + 1. 
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Proof  We have f~*(t/")=~ 0 for m = 0 .. . . .  j in /Tg"(KJ .  Hence 

ind(K~o) > j  + 1. 

By construction, see (17), we have 

ind (Kio) = ind ( [Uio] ~). 
Therefore 

ind(Euja) > j +  1 >_2, 

which implies our assertion. []  

Now using (15), (17), (18), (19), a result by Wasserman, [Wa], and an 
equivariant partition of unity argument, there is a G-invariant smooth map 
defined on a neighborhood of Kio such that 

is C °% close to A, (29) 

coincides with A on a neighborhood of K~o, (30) 

The critical Sl-orbits on levels between d-(e(6)/2) and 
d+(e(6)/2) are nondegenerate, (31) 

The inclusion ({x ~ K~0 I~(x)< d}, K~o)%(Kio, Kfo ) induces a map 
in equivariant cohomology mapping fi*(rlm)Waio, m = 0  ..... j, 

to non-zero classes of d > d +  ~ ,  and to zero classes for 

d<d-  ~(a) 4 " (32) 

Note that (32) is true if (29), and (30) hold. 
Define a map fl: [ d -  ~(6), a +  e(6)] ~ Z  by 

fl(d) = max({m ~ {0 . . . . .  j}[fi*o(t]m)Uaio induces a non-zero class 

in /72  ~k-1 +,,)({x ~ K~o I/~(x) < d}, K~)} } w { - 1 }). 

By the construction of ~ we have 

fl(d) = - 1 for d ~ d -  e(b) e(b) 4 ' fl(d)=j for d > g + ~ -  (33) 

Lemma 20. There exists a sequence di, O < i < j, such that 

e(6) e(6) (34) 
a -  - -~  <do ... < d j < d +  4 

and fl is discontinuous at d i. Moreover 

fi(d +) - fl(di-)= 1, fi(do) = - 1. (35) 

Proof  This is of course a replica of the proof of the corresponding properties of as. 
Note  that by (30) Kio has property (19) with respect to the minus-gradient flow 
associated to ~]. Equations (34) and (35) follow from the fact that (31) holds, so that 
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there can be only a finite number of critical orbits between levels d-e(6)/2 and 
~+  e(6)/2. (Ifd~ = d i + 1 for some i, then there would be infinitely many orbits on level 
di). [] 

Our aim is to show that there exists a critical point o f ~  in K~o on level d, having 
index 2 (k -  1 + i). From this Proposition 2 will follow easily. For this we have to 
recall some facts from equivariant Morse theory [Bo, Hi], as well as some local 
results concerning the Poincar6 polynomial of a nondegenerate orbit. The reader 
can also use the note by Viterbo [V]. Combining a local version (in Kio) of 
Lemma 7 with Lemma 20 and using a localization technique in K~o similar to the 
procedure within this chapter (however somewhat simpler) together with the 
nondegeneracy we obtain 

Lemma 21. For di as in Lemma 20 there exists  a critical point ui o f  .4 in Kio on level d i 
such that 

i f f [ 2 ( k - l + i ) ( s i , ] Q i ) d f : O  , i - - - - 0  . . . . .  j ,  (36) 

where Ni--*G * u i denotes the negative bundle and 2V i is the negative bundle with the 
zero-section deleted. 

We need now some information about the Morse index of the ui. 

Lemma 22. The Morse  index of  ui as given in Lemma 21 is 

m-(ui) = 2 (k -  1 + i). (37) 

By  the nondegeneracy o f  ui the nullity is exact ly  one: 

m°(ui) = 1. (38) 

Proof. Denote by N~,x the fibre over x e G * ul and consider the trivial vectorbundle 

N x x S  ~° P~S ~°. (39) 

The isotropy group Gx of x is a Zz, I=  ordGx. Let g be a generator for Gx. Then 
gnu, ~ = N~,~ and G~ acts on the vectorbundle (39) in the obvious way. Of course we 
take the standard action on S% p commutes with the action and taking quotients 
we obtain 

(: = (N¢.~ x S°~)/G~--*S°~/Gx= :L  ~ , (40) 

where L ~ is an infinite dimensional lens-space. Clearly we have the commutative 
diagram 

(N~ x E~)/G "--'-, 

l i 
(G * u i x E~)/G ~ L ~° 

where the horizontal maps are isomorphisms. (So we have a vectorbundle 
isomorphism.) Now ~--,L ~ is ~-orientable iff N I ~ G  * u~ is ~-orientable. 
We start with computing HG(G * ui). We have 

(G * u~ x EG)/G ~- L ® = S°~/G~ = S°~/Z~. 
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By a result in [B] we infer 

H(swzt,¢~) ~ [/~(s ~; ¢))] z, __ (Q, o), 

where n:S~°~S°°/ZI  is the projection and 

rtT(s% ~ ] ~ , =  {a e H(S=, Q)lg * a = a Vg e Z, ~ G~}. 

The exact equivariant cohomotogy triangle for the pair (N~,/~/~) is 

Ho(Ni, ]Vi) ) BG(Ni) 

/ 

Since N i G-retracts fibrewise to G * u~ we have 

/-TdN',) = (Q, o). 

So (43) gives 

(42) 

(43) 

lq~(Ni, Ni)=(II~, a) if Ni--+G * u i is orientable. (48) 

If N , ~ G  * ui is not orientable then a similar argument based on (47) gives 

HG(Ni, Ni) = 0 if N ~ G  * ui is non-orientable. (49) 

Now by assumption I7 z~k- t +i)(Ni, Ni)*0.  So we must be in case (48) with 
2 ( k -  1 + i) = a. This proves (37). Equation (38) is clear. []  

which implies 

HdN, ,  U,) , (•, O) 

~*X / (44) 
/Td.&,) 

Since (~r i x E~)/G ~- (IV~,x x E~)/Gx, we obtain again by a result in [B] 
w* 

H ~ ( N i )  = H ( (N i ,  x x Ea) /Gx)  ~ [/~(_f,T x X Eo)] e' (45) 
= [H(N~,x)] z' (S ~ contractible). 

If all g e Z  l induce an orientation preserving (op) map, we have with dimN~,~ = a, 

[/~(N~, ~)]z, = ((D, 0)(~ (tl), a - 1) (if op), (46) 

if one is orientation reversing (or), 

[ /~(~r ~)]e, = (11), 0) (if or). (47) 

So if 2g t ~ G~ acts orientation preserving on N¢ which is equivalent to N¢-~ G * u s is 
orientable, we infer combining (44), (45), (46), 

Ha(Ni, Ni) , (II~,9) 
¢ 
\ " , . ectlve 
\ 

(~, 0) ® (11)_, a - 1) 



Hamiltonian Periodic Trajectories 451 

Proof of Proposition 2. Since .~ is arbitrarily C°~-close to A, we find in view of 
Lemma 22 for i ~ {k,..., k +j} a critical point xi of A on level d such that 

m-(.~i) <= 2(i-- 1) < m-(xi) + m°(xi)-- l ,  

ind [Xi] > j  + 1. 

Since 6 > 0 is arbitrarily given, (5) follows immediately. [] 

11.4. The Index Interval 

w e  shall show in this section that a(S) is a compact interval in (0, + oo) and that the 
map S~a(S )  is continuous. 

Lemma 23. Let $=  x~ --- 1 . Then 

Proof. Given xo ~ $1 the map t~exp(2nJt)xo parametrises an element in ~'--($), and 
every F e J ( $ )  can be obtained this way. Dividing out the Sl-action in S we obtain 
a bijection 

g S  1 ~ ~--(~, [Xo]~{exp(2ntJ)xol t~R } . 

1 

We compute V(F)=½~2n[Xo[2dt=½4n=2n for F ~ J ( $ ) .  Therefore the critical 
o 1 

levels for A s must be of the form - f~n/' 1 e IN*. Since our critical point problem is a 

linear eigenvalue problem, one easily computes (a variant of the Courant-Hilbert 
min-max principle) 

ffl =d2  . . . . .  ft. <f t .+ 1 . . . . .  d2. 1 = ... =t~3, etc., 

where 1 

dz" - 2nt " 

Hence n 
lim [dl.lln 
l~z 0 ~ ~ .  

This implies as one easily sees, 

lim as(d) [d[ = n 
~0 ~ "  

[] 

Proof of Theorem 1 (i). a(S)eCg and S~a(S)  is continuous. 
Let $ as in Lemma 23. For b > 0 denoting by bS the image of S E W under the 

map z ~ b z ,  we see that 
Hbs = b -  ZHs. 

This implies 

abs(d ) = as(bEd), d E ( - o% 0). 
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Consequently 

infa(bS) = b -  2 infa(S), sup a(bS) = b-  z sup o-(S). 

Write R > S iff R encloses S. Assume R > S, then H s >HR, and consequently 
H E < H*. So we find a G-map of the form x - . f ( x ) x  from a a M R ~ M s. This implies 
C~s > aR" Hence we have 

R > S  ~ ~ s > % .  (1) 

This implies in particular 

R > S  ~ infa(S)>=infa(R) and supa(S)>sup(r(R). (2) 

Now given S e o,5f we find 6 > 0 such that 

6-1S> s > 6~. (3) 

Hence by Lemma 23 and the previous discussion 

F 2 n  _ 2 n q  

So we know that a(S)e~.  Next we show the continuity S~r(S) .  Assume e > 0  is 
given. For 6e(0, 1) define Us,~ by 

R e U s ,  ~ iff ( 1 - 6 ) S < R < ( I + f i ) S .  

Then (Us, o)s~g,o~(o ' 1) is a basis for the topology on Yr. By our previous discussion 
we have for R e Us, ~, 

(i + b)- 2 infa(S) < infa(R) =< (1 + 6) 2 infa(S), 

(1 + 6)- 2 sup a(S) < sup a(R) <__ (1 + 6) 2 sup a(S). 

Therefore, we have for sufficiently small 6, 

d(R,S)<~ VReUs ,  ~. 

This proves the continuity. []  

Lemma 24. For S e fff we have 

as(d)-as(d-)<=n V d e ( -  oo,0). 

Proof. Arguing indirectly assume for some d e ( -  ~ ,  0) we have 

as(d) - ~s(d-) > n + 1. 

Then, denoting by Cr(d) the critical set of As on level d, we have 

ind(Cr(d)) > n + 1 

by Lemma 6 (iii). By a result in [F-R,  Proposition 6.12] (use that ind =ind~ + 1, 
dim, = 2) 

2(ind (Cr (d)) - 1) < dim (Cr (d)/G). 
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Therefore 

2n<dim(Cr(d)/G). 

Since dim(Cr(d) /G)<2n-1,  we obtain a contradiction, 

A consequence is the following useful 

Lemma 25. 

Proof We have 

infa(S) = lim inf IcTklk, 
k---} oo 

sup a(S) = lim sup 12dk. 
k ~  

[ ]  
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as(d) ldl => as(d) I~ --> (as(d)-  n) I~, (4) 

where d >  d is the closest point of discontinuity for a s on the right of d. Defining 
_d =< d similarly we obtain 

as(d) [d[ ~ as(_d ) ]_d[. (5) 

Hence (4) and (5) imply our assertion. []  

IH. Index Sequence and Torsion at a Hamiltonian Trajectory 

III.1. Index Sequence and Winding Number 

Let Se~¢ ~ and pick Fe~-(S).  Denote by x : ~ , ~ S  a solution of 2=JH'(x)  with 
x(0) e F, where H -- H s. Consequently x(t) e F for all t e ]R. As we have already seen 
the minimal period T of x satisfies T= V(F). We study now the linearisation of 
£--JH'(x)  along x, which is 

~(t) -- JH"(x(t))y(t). (LHS) 

Definition 8. Two times t 1 < t 2 a re  called conjugate along x if the linearised problem 
(LHS) possesses a solution y:[ t l ,  t2]-*]R2n satisfying y(t 0 = Y(t2). The multiplicity 
of  t 2 with respect to tl is the number of linearly independent solutions of (LHS) 
satisfying y(tO=y(t2). If t 1 --0, we define m(t) for t > 0  as follows: 

[0  if t is not conjugate to 0. 
re(t) 

multiplicity of t if t is conjugate to 0. (1) I _  

Now we are in the position to associate to F e ~-(S) an index sequence as follows 

0 N * = N \ { 0 } ,  N={o, 1 . . . .  )). 

Definition9. Let Fe~--(S). The index sequence of F denoted by ir=(ikr)k~, is 
defined as follows: 

ikr = ~ re(s). (2) 
O<s<kV(F) 

In [E I -E  3] the reader will find the basic properties of the index sequence. An 
alternative but  equivalent definition of the index sequence can be given as follows. 
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For k e N* denote by F k the Hilbert space, 

F k = {y : [0, kV(F)] --+~,.2nly ~ Hi(I-0, kV(r)];R z") and 

Define a quadratic form Qk on Fg by 

kV(r) } 
f y(t)dt=O . 
0 

kV(r) 
Qk(Y) = ~ [(J~(t),y(t)) + (H*"(-- J2(t))J~(O, J~(t))]dt. 

0 

Then it has been shown in [E 3] or [E-H 1] that i~r is just the number of negative 
squares of Qk, or with other words the maximal dimension of a linear subspace of 
F k, so that the restriction of Qk to that subspace is negative definite. Moreover there 
is a formula relating ir to ir ~ and the Floquet multiplier of the time-T-map of the 
fundamental solution of (LHS) 

i~= • j(w), (3) 
W k =  1 

where j is a map from the unit circle {zeCI Izl = l}  in (17 into the non-negative 
integers, which is described in detail in [E 2]. Equation (3) implies that 

Ik2  ° lim -.-i = .(j(w)dw = "t r . (4) 
k ~  k 

We call Tr, the mean index ofF. Now using results in [C-Z 1, C-Z 2] we can relate ~'r 
to a winding number. In [-C-Z 1] Conley and Zehnder introduced an index based 
on a winding number and related to previous work by Duistermaat [Du] and 
Cushman-Duistermaat [Cu-Du]. From facts which can be found in [C-Z l, 
p. 651] and formula (i.17) in [C-Z 2] we have for a constant C > 0 independent of 
F (note that our Ar is ½ times Conley-Zehnder's A) 

likr-2Ar(kV(r))}<C VkeN.  (5) 

Since, as shown in [-C-Z 2, p. 652] Ar(kV(F))= kAr(V(F)), we infer combining (5) 
with 

Ar(kV(V))=kT(r), (6) 

the following: 

Lemma 26. For F ~ Y(S)  we have 

?r=27(r). (7) 

Proof Using (5) and (6) we have 

~i~-- 27(F) _-< C 1. 

Taking the limit gives (7). [] 

In the following we study in more detail the quantity ~'r to obtain information 
concerning 7(F) and y(F) 
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Lemma 27. Let dim ker(R(T)-  Id) = d. Then 

j ( -  1)__> d + i/-. 

Here R(t) is the fundamental solution of (LHS) with R(0)= Id. 

Proof F1 possesses a (d + i~)-dimensional subspace X such that Q 1 IX N 0. X admits 
the Ql-orthogonal decomposition 

X = X ~ O X 2 ,  

where X 1 is spanned by the functions in the kernel of Q, and X2 is spanned by the 
eigenfunctions belonging to negative eigenvalues. Let {y, ..... Ya] he a 
Q ~-orthogonal basis for X I and {Yd+, ..... Ya +ib} a Q,-orthogonal basis for X2. We 
define ~ C F 2 for j = 1,2, 3 by 

I11 = {Y ff F2[)~ = ~ on  [0, t,1(/')] for some z e X 1 and p = 0 otherwise}, 

Y2 = {Y e FEIP = ~ on [0, V(F)] for some z e X2 and 3~ = 0 otherwise}, 

Y3 ={yeFa[~,=0 on [0, V(F)] and 3~=~(-- V(F)) for some z e X 2 } .  

Then the Yj are mutually Q2-0rthogonal in F 2 and a simple calculation shows 

QzlY, O Y~® Y3 <O. 

Moreover Q2(y)= 0 implies y e I(1 if y e I11 @ I(2 • Y3. Since Y1 does not contain an 
eigenfunction since y is constant on (V(F), 2V(F)], we infer the existence of a linear 
subspace Y of FE such that 

Q2(y)<0 if yeY\{0} ,  

dim Y= dim (I11 @ Y2 @ }73) = d + 2i~. 

Therefore 

j(-1)=i2-i~>__d + 2 i~ - i~=d  + i~r, 

as required. [] 

Lemma 28. There is an integer 6 E [0, d] such that 

lira j(e i~) = i 1 + n + 6. 
~ 0  
e 4 : 0  

Proof See [E 1] or [E-La]. [] 

Corollary 2. j (w)~ 2 except for a finite number of  points. 

Proof By Lemma 27 we have j ( - 1 ) >  d > 2. That d > 2 follows from the 2-homo- 
geneity of H, since Tis conjugate to 0. It has been shown in [E 1] that any point of 
discontinuity ofj must be a Floquet multiplier of x, and that if w + _+ 1 is a Floquet 
multiplier with [w[ = 1, p times Krein-positive and q Krein-negative then 

lim (j(we i~) --j(we- i~)) = q _ p . 
g.~O 
e#O 
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Assume w is a point in the upper half-sphere which is not a Floquet multiplier such 
thatj(w) < 1. Since j( - 1) > 2 by Lemma 27 we have w ~: - 1 and the arc in the upper 
half-sphere [ -  1, w] must contain a Floquet multiplier. Hence the arc [w, 1) can 
contain at most n - 2  Floquet multipliers, hence 

j(w)>=i~.+n--(n--2)>=2. [] 

Corollary 3. I f  n >_ 3 then Tr > 2. 

Proof  We have j(w)__ 2 except at a finite nmnber of points. By Lemma 28 j (w)> 3 
for w # 1 close to 1. Hence 

1 
i r=  ~ f j ( w ) d w > 2 .  [] 

We develop now a special argument to extend Corollary 3 to the case n = 2. 

Lemma 29. Assume R(to) has a simple eigenvalue e i°° with 0 < 0 o < n. Then there are 
neighborhoods U of  t o and V o f  0 o and a Cl-map t ~O(t) from U to V such that for  
any t ~ U e ~°(t) is the only eigenvalue of  R(t) with O(t)~ V. We have 

dO 
d-t- > 0 if e i°(° is Krein-positive, 

dO 
d~- < 0 if e ~°~° is Krein-negative. 

Proof  Krein has proved similar results when R(to) is perturbed by increasing the 
Hamiltonian (that is, changing H"(x(t)) to H"(x(t))+~Q(t), with Q(t) positive 
definite (see [S-Y, Chap. III]). Here we perturb R(to) by changing to to some 
neighboring t, but the argument is quite similar. 

By standard perturbation theory, there is a Cl-map t-+w(t), defined on a 
neighborhood of U, such that w(t) is the only eigenvalue of R(t) close to d °°. Since 
R(t) is symplectic and w(t) is a simple eigenvalue, it cannot leave the unit circle, so 
w(t) = d °¢t). We can also choose for each t an eigenvector y(t) in such a way that the 
map t~y ( t )  is C 1. 

Now write 
R(t)y(t)=ei°(t)y(t) 

and differentiate: 

Hence 

R(t)y(t) + R( t)~t) = iei°(t)O(t)y(t) + ei°(o))( t). 

(R(t)-  e'°(°))~(t) = iei°¢oO(t)y(t) - R(t)y(t) 

= iei°(t)O(t)y(t)- JH"(x(t))R(t)y(t) 

= e~°(°(iO(t)-- JH"(x(t))y(t). 

We take the Hermitian product with Jy(t). The left-hand side vanishes since 

(R(t)S,(t), ay(t)) = (p(t), U(t)*Jy(t)) = (p(t), J R -  l(t)y(t)) 

= (p(t), ae-i°(t)y(t)) = ei°(°(p(t), Jy(t)). 
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Therefore we are left with 

i(y(t), Jy(t))O(t)= (H"(x(t))y(t), y(t)). 

The right-hand side is positive. It is known that the Hermitian form - iJ does not 
vanish on the eigenvector y(t), and by definition its sign defines the Krein-sign of 
the eigenvalue ei°{°: 

if iy(t), Jy(t))> 0, then e i°u) is Krein-positive, 

if i(y(t), Jy(t))< 0, then d °(° is Krein-negative. 

Hence the result. [] 

Before proceeding, we must make an excusion into index-theory. Take w on the 
unit circle and t > 0. Consider the Hermitian form 

t t 

(QY, Y) = S ( J ~(z), y(z) )dz + ~ ( H*"( -  JSc('c))J~,(z), J~(z))d 
0 0 

on the complex Hilbert space 

H~(0, t)-- {y ~ H'(0, t; II;2")ly(t) = wy(0)}. 

This form is the sum of a positive definite term (for w4= 1) and a compact term. 
Hence it has a finite index. We call it j(w, t). Note that j(w) =j(w, T) in our previous 
notation. Clearly j(w, t) cannot change without Q degenerating, which happens 
only if w is an eigenvalue of R(t). 

Definition 10. Let w be on the complex unit circle. We call t > 0 w-conjugate to 0 
along x if w is an eigenvalue of R(t). Note that Definition 8 is concerned with 
1-conjugate times t. Denote by re(w; tl, t2) for t 1 < t2 the number ofs e (tl, t2) which 
are w-conjugate to 0, each counted with multiplicity. (The multiplicity is of course 
defined similar to that in Definition 8.) 

Assume t is not w-conjugate to 0 and w + 1, thenj  is constant in a neighborhood 
of (w, t). If w = 1 and t is not 1-conjugate to 0, we have 

lim j(e i°, t) =j(1, t) + n. (8) 
0 ~ 0  
0 : ~ 0  

To see this we determine y from )~ by the formula 

t 

y(O) = ( w -  1)- ~ ~ iJ(s)ds 
0 

and )~ spans the whole of L 2. We can therefore rewrite Q as a Hermitian form over 
L 2 , 

~ l - j  s ] 
(QY, Y) = I | ( y ( s ) ,  f y(z)dt) + ( H * " ( -  J2(s))Jy(s), Jy(s)) ds 

O k  o 

t t 

+(u~-- 1)- 1 ( j  S y(s)ds, ~ y(s)ds) . 
0 0 

We can split L 2 into L 2 OtI~ 2", where L~ is the space of C2"-valued L2-functions with 
mean value zero and 112 2" denotes the space of constant functions. The restriction of 
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Q to {I~ 2n has index n and the restriction of Q to L 2 has index j(1, t). If w is close 
enough to 1 the index of Q will be j(1, t) + n. Thus we have proved 

Lemma 29. I f  n = 2  then if t is not 1-conjugate to zero: 

limj(ei°,t)=j(1,t)+n. [] 
0 ~ 0  
0~=0 

Lemma 30. Assume w = l  is a double eigenvalue of R(T). Then there are 
neighborhoods V of 1 and U of T and a continuous map t ~ O(t) from U to ]R such that 

(i) 0(t) ~ 0 for t :~ T and e i°(O ~ V Vt ~ U. 
(ii) The restriction of O(t) to U\{T)  is C 1. 

(iii) For t e U e i°~t) and e -i°~t) are the only eigenvalues of R(t) belonging to V. 

Proof T is clearly conjugate to 0 with multiplicity 2 as we have previously seen. 
Conjugate points are known to be isolated [E2,  E3]  so that there is a 
neighborhood U' of T with 

Ker (g ( t ) -  Id) = {0} t ~ U'\{ T}. 

We consider the equation 

det(R( t ) -  w Id)=O. (9) 

The left-hand side is a polynomial in w with smooth coefficients in t. For  t = T there 
is a double root w = 1. Choose a disk V around w = 1 containing no other root. 
Then there exists an open neighborhood U C U' of T such that whenever t ~ U and 
t 4 = T. Eq. (9) has two simple roots in V. Since R(t) is symplectic these roots must 
either be both real 

~(t) and O(t)- i with 0 < O(t) =< 1 (10) 

or both on the unit circle 

e iO(t) and e-i°(t) with 0 < 0(t) < ~. (11) 

The functions Q(t) and O(t) must be C 1 on U\{T}.  This leaves us with four 
possibilities 

(a) real roots for all t ~ U. 
(b) real roots for t < T, complex roots for t > T. 
(c) complex roots for t < T, real roots for t > T. 
(d) complex roots for all t 4= T. 
We may choose U to be an interval containing T. By the preceding lemma O(t) 

will have a constant sign on each of the half-intervals Uc~{t < T} and Uc~{t > T}. It 
follows that a complex eigenvalue w = e ~° can occur at most once on each side of T. 
In other words, for each w s V with [w] = 1 and, w =~ 1, Eq. (9), now considered as an 
equation in t has at most two solutions tl and t2 in U, one with ta < T and one with 
t2 > T. If there are exactly two we have case (d). 

We now use index theory. Choose an interval [h ,  t 2 ] (  U with t~< T < t  2. 
Since T is 1-conjugate to 0 with multiplicity two, we have 

j(1, t2) =j(1, tl) + 2. (12) 
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Since neither t 1 nor  t z is l-conjugate to zero, it follows that there is a neighborhood 
W of 1 contained in V with 

j(w, t~)=j(w, q) + 2, w e W. 

So, whenever w e W and w + 1, Eq. (9) must have two solutions in ($1, Sz) C U. 
We are therefore in case (d) and Lemma 30 is proved. []  

Still in the case n = 2 we have 

Lemma 31. Assume ke r (R(T) - Id )  is two-dimesnional. Then 

lim j(e/") = it* + 3. 
~"~0 
e > 0  

Proof Take t < T in U and consider O(t) which was defined in Lemma 30. We have 
O(t) > 0 and O(T)= 0, so e i°(t) is Krein-negative by Lemma 29. Fix 01 s (0, re) so that 
for all t e U with t < T the only eigenvalue of R(t) of the form e i°, 0 < 0 < 01 is O(t). Set 
02(t)---tO(t) and wl = d  °1 and w2(t ) = e ~°~(°. We have 

j(w O = lim j(ei") . 
~--* 0 

Between w, and WE(t ) there is a single Floquet-multiplier e i°(t), which is Krein- 
negative. The change in j ( . ,  t) is then + 1, see [E 1]" 

j(wl, t)--j(w2(t), t) = + I .  

Now let t ~  T. Since R(t) never has eigenvalue wl, we have 

j(wl, t)=j(wl, T)=j(wl).  

On the other hand we have 

j(Wz(t), t) =j( l ,  t) + 2. 

Since there are no 1-conjugate points to 0 in (t, T) we infer 

j(l ,  t)=j(1, T )=  i**.. 

Comparing the four equalities we get 

j(w,) =j(w2(t), t) + 1 =j(1, t) + 2 + 1 = it* + 3. [] 

Corollary 4. I f  n = 2 we have 
Tr>2.  

Proof Since j(w) > 3 if w close to 1 and the value ofj(w) can drop by at most 1 for 
w =# 1 (since there can be at most one simple multiplier w =I= 1 on the upper half 
circle) we infer j(w) > 2 for w =t= 1. Hence 

1 
Zr = 27 f j(w)dw > 2. 

Proof of  Theorem 2(i). Corollary 3 and 4 give Tr > 2. Since by Lemma 26 we have 
~'r = 27(r ) ,  we find 

7 (F)> l  if n____2. []  
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Finally we need a result connecting the indices i~- and the formal Morse index 
defined in Definition 6 (II.2). 

Proposition 3. Let Xo be a critical point of A s such that ~o([xo]) = F (see II.1). Let z 
1 

be a minimal representative for [Xo] and IA(xo)l = k V( F-----~ (see ILl, Lemma 5). Then 

Proof. By Definition 6 in II.2 m-(xo) is the index of the quadratic form on TxoMs, 

1 
Qxo(h) =½ S (Jh(t), h(t) > dt 

0 

1 

--½A(xo) ~ ( H*"(-- JYco(t))Jft(t), Jft(t) )dt 
0 

1 
=½ ~ (Jl~(t), h(t))dt 

0 

t 1 
+ ½ k V ~  ! (H*"(-  J&o(t))Jl;fft), Jh(t))dt. (I 3) 

Now the right-hand side of (13) defines a quadratic form on E (see 1.2 for the 
definition of E). One easily verifies that this new quadratic form which we denote 
again by Qxo has the same index m-(Xo). Carrying out a change of variable and a 
rescaling of Xo [similar to II.1, Lemma 5 (iii)] we obtain for a suitable constant 
C ~ ~ 2 n  

which solves - J ~  = H'(x) and x(t)~ F Yt ~]R. Moreover x has minimal period 
V(F) = T. It is now straightforward to verify that the index of Qk associated to x (see 
III.l) is the same as m-(xo). By the definition of i~- this implies the desired 
result. []  

III.2. Computation of Total and Mean Torsion 

Let S be the surface given by H = 1, where 

H(qt .... ,q,, Pl ..... p,)=½ ~ ei(qZ +p2). (1) 
i=1 

Here the ei are positive and independent over 2~. Denote by ei, i =  1 . . . .  ,2n, the 
standard orthonormal basis for p2, .  We obtain that the only Hamiltonian 
trajectories on S are those given by the following parametrisation: 

F~ : xj(t) = V 2 exp(2ntJ)e j. (2) 

Then with V,/= V(Fj), 

Vj = - ~ (½Jic~(t), x~(t))dt = 2re dt = --.2re (3) 
o o ~ j  ~ j  
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Now (LHS) is given by a linear time independent differential equation 11 01Y °% 

= j c~, =" J A y .  
0~1. .  

O; n 

461 

(4) 

Therefore 

detj(R(t) x . . .  x R(t)) = e 2~i~(t) detj 

i Z e j  t . 
e =t = e  '2~a('), A(0)=0. (6) 

n 

Consequently with 7~ = 7(F~) and ~j = ~7(F~) we infer 

7j =~ c~i ~ ~j, ,,7 i =  ~ ~=~ ~ .  (8) 

Note that L V~-I=-- I  L ~=1 2re i=1 ~ i = T j ' j =  1 . . . . .  n. 

Definition 11. Let S be defined by H e ~ .  We call S (r, R)-pinched with 0 < r _< R if 

x e S  ~ r < l x l < R ,  Rl---~Id<½H"(x)< ~ I d  V x e S .  (91 

Proposition 4. I f  S e ~ is (r, R)-pinched then for every F e Y-(S), we have 

n n 
< ~(r) < ( 1 o) 

~ R  2 ~ Tcr TM 

Proof  If A(t) is a symmetric positive definite matrix depending continuously on 
t e IR we can solve 

[~=JA( t )R ,  R(0)=Id 

and can associate to A and T >  0 a winding number Aa(T) jus t  as in the definition 
of 7(F). From the variational characterisation of the index sequence it is immediate 
that 

A>=B ~ B- I>=A -1 ~ AA(t)>A~(t ). (11) 

N o w  ~ ( r )  = AAv(r) ) /v (r )  = lim Ar(t)/t. Hence 
t -*a)  

!ira A 2 id(t)/t < 7(F) < lim A 2 id(t)/t, (12) 

(5) 

is equivalent to 

Hence R(t) = exp(tJA).  Note that R(t) commutes with J and moreover [R(t)y[ = [Yl- 
Now 
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2 i ~ 2 2 (qj + p  j) and similarly for R2 Id corresponds to /7(ql, ..., %, Pl . . . .  , P , ) -  
j = l  

2 
~-Id. For a sphere of radius F we can compute as before. 

V ( F) = rcr 2 n , 7 ( r ) = - - ,  
7~r2 

So combining (12) and (13) gives 

n n 
- -  __< y ( r )  < - -  
7~R2 7~r 2 

as required. []  

~,(r)=n. (13) 

(14) 

IV. Proof of the Main Results 

IV.1. Two Basic Theorems 

The following together with Proposition 1 is a key step in the proof of the main 
results. 

Definition 12. Let S ~ ~/f. We call a Hamiltonian trajectory F ~ ~--(S) k-essential, 
where k ~ N*, if there exists l~ N* such that 

Idkt= 1 l i t r_2k l<2n+l .  (1) 
IV(r)' 

Here dis(S)=(dk)k~r~* is the discontinuity sequence (see def. 7). 
We have 

Theorem 3. Let S ~ ~ .  There exists a sequence F(k)k~r~, C J'(S) such that 

F(k) is k-essential. (2) 

Moreover if ak . . . . .  dk+j for some j >  l, then the F(k)... F(k +j) are mutually 
different. 

Proof We construct the F(k) inductively as follows. Denote by (k~)t~. the sequence 
of "jump points" for the sequence (dk)k~*, 

ak,<ak,+l .  (3) 

Assume F(k) for k =  1 ....  , kz is constructed. We have to find F(kz+ 1)... F(kt+O 
mutually different so that F(k) is k-essential for k E {kt + 1 .. . .  , kt+ 1}. By Proposit- 
ion I there exist mutually different F(k~+ 1),..., F(kt+ 1) such that 

1 
ak,+l = V(~)li' lm-(x l ' ) - -Zi l<Zn+l '  i ~ { k , + l  ... .  ,kt+l} (4) 

for suitable li ~ N*, where xi denotes a minimal representative for F(i) and xl' is the 
lcth iterate. By Proposition 3 we have 

m-(x~') = "~' Zr(o- ( 5 )  

So combining (4) and (5) gives the desired result. 
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Moreover we have 

Theorem 4. Given S ~ 2/g there exists a constant c = c(S) > 0 such that the following 
holds: 

I f  F ~ 3-(S) is k-essential then 

bT(F) - [ d ,  lkl < cla~kl ~/2. (6) 

Proof We have for some l e N*, 

1 
Idkl = 1V(C)' 

In the formula 

we must have 

Hence 

izr~[2k-2n-1,  2 k + 2 n + 1 ] .  (7) 

j(w) ~ [i~, i~ + 2n]. (9) 

This implies 

Using (13) we obtain 

ITr- i i  1 n (10) 
<= 2n121v(r  - v(r)" 

The set f2 : = G\{Floquet multipliers} can be written as 

Y2=U Ua, (11) 

where the U~ are open intervals on S 1 = G which are mutually disjoint. Moreover 
{2} < 2 n -  1. On U~j takes the valuej~. Denote by 4~ ~ the number ofw ~ U~ such 

that w ~-- 1. We have the estimate 

[la~.-- 1] _< ~ = <  [la~+ 1], (12) 

where [ ] denotes the integer part and az is the length of Uz, where we put the 
uniform measure of total measure one on G. Since 

we find for a fixed 2 

Ijzaz- [laa + l]]~ <ljzaz- ~ j(w)<_Ijza,~-[la~- 1~,~. 
w e U z  
w l =  l 

lj.ta:~-w~ v j(w) ~ 2j.~ . 
A 

w ~= 1 

[l~r--i~rlN~ ljaa~--w~ v j(w) + 2 j(w) 
.~ w¢ ' t '  

w t = l  w l =  l 

< (2n)- 2. (i~ + 2n) + 2n(i~. + 2n) 

< 12n2(i~ r + I)__< cx(i~-+ 1), 

(13) 

(14) 

= , j ( w ) ,  (s) 
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where c 1 is independent of F and only depending on S E ~f~ (actually only on dim S). 
So we conclude from (14) and (7), 

ITr- i~ 
2 ( i ~ +  1)[~k[ (15) ~ _ - <  

We have by (9) 

i~r=w~ l j(w) >= lir. (16) 

Combining (15) and (16) gives 

ffr__ilr cl. (.i,r ) 
21v(r) <---2 T +1 Idkl. (17) 

Equations (7) and (17) together yield for a suitable constant, c2 = c2(S)> 0, 

NvTr] = - F -  + l I&l <= c2 

Now the sequence {kldkl [keN*} is bounded by some constant %=c3(S)>0 by 
Theorem 1 (i). So (18) and (10) imply for some constant c4=c4(S)>0, 

(: ) ,r _ _  7( r ) -  iI .1 2w(f)- --<c~ +l&l 7(r)- 1 ' 27V((~ <=c4 v(r) 

Moreover by (7) 

~(r)- ~,; + 2.+ ~) ~@n _< ~(r)- IS~lk_< ~(r) + ~ ;  + 2.+ 1 /~r) .  

Therefore we have for some constant c5 = c5(S)> 0, 

If(r)-idklkl < y ( r ) -  i~ . i~ la~lk[ 
- ~ + 21v(r) 

I 

< l~(r )_  _i~ 1 =, 2IV(r)] + c s ~  
f(r)- i'~ < 2/v--v~ +c~ld~l. (20) 

Equations (19) and (20) combined give the two estimates: 

,~(F)-l~klk[<=c6( ~ +[dk,), ,~(r)-ldklkl<-_C6(v~ +[dkl ) ,  (21) 

for some constant c 6 =c6(S)>0. From (21) we deduce using (7) again 

[~(r)--,~klkl2 <=C2 (l~kl-b (~ -l- -V~) ld"kl-t-l~k,2 ) . (22) 

Since Idgl<linfAs(Ms)l, V(F)-i<linfAs(Ms)I we find for a suitable constant 
c = c(S) > 0 finally 

If(r)-I&lk? _-< c~ld~l, (23) 
which implies the desired result. []  
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IV.2. Proof of the Main Theorem 

We have already proved Theorem 1 (i). Moreover we know by Lemma 25 that 

infa(S) = lira infkldkl, sup o'(S) = lim sup kldkl. (1) 

Since we have already seen after the statement of Theorem 2 that Theorem 1 (ii) is a 
corollary of Theorem2,  we have only to prove Theorem2. Moreover 
Theorem 2 (i) has been already proved in III.1. 

Proof of Theorem 2 (ii). Let t ~ a(S). We shall construct a monotonic sequence 
(kt) C N* such that 

lim It~k~lk I = t . 
l--* c~ 

Then picking by Theorem 3 a kressential F(k~)~ ~d-(S), we have by Theorem 4 

I~(r(k,))-ladk, I =< cldn,I 1/a 

Since d k ~ 0  as l--.oo and [dk,lkt--*t, we infer 

f(r(kl))--*t as l ~  oo. 

If rr(S)= {I} we have by definition 

ICtklk--*I as k-~oo, 

and are done. So assume 

infa(S) < supa(S). 

Constructing (kt) inductively assume k~ has been constructed such that 

1 
kz>k1-1, It~kztkl--t[< ~. 

We shall now construct k l+ 1 such that 

1 
kl+l >k~' tldk'+llkz+l-tl< 1+~" 

We find k*> k t such that 

1 1 
tldk,lk. <infa(S) + I+ 1 '  Id~.l < 2(1+ I ~ "  

Using the monotonicity of (dk) we find for a e N, 

(k* + a + l ) ldk.+a. ~l--(k* + a) ldk.+al <(k* + a + l ) [dk..al-(k* + a) ldg..al 

t 
_-< Idk** o1_--< Idk*l _--< 2(l+ a)" 

Since there exists ao > 0 such that 

1 
(k* + ao) Idk**,ol > supa (S ) -  l + 1 '  



4 6 6  

we see that the balls 

B1 ((k*+a)ldk,+,l) for a = 0  .. . . .  a o 
l + 1  

cover a(S). Hence we find ki+l ~{k*, . . . ,k*+ao} with the desired property. [] 

Proof of Theorem 2 (iii). We have to show that for S ~ J f  the following inequality 
holds: 

Z y(F)-~>l Ve>O. 
r e f ( S ) ,  ~(F) ~ a~(S) 

Fix e > 0. By Theorem 3 there exists a sequence (F(k)) C ~(S) such that 

r(k) is k-essential, (2) 

and 

If dk . . . . .  •+) for some j >  1 
then F(k) ..... F(k +j) are mutually different. 

By Theorem 4 we find ko e N* such that for every k > ko, 

l";(r(k))-Idklkl < ~. 

Denote by Kr(d) the number 

Kr(d)=# { l~N* l~ -~  >ldl 1. 

We have 

By construction, for k > ko, 

~7(r) e a~(S) ,~(r) ~ a~(S) 

1 
--< E v(r)l@" 

Dividing (7) by k, we obtain 

1 1 
1 - k o  <= E V(F) k}dk] k ~(r) ~ ,~(s) 

Take a monotonic sequence (kl)cN* such that 

Idk,lkt > sup a(S)-  8 

for a given 6 e (0, sup a(S)). Then 

1 1 
1 - k° <_ E V(F) sup a(S)- 6" 

I.  E k e l a n d  a n d  H .  H o f e r  

(4) 

(5) 

(6) 

(7) 

(8) 

(3) 
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Taking the limit l-~oe gives 

1 
1 =< sup a(S)- fi E V(F)- 1. 

7(r) e a~(S) 

Since 6 has been arbitrary 

I 
1 < sup a(S) Y" V(F)- i. 

?(r) e adS)  

If  ~(F) e a.(S), we have ~(F)_<__ sup a(S) + e. Hence 

1 
1 <__ ~ . (9) 

~<r) o<s) v ( r )  i f ( F ) -  e) 

Since ~(F)>inf~(S)-e, we can write for some 6~>0 with 16~l<qe for some 
constant c~ > 0 independent of e, 

,7(r)- e>0 -,L),7(r). 

Using this in (9) gives 

Therefore 

1 <  
1 

E v(r)(t --63~(F)" ?( r )  ~ o-ds) 

1 1 
1 - 3 , _ <  E - E • (10) 

- ~(r)~ ~o(s) v(r) y(I3 ~(r)~ ~(s) 7(r) 

Now let 0 < e l  <e.  Then 

t-,L,__< E 7 ( r ) - 1 <  E ~ (r ) - l .  
~(r) e ~r~(S) ~(r)  e a d S )  

Since gl > 0  was arbitrary and 6~i-~0 as e l ~ 0 ,  we find 

1 ~ E 7(/")- 1, 
~(r) e adS) 

completing the proof  of Theorem 2 (iii). []  
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