Communications in
Commun. Math. Phys. 113, 419-469 (1987) Mathematical
Physics

© Springer-Verlag 1987

Convex Hamiltonian Energy Surfaces
and Their Periodic Trajectories

I. Ekeland!:* and H. Hofer? **

Y Université Paris IX Dauphine, Place du Marechal de Lattre de Tassigny, F-75775 Paris
Cedex 16, France
2 Mathematics Department, Rutgers University, New Brunswick, NJ 08903, USA

Abstract. In this paper we introduce symplectic invariants for convex
Hamiltonian energy surfaces and their periodic trajectories and show
that these quentities satisfy several nontrivial relations. In particular we
show that they can be used to prove multiplicity results for the number of
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I. Introduction and Statement of the Main Results

1.1. Dynamical and Geometrical Formulation of the Problem

Denote by {-,-> the usual inner product on R?" and let J be the standard complex
structure on R?" given by the matrix

0, 1,
= ["LI On:!

Associated to ¢-,-> and J is the symplectic form Q given by
Q={J-,->.

Assume H:RR?Y-R is a smooth map. The so-called associated Hamiltonian
vectorfield is defined by the formula

dH=X,_Q.
The corresponding differential equations
(HS) X=X p(x)
is called a Hamiltonian system. If x solves (HS) then
2 % = 0(X 49, Xglx) =0

so that H is constant on x. Therefore it is natural to ask for periodic solutions of
(HS) having a prescribed energy H.

Though the problem of finding a periodic solution with a prescribed energy
seems to belong to the theory of dynamical systems, it is possible to formulate it in
purely geometrical terms. This can be done in great generality (see [W 2]). Here,
however, we shall restrict ourselves to the cases we shall in fact study, namely
convex smooth hypersurfaces in R?". More precisely we say SCRR?" satisfies
condition () if the following holds:

SCIR?" is a compact C*-manifold bounding a convex region.
Moreover S has a nonvanishing Gaussian curvature and §
encloses 0 R?". The collection of all S satisfying (#) will be
denoted by . (+£)

The condition that 0 R2" is enclased by S is only some kind of normalisation and
has nothing to do with the results obtained.
We defined a 1-form 0 on R?" by

0(x)h=%{Jx,h) .

Then df=0Q. Denote by 4 the restriction of § to S and put @ =4d4. Then kern(w)
must be nontrivial since dim(S) is odd. In fact,

kern(w,)=RJn(x),
where n(x) is the outward pointing normal vector at xe S and moreover

AMTn(x)) =3I x, In(x)) =5{x, n(x)) >0,
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since (#) holds. Therefore A A "~ ! is a volume on S. Hence (S, w) is a manifold of
contact type in the sense of Weinstein, [W 2]. As a consequence of our previous
discussion we have the following

Lemma 1. Let Se #. Then w= QIS defines a canonical line bundle ¥s— S, where the
fibre over xS consists of all those vectors v annihilating w,, ie., v_1w,=0.
Moreover ¥ possesses a canonical orientation induced by the unique vectorfield { on
S satisfying

{ai=1, {o0=0. ()

See [W 2] for the easy proof. Since #sC TS we have a one dimensional and
therefore integrable distribution on S.

Definition 1. Let S € 5. A periodic Hamiltonian trajectory on S is a submanifold I’
of § which is diffeomorphic to S*, satisfying

T =% .

The collection of all Hamiltonian trajectories will be denoted by Z(S).

If H:R*"—R is now a Hamiltonian having S € # as a regular energy surface,
say H=1, then the periodic solutions of the corresponding Hamiltonian system
with energy 1 on § are just parametrisations of Hamiltonian trajectories I' € 7(8S).
In fact each x, eI is the initial data for a periodic solution x lying entirely on I.

By results of Weinstein [W 1] and Rabinowitz [R 1] it is known that 7(S)=+0
for Se #. Knowing that 7(S)=+0 for Se # one can ask for its cardinality. Let
o;>0,i=1,...,n,s0 that the «;’s are independent over Z. Define S =S(«, ..., a,) by

S= {xe]Rz"

n
1 5 ot o=},

One easily shows that # .7 (S)=n. As far as the cardinality is concerned this is the
worst known example. Hence the following conjecture.

Conjecture 1. If Se o, then #7(S)=n.

A few partial results are known to be true {E-L, E-La, E1, B-L-M-R], see
also [A-M, H1].

In this paper we shall associate to Se4# its index interval o(S) which is a
compact intervalin (0, o0). We show in particular that o(S) degenerates to a point if
# 7 (S)< 0. To the Hamiltonian trajectories I' € 7 (S) we shall associate two
positive numbers y(I') and #{I") which are independent. They are called the total-
and the mean-torsion at I'. In the main result of this paper we shall prove that o(S)
and the collections {y(I')} and {§(I")} are not independent and that always certain
inequalities and equalities have to hold. The inequalities turn out to be optimal.
This new approach gives besides new results for Hamiltonian systems a much
deeper insight to the problem of periodic Hamiltonian trajectories than previous
results. Several open problems are mentioned. For instance, it is shown that if 77(S)
is finite, then

X oAD'z,
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where o(S)={c}. Moreover yI')>1 for all '€ 7(S) if n=2. So in particular the
above inequality implies that #.7(5)=2 for n =2, thus improving the results of
[E~La], where this was proven for n= 3. Further it will be shown that the above
inequality is optimal in the sense that there exists an S for which we have equality.

1.2. The Index Interval of an Energy Surface and Torsion Indices
for Its Hamiltonian Trajectories

We start with a definition
Definition 2. Denote by # the collection of all maps H:RR?"—R such that
He C*(R*™\ {0}, R)InC'(R*, R),
H(Ax)=A%H(x) for 1z0 and xeR?", 1)
H'(x)zagld VxeR™{0}, o5z>0.

Here H"(x) is the linearization of the gradient H' of H at xeR*"\{0}.
The following lemma is obvious:

Lemma 2. There is a natural bijection # —# associating to S€ I the unique
Hge # such that

Hy')=S. O
Let He 4. Its Fenchel conjugate is the function H* € # defined by
H*(y)=max (<x, y) —H(x). )

We equip # with the metric d: # x # —~R™* defined as follows:

d{S,, S;)=max inf |[x—y|+max inf |x—y|,
xeS1 yeSy yeSz xeSy

which is the Haussdorff metric. The map H— H* induces a map # — . which is
continuous for the topology induced by d. Next we introduce a Hilbert space E by

E= {x :S'=R/Z-R*"|x is absolutely continuous

with square integrable derivative and ix(t)dtzo}. (3)
The inner product on E is given by
(59)= <0, 50> @
We associate to Se o a C*'-Hilbert manifold Mg, MCE, by
Mg= {x eE ;S)H§(—J>E(t))dt=1 and i {IX(E), x(t)pdt <0} . (5)

Here C*!-Hilbert manifold means that there exists an atlas so that the overlap
maps o, 0; ' are C' with a locally Lipschitz derivative. My is actually a C*-!-
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submanifold of E. The natural S'-action on E by phase-shift denoted by
StxE—E:(a,x)»axx

induces an S'-action on Mg. Hence M belongs to the category of paracompact

Sl.spaces. We define a smooth map 4 e C*(E,R) by

A)=}] I, X0t ©

and denote by Ay the restriction of 4 to My. For de(— o0, 0) we define

M§:=Ag (—o0,d]). (7
Note that 4 is S'-invariant. In the following we write (most of the time)
G=S8', E;=8%, Bgz=CP®, p:S°->CP* projection.

Then (Eg,p, Bg) is the universal bundle for G-actions. Denote by M% ; the
“G-quotient” of M%, that is

Ms,6=(M5x Eg)/G, (8)

where G acts freely in the obvious way on M%x E,;. Hence we have principal
bundles
M§x Eg—>M5 6. ©

Denote by fs: Mg ¢— B the up to homotopy uniquely defined classifying map.
From the diagram

incl Vi
Méx Ege— s Mgx Eg—— Eg

LS O 10

and the properties of classifying maps, see [Hu], it follows immediately that the
restriction of fg to M% ; denoted by f¢ can serve as a classifying map for
Méx Eg—>M¢ s Denote by H the Alexander-Spanier-Cohomology with coeffi-
cients Q. One knows that

H(B;)=Q[n], neH*Ba\{0}. (11)
We define for Se # a map ag:(—00,00-»N, N={0,1,2,...} by
as(d)=1inf{k e N|(f§) = (7" =0}, (12)

where (f§)* : H(Bg)— H(MZ ). It requires of course some proof that ag(d) < co. This
will be provided later. For specialists this is clearly the Fadell-Rabinowitz index of
M, see [F-R]. We define a subset o(S) of R* =[0, + c0) called the index interval of
S by
teo($) < liminfas(d) 4 St Slimsup a(d) ). 13)
410

Denote by € the collection of all compact intervals in (0, + oo) which we equip with
the Hausdorff topology and Hausdorff metric. As we shall see later the following
holds:
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Lemma 3. For Se 3 the index interval of S, denoted by o(S) belongs to €.
A first result which will be proved later is

Theorem 1. (i) The mapping # —%:S—0(S) is continuous for the Hausdorff
topologies

(i) if #7(S)<oo, then o(S)={point}.
We mention now an important open problem.

Problem 1. Does there exist S e # with o(S)+ {point}?

A positive answer would be extremely interesting because then there exists
0>0 such that for all Re # with d(S,R)< we have # 7 (R)=oc0 in view of
Theorem 1. If there would exist a dense set 2 in # with o(S) = {point}, then in view
of Theorem 1 we would have for an open and dense set in 5 (for the Hausdorff
topology) infinitely many periodic trajectories. Another problem is

Problem 2. Can o(S) be computed without the detour over equivariant
cohomology?

Sometimes it is possible to compute o(S). For example for S = S(a,, ..., &,) with
o; >0, we have

w9={5- £ . 149

as we shall see later.
Next we introduce the torsion indices for I' e 7(S), where Se #. Fix Se # and
denote by { the associated vectorfield defined by

(ai=1 and (w=0 (15)
One easily verifies that

t)=JH(x), xeS, (16)

where H'(x) is the gradient of H = Hg in R*". The right-hand side of (16) defines a
Hamiltonian system on IR?". Let x:R—I"eR?" be a solution of x={(x) with
minimal period T>0. Then

T
fAr={x*A={1dt=T.
0

Definition 3. The volume V(I') of I'e 7(S) is defined by
V(ry:=§A|I. (17)

Sometimes V(I') is also called the action of T

Note that by (15) and the fact that T,I"=IR{(x), A|I" is a nonvanishing 1-form
on I' and defines therefore a volume-element. Linearizing the Hamiltonian
system (HS) around x:R -1 gives

¥(t)=H"((e)y (1) (LHS)
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Denote by (R(t)teR, R(0)=Id the fundamental solution of (LHS). Then
ReC*(R, Sp(n,R)). Denote by R* the adjoint of R defined by

(R(®)-,-»=<,R¥t)-),
and define
B(t)=(R(OR*(t))"*R(1). (18)

Then B is the “unitary part” of R, see [C—Z 1]. That is, B(t) commutes with J and
|B(t)y}=|y| for every te R and yeIR?". J defines a complex multiplication on R*"*
by

iy:=Jy,
turning R*" into a complex vectorspace of dimension n. Denote by det: (R*")'-»C
a non-zero complex determinant function. We find a unique continuous map
Ap:R—-IR characterized by

A{0)=0,
det o (B(t) x ... x B(t)) =exp(2rmid{t)) det. (19)
Definition 4. Let Se # and I'e T(S). The total torsion at I' is the real number
) =A4I)). (20)

The mean torsion at I' is the number

W)=y T). (21)
Now we formulate our main result.

Theorem 2. Let Se #. We have:
() If n=2 then y(I')>1 for every I'e 7 (S), or equivalently y(I')> V(I')~ .
(1) Given teo(S) there exists a sequence (I'(k)C T (S) such that {I'(kj)—t as
k—c0.
(iii) Given any >0 denote by o(S), the open &-ball around o(S). Then the
Jollowing inequality is valid.

y)~'z1.
I'e7 (8),%(INeo(S):

Theorems 1 and 2 have an obvious
Corollary 1. If Ses’, nz2, then #7(S)= 2. Moreover, if # 9 (S)< oo, then, with
o(S)={I} (Theorem 1),
I=jI})=HT)
for two suitable I, T, T (S), I} +1,.
Proof. Since y(I')>1 for n=2 we infer by (iii) that #7(S)22. fnow # 7 (S)<w

then o(S)={I} by theorem 1. Then taking ¢ sufficiently small in (iii) of Theorem 1

we obtain
Y oyt
=1

which gives the desired conclusion. [
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Let us also note that Theorem 2 (ii) implies Theorem 1 (if). Namely if o(S) is
different from a point then the set

{HDIr e 7(S)}na(S)

is dense in o(S). Therefore 3 7 (S)= oo in this case. So if 7(S) is finite o(S) consists
of a point, which proves Theorem 1 (ii).

So Corollary 1 implies conjecture 1 for the case n=2. In [E-La] this was
claimed too, however due to a faulty argument it was actually unproved (the
arguments in [E-La]} hold only for n=3.) Under the general hypotheses of
Theorem 2 the inequality in (iii) is optimal. Namely let S=S8(x,, ..., a,) with «;>0
independent over Z. Then as we shall see later

TES)={I,...L}, so #I(S)=n,

o(8)={I}, 1=—;§i=§1ai,

Wy)=I, (22)
n al
'))(I—:,) = igl Ol_] ]
2n
V(I)= P

Hence (22) implies

aci) =1. 23)

il
TN
R

T
N =

Y A=

Wy=1 =1
Problem 3. Is it true if 7(S)={I3, ..., I}}, i.e, #7(S)<co, that
HI)=7(I) forallij.

We mention another conjecture. Denote by 7, the topology on # which is
induced from the weak Whitney topology on C*(R?"\{0},R) via #. Then we
have

Conjecture 2. For a residual subset 5, of # the following holds: For S e # the
map J(S)»R:I'>HI) is injective,

A simple corollary of this conjecture is that # 7 (S)= + co for S e H,, because
7:7(8)=R cannot be injective if #.7(S)< o by Corollary 1. Finally we men-
tion the following.

Problem 4. How does § behave on periodic Hamiltonian trajectories close to a
generic elliptic one? Is it injective?
There is of course some connection between Conjecture 2 and Problem 4.
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I1. Variational Set Up
I1.1. Critical Point Theory

Consider the C!'!-functional Ag=A|Mg on M. As Riemannian metric on Mg
we take the one induced by (-, -). Then one verifies easily that for de(— oc,0)

If | grad Ag(x,)|| >0 and Ag(x,)—d <0, then {x,) C M is precom-
pact in M. (PS),

Solving the differential equation
x'= —grad A4(x)
on My in forward time we obtain a continuous map,
R*xMgoMg:(t,x)—>x*t,

which is the restriction of a not necessarily globally defined flow. The map
t— Ag(x * t) is non-increasing for fixed x € M. A well-known consequence of (PS),
is the following

Lemma 4. Given an arbitrary neighborhood U of
Cr(d)={x € Mglgrad 45(x)=0, As(x)=d]}

there exists £>0 such that

(MET\U)*1C M5, ey
Define a semigroup 8 by
=S'xIN*, N*=N\{0} )
with multiplication
(a, k) x (b, )=(kb+a,kl), 3)

where we take S'=IR/Z. 0 operates by isometries on E via
1
((a, k) = x)(t)= e x(kt +a). )

One casily verifies that § = Mg= M. Moreover if Cr(S) denotes the set of critical
points of Ag then & * Cr(S)=Cr(S). But caution, note that A is not (!) 0-invariant.
In fact

A(@ ) +9)= A, ®

Moreover 6 induces by restriction to S* ~S* x {1} the usual S*-action. Denote by
“~” the smallest equivalence relation containing the relations
x~(a,k)*x forall (a,k)ed and xeE.

Denote by [x] the equivalence class of x
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Lemma S. (i) If xeCr(S), then [x]CCr(S).

(ii) Given[x] with x e Mgthere exists a unique S*-orbit S* * y such that for every
zeS'*y we have 0% z=[x]. We call such a z a minimal representative for [x].

(iii) There is a canonical bijection ¢:Cr(S)/~Z(S) which associates to
[x]1eCr(S)/~ the I defined as follows: Let z be a minimal representative for [x],
then there exists a unique constant c € R2" such that |Ag(z)| ™ 'z(t)+cCS for all teR.
Put

I'={Ag(z) " 'z(t)+clteR}.

Clearly I does not depend on the choice of the minimal representative.
i) If [x]eCr(S)/~ and z is a minimal representative for [x], then |Az)|
1
=W(I)"Y, where I = ([ x]). Moreover |Ag((a,l)* z)| = %
Proof. (i) Let ue[x] and denote by G, the isotropy group of the S'-action
G,={acGlaxu=u}.

Pick ye[x] with
G,=min{#Gue[x]}.

One verifies easily that S* * y has the desired properties. In fact 4#G,=1.
(i) If xeCr(S) then we have for some number 60,

A'x=0"(x),
1
where P(x)= | H¥(— JX(t))dt and the prime denotes the gradientin E. Let k= #%G,.
)

Then y defined by y(t)=ky (%) is a minimal representative for [ x]. One computes

easily
A'y=kéP(y).

Hence yeCr(S). Moreover with u=(a,))* y,

Au= lflé Y'(u),

so that again ue Cr(S).

(i) Let [x]eCr(S)/~ and z a minimal representative. We have G,={1} and
for some 630,

Az=0%(z). (6)

Taking the inner product with z and using that 4" and ¥’ are positively
1-homogeneous we infer since ¥(z)=1,

Ag(z)=46. 4
Using (6) we find that for arbitrary heE,

i D), We)ddt =5 (}) CH*(—JH(0), — Jh(t)>dt . ®)
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Since h has mean value zero we find a constant ¢, R?" such that

2(t)+ ¢, =|0|H*' (— J£(1)). )]
Hence by the Legendre reciprocity formula
16| " H'(z(t) + ¢1)= — J(z() + ¢y). (10)
So, defining z,(t)=z(|d|t)+c, we see that
—Jz,=H'(z,). (11)
Therefore the map
t—H(z,(t)
is constant. Hence the map
t—>H(z(t)+c,)

is constant. Using this and taking the I*-inner product of z(t)+ ¢, with (10) given

by (7)
1617 H(z(t) + c,) =14].

Therefore
H(6|"'(z()+¢c))=1 VteR,
and with z,(t)=16| " }(z(|6]t) +¢,)
—Jz,=H'(z;), H(z,(t)=1, teR. (12)
By (7) again we conclude from this that
t—|A(z)| " tz(t)+c

with ¢=|6|~'c, parametrizes an element in 7 (S).

Now starting with some I" and doing the whole procedure backwards we end
up with a class [x] e Cr(S)/~.

(iv) Using(12) and the definition of z, we see that the minimal period T of z, is
16|"1=]A44(z) " ! and that

V=% f {—J25(), z,(t)pdt =1 T 2dt
0 0

T=[3]""=|4s(z) .

Moreover
1
= D) 1
Definition 5. Let Se€ # and I' € 7(8). The tower of T, denoted by tow(I'), is the set
tow(I)=¢~YI).

Hence in order to show # 7 (S)=n we have to show that #(Cr(S)/~)=n, or
that there are at least n towers!

4@ =21= 1440
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We use now the Fadell-Rabinowitz index [F-R], denoted by ind. We have
already seen that (formula 1.12)

ind(M%)=ag(d). (13)
Lemma 6. (i) d—ag(d) is non-decreasing and N-valued.
(i) }132 as(d)=as(do) -
(iii) ind(Cr(d) 2 agdd)—agd™) Vde(—c0,0).

In particular if og is discontinuous at d, then Cr(d)=+0. Moreover if ug(d)
—og(d )= 2, then Cr(d) contains infinitely many S'-orbits. Consequently in this case
#T(S)= 0.

i li d)y= .

(iv) lim as(d)= +co

Since the proof is essentially contained in [F-R] we can be sketchy.
Proof. d—ag(d)is non-decreasing by the monotonicity property of ind. To see that
as(d) < + o0, decompose E as follows

1
E=E " ®E",

where xe E* is given by

1
x(t)= kz 3 exp(2nktJ)x; .

o
If de(— 00,0) one easily finds N e N such that xe Mg and A¢x)<d implies

-1

Y Ikl Ixf* 0.

k=N
Hence the orthogonal projection Py: E— Ey, where
Ey ={xeE " |x,=0 for k< —N}

induces an equivariant map

Mi~E5\{0}.

Hence
as(d)=ind(ME) <ind(Ey \{0}) <

by a result in [F-R]. This proves (i).
In order to see (iv) note that there is an equivariant map Sz, —M§™ (S the
unit sphere in Ey) of the form

x=f(x)x,
where f: Sy —(0, + c0) is a continuous map. Again by a result in [F-R] it follows
ind(M{™) 2 ind(Sg).

Here d(N)—0 as N— 0. Since ind(Sz;)— o0 as N— oo, (iv) follows.
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(ii) By the continuity property of the F - R index we find for given d e (— 00, 0)
an open neighborhood U of M% such that

ind(U)=ind(M%). (14)
By a variant of Lemma 4 we find ¢>0 such that
Métex1CcME*0UCU. (15)

By the properties of ind we infer from (14) and (15),
ind(M%)=ind(U)=ind(ME*¢* 1)
Zind(M%*%)=ind(M%).

This proves {ii).
Assertion (iii) is standard and simple to derive from the properties of ind. []

Lemma 7. Let de(— 0,0) be a point of discontinuity for ag. Define k and j by
k=ogd )+1 =1dig1 ag(d)+1,

k+j=ag(d).

Denote by &y>0 a number which is smaller than the distance of d to the closest point
of discontinuity d, of ag with d, #d. Then we have for e€(0,¢,] and i=k, ...,k+],

H (Mg, M) +0. (16)
Moreover denote by f: Mg ¢— B a classifying map and let
[T :MEE~Bgand f~:MiG—Bg
be the restrictions. Let
a:M{G-MES and b MG—(M3'6, M5 ¢
be inclusions. Consider the commutative diagram with exact top row
A(ME ', M)~ HME - AME)
ads o (17)
HBg) .
Then there exists a cohomology class
o e A6~ O(Me*E Mi
with b*(e)=(f ")*(y*~!). We have moreover
(fH*™uo+0 for m=0,...,j.
Proof. Equation (16) follows from our second assertion. Since k=o(d )+ 1 we see
et (f Y )=0. (18)
By exactness of the row in (17) we find using (18) and

a*(f P D =(f """
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that for some o e A(M2s, ML),

b*@)=(f (). (19)
Now for me{0, ...,j} we compute

bH(f V¥ myoo) =(f T "yub*(o)
=(f Vo V)=,

By our hypothesis ag(d)=k+j. Hence

(f V) =%0.
Since m<j we infer therefore that

b*(f Ty ™) *0, (20)

implying our assertion. [

11.2. A Finite Dimensional Reduction

Recall the definition of the Hilbert space E. For N e N* we denote by Ej, the 4nN-
dimensional nullspace (G-invariant) defined by

k+0

EN=ier{x(t)= }IE i%exp(Zntk)Jxk}.

The orthogonal projection E—E, is denoted by P,. Moreover we put
Qn=1d — Py. Define as before ¥ e C**(E,R) by

P(x)= (1;) H*(—J3(D)dt .

For N e N* we define an open C!'!-submanifold of My={xe E[¥(x)=1} by
Mg y={xeMPyx=+0}.

For dye(— o0,0) we put moreover

Moy =Mg yo M.
Lemma 8. There exists a G-invariant C**-map

7: Sy X (Ex)t —(0, + 00)
such that
7:S\Ey)—M;,x:0(y,2)=1(3,2) (y+2)

is a C'-diffeomorphism onto. Here Sy is the unit sphere in E.
Proof. Define ©(y, z) by

oy, 2)=P(y+z2)" 2. 1)

Then t(y, z) >0since y +z+0,and moreoveritisa C'*'-map since this is true for ¥
on E\{0}. Consequently ¢ is C'-1. It is clear that Pya(y,z)+0, so im(¢)C Mg y.
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Moreover if ue My y, define y=Pyu/|Pyul| and z=Qyu/|Pyu|. Then

o(y,z)=u.
Clearly the map u—(y,z) is C*! and an inverse to 6. [

Next we need
Lemma 9. Given dye(— 0,0), there exists N,(d,) e N* such that
M C My 40 -
Proof. We find ¢, >0 such that
P(x)zcilx|*> VxeE. 2

Hence if x e Mg we infer

Ix[ert. ()

Now let xe M%. Then

AP = A~ AQ) Sdo+ 17 10

1 1
Sdo+ N iLXI12§d0+CZ—N <0,
1

1
if N> ——— So define
c%idot

1
N1(do)=m+1- U @

Denote by ¢>0 a monotonicity constant for ¥, that is
(P (x)—P(x),x—%)=cllx—%[|* Vx,xeE. 5)

We shall express A = A|M by “local coordinates” in Sy x (Ey)*, that is we consider
the map of class C*** given by

v,z)>Ac0(y,2).
Define
I(z2)=A-0(y,2), oyz)=0(),2),
1(2)=1(),2).

We equip the vectorbundle Sy x (Ey)"— Sy with the metric [ -, -] induced from the
inner product on E

(6)

[(yﬂz)s(y5z_)] . 2(272).
Lemma 10. The fibrewise gradient I'(z) with respect to [-,-] is given by

I(z2)=1,(2)Qu[A"(0,(2) — I}(2)¥"(0,(2))] - (7
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Proof. We compute

L5(2), (v, B)] = DI}(z) (B)
=(4'(0,(2)), y +2) (1,(2), B} + (4'(0,(2)), T,(2)h)

- —22—5 L2 @0 )+ 2,(2) (A0, ).

7
Moreover
(t(2), )= =3P (y+2) Y (P(y+2),h)
= —31,(2) T Py +2) P} P (v +2) b
= —3%(0,(2)’ 1, (2P (¥'(0,(2), h)
= — 30,2 (P(0,(2), h).
Hence

1(2)= —31,(z)’Qn¥(0,(2)) -
Combining (8) and (10) yields
L(z) =, 7(2)On[4'(0,(2)) - [(2)¥'(0,(2))]) .

®)

©)

(10)

an

Lemma 11, Given dye(— 0,0) there exists a number N,(d,)e N* and a constant

a=0aldy)>0 such that
ally—=yll 2 llzy—z
whenever z, is a solution of
I)(z,)=0, I(z,)<d, (similarly for z;).
Proof. Assume I(z)=0 and I(z)£d,. Then
Az=I(2)Qy¥' (v +2),
where we used the positively 1-homogeneity of ¥'. Hence
(A'z,2)=I(2)(¥'(y+2),2)
=L@ (V' +2)—Y0) )+ L ('), 2)
<Lelzl? +HILEH PO iz
Sdoclz|?+ L@ PO izl
Now, for some constant ¢, >0 independent of x we have
P = ealx] -
Since ||y| =1, we infer combining (14) and (15),
(A'z,2)Sdocl|z| >+ 5| L(2)] lizll -
Now ay(z)el\zf s and by (3),

loy@lsci .

(12)

(13)

(14)

(15)
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Therefore
(Alza Z)édocﬂzﬂ 2+C2[A(O'3,(Z))1 NZH (1 6)
Sdocliz) > +esllo,@) PNzl Sdocllzl? +cpe1 * 2]
Moreover (4'z,z) = — —]%f |z{2. Hence
1
<|d0|c_ﬁ> Iz1> < coer 2] = 13¢5z - (17

So for all N2 N?*, for some suitable N' we have the a priori bound (which is
independent of N, y or z)

lzll<c; if I(z)=0 and I(z)<d,. (18)
Now assume
Lz)=0, =0,
Lz)=:d, IL(2)=:d, with d,d<d,.
Then
(dA'z—dAZ,z—2)=(P'(y+2)— V' (F+2),z—2)dd
=dd(P'(y+2)—¥(y+2),z—2)
+ddP'(y+2)—-VP'(+2),z—2).

Now ¥ is globally Lipschitz continuous. Hence for some constant c¢,>0
independent of y,z and N>N*:

(P y+2)—-¥G+2z— D Scally—7l |z—2]. (20)
Combining (19) and (20) gives

dde|z—z|2<ddc,|ly—7| |z—Z|| +(dA'z—dA'z, z— ). (21)
Moreover

(dA'z—dA'z, z—2)| <|d(A'(z—Z2),z—2)| +|d — d| [(A'Z, z— Z)|
-2
idl—ﬁ!!Z~5112+215—d1%¥-f!51i lz—Z]
22 -
S22+ sz )
Combining (21) and (22) yields

- - - _ 2 . -2 _
ddc||z—Z||* Sdde,|ly || IIZ—ZH+IdlﬁHZ—ZH2+Id—le63IIZ—Z||- (23)
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Further

ld —d| =17,z A(y +2) — 15(2)* AT+ 2)|
Slty(2) — (2 |4 + 2+ 15(@) 1Ay + 2)— AT + D),

by (18) S ¢slty(2) + 152l I1,(2) — 752l 29
+ 752 A(Y) — A + 15(2)*| A(z) — AZ)]
We have by (3) and (18)
(@ =P+t F+211* < ce, (25)
and 1) + @I Se 26)
So combining (24), (25), and (26) we obtain
ld —d| S cseqlty(z) — @) +clly— Tl +collz— 21 27

Now for a suitable constant cg using that ||y + z| is bounded and bounded away
from zero

0@ 1@ =¥y +2) " - PG+2) 7
SPy+2) PG+ P +2) - YT+ 2) (28)
Scglly -3l +egllz—Z].

Using (26) and (27) yields

[t (2) =@ Scolly—Fl +eolz— 2. 29
Now combining (27) and (29) yields
ld—d|<ci0ly—73l +eiollz—2|. (30)

Now combining {23) and (30} we obtain
dde— A1 ) |2—2) SdTeg y—1 + = cxer, a2+ = cserly—3.
N = 4 N 311 N 3+11
Therefore for a suitable constant ¢, ,,

-2 2
(dd”c—ldlﬁ-]-\,-cm) =21 Sewally—71, (1)

so for a suitable number N ,(dy) = N* we find «=ofd,) >0 independent of y, z, and
N = N,(d,) such that
lz—zZl =aliy—7yl, (32)
where z is a solution of I(z)=0, I'(z)<d, and similarly for j and z. []
Define N(d,) by
2
N4 =max{N do), N{d ,————}, 33
( 0) 1( 0) 2( 0) O((H)ldo‘ ( )
where a(H)=a(Hg) such that H"(x)= o(Hg)Id, Vx 0.
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Lemma 12. Let dy e (— 00, 0) be given and N = N(d,). Assume ye Sy and (z,) C(Ey)*
such that

I;:,(Zn)_)o’ I;(Zn)_)dédo '
Then (z,) is precompact.

Proof. Since (¥(y +z,)) is bounded away from zero the sequence (1,(z,)) must be
bounded. Let us also show that (r,(z,)) is bounded away from zero. Arguing
indirectly and eventually passing to a subsequence we may assume

7,(2,)—0.
Hence
loyzn) —1y(zn)2all = I7,(2,)y [ - 0.
Consequently
|A(t,(2,)2,) — A0, (2.l = A(z,(z,)y)| > 0.
So

Alry(z,)z,)—d. (34)

On the other hand we have the estimate
1
Alrfz,)z) = N Tz, |z,

1 1
< 2 5@ 122 oy + 57 otz 1 (35)
1
< ——
= Sn + NC% 5
where &,—0 as n—o0. Therefore taking the limit n— o0 we conclude

1
<
IS 572> (36)

which gives a contradiction since by (36),

l>1

[dolc? = ldic? =

Therefore (7,(z,)) is bounded away from zero and I}(z,)—0 implies

On[A'(0)(z,))—d¥'(0,(z,))] 0. (37
Put u,=0,(z,). Eventually taking a subsequence we may assume that

a,:=Py[Au,—d¥'(u,)] (38)
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converges to some aeEy [recall dimEy<oo and clearly (|| A'u,—d¥'(u,)) is
bounded]. Consequently for a suitable zero sequence (g,) C E we find combining
(37) and (38),

Au,—d¥V'u,=a,+s,—a. (39)

Since (u,) is bounded we may assume eventually taking a subsequence that
u, —u weakly in E,
A'u,— A'u strongly in E.
So (39) gives using that ¥': E—E is a homeomorphism,

ot (%(A’u,,— a,,—s,,) =u,

— ?”"1<%A’u—a>.

So (u,) is converging strongly. Hence, with ¢ (z,)=u, we find z,—z strongly for
some z and I}(2)=0, [}(z)=d. [

Therefore we have just proved that I, satisfies (PS), for all de(—o0,d,] if
N 2 N(d,). Hence if inf [ ((Ey)") < d, the infimum is attained. Define

F(»=infL(Ex)") (40)

for every y € Sy such that the right-hand side in (40) is less than or equals d,. So by
the previous remark there exists z,e(Ey)" with f(y)=1}(zy). Moreover z, is
uniquely determined by Lemma 11 and the map y—z, is globally Lipschitz
continuous.

Define for N = N(d,) a subset M%y of Mg by

Eg?zv = {Gy(zy) eMI(y) < do} -

Moreover put M# = {x e Mg A(x)<d,}. Then 2%, C M. The following lemma is
crucial.

Lemma 13. Let dye(—00,0) and N 2 N(d,). Then ??}N is a strong G-deformation
retract of M% by a G-homotopy r:[0,1] x M%— M% such that

® s— A(r(s, x)) is nonincreasing ,
o (0, x)=x Vx,
® (s, x)=x Vte[0,1] VxeZy,
® r(s,-) is G-equivariant .

Proof. Consider the C'*'-map

0 Sy x (Ex)"— M x(O M)
The preimage of 2% consists of all (y,z)e Sy x (Ex)* such that

I(z)<d,.
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We solve the parameter dependent differential equation
z'=—I)(z) (I;(-)is locally Lipschitz continuous),
2{0)=1z4

where I}(z)<d,. By the (PS),-condition, d < d,, since I, is bounded from below and
has only one critical point z, with

Ig(zy)zoa I;(Zy)<d0:

we infer that lim z(t)=z,. Define
o0

7:[0,1] x %~ g%

with 6% ={(y, 2)[I(z) <d,} by
(yz(ﬁ"s)) it se[0,1)

snzd=[, 2 if s=1.

Then 7 is a continuous G-equivariant homotopy. Define 7, by

(s, (v, 2)) = (3, F4(s, (y, 2))).-

Then
s— I (Fi(s,(y,2))) is non-increasing.
Defining r:[0,1] x M — M by
(s, x)=0or(s,0 *(x))
gives the desired map. [
By our construction X%y is G-homeomorphic to an open subset of Sy, say U,

by the map

U2y y-1(z)(y+2z,). (41)

Since U carries as an open subset of Sy the induced C”-differentiable structure
coming from the standard differentiable structure, we can equip X%, with a
smooth differentiable structure uniquely characterized by the requirement that the
map in (41) is a C*-diffeomorphism. From now on we think of 2%, as being
equipped with this differentiable structure.

Lemma 14. 4|22 is of class C**. Moreover the critical points of A|Z$y are exactly
the critical points of A|M . Moreover the G-action on 2% is smooth near to critical
orbits. Also A|2§y is smooth near a critical orbit.

Proof. By the definition of the differentiable structure on i‘é‘f ~ We have to show that
the map y—I(y)=TI,(z,)is of class C'*! in order to establish that A| 2% is C**!. For
this we equip Sy with the Riemannian metric induced by our inner product (,) on
E. We shail show that

F'(y)=1,(z)Py[A(0,(z,)— Al0,(z,)) ¥'(0,(z,)] - 42)
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From this we shall infer since 7 and o are C' and y—z,is Lipschitz continuous, that
I is of class C%1, ie., I is of class C''!. We compute with [7(x) defined by (42),

F(Jﬁ)“r(ye)—(F(YO)s}’i_y0)= L (z)— yo(zo)—(p(J’o):}’l_)’o)
= 1;1(20) - Fy(,(zo) _(f’(YO): Y1—JYo)
=(1y,(20)> — Ty(20) Ay + 2¢)
+7,(20) (A1) — AWo) — (I (yo) 1 — ¥o)
=P Y1 +20)— ¥ (Yo +2o)AW: +20)
+7,(20) (A1) — AWo) — (T (vo), 1 — Vo).

Now dividing the above inequality by |y, — v, | and taking the lim sup for y, >y,
we infer

lim sup (F(y ) = I (yo) —(F' (o), y1 = v/ Ily1 — ¥ol S0, (43)

y17yo
where we use that (P~ (y; +20)— P~ (¥ +20))/]l¥1 — Vol can be replaced in the
limit by
—¥(yo+z0)"? <T’(y0+zo), M) .
1y1=oll

Similarly one proves that
liminf (F(y2) = F(v0)— (' (70), 1 =0l |31~ yol 20 (44

Note that we had in principle to work in local coordinates to establish that I'is
differentiable at y, and has I'"(y,) given in (42) as gradient. However, taking an
exponential chart

exp, ' rexp, (W)->WCT, U
for a suitable small zero neighborhood W, we see that
Texpy,'(vo): TM->T, T, M=T, M

is the identity so that actually (43) and (44) imply the assertion in the approach
using local coordinates. So we have till now proved that (42) gives indeed the
gradient. Since by construction of I' we have

OnLA (0y(z,)) — Alo,(2,))¥'(0,(2,))] =0, (45)
we infer that
grad A5(o,(z,))=0, (46)

if I"(y)=0. On the other hand if gradA{x)=0 with A¢x)<d,, then writing
x=0,(z) we see that z is a critical point of I'(z), so that by our previous discussion
z=z, Hence y is a critical point of I

Next we have to prove the assertion concerning the smoothness of the G-action
and of A|)f§f’N near a critical orbit.

By construction

A'z,— Ao (2,))0y ¥ (0,(2,)=0. (47)
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Define for ke IN*,
A ={xe CHS , R*NE|x(t)+0 YteS'}.

One verifies easily that we have the following commutative diagram:
, 1
AkL{xeck(sl,IRZ") jx(t)dt=0} = CHSLR>)NE
]

incl f fincl ’
¥

E?_,E

where the top arrow is a smooth map. We have to exclude x with %(¢)=0 because
H” and H*” do not exist at zero. Here the space 4, and CXS*,IR?")~E are of course
equipped with the C*-topology. Define a map by

(¥, 2)= Az~ A(0,(2))Qn¥'(y +2)

for yeSy and ze A,n(Ey)* such that (y+2)()+0 VteS!. So the map is in
particular smooth around pairs (y, z) such that o,(z) is a critical point of AJM#. The
partial differential with respect to z at o,(z,) is given by

0,z h) > A'h—Alo (2 )0y +2)h, (48)
where W*(y+2z,) is given by

h—)i JH*(—J(p(r) + 2, (N (=] R(t))dt

‘i(i”’ *”<—J(y'<r)+z'y(r)»<—m(f))d1) dt.

By the definition of N it follows that the E-extension of the map (48)
()" ~(E)* :h— A'h— Alo,(2))0y "y +2)h
is an isomorphism. Now let Ze(Ey)*nC*S*,IR*"), and pick he(Ey)* with
Ah—A(o(2)OxP"(y+2)h=1.

By a simple regularity argument it follows that he CHS*, R?")n(Ey)*. So by the
open mapping theorem the map given in (48) as a map of the h-variable is a
topological isomorphism. By the implicit function theorem there exists a smooth
map C*—C*:y—2, defined for y close to a critical orbit of I such that

A'2y= Alo,(2,)Qx P +1,).

By uniqueness z,=2,. Since ke IN* was arbitrary we see that the points in oy
close (“close” is independent of k) to a critical orbit belong to C*(S*, R*)E.
Moreover the map y— I (5 ,(z,)) is smooth for y close to a critical orbit. So A[fﬁ‘j N 18
smooth near critical orbits. ' acts smoothly on Sy, so it acts smoothly on {5 (z,)},
provided the y are close to a critical orbit. In fact, close to a critical orbit the map
y—a,(z,) is smooth and

ax ay(Zy) = Ga*y(za*y) s

implying our assertion. []
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Recall that a critical point x of Ay satisfies %(t)%0, teS*. Therefore the
following definition makes sense.

Definition 6. Let x be a critical point of As. The (formal) Hessian at x is the
quadratic form

Q.(h) =%} {JIh(e), h(t)>dt~‘A(X)3" CH*' (= JXO)Ih(r), Jh() >, (49)
0

where he T, M.

Clearly Q, has a finite index m ™~ (x) which is the maximal dimension of a linear
space in T,M; on which @, is negative definite, and a finite nullity m°(x), which
must be of course bounded by 2n. We call m™(x) and m®(x) the formal index and
m°(x) the formal nullity of the critical point x.

We shall show that there is a close relation between m ™ (x), m°(x) and the index
and nullity of x as a critical point of A|2%, for d, sufficiently close to 0, d, <0.
More precisely,

Lemma 15. Let dy<0 and N 2N(d,). Let xe 2%, be a critical point of Az
and denote its index and nullity by i~(x) and i°(x) respectively. Then

iTX)=m (x) and %%x)=m"Xx). (50)

This is quite standard and we will be somewhat sketchy. See also [E 1] for a
related result for a different reduction method.

Proof. By definition we have
F(y)=1,(z,)Py[ 4, — T()¥'(r+2,)]. (51)

Let yo+z,,=x. Then I is smooth near y, by our previous discussion. Differentiat-
ing (51) at y, gives for he T, Sy,

T (yo)h="1,(2,) Px[A'(H)— T (o) ¥" (o + 2,,) (h + 23, 1)] - (52)
On the other hand by the construction of I' we have
0=1,(z,)Qr[A'2,— ()P (y+2,)]. (53)

By the proof in Lemma 14 the map y—z, is smooth in the C*-setting if y is close to
Vo- So we infer differentiating (53)

0=1,,(2,)JONLA'Zy b~ F (30 ¥" (g +2,) (h+ Z, )] (54)
Combining (52) and (54) gives therefore
HE"(wolh By=1,(2, ) Qb+ 2y, ). (55)

This implies in particular that
index(I(y,))=i"(x) since ['is a local coordinate description of 4|2,
<m”(x) by (55),
nullity(F(yo) S m°(x). (56)
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On the other hand assume X is a linear subspace of T, Mg with Q, being negative
definite on X. Then by the definition of N we infer that Pyu =0 for ue X\ {0}. Note
that z, h is defined by the minimum problem [as a unique solution which follows
from the definition of N{d,) in (33}]

min (4@)— TGP (v +2,,) (h+v), h+10)). (57

ve(EN)*
Let v, =z, h. Then defining a subspace X of T,M; by
X={Pyu+uvp JueX},
we see that Q,|X is negative definite and by construction dim X =dim X. So
index (I (yo)Zm™(x), (58)
and similarly

nullity(F(ye)) 2m°(x). O 59

I1.3. Critical Points with Prescribed Formal Index

Definition 7. The discontinuity sequence (d,), . fOT a5, S € #, denoted by dis(S), is
the non-decreasing sequence consisting of all points d<0 at which «g is not
continuous. Moreover each point d is repeated according to its multiplicity og(d)
—og(d™).

The aim of this section is to prove the following:

Proposition 1. Let ke IN*, je N and define dy= — co. Assume
6’{k—1<gk=--~=‘?k+j<*’ik+j+1- 1)

Then there exist Iy, ..., I ;€ I (S) mutually different and numbers l,,, ..., I . ; in N*
such that

= m™(x)—2il<2n+1 @

1
VL’

for every ielk,....k+j}. Here x; denotes a minimal representative for I, and
xit:=(1,1) * x; denotes the I™ iterate of x,.

The rather involved proof is based on a sequence of Lemmata.
We fix dy>d, . j+1» N=N(d,) and denote by &,>0 a number satisfying

0<50<min{gk+j+1‘gk+j,gk“‘£k~1}- ()

Proposition 1 will be a consequence of the following;

Proposition 2. Under the assumptions of Proposition { there exist forie {k,....,k+j}
critical points %; of Ag with A(X)=d, d:=dy,=...=dy;, such that

m” (%)< 21— 1) Sm™ (%) +m (%) 1. )
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If j=1, we have in addition

Given any integer b and positive number 6,>0, the X; can be
chosen in such a way that a 84-ball around X; contains at least b
critical points on different orbits on level d. 5

We don’t claim that the X, are mutually different.

Proof of Proposition { assuming Proposition 2. Assume first j=0. Then by
Lemma 5 we find that the first part of (2) holds for I; = ¢([X,]). Moreover from (4)
we infer

Im~ (%) —2k|=2n+1.
If x, is a minimal representative of {X,| we may assume for some
LeN*: %, =xlk,
and the second part of (2) is proved. If now j=1 we can argue as follows. Define
X =%, L=o(lx]).

Then {2) holds for i=k. Assume x,, ..., x; are constructed so that I, ..., I}, where
I = ¢([x,]), satisfy (2) and are mutually different. We have to find x;, ; ff i<k +jso
that I,...,I;,, are mutually different and verify (2). Pick the X;,, from
Proposition 2. If the G-orbit of %,, , is different from the orbits belonging to
X .., X; We define x; ,  : =X, ; and are done. So assume X; , ; belongs to G * x;, for
some ige{k, ..., i}.

Pick b>j+1 and §, >0 such that all critical points on level d being §,-close to
X, .-+, X; have a Morse index m~ satisfying

m-(x)sm”<m (x)+m(x)—1 for I=k,...i. (6)

(The —1 comes from the fact that we have a nontrivial $*-action.) Now according
to (5) we can take a new X;., corresponding to b=j+1 and J, as above. If X, ;
coincides again with some of the x,, ..., x; we find a critical point x; , , different from
the orbits G * x,, ..., G * x; on level d which is §, close to one of the critical points in
{xt> .- x;}. It satisfies by (6)

M (X ) SM (X4 ) Em (% ) +mO(X ) — 1.
Now combining (4) and (6) gives
241 —=m(Zi ) Sm™ (x4 ) S2i+m(X; )~ 1. (7)
Since m®(x; , ;)< 2n, this yields
[m™ () —20+ 1) =22n+1.
We take x,,, for our new X;.., and the second part of (2) is proved.
Define
=2y, ®
and let for d (— o0, d)
2 ={xeZ|A(x)<d}, ©



Hamiltonian Periodic Trajectories 445

where
A=A4Z. (10)
For ¢<d <d, the inclusion
(24,29~ (M§, MY) 1
is a_ G-homotopy equivalence by Lemma 13. Denote by Cr(d), where
d:=dy=...=d,, ; the set of critical points of A on level d.

Given >0 we define an equivalence relation on Cr(d) by
X~ x iff there exists a finite sequence (%);=o .. m+1 CCr(d) with
Xo=X%, Xps =X and || %;—X,, (|| <4. (12)

By the compactness of Cr(d) there are only a finite number of equivalence classes.
The Riemannian metric on Sy induced by the inner product on E induces a
Riemannian metric for Z. We denote by

R*xZ-2:(t,x)>x*t (13)
the restriction of the minus-gradient flow associated to A4, that is
x' = —grad A(x). (14)

We shall also denote by x = ¢ for t <0 the image of x in backward time as long as the
flow is defined on [¢,0]. Note that X? is compact for every d <d,,.
Now fix 6 >0 and denote by [u, ];, ..., [ ], the mutually disjoint equivalence
classes of Cr(d). Note that every [u,]; is G-invariant, open and closed in Cr(d).
We find #(0) (0, o) and compact G-neighborhoods K in X of [u,]; such that

The G-action and 4 are smooth on an invariant neighborhood

of K, (15)
KinK;=0 for i%j, (16)
dist(0K, [u],)<6 and ind(K)=ind([u],), A7)
8Kin{erIZ(x)f [d—e(5), d+ 8(5)3, DZ(ic)zo} (18)
COK;n{xe Z|A(x)=d—&(5) or A(x)=d+()},
If a,b=0, xeK; and for te[ —a, b]A(x * t)C[d—e&(6), d + &(5)],
then x*[—a,b] CK;. (19)
We define K, =K;n24~®,
Lemma 16. The inclusion
(K, K7 )~ (Eh 20, gi==) (20)

induces an isomorphism in equivariant cohomology. Here | [ denotes disjoint union.

Results of this type are well known if the critical orbits are isolated. That they
are isolated is however not assumed here.
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Proof. We use the strong excision property of Alexander-Spanier cohomology.
Since we shall work in the finite-dimensional manifold ¥ we can define equivariant
cohomology by taking the G-product with E&=S*"1 instead of E; for some
sufficiently large k. The inclusion (20) induces a bijection

(TENIIKT)E 200 [[KN\ZI 20 (1)

Moreover if we take the G-product of the data involved in (21) with E%, k large, we
obtain a similar assertion to (21):

(1 K:, NI K7 6) = EE OV K, (\ZE5O. (22)
Moreover the inclusion
[1K; =2 U1K, ¢

is a closed map since a closed set in the left-hand space is compact. Recall that the
suffix G means product with E% for k large enough. By the strong excision the
inclusion in (20), say j={j;}, induces an isomorphism

(2 OU[[K, 2O > @ Ho(K, K. (23)

Here Hg(X): =H(Xg) by definition. H; is called an equivariant cohomology
theory. This construction is due to Borel, [B]. By condition (18), using the map
#«:IR* x Z—Z, we can easily construct a continuous map

re [0, 1] % 23+8(5)~,,23+8(‘7)

such that
r0,-)=Id,
Ht,x)=x Vte[0,1] VxeZXi =
r(1,x)e 2 DU K, YxeXitid, (24)

r{t,-) is G-equivariant,
([0, 1] x (Z* U K)CE - OU( 1K),
Using (24) we obtain the following G-homotopy commutative diagrams:
( Z&—s(a)u(ﬂ K), Z:‘z—a(a)) incl ( 23+a(5), 5i-29)

r(1, yeincl~id r1,°) s

(T3 OU( [ K)), T259)

( i+ o0, - o) i, ( s (K, P Q)
incler{l,-}~id incl
( Z-d + e(é)’ Zé - s(é))

Soincl is a G-homotopy equivalence. Combining this fact with (23) we see that the
inclusion

H(Kia Ki—)__)(z?x-»-a(a)’ Za—s(a))
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induces an isomorphism in equivariant cohomology. Denote the inclusion
(K, K;)—>(Z&+e(é), Z?i-—e(é))

by j. Hence

= i 01 TR A AEN - -

Hy(zt+eo, gty 0, S HYK,KD). O (24)

i

By Lemma 13 the inclusion

(Zaﬂ(a), Za—s@) —( M&Sw(a)’ Mg—s(a)) (25)
induces an isomorphism in equivariant cohomology. We can combine this with
(24). Consider the commutative diagram [recall Lemma 7, (24), (25)]

He(ME®, My=0) " H (i) - » (M5
G itioy || | ey Tur (6
('DHG(Ki’ K7) — @ﬁ(;(Ki) < H(BG)

LSV ees SV

where f;, f* are induced by a classifying map (see Lemma 7), everything else is
induced by an inclusion, Recall the cohomology class o exhibited in Lemma 7. We
easily infer from (26) that for some iy € {1, ..., m(5)},

JS TV 0™we)£0  for m=0,. (27)

Hence, using that j¥(f *)*=(f,"j,)* =/, and deflnmg 0, e HX¥* " Y(K,,K;) by
0;,=j(o) we infer

l()’

FnMuo,+0 for m=0,...,j. (28)

Moreover the nontrivial cohomology given in (28) “lives” above or on level d,
namely we have the commutative diagram (d e [d— &(5), d + &()]),

EG( Z& + s(é)’ Za - 8(5)) ﬁe( Zda Z& - e(a))

! Il

That the vertical arrow on the right is a isomorphism follows as in the proof of
Lemma 16. Now if d <d the cohomology classes ( f *)*(#™)uc are mapped to zero
by the top-horizontal arrow. Consequently, the restrictions of the f;¥(1™)vo;, to
Hy (K¢, K;) for d <d are zero. Moreover if d>d, the cohomology ciasses
{f +)*(r1"‘)ua are mapped to a nonzero class, since everything remains true if we
replace d+&(5) by d. Hence we have proved the first part of

Lemma 19. For me {0, ...,j} the cohomology classes
fzo m)UO.mEHZ(k 1+m)(K K;;)

are nonzero. However the restriction for d<d to HZ* 1*™(K¢ K;) is zero.
Moreover if j= 1 then K, contains infinitely many crmcal orbits on level d, in fact
ind([u; ) =j+1.

1y’



448 L Ekeland and H. Hofer

Proof. We have f*(™=+0 for m=0,...,j in H"(K, ). Hence
nd(K;)zj+1.
By construction, see (17), we have
ind(K;))=ind([u; 1;) .
Therefore
ind([w;,ls)2j+122,
which implies our assertion. [}

Now using (15), (17), (18), (19), a result by Wasserman, [Wa], and an
equivariant partition of unity argument, there is a G-invariant smooth map A4
defined on a neighborhood of K, such that

4 is C*- close to 4, (29)
A coincides with 4 on a neighborhood of K, (30)

e2d

The critical S'-orbits on levels between d—(¢(0)/2) and
d+(&(6)/2) are nondegenerate, (31)

The inclusion ({xe K, | A(x) <d}, K, )AK,, K;,) induces a map
in equivariant cohomology mapping f*(#™uve;, m=0,...,j,
&(0)
4

to non-zero classes of d=d+ , and to zero classes for

d<d— @. (32)
4
Note that (32) is true if (29), and (30) hold.
Define a map B:[d—¢(d), d+e(0)]-Z by
pd)=max({me {0, ...,j}| f¥(™) v, induces a non-zero class
in H3* 1"m({xe K, |Ax)<d}, Kp)u{—1)).
By the construction of A we have

&) &(5)

pd)=—1 for dga’—T, Bd=j for ng+T. (33)
Lemma 20. There exists a sequence d;, 0<i<j, such that
A—g(fl<do... <dj§¢?+§%é2 (34)

and B is discontinuous at d,. Moreover
pd)—pd)=1, pdg)=—1. (35)

Proof. This is of course a replica of the proof of the corresponding properties of ag.
Note that by (30) K, has property (19) with respect to the minus-gradient flow
associated to A. Equations (34) and (35) follow from the fact that (31) holds, so that
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there can be only a finite number of critical orbits between levels d—&(d)/2 and
d+£(8)/2.(If d;=d, . , for some i, then there would be infinitely many orbits on level
d). O

Our aim is to show that there exists a critical point of 4in K, on level d; having
index 2(k —1+i). From this Proposition 2 will follow easily. For this we have to
recall some facts from equivariant Morse theory [Bo, Hi], as well as some local
results concerning the Poincaré polynomial of a nondegenerate orbit. The reader
can also use the note by Viterbo [V]. Combining a local version (in K; ) of
Lemma 7 with Lemma 20 and using a localization technique in K, similar to the
procedure within this chapter (however somewhat simpler) together with the
nondegeneracy we obtain

Lemma 21. For d; as in Lemma 20 there exists a critical point u,of Ain K, onleveld,
such that _ . )
Hg(kul-'-l)(NiaNi):*:Oa i=0,...,j, (36)

where N, — G = u; denotes the negative bundle and N, is the negative bundle with the
zero-section deleted.

We need now some information about the Morse index of the u,.

Lemma 22. The Morse index of u; as given in Lemma 21 is

m(u,)=2k—1+1). 37
By the nondegeneracy of u; the nullity is exactly one:
m®(u;)=1. (38)

Proof. Denote by N, | the fibre over x € G * u; and consider the trivial vectorbundle

N xS°-258. (39)

The isotropy group G, of x is a Z,, I=0ord G,. Let g be a generator for G,. Then
gN; =N, ,and G, acts on the vectorbundle (39) in the obvious way. Of course we
take the standard action on S%. p commutes with the action and taking quotients
we obtain

{:=(N;x8%)/G,—»8%/G,=:L", (40)

where L is an infinite dimensional lens-space. Clearly we have the commutative
diagram

(N;xEg)/lG —= {
| |
(G#u;x Eg)/G == L*

where the horizontal maps are isomorphisms. (So we have a vectorbundle
isomorphism.) Now {—L* is Q-orientable iff N;—G #y, is @Q-orientable.
We start with computing H(G *u,). We have

(G*u;x Eg)/G~L*=8/G,=S/Z,.
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By a result in [B] we infer
H(5*/2,Q) = (5= Q1" =(@0), @)
where 7:S*—S%/Z, is the projection and
[A(S*, Q1= {acHS*, Qlg*a=a Vg Z,2G,}.
The exact equivariant cohomology triangle for the pair (N, N)) is
HG(NisNi) —— Hg(N)
P (43)
H G(N i)
Since N; G-retracts fibrewise to G *u; we have
He(N)=(Q.0).

So (43) gives B .
Hg(Ny, Ny —— (Q.0)
-~/ 4
Hg(N))
Since (N; x Eg)/G=~(N, , x Eg)/G,, we obtain again by a result in [B]
Ho(N)=H(N; » x Eg)/G,) & [HW, . x ET" @5)
=[H(N; JJ* (S® contractible).

If all geZ, induce an orientation preserving (op) map, we have with dimN; ,=a,

[AN, )1 =(@Q,0®(@,a—1) (if op), (46)
if one is orientation reversing (or),
[H(N, )]*=(@.0) (if or). (47)

So if Z,= G, acts orientation preserving on N, which is equivalent to N;—»G % u; is
orientable, we infer combining (44), (45), (46),

HG(Nia Nz) (Qa 0)
a* injective

@Q.08@a—1)

which implies

Hy(N,N)=(@Q,a) if N;,>G *u, is orientable. (48)
If N;— G *u; is not orientable then a similar argument based on (47) gives
H (N,N)=0 if N;,>G #u,is non-orientable. 49)

Now by assumption HZ* '*)(N,N)+0. So we must be in case (48) with
2k —1+1i)=a. This proves (37). Equation (38) is clear. [
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Proof of Proposition 2. Since 4 is arbitrarily C*-close to 4, we find in view of
Lemma 22 for ie {k,...,k-+j} a critical point X; of 4 on level d such that

mT(X) S 2i— 1) <m (%) +mO(x)—1,
ind[%]=j+1.

Since §>0 is arbitrarily given, (5) follows immediately. [

11.4. The Index Interval

We shall show in this section that (S} is a compact interval in (0, + co0) and that the
map S-»o(S) is continuous.

Lemma 23. Let S= {xe]RZ"

2n
Ly x,-2=1}. Then
=1

n
Proof. Given x, € S the map t—>exp(2nJ1)x, parametrises an element in 7(S), and
every I'e 7 (S) can be obtained this way. Dividing out the $*-action in S we obtain
a bijection
§/'==7(S), [xo]~{exp(ntN)xolteR}.

1
We compute V(I')=4% | 2n|xo|*dt=44n=2n for I'e 7(S). Therefore the critical
0
1
levels for A5 must be of the form — 5l

linear eigenvalue problem, one easily computes (a variant of the Courant-Hilbert
min-max principle)

leIN*. Since our critical point problemisa

(il 2322 e =6’i\n<£{n+1= ...:32n<32n+1: ...=33n CtC.,
where 1
dln” — 5.
2zl
Hence Jim |d, n
fms ulin= 57

This implies as one easily seces,
n
li dl=—.
imogd)ld=5_. O

Proof of Theorem 1(i). o(S)e € and S—o(S) is continuous.
Let § as in Lemma 23. For b >0 denoting by bS the image of S & # under the
map z— bz, we see that

Hbs = b - ZHS .
This implies
abS(d) = as(bZd) s de ( — 00, 0) .
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Consequently
infa(bS)=b"2infe(S), supa(bS)=b"?supa(S).

Write R>S iff R encloses S. Assume R> S, then Hg= Hy, and consequently
H% < H%. So we find a G-map of the form x— f(x)x from M%— M¢%. This implies
og = 0. Hence we have

R>S = agz0p. )]
This implies in particular
R>8§ = info(S)=infe(R) and supa(S)Zsupa(R). 2
Now given Se s we find 6> 0 such that
57185>8>68. 3)

Hence by Lemma 23 and the previous discussion

2 P osa 1
G(S)C[é 27:,5 273]'

So we know that o(S) e 4. Next we show the continuity S—o(S). Assume >0 is
given. For 6 €(0,1) define Uy ; by

ReUg, iff (1—8)S<R<(1+5)S.

Then (Us 5)se#, 5¢ 0, 1) 18 @ basis for the topology on #. By our previous discussion
we have for Re U ;,

(14 6)" 2infa(S) < info(R) (1 + 6)* infa(S),
(1+46)" 2 supa(S)<supa(R)<(1 +5)* supa(S).
Therefore, we have for sufficiently small J,
d(R,S)<e VReUg;.
This proves the continuity. []
Lemma 24. For Se # we have

ogd)—agd " )En VYde(—0,0).
Proof. Arguing indirectly assume for some d e(— o0, 0) we have
ag(d)—oagd™)zn+1.
Then, denoting by Cr(d) the critical set of Ag on level d, we have
ind(Cr(d))zn+1

by Lemma 6 (iii). By a result in [F-R, Proposition 6.12] (use that ind =ind} +1,
dim,=2)

2(ind(Cr(d)) — 1) < dim(Cr(d)/G).
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Therefore
2n <dim{Cr(d)/G).
Since dim(Cr(d)/G)<2n—1, we obtain a contradiction. [7]
A consequence is the following useful
Lemma 25.
info(S)=lim inf ik,

supo(S)=lim sup|d,|k .
koo

Proof. We have
as(d) d| Z as(d) |d] = (es(d) —m) |d] , 4)

where d>d is the closest point of discontinuity for «g on the right of d. Defining
d <d similarly we obtain

as(d) |d| = os(d) |d] . (5)

Hence (4) and (5) imply our assertion. [

ITI. Index Sequence and Torsion at a Hamiltonian Trajectory

I11.1. Index Sequence and Winding Number

Let Se# and pick I'e 7(S). Denote by x:IR—S a solution of Xx=JH'(x) with
x{0)e I', where H = H. Consequently x(f)e I' for all t e R. As we have already seen
the minimal period T of x satisfies T= V(I'). We study now the linearisation of
X=JH'(x) along x, which is

y(O)=JH"(x(t)¥(2) - (LHS)

Definition 8. Two times t, <t, are called conjugate along x if the linearised problem
(LHS) possesses a solution y:[t;,,]»R>" satisfying y(t,)= y(t,). The multiplicity
of t, with respect to ¢, is the number of linearly independent solutions of (LHS)
satisfying y(t,)=y(t,). If t; =0, we define m(t) for >0 as follows:

0 if ¢ is not conjugate to 0.
()= [ 1"e 5

multiplicity of ¢ if ¢ is conjugate to 0.

Now we are in the position to associate to I' € 7(S) an index sequence as follows

(N*=IN\{0}, N={0,1,...}).

Definition 9. Let I'e 7(S). The index sequence of I denoted by ir= () ep+ i
defined as follows:

t= Y m(s). 2
O=s<kV({I)
In [E 1-E 3] the reader will find the basic properties of the index sequence. An

alternative but equivalent definition of the index sequence can be given as follows.
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For ke N* denote by F, the Hilbert space,
kV(I)
Fy = {y: [0, kV(I]-R?>"ye HY([0,kV(I")];IR*") and | y(t)dtzO},
0

Define a quadratic form Q, on F, by
KV

Q)= [ K, WO+ CH* (= J3)T 90, T3(2)) 1dt

Then it has been shown in [E 3] or [E-H 1] that i is just the number of negative
squares of @, or with other words the maximal dimension of a linear subspace of
F,,so that the restriction of Q, to that subspace is negative definite. Moreover there
is a formula relating i, to i} and the Floquet multiplier of the time-T-map of the
fundamental solution of (LHS)

=3 jow), @)

where j is a map from the unit circle {ze C]|z|=1} in C into the non-negative
integers, which is described in detail in [E 2]. Equation (3) implies that

T -
- P = — = . 4
S R w

We call i,- the mean index of I'. Now using results in [C~Z 1, C—Z 2] we can relate 7.
to a winding number. In [C-Z 1] Conley and Zehnder introduced an index based
on a winding number and related to previous work by Duistermaat [Du] and
Cushman-Duistermaat [Cu-Du]. From facts which can be found in [C-Z1,
p. 6517 and formula (1.17) in [C-Z 2] we have for a constant C> 0 independent of
I' (note that our 4 is 3 times Conley-Zehnder’s A)

ik —24kV(D)EC VkeN. (5)

Since, as shown in [C-Z2, p. 652] A(kV(I")=kA(V(I)), we infer combining (5)
with

AkVI) =ky(I), ()
the following:
Lemma 26. For I'e 7(S) we have
ip=2y(I). Y%
Proof. Using (5) and (6) we have

1 1
Ei’}—2y(1“), <Cq.

Taking the limit gives {7). [

In the following we study in more detail the quantity i, to obtain information
concerning y(I') and (I
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Lemma 27. Let dim ker(R(T)—1d)=d. Then
j(—1)zd+ir.
Here R(1) is the fundamental solution of (LHS) with R(0)=Id.

Proof. F | possesses a (d + i})-dimensional subspace X such that @,|X <0. X admits
the Q,-orthogonal decomposition

X=X®X,,

where X, is spanned by the functions in the kernel of @, and X, is spanned by the
eigenfunctions belonging to negative eigenvalues. Let {y,,...y,] be a
Q,-orthogonal basis for X, and {y, 1, ..-, Yg+:1} @ @;-orthogonal basis for X ,. We
define Y;CF, for j=1,2,3 by

Y, ={yeF,|y=2 on [0, V(I']] for some ze X, and y=0 otherwise},
Y,={yeF,|y=z on [0, V(I'] for some ze X, and y=0 otherwise},
Y,={yeF,|y=0on [0,V(I] and y=2(- — V(I)) for some z€ X,}.
Then the Y; are mutually Q,-orthogonal in F, and a simple calculation shows
0,MenLeY;<0.

Moreover Q,(y)=0 implies ye Y; if ye Y, B Y, @ Y;. Since ¥; does not contain an
eigenfunction since y is constant on (V(I'), 2V(I'}], we infer the existence of a linear
subspace Y of F, such that

0,0)<0 if yeV\{0},
dim Y=dim(Y,® Y, ® Y,)=d +2i}.
Therefore
j(~V)=it—it=d+2i}—if=d+i},
as required. [
Lemma 28. There is an integer §€[0,d] such that
liirgj(eia)=i1+n+5.
e+ 0
Proof. See [E1] or [E-La}. [
Corollary 2. j(w) 22 except for a finite number of points.

Proof. By Lemma 27 we have j(—1)=d =2. That d =2 follows from the 2-homo-
geneity of H, since T is conjugate to 0. It has been shown in [E 1] that any point of
discontinuity of j must be a Floquet multiplier of x, and thatif w= +1 is a Floquet
multiplier with |w|=1, p times Krein-positive and g Krein-negative then

lim (iwe") —jwe™*)=q—p.

e¥0
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Assume w is a point in the upper half-sphere which is not a Floquet multiplier such
that j(w) < 1. Since j(—1)=2 by Lemma 27 we have w= —1 and the arcin the upper
half-sphere | — 1, w] must contain a Floquet multiplier. Hence the arc [w, 1) can
contain at most n—2 Floquet multipliers, hence

Jwzip+n—(n-2)22. O
Corollary 3. If n=3 then ip>2.

Proof. We have jiw) = 2 except at a finite number of points. By Lemma 28 j{w)>3
for w1 close to 1. Hence

1
ir= 5 {jdw>2. [

We develop now a special argument to extend Corollary 3 to the case n=2.

Lemma 29. Assume R(t,) has a simple eigenvalue ¢'°° with 0 < 0, <. Then there are
neighborhoods U of t, and V of 0, and a Ct-map t—0(t) from U to V such that for
any te U %9 is the only eigenvalue of R(t) with 6(t)c V. We have

do e ) - . "
= >0 if €@ is Krein-positive,

0 A
% <0 if €@ is Krein-negative.
Proof. Krein has proved similar results when R(t,) is perturbed by increasing the
Hamiltonian (that is, changing H"(x(¢)) to H"(x(t))+¢Q(f), with Q(t) positive
definite (see [S—Y, Chap. IIT]). Here we perturb R(i,) by changing f, to some
neighboring ¢, but the argument is quite similar,

By standard perturbation theory, there is a Cl-map t—w(f), defined on a
neighborhood of U, such that w(z) is the only eigenvalue of R(f) close to ¢, Since
R(#) is symplectic and w(t) is a simple eigenvalue, it cannot leave the unit circle, so
w(t)=e"®, We can also choose for each t an eigenvector y(f) in such a way that the
map t—y(t) is C.

Now write )

R(e)y(t)=e"y(t)
and differentiate:

ROY(®)+ ROYO) =ieO6)y(e) + (1)
Hence
(RO~ )j() =" 00)(0)~ ROW0)

=ie"0(e)y(t) — JH"(x@)RE))

= e®Di6(t) — JTH" (x(1))y(t).
We take the Hermitian product with Jy(¢). The left-hand side vanishes since

(R@)3(0), Ty(e)=()(®), RQ)*Ty(t)) =(3(t), IR (9)y(1))
=(9(0), Je™ " Oy(e) = “OUj(z), Ty(1)).
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Therefore we are left with

(1), TN = (H"(x(O)y(0), ¥(2)).-

The right-hand side is positive. It is known that the Hermitian form — iJ does not
vanish on the eigenvector y(t), and by definition its sign defines the Krein-sign of
the eigenvalue e%®:

if iy(2), Jy(t)) >0, then ¢?® is Krein-positive,
if #{y(t), Jy(1)) <0, then €@ is Krein-negative.
Hence the result. [

Before proceeding, we must make an excusion into index-theory. Take w on the
unit circle and ¢>0. Consider the Hermitian form

(03.3)={ <I36) Y@+ CH(—JHEID, I H0)>d

on the complex Hilbert space
H(0,0)={ye H'(0,£; C*")|y(t) = wy(0)} .

This form is the sum of a positive definite term (for w=1) and a compact term.
Hence it has a finite index. We call it {(w, 1). Note that j(w)=j{w, T) in our previous
notation. Clearly j{w, f) cannot change without Q degenerating, which happens
only if w is an eigenvalue of R(f).

Definition 10. Let w be on the complex unit circle, We call ¢ >0 w-conjugate to 0
along x if w is an eigenvalue of R(f). Note that Definition 8 is concerned with
1-conjugate times t. Denote by m(w; t,,t,) for t; <t, the number of s&(¢t,, t,) which
are w-conjugate to 0, each counted with multiplicity. (The multiplicity is of course
defined similar to that in Definition 8.)

Assume ¢ is not w-conjugate to 0 and w= 1, then j is constant in a neighborhood
of (w,t). If w=1 and ¢ is not 1-conjugate to 0, we have

lim j(e®, £)=j(1,)+n. ®)
60

To see this we determine y from y by the formula

t
HO)=(w—1)"* [ §(5Mds
and y spans the whole of I2. We can therefore rewrite Q as a Hermitian form over
12,
@y y)={ [(J Y(s), { y(@)dey + CH*"(— Tx(s) y(s), J y(S)>] ds

0
+w—1)"1<J 5) y(s)ds, (jiy(s)ds) .

We can split L% into I3 @ C?", where L2 is the space of €*"-valued [*-functions with
mean value zero and C*" denotes the space of constant functions. The restriction of
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0 to €2" has index n and the restriction of @ to I3 has index j(1, 7). If w is close
enough to 1 the index of Q will be j(1, )+ n. Thus we have proved

Lemma 29. If n=2 then if t is not 1-conjugate to zero:

lim j(e®,0)=j(1,0)+n. O

8+0

Lemma 30. Assume w=1 is a double eigenvalue of R(T). Then there are
neighborhoods V of 1 and U of T and a continuous map t—6(t) from U to R such that
(i) 8()%0 for t+T and e*PecV VteU.
(i) The restriction of 8(2) to U\{T} is C..
(iii) For te U € and ¢ ® gre the only eigenvalues of R(t) belonging to V.
Proof. T is clearly conjugate to 0 with multiplicity 2 as we have previously seen.

Conjugate points are known to be isolated [E2, E3] so that there is a
neighborhood U’ of T with

Ker(R(t)—Id)={0} teU\{T}.
We consider the equation
det(R(t)—wld)=0. 9
The left-hand side is a polynomial in w with smooth coefficients in t. For t = T there
is a double root w=1. Choose a disk ¥ around w=1 containing no other root.
Then there exists an open neighborhood U C U’ of T such that whenever t € U and

t=+T. Eq. (9) has two simple roots in V. Since R(t) is symplectic these roots must
either be both real

o(t) and o(t) ! with 0<g(t)<1 (10)
or both on the unit circle
2% and ¢ "0 with 0L () <= (11)

The functions ¢(f) and 6(t) must be C* on U\{T}. This leaves us with four
possibilities

(a) real roots for all te U.

(b) real roots for t< T, complex roots for t>T.

{c) complex roots for t < T, real roots for t>T.

(d) complex roots for all t+T.

We may choose U to be an interval containing T. By the preceding lemma 6(t)
will have a constant sign on each of the half-intervals Un{t < T}and Un{t>T}.It
follows that a complex eigenvalue w=e" can occur at most once on each side of T.
In other words, for each we ¥V with |w|=1 and, w= 1, Eq. (9), now considered as an
equation in t has at most two solutions ¢; and ¢, in U, one with ¢, < T and one with
t, > T If there are exactly two we have case (d).

We now use index theory. Choose an interval [t,,1,]CU with ¢, < T<t,.
Since T is 1-conjugate to 0 with multiplicity two, we have

J, 1) =j(1,1,)+2. (12)
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Since neither ¢, nor ¢, is 1-conjugate to zero, it follows that there is a neighborhood
W of 1 contained in V with

j(W, t2)=j(W,t1)+2, we W

So, whenever we W and w1, Eq. (9) must have two solutions in (S,,S,)CU.
We are therefore in case (d) and Lemma 30 is proved. [

Still in the case n=2 we have
Lemma 31. Assume ker(R(T)—1d) is two-dimesnional. Then
lim j(e®)=i}+3.
g0
>0

Proof. Take t < T in U and consider 6(t) which was defined in Lemma 30. We have
6(t)>0 and (T)=0, so € is Krein-negative by Lemma 29. Fix 6, (0, 7) so that
for all te U with ¢ < T the only eigenvalue of R(¢) of the form €%, 0 <0 < 8, is §(). Set
0,(t)=16(t) and w, =€ and w,(t)=¢">. We have

jwy) =lim je").

Between w,; and w,(t) there is a single Floquet-multiplier ¢®®, which is Krein-
negative. The change in j(-,¢) is then +1, see [E1]:

j(wla t) —j(WZ(t)’ t) =+1.
Now let t— T Since R(f) never has eigenvalue w,, we have

Jwy, )=jwy, T)=j(w,).
On the other hand we have

j(Wz(t)a t) =J(1, t) + 2 .
Since there are no 1-conjugate points to 0 in (¢, T) we infer
J,9=j, T)=it.
Comparing the four equalities we get
Jw)=jow,(0,0)+1=j1,0)+2+1=i;+3. O

Corollary 4. If n=2 we have
ir>2.

Proof. Since j(w)= 3 if w close to 1 and the value of j{w) can drop by at most 1 for
w=1 (since there can be at most one simple multiplier w1 on the upper half
circle) we infer j(w)=2 for w=1. Hence

~ 1
z,=ﬂj"](w)dw>2.

Proof of Theorem 2(i). Corollary 3 and 4 give i,.>2. Since by Lemma 26 we have
ip=2y(I'), we find
yN>1 if nz2. O
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Finally we need a result connecting the indices i and the formal Morse index
defined in Definition 6 (11.2).

Propesition 3. Let x, be a critical point of Ag such that O([xo)=T (seell.l). Let z

be a minimal representative for [ x,] and |A(xo)|= —— (see I1.1, Lemma 5 ). Then

kV(F)
m(xg)=1i%.

Proof. By Definition 6 in IL1.2 m™(x,) is the index of the quadratic form on T, My,
Q.. () =4»(}) (Th(t), h(t)> dt
m—;;A(xo)i CH*"(— % o(O)Th(2), Jh(2)>dt
=1 i (Th(2), h(t)ddt

1t . .
CLTS
D) (j} {H*'(— IX{)Th(e), Th(t)>dt . (13)
Now the right-hand side of (13) defines a quadratic form on E (see 1.2 for the
definition of E). One easily verifies that this new quadratic form which we denote
again by Q, has the same index m™(x,). Carrying out a change of variable and a

rescaling of x, [similar to IL.1, Lemma 5 (iii)] we obtain for a suitable constant
ceR?",

+3

nr )>

which solves —Jx=H'(x) and x(t)e I’ VtcR. Moreover x has minimal period
V(I')= T It is now straightforward to verify that the index of Q, associated to x (see
IIL1) is the same as m™(x,). By the definition of i% this implies the desired
result. [

x(t)= V([“}z(

111.2. Computation of Total and Mean Torsion
Let S be the surface given by H=1, where

H(qb“':Qm pb-"’pn)z%.;l at(sz_*-p?) (1)

Here the «; are positive and independent over Z. Denote by e;, i=1,...,2n, the
standard orthonormal basis for R?". We obtain that the only Hamiltonian
trajectories on S are those given by the following parametrisation:

ix{)= —«exp(ZntJ)e 2)

Then with V;=W(I)),
.=-5< Jx(t)x(t))dtnj—dt—%?-. )]

J
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Now (LHS) is given by a linear time independent differential equation
oy 0

y=:JAy. 4)

Hence R(t)=exp(tJ A). Note that R(t) commutes with J and moreover |R(t)y| =1y
Now

det (R() x ... X R(t))=e*™4") det, D)
is equivalent to .
et(j§1&3')f=e52nA{t)’ 4(0)=0. (6)
Therefore
1 n
A(t)= E(;; oc,-) t. N
Consequently with y;=y(I}) and 7;,=(I}) we infer
R S
Vj-“i;aja ?j—znizlai- ®)

n 1 n
N ._1=~— .'zu. .= .
ote that i; V; 7 i:/:l w=7,j=1,..,n
Definition 11. Let S be defined by H e #. We call S (r, R)-pinched with 0<r <R if
1 1
xe8 = r<|x|<R, R—Z—Idg%ﬂ"(x)g;fld VxeS. 9)

Proposition 4. If Se s is (r, R)-pinched then for every I' € 7(5), we have
n n
—e SN —5. 10
SIS (10
Proof. If A(t) is a symmetric positive definite matrix depending continuously on
teR we can solve
R=JA(HR, R(0)=Id

and can associate to 4 and T'>0 a winding number 4 ,(T) just as in the definition
of y(I'). From the variational characterisation of the index sequence it is immediate
that

AZB = B 124! = A ()= At). (11)
Now §I')=AV(I'))/V(I) =tlim A(t)/t. Hence

lim 42 (8t SHT)<lim 42 (0, (12)
t—+ow R2 to>w© 2
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%Id corresponds to H(Gy, .- s G Pis - or Pu) = R%ji (¢} +p?) and similarly for
%Id. For a sphere of radius I" we can compute as before.
VD=m, A=, o)=n. (13)
So combining (12) and (13) gives
n n

SHNE —, (14)

7ER2 nr

as required. [

1V. Proof of the Main Results

IV.1. Two Basic Theorems

The following together with Proposition 1 is a key step in the proof of the main
results.

Definition 12. Let Se #. We call a Hamiltonian trajectory I'e 7(S) k-essential,
where ke IN*, if there exists /e IN* such that

. 1
|l = ?I/T(F)’

Here dis(S) =(dy);x is the discontinuity sequence (see def. 7).
We have

Theorem 3. Let Se 5. There exists a sequence I'(k), 0 C .7 (S) such that
I'(k) is k-essential . 2

Moreover if 5k=...=ﬁk+j for some j=1, then the I'k)... I'(k+j) are mutually
different.

Proof. We construct the I'(k) inductively as follows. Denote by (k;);cx~ the sequence
of “jump points” for the sequence {d ), cne
glq < gk, 41 3

Assume I'(k) for k=1, ..., k; is constructed. We have to find I'(k;+1)... 'k, ,)
mutually different so that I'(k) is k-essential for ke {k,+1, ..., k;, , }. By Proposit-
ion 1 there exist mutually different I'(k,+1), ..., I'(k,,. ;) such that

- 1
dk’H:V—(I:i)Z’

lih— 2k <2n+1. ()

m~(x¥)—2il<2n+1, ie{k+1, ...k} 4
for suitable I, N*, where x, denotes a minimal representative for I'(i) and x! is the
I;-th iterate. By Proposition 3 we have

m”(x})= i?‘(i) . )

So combining (4) and (5) gives the desired resuit.
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Moreover we have

Theorem 4. Given S € # there exists a constant ¢ =c(S)>0 such that the following
holds:
If Fe F(8S) is k-essential then

[7(0) — |dil ki < cldyl > (6)
Proof. We have for some [e IN¥,
A1 )
Idk[—-z-V—(F—), ire[2k—2n—1, 2k+2n+1]7. )
In the formula
.l - - , 8
=3 ®)
we must have
Jjw)eli,ip+2n]. )
Hence
112’} irl n
< . 10
2iv(n)| = =20 lle ()~ v (10)
The set Q: =G\{Floquet multipliers} can be written as
Q=U,, (11
A

where the U, are open intervals on S* = G which are mutually disjoint. Moreover
# {1} <2n—1.0n U, j takes the value j,. Denote by # , the number of we U, such
that w'=1. We have the estimate

fla,—1]1= #%,=[la, +1], (12)

where [ ] denotes the integer part and a, is the length of U,, where we put the
uniform measure of total measure one on G. Since

fr=§jaam
we find for a fixed A
ba,—la, + 1Y, =0, — ZU jw)=lja,—1la,— 1.

wi=1

This implies
laaa— Y W)

well,
wi=1

=2%;. (13)

Using (13) we obtain

lip =it <3 |20, — L )+ 3 jw)
’ oty v

<(2n)-2- (i+2n)+ 2n(iL + 2n)
120241 S ¢ i+ 1), (14)
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where ¢, isindependent of I and only depending on S € 5 (actually only on dim S).
So we conclude from (14) and (7),

< 2+ 1)1 (15)
We have by (9)
= ¥ Jjwzlr. (16)
Combining (15) and (16) gives
li,—it| ¢ lp
<X
| =2\ 1)1 {a7)
Equations (7) and (17) together yield for a suitable constant, ¢, =c,(S)>0.
}lz, lr‘ 2k+2n+1 - 1
<2 < -
)| = 2 ( ] +1> ldil S c; (k'gkl ] +|‘7k'> (18)

Now the sequence {k|d,| ke IN*} is bounded by some constant c;=c5(S)>0 by
Theorem 1(i). So (18) and (10) imply for some constant c, =c¢,(S)>0,

_ |1
- i el i) 0 st ey 09

Moreover by (7)
A=Y +2n+1)——

tV(r) <P~ Ak S ) +4i+2n+1)

Therefore we have for some constant ¢s=c5(S)>0,

W(r)

;1

1
D)~ K < [P0~ g7+ {21;(” ~1dlk

_ ir 1
=5 T
l

) — ‘Zm +esldy . (20)

Equations {19) and (20) combined give the two estimates:

A

II/\

|f(r)—~|cik|k|§c6(§+|akl), |v<r)—1c7klk|§c6(y(r)+ldk|> ey

for some constant cs=cg(S)>0. From (21) we deduce using (7) again

1 1
[P — k) < ¢ (ngl + ( (F)> ) + lgkf2> (22)
Since |d,|ZlinfA(My), V()™ ' <linfA((My)| we find for a suitable constant
c=c(S)>0 finally _ 2 215
[P(I) — |diJk|* < c*[d] (23)

which implies the desired result. [J
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IV.2. Proof of the Main Theorem
We have already proved Theorem 1 (i). Moreover we know by Lemma 25 that

info(S)=liminfk|d,{, supo(S)=limsupkl|d,|. (1)

Since we have already seen after the statement of Theorem 2 that Theorem 1 (ii}isa
corollary of Theorem 2, we have only to prove Theorem 2. Moreover
Theorem 2 (i) has been already proved in IIL1.

Proof of Theorem 2(ii). Let teo{S). We shall construct a monotonic sequence
(k) CIN* such that

111»12 dJk,=t.
Then picking by Theorem 3 a ki-essential I'(k;) 7(S), we have by Theorem 4
() = il S cldy |12
Since d,,—0 as -0 and |d [k,—t, we infer
A (k)—t as l-w.
If 6(S)={I} we have by definition
|dJk—I as k-,
and are done. So assume
info(S) <supo(S).
Constructing (k;) inductively assume k; has been constructed such that

- 1
k>k_y, ndkﬁkz—tl<?

We shall now construct k., such that

ks >k, H‘?k;+1ikl+1—ﬂ<m-

We find k* > k; such that

- . 1 - 1
“dk*lk* < lnfO'(S) + m 5 ldk*l < '2—(l+—1).

Using the monotonicity of (d,) we find for ae N,
(K* + a+D)|des o4 1| = (K* + @) [dpe 1 | SK* + a4 1) [djs 1 o — (K* + ) |dpe 1
1
Sldprd Sl S =——~.
Sl vol Sldpl = 20+1)
Since there exists a,=0 such that

1
(k* +ag) ldys 4 ool > sUp0(S) — e
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we see that the balls
B 1 (k*+a)|dissql) for a=0,...,a,
I+1

cover o(S). Hence we find k;, , € {k*,...,k* +a,} with the desired property. []

Proof of Theorem 2 (iii). We have to show that for Se s the following inequality
holds:

W'zl Vex0.
Ted(8), {eo(S)

Fix ¢>0. By Theorem 3 there exists a sequence (I'(k))C.7(S) such that

I'(k) is k-essential 2
and
If 3k=---=3k+j for some j>1
then I'(k), ..., I'(k+j) are mutually different. (3)
By Theorem 4 we find ky, € IN* such that for every kz k,,
[T — |4 k| <. )
Denote by K {(d) the number
K= frenve o zial. ©)
We have
1
Kd)= [V(W]' (6)

By construction, for k=k,,

- 1
k—k, < KAd,)= ——
0 _7(1");18(53 @) wr);rs(& [V(f )dj

1
< . 7
‘v(r')ezaa(S) V(I)|d) ?
Dividing (7) by k, we obtain
ko 11

1-—==

®)

k V(T)ez;&(s) V() kid|”

Take a monotonic sequence (k) CIN* such that
|dy |k, Z supo(S)—o
for a given 0 (0, supa(S)). Then

IR I S S
ki = wnesus) V(I) supa(S)—0
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Taking the limit /-0 gives

1
<—— n-t.
~ supa(S)— 4 unes.s) 0
Since J has been arbitrary
- vir—t.

<
= supa(S) s eo.s
If (N eo(S), we have p(I'}<supa(S)+e. Hence
1
vmg;re(S) V(D) (M) —e)

Since F(I')=info(S)—e, we can write for some §,>0 with [0,|=<c;¢ for some
constant ¢, >0 independent of ¢,

) —ez(1—8) 7).

1=

©)

Using this in (9) gives
1

7(:‘);:5(3) VD1 —8)7D)

1A

Therefore

(—5.< 1 1

= ?(r);:aw VDAL wr);rasn’(_n_' a0

Now let 0<g, <& Then

1-6,< ¥ «D's ¥ D7

) eas,(S) e aq(S)

Since ¢, >0 was arbitrary and 6,, -0 as ¢, 0, we find

1= ¥ o,

T wD)ESS)

completing the proof of Theorem 2 (iii). [
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