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1. Introduction 

In [1] Baas has shown that to any collection (2={Q1, Q2 . . . .  ,Qn} of stably 
almost complex manifolds Qi there corresponds a cobordism theory MUQ*(-) 
based on manifolds with cone-like singularities of type Q1 . . . .  , Q,. These co- 
homology theories (resp. the corresponding homology theories MUQ,(-)) have 
proved to be a useful tool for example in the work of Johnson and Wilson on 
homological dimension of finitely generated BP,-modules (see [2]) and it seems 
they will be important for a better understanding of MU,(X), as yet unpublished 
work of Morava suggests (see [3]). 

In general, the theories M UQ*(-) are not multiplicative, but by their definition 
they are canonically modules over the multiplicative theory MU*(-). More- 

over, if the sequence {ql, ..., q,}, where ql = [Qi], is regular in the ring MU*(S~ 
they are also modules over the ring MUQ*(S ~ = MU*/(Q). A general cohomology 
theory h*( - )  with analogous properties will be called an MU-module theory. 
As in the multiplicative case, to any MU-module theory h*( - )  we can associate 
a formal group law Fh(X, Y) over the coefficient ring h*(S~ The purpose of this 
paper is to study the relationship between MU-module theories and formal 
group laws, and one of our main results (2.14) roughly says that a rather large 
class of MU-module theories are characterized by their coefficient rings and their 
formal group laws. This is proved by studying first the theories MUQ*(-) for Q 
an invariant regular sequence and for this it is useful to remark that for such 
sequences Q, MUQ*(X) has a natural profinite topology. We calculate h*(MUQ) 
as a comodule over h*(MU) (Q invariant and regular) and use part of this in- 
formation to give a simple proof of a version of Landweber's filtration theorem 
which is used in the proof of some of our results. 

The plan of the paper is as follows. In 2. we review properties of the theories 
MUQ*(-), introduce some notions needed later and state our main results. 
In 3. we introduce the category Mod~ ~~ of profinite graded modules over a locally 
finite graded ring R and study cohomology theories with values in such a category. 
In 4, our (technical) main result (4.17) is proved by an analysis of comodules in 
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the category Mod~ ~~ Applying the results of 4. we consider in 5. operations for 
theories MUQ*(-)  with Q invariant and regular and in 6. we study the connections 
between the theories MUQ*(-)  and formal group laws and discuss some applica- 
tions. 

It is a pleasure for us to thank Professor P.S. Landweber for his interest in the 
present work. He discovered a lot of mistakes in earlier versions and his many 
suggestions were very helpful. In particular, he showed me the importance of 
invariant sequences for the problems studied here. 

2. Preliminaries and Statement of the Main Results 

Let W (resp. WQ be the category of pointed spaces of the homotopy type of 
a CW-complex (resp. finite CW-complex). All cohomology theories considered 
will be reduced and representable theories defined on W. If h* ( - )  is a cohomology 
theory, we denote by h its representing spectrum and by h*= h*(S ~ its coefficient 
object. Clearly, h* ( - )  may be extended on Boardman's stable category of CW- 
spectra by setting h*(X)= {X, h}* for any spectrum X. By the homology theory 
associated to h*( - )  we mean the theory h , ( - ) = ~ , ( h A  -) .  We shall write h,  
for h ,(S~ 

By M U * ( - )  we denote the complex cobordism theory. Let Q=  {%, qa ..... } 
be a sequence of elements qi~MU* of degree Iqi[, Q,={q0,- . . ,q,}.  According 
to Baas [1] there exist CW-spectra MUQ, with the following properties: 

(1) MUQ, is (for all n) a module spectrum over MU. 

(2) For all n there is a map of MU-module spectra #,: MU --~ MUQ, of degree 0. 

(3) For all n there exist morphisms t/,: MUQ~_I-~MUQ~ of degree 0 and 
0~: M UQ, --~ M UQ~_I of degree - (Iq~l + 1) such that the diagram 

(2.1) MUQ*_I(X ) " -~ MUQ*(X) 

~on  
/ 

MUQ* I(x) 

is exact for all finite CW-complexes X. 0., t/. and g. are maps of MU-module 
spectra and O. is induced by multiplication with q.. 

(4) # . = ~ . o ~ . _  1 . . . . .  t h.  

If the sequence Q happens to be infinite, we define the spectrum MUQ by 
MUQ =limm (MUQ., t/.+a ) and we set #o =lira #.. 

Recall that a sequence x 1 , x2, ... of elements of a ring A is called A-regular, 
if for all positive integers n 

(i) % ,  . . . ,  x.) # A 

(ii) for all i = 1, ..., n the element x~ is not a zero-divisor of A/(x~ .... , x~_ 1). 

(2.2) Lemma. Let Q be an MU*-regular sequence (finite or infinite). Then 
MUQ* =MU*/(Q) and #Q: MU*-~ MUQ* is the canonical projection. Moreover, 
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for each finite CW, complex, MUQ*(X) is a module over MUQ* and induced 
maps are homomorphisms of MUQ*-modules. 

Proof This follows, for example, from [3], appendix. 

(2.3) Remark. Suppose Q is an MU*-regular sequence and qo 4 =0. Then MUQ ~ is a 
finite group in each dimension, so the MUQ~(X) are finite abelian groups for all 
finite CW-complexes X. For arbitrary CW-complexes Y we have 

MUQ*(Y) -~ li, mm MUQ* (finite subcomplexes of Y), 

so in this case the MUQ*-module structure may be extended on W. 
Following Landweber [-8] we call a sequence Q={qo, ql . . . .  } of elements 

of MU* invariant, if s~(qo)=0 for E + 0  and sZ(qi)~(qo .... ,qi-1) for all E + 0  
and i>  0. Here the E's denote exponent sequences E = (el, ea . . . .  ) of non-negative 
integers and s ~ is the Landweber-Novikov operation of index E and degree 
2 NEIJ ~2I,  ie i. We will be interested in invariant regular sequences Q, such a 
sequence always satisfies O4qoeMU ~ Note that if (2 is an invariant regular 
sequence, the same is true for Q,(n > 0). There are many invariant regular sequences 
(cf. [6, 8]), some interesting ones will be considered later. 

A cohomology theory h* ( - )  is called a cohomology module, if h*= h*(S ~ is 
a commutative graded ring with unit element and if there exists a natural trans- 
formation %: h* |  h* ( - )  of degree 0 over W which turns h*(X) into a 
h*-module for all X such that e(a|174 (2 denotes the suspension 
isomorphism) and c~: h*|  h* agrees with the given ring multiplication on h*. 
If c: X ~ S o is the trivial map we set I x = c*(1)eh~ A transformation ofcohomo- 
Iogy modules O: h* ( - ) --, k* ( - ) is a transformation of cohomology theories such 
that C~ko(OsO| %. An MU-module theory is a cohomology module 
h*( - )  which is also a module over the multiplicative theory M U * ( - )  in such a 
way that the natural transformation /~h: M U * ( - ) ~ h * ( - )  def'med by /lh(u)= 
Vh(U| l x) is a transformation ofcohomology modules, vh: MU*(-  )| ) ~  h*(- ) 
denotes the module map. /~h will be called the Conner-Floyd map of the MU- 
module theory h*(-) .  A transformation of M U-module theories O: h*(" )---~ k * ( ' )  
is a transformation of cohomology modules such that OVh(x|174 
for all xeMU*(X),  yeh*(X). 

A transformation v h" M U * ( - ) |  h*( - )  with the properties mentioned 
above will also be called a complex orientation (C-orientation) of the cohomology 
module h*(-) .  Note that in general there may exist a lot of different C-orientations 
on a given cohomology module. 

(2.4) Examples. (1) Every multiplicative cohomology theory h*( - )  with the 
property that the canonical complex line bundle t/over P~C is h*(-)-orientable 
is an MU-module theory. The possible C-orientations of h*( - )  a r e - v i a  the 
Conner-Floyd m a p - i n  one-one correspondence with the possible h*(-)-  
orientations of q. 

(2) For any MU*-regular sequence Q={qo,ql . . . .  } with O=t=qoeMU ~ 
M UQ*(-) is an M U-module theory. This follows from Lemma (2.2), the Remark 
(2.3) and the general properties of the spectra MUQ mentioned at the beginning 
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of this section. In general, the theories MUQ*(-) are not multiplicative, cf. the 
Remark (2.5) (d) in [31. 

(2.5) Remark. Because we always assume h*( - )  to be representable, the G- 
orientation of an MU-module theory is given by a map vh: MU A h --~ h of spectra 
(of degree 0) which satisfies the usual conditions. 

(2.6) Remark. A homology theory h , ( - )=n , (hA- )  is called a homology 
module, if the dual cohomology theory h*( - )  = { - ,  h}* is a cohomology module. 

(2.7) Remark. Note that if O: h*( - ) - -*k*( - )  is a transformation of MU- 
module theories, the diagram of natural transformations 

h*(-)  o , k* ( - )  

MU*(-) 

is automatically commutative. 
If h*( - )  is a cohomology module, the differentials of the spectral sequence 

H * ( - ,  h * ) ~ h * ( - )  are h*-linear. If h*( - )  is an MU-module theory, the same 
argument as for C-oriented multiplicative theories shows that the spectral 
sequence H*(MU, h*)~h*(MU) is trivial. So we get an isomorphism of h*- 
modules 

(2.8) h*(MU)~ h*[[IXh(SE)]]. 

Recall that to any ~2-oriented muttiplicative cohomology theory h*( - )  we 
can associate a 1-dimensional commutative formal group law 

(2.9) Fh(X, Y)=X+ Y+ ~ aijXiYJeh*[[X, Y]] 
i , j ~ l  

(X and Y of degree 2) which describes the Euler class of the tensor product of 
two complex line bundles as a function of the Euler classes of the factors. A well 
known theorem of Quillen asserts that FMv(X, Y) is universal for 1-dimensional 
commutative formal group laws over commutative graded rings with unit. 
Using the Conner-Floyd map #h, we define the formal group law Fh(X, Y) of an 
MU-module theory h*( - )  by 

(2.10) Fh(X, Y)=(gh), FMv(X, Y). 

For any formal group law F(X, Y) and any natural number n the power series 
[n]F(X ) is defined recursively by 

(2.11) [1]r (X)=X, [n]e(X)=F([n--1]F(X),X). 

Note that 

(2.12) [p]F(X)=pX+ 2 G Xk, IGI= - 2 ( k - l ) .  

(2.13) Definition. Suppose F(X, Y) is a formal group law over the (graded) 
ring A of characteristic p>0.  F(X, Y) is called n-fiat (n> 1), if the coefficients 
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of (2.12) satisfy 

(i) Cp_l = cp2 -1 . . . . .  cp.-, -1 =0, 

(ii) multiplication by Cp~ 1 on A is monic, 

(iii) multiplication by cpm_l on A/(cp._ 1 . . . .  , cp., i -1) 

is monic for all m>n. 
Examples of n-flat formal group laws exist for all n and p (see 6.). We are now 

in position to state 

(2.14) Theorem. Let A be a commutative graded ring of characteristic p >0 and 
suppose A q is a finite abelian group for all qs2g. Let n be a positive integer and suppose 
F(X, Y) is an n-fiat formal group law over A. There exists an MU-module theory 
A ~ ( - )  over the category W with A*(S~ and formal group law F(X, Y). More- 
over, any two MU-module theories with this property are isomorphic as MU-module 
theories. 

Theorem (2.14) is an existence and uniqueness statement for MU-module 
theories with prescribed formal group (A, F). See (6.7) for a more precise statement. 

The crucial step in proving (2.14) (or (6.7)) is Theorem (4.17) which asserts 
that if Q is an invariant regular sequence, h* ( - )  an MU-module theory with 
locally finite coefficients such that/~h(Q) =0, there is an isomorphism 

(2.15) H o m e y  (M UQ, h) ~ Eh. [[rio,/3,, .--]]. 

Here Hom*v(MUQ,  h ) stands for the abelian group of maps of MU-module 
spectra MUQ ~ h and the right-hand side of (2.15) means the completed exterior 
algebra over h* with generators fli of degree 1 -  Iqil, considered as an h*-module. 
(2.15) contains in particular a complete enumeration of all transformations of 
M U-module theories M UQ* ( - )  ~ h* ( - ) .  

(2.15) leads to some insight into the structure of MUQ*(MUQ). In 5. we 
construct operations 

s~: MUQ*(-) - -~  MUQ*+211~II(-) 

(one for each exponent sequence E) with the property that 

S~ o ]~s = [2Q o S t 

for all E and prove the following 

(2.16) Theorem. Let Q={q0, ql,--.} be an invariant regular sequence. There 
exists an isomorphism of M UQ*-modules 

~bQ: MUQ*(MUQ)_~MUQ*@2g/(qo ) [s~]~)E[flo, fll . . . .  J 

where E[flo, fla . . . .  ] denotes the exterior algebra over 2g/(qo ) in the variables fll 
of degree - (Iqil- 1). For any sequence C = (e o , e 1 . . . .  ) with e i = 0 or 1, set tic= flo fll .... 
Then, for all u~MU*(X),  xeMUQ*(X)  and all E, C the operations s~ and tic satisfy 

(2.17) sf2(ux)= ~ sF(u), s~(x) 
F + G = E  

U(u  x) = u U(x). 
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Note that (2.16) contains more information than (2.12) of [3] where P(n)*(P(n)) 
is calculated as a module over P(n)* (P(n)*(-)  is the BP-anatog of MUQ*(-) 
for some special sequence (2). 

3. A Category of Profinite Graded R-modules 

Let R be a graded commutative ring with unit element and denote by Mod e the 
category of (graded) R-modules. Because R is commutative, we will not distinguish 
between left and right actions of R. An object M of Mod R is called locally finite, 
if M q is a finite abelian group for all q. Let us assume for the rest of this section 
that R itself is locally finite. 

(3.1) Definition. A profinite graded R-module is an inverse limit (over a directed 
set) of locally finite R-modules. 

It follows from the definition that a graded profinite R-module carries a 
natural topology: If M = lira M~, M~ locally finite, we consider the M~ as discrete 

R-modules and give M the limit topology. So, in each dimension q, M q is a profi- 
nite abelian group, i.e. a compact, Hausdorff and totally disconnected abelian 
group. Let Mod pr~ be the subcategory of Mod R whose objects are profinite 
R-modules and whose morphisms are homomorphisms of R-modules which 
are continuous in each dimension. Let M be an object of Mod~ ~~ M = lira M~, 

and let p~: M --* M~ be the canonical projections. Because the M~ are discrete and 
from properties of the limit topology one easily sees that the system 

(3.2) {/~r = ker (M p~ , M~)} 

is a basis of open neighborhoods of 0EM (in each dimension). Because the M q 
are compact they carry a uniquely determined uniform structure which induces 
the given topology and the M q are complete with respect to this uniform structure. 
F rom this one sees that 

(3.3) M~limM/M~. 

Clearly, the quotients M/M~ are again locally finite. 

(3.4) Lemma. The category Mod pr~ is abelian. 

Proof It is obvious that Mod pr~ is an additive category. Because the topologies 
in view are compact and Hausdorff, any continuous bijection in Mod~ r~ is an 
isomorphism, so we have only to show that any morphism f :  M ---, N in Mod]  r~ 
has a kernel and a cokernel. But this follows from (3.3) and (again) the fact that M 
and N are compact Hausdorff spaces in each dimension. 

Let {a~}~ a be a set of indeterminates of degree la~] and consider the R-module 
REEa~]] whose elements of degree q are the infinite sums ~2~a~, 2~ER and 

I;t~l+la~L= q. Clearly, R[ [a~] ]= l im  R[a~; ~ U ~  where {U} is the directed set %-- 

of all finite subsets of A. So, R[[a~]] is an object of Mod~ r~ and it is easily seen 
t h a t - i n  Mod~~ is isomorphic to the product I~ R.a~. 

~ E A  
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(3.5) Lemma. R[[a , ] ]  is projective in Mod pr~ 

Proof Consider the inclusion R[a~]=R[[a~]]. We give R[a~] the subspace 
topology. Because R [[a~]] is a product it follows that R [an] is a discrete space 
and dense in R[[an]]. Consider the diagram 

/ /  

f 

i g R[a~] c R [ [ a J ]  , N 
I 

0 

where f is an epimorphism in Mod~ r~ Because R[a~ is projective in Mod n 
(the category of R-modules), there exists a homomorphism of R-modules k so 
that fk =gi. Because R[a~] is a discrete space, k is automatically (uniformly) 
continuous and because R [a~] is dense in R [[a J ] ,  it follows by standard arguments 
that k may be extended on R[[an] ] by a morphism ~ in Mod pr~ Again because 
R[a~] is dense in R[[an] ] one sees that ~ is a lift ofg. 

For later use we need a sort of tensor product in the category Mod~ r~ Let M, N 
be profinite R-modules, M = lira Mn, N = lira N,. We define their tensor product 

( 4----- 
M[]N in Mod~ r~ by 

R 

(3.6) MNJN= lim (M@N/[im (M,@N)+im (M@~)] )  
R ~ , 4 ~ '  R R R 

where "im" refers to the canonical maps M~@N --> M@N resp. M@Np -* M@N. 
R R R R 

It is easily established that the product M [] N is an object of Mod pr~ is associative 
R 

and commutative and satisfies M[]R_~ M. 
R 

It is well known (see [14] for example) that the inverse limit functor is exact 
on the category of profinite abelian groups. From this it follows that lim is exact 

( 

on the category Mod pr~ Because for any profinite R-module M, 

R [[a,]]  [] M ~ M [[a J ]  ~ lira M [an ; e e U] 
R U 

(U a finite subset of A), we get 

(3.7) Lemma. Thefunctor R [ [ a J ] [ ]  - is exact on Mod~ r~ 
R 

Let h*( - )  be a cohomology module defined on W and Suppose that the 
coefficient ring h* of h* ( - )  is locally finite. For any CW-complex X denote by 
{X,} the directed system of all finite subcomplexes of X. It is well known (see for 
example [14], p. 309), that under the present assumption on h* we have 

(3.8) lim 
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This shows that h*(X) is naturally a profinite h*-module. Since every continuous 
map f :  X--,  Y of CW-complexes induces a morphism {X~}--* {Y~} of directed 
sets we get 

(3.9) Lemma, Any cohomology module h*( - )  with locally finite coefficient ring 
Mndprof  h* takes values in . . . . .  h* �9 

(3.10) Remark. We note that in the above lemma the category W may be re- 
placed by the category S ( -  1) of ( -  1)-connected CW-spectra. 

(3.11) Remark. For an infinite CW-complex X, h*(X) is usually considered as a 
graded topological group with topology induced by the skeleton filtration 

Fph*(X) = ker {h*(X) ~ h*(X p-l)}. 

The (algebraic) isomorphism h*(X)-~li, m_mh*(X~) is continuous by well known 
Gr 

properties of the limit topology (where h*(X) is given the filtration topology), 
but in general it is not a homeomorphisrn. 

Clearly, over W y, any cohomology module with locally finite coefficients 
takes values in Moil vr~ An easy argument shows (see for example 1-10], p. 36) 
that for any cohomology module h*( - )  defined over W s and with locally finite 
coefficients, there exists a unique extension Eh*(- )  over W such that 

(3.12) W s h*(-) , Modpro f 

N II 
W Eh*(--)) Modprof 

commutes. This extension is given by 

(3.13) Eh*(X) = ~ h* (finite subcomplexes of X). 

(3.14) Lemma. Let h* ( -  ) be an MU-moduIe theory with locally finite coefficients. 
The module map Dh: MU A h-~ h induces a natural isomorphism in Mod~ r~ 

t: h*(MU) [] h*(X) - ~  h*(MU /x X) 
h* 

over the categories W or S ( -  1). 

For the proof of (3.14) we will need the following remark. Suppose M is a 
graded R-module generated by a set {m~} of elements. Let {U} be the set of all 
R-submodules of M such that 

a) M/U is locally finite, 

b) almost all m~ lie in U. 

Then we call dr/= lim M/U the profinite completion of M. As in the case of 
U 

profinite groups one shows that the profinite completion is functorial and that 
/~/~ M if M e Mod pr~ 

Proof of (3.14) Let X he a CW-complex or a ( -  1)-connected spectrum. There is 
a natural transformation 

r: h*(X) [#(sE)] --~ h*(MU /x X) 
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defined by 

r(Zx  �9 = Z vh(s  A 
E E 

From the remark before the proof we see that r induces a natural transformation 

h*(X) [#(se)] & h*(MU A X) 

II IF 
h*(X) [[#(s~)]] h*(MU /~ X). 

Now h*(X)[[#(se)]] and h*(MUAX) are both additive cohomology theories 
and ? is a transformation of cohomology theories. From (2.8) it follows that ? is 
an isomorphism for X = S ~ so ? is an equivalence. From (3.6) one knows that 

h*(MU) [] h*(X) ~ h*(X) [[-#(sE)]], 
h* 

so the lemma follows. 
Let E be an MU-module spectrum. Suppose qeMU" is represented by the 

map q): S"-~ MU and denote by 0~ the composite 

0~: S"AE ~ ^ i ~ M U A E  uE ~E. 

If qeMU*, we denote by (q)  the invariant ideal of MU* generated by q, i.e. 
the intersection of all ideals of M U* which are invariant under the action of all 
Landweber-Novikov operations s E and which contain q. 

(3.15) Lemma. Let h*(-  ) be an MU-module theory with locally finite coefficients 
and suppose #h((q))=O for some q~MU*. Then 

0=h*(Of):  h*(E) ~ h*(Slql E) 

for every ( -  1)-connected MU-module spectrum E. 

Proof Recall that h*(MU)= h* [[#h(S~)]]. This is a product in Modh p~~ We get 

~o* (~) = ~o* ([I  &#~ (s~)) 
E 

= I ] , ~ h r P * ( s  E) 
E 

=[I&#.(s~(q))=0 
E 

because #h vanishes on (q).  So ~o*= 0. Using Lemma (3.14) we get a commutative 
diagram 

h*(S" /x E) - - ~  

((o A id)* 

h*(MU A E) ~- 

The result follows. 

, h*(S")[~h*(E) 
h* 

l ~o* |  

, h*(MU)[Nh*(E). 
h* 
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Let Q = {qo, qa, ... } be an M U*-regular sequence and suppose qo =~ 0, q o ~ M U ~ 
Consider the exact triangle of spectra 

(3.16) MUQ,_ 1 ~  

l 
1 
I 

Here O," -1 = O~. with E--- M UQ, _ a and C o is the co fibre of O," 1. Set M UQo = M U. 
Because MUQ*(- )  takes values in ~.aprof it follows that the diagram (2.1) is •  

exact for all ( -  1)-connected spectra X. From this it follows easily that 

(3.17) Co~MUQ, (in S) 

for all n > O. So, for all n, the triangles 

(3.18) MUQ,_ t ~ , MUQ,,_I ,7. 

are exact. 

On 

- - ~  M UQ. 
I 
I 

Remark. In fact (3.15) may be proved by using Adams lemma (I-15], p. 20) instead 
of (3.14). This shows that for (3.15) the assumption h* locally finite may be droped. 

4. Comodules over the Coalgebra h*(MU) 

Let h*( - )  be an MU-module theory with locally finite coefficients. Set ~ =  
#h(S~)~h*(MU). From Lemma (3.14) it follows that the multiplication map 

m: MU A MU--, MU 

induces a morphism 

(4.1) ~ = t -1 om*: h*(MU) -+ h*(MU/x MU)-~ h*(MU)INh*(MU) 
h* 

in the category Mod~ r~ The Cartan formula for the Landweber-Novikov opera- 
tions s E implies that ~ is given on the generators gE by the formula 

(4.2) 7J(g~)= ~ g~l~g v. 
G + E = E  

From the properties of the product map m it follows that the pair (h*(MU), ~) 
is a coalgebra in Mod pr~ 

By a h*(MU)-comodule we mean an object M of Mod~ r~ together with a 
morphism 

7JM: M--*h*(MU)NM 
h* 

:r of Mod~ r~ which satisfies the usual identities. The category of h (MU)-comodules 
and morphisms of h*(MU)-comodules is denoted by Comh. 
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(4.3) Lemma. Comh is an abelian category. 

Proof As is well known this follows if we show that the functor h*(MU)[] - 
h* 

is exact on the category Mod pr~ But this is a consequence of (3.7) and (2.8). Let 

S: Comb --, Mod p~~ 

be the forgetful functor and 

F: Mod~ ~~ -+Com h 

the functor which assigns to each object M of Mod~ ~~ the extended h*(MU)- 
comodule 

(4.4) F(M)=h*(MU)[]M 
h* 

with coaction map 

(4.5) ~uF(~t~: h*(MU)N1M ~'| h*(MU)[~(h*(MU)[]M). 
h* h* h* 

Note that 

e: Homcom,(M, F(N)) -~ HOmmodorof (S(M), N), 

where e assigns to f the composite M ~ h*(MU) [] N ~r~ia ) h* [] N_-__ N is an 
h* h* 

isomorphism (e denotes the augmentation), so the functors S and F are adjoint. 

(4.6) Lemma. Suppose L and M are objects of Corn h. I f  S(L) is projective in 
Mod~ ~~ and M = F(N) for some N, then 

X * ' *  E tcomh (L, M) = 0. 

Proof. From what has been said above, this is a standard application of relative 
homological algebra. Every object M of C o m  h of the form M=F(N)  is a relative 
injective with respect to the class of split monomorphisms in MOdh pr~ But so long 
as L is projective in Mod~ ~~ we may compute Extcom, (L, M) by resolving M by 
relative injectives. The lemma follows. 

Let E be a (-1)-connected MU-module spectrum with structure map oR: 
M U A E ~ E  and suppose h * ( - )  is an MU-module theory with locally finite 
coefficients. Using Lemma (3.14) we get a morphism in Mod~ ~~ 

(4.7) o*" h*(E)--~ h*(MU A E)'~h*(MU)N-]h*(E) 
h* 

which turns h*(E) into a h*(MU)-comodule. 
If E is an MU-module spectrum and X an arbitrary spectrum, we will always 

consider E A X  as an MU-module spectrum with structure map re^ x given by 

(4.8) ~F,^x: M U A ( E A X )  ~ 

(4.9) Lemma. Suppose h * ( , )  is an MU-module theory with locally finite coeffi- 
cients, X a (-1)-connected spectrum. Then (h*(MU A X), v~tv^x) is an extended 
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h*(MU)-comodule, i.e. we have an isomorphism 

h* (M U A X) ~ F(h* (X)) = h* (M U) [] h* (X) 
h* 

in Corn h. 

Proof. Applying Lemma (3.14) twice, we get a natural isomorphism 

h*(MU A MU A X)-~h*(MU)[]h*(MU)[]h*(X). 
h* h* 

The lemma follows from the commutativity of the diagram 

h*(MU /x X ) .  (o~^x~* , h*(MU a MU /~, X) 

I 
h*(MU)[] h*(X)- ~ a h*(MU)[] h*(MU)[] h*(X). 

h* h* h* 

Let E[zo, ..., zn] be the exterior algebra over h* in the variables z i. As an 
h*-module, E[zo, ..., zn] is generated by the elements z c, where C=(e  o . . . .  , en), 

. . . .  ~n If M is a h*(MU)-comodule, we always consider ~ i = 0 o r  1 a n d z  c=~~ .~ , .  
M N E [ z o  . . . . .  %] as a h*(MU)-comodule with coaction map ~/' given by tt'(m[]z c) 

h* 

= T(m)Nlz c. Note that M [] E [% . . . .  , z,] is isomorphic to the direct sum (in Comb) 
h* 

of as many copies (up to possible dimension shifts) of M as there are h*-module 
generators in E [z 0 . . . . .  ~,l- 

Let h * ( - )  be an M U-module theory with locally finite coefficients and suppose 
there is given an exact triangle of ( -1) -connected  MU-module  spectra and 
morphisms of M U-module spectra 

(4.10) M 0 , M  " , L  

(4.11) Lemma.  Suppose h*(0)=0, h*(M) is projective in Mod pr~ and h*(M) 
is an extended h*(MU)-comodule. Then there is an isomorphism of h*(MU)-co- 
modules 

cI): h*(L) ~ h*(M)N]E[fi] 
h* 

where fl has degree- (degree 0 -  1). 

Proof Consider the diagram 

0 ~ h*(M)[]h* id[]Z h*(M)N]E[fl] 
h* h* 

O-- , h*(M) 8 *  h*(L) 

id[ ]~  h*(M)[ ]  h* - -  ~ 0 
h* 

rl* 
, h*(M) ~0. 
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The vertical isomorphisms are the canonical ones and we consider them as 
identifications. 2 is given by 2(x)=xfl  and z~ is the unique homomorphism of 
h*-modules such that rc(1)=l, ~(fl)=0. Because all maps in the diagram are 
morphisms of h*(MU)-comodules and the rows are exact, they both are elements 
of Ext~g*(h*(m), h*(M)). Now h*(m) is projective in Mofl~ r~ and an extended 
h*(MU)-comodule, so the lemma follows from (4.6). 

(4.12) Proposition. Let h* ( - )  be an MU-module theory with locally finite 
coefficients, Q an invariant MU*-regular sequence and suppose #h(Q)-~O. For all 
n>_O there are isomorphisms of h*(MU)-comoduIes 

h*(MUQ.)~-h*(MU)[~E[flo .... , fi._~] 
h* 

where degree (fli)= - ( [ q i [ -  1), and the morphisms 

tl* " h*(MUQ,)--+ h*(MUQn_I) 

are split epic in Corn h . 

Proof From (3.15) and (3.18) it follows that for all n we have an exact sequence 
of h* (M U)-comodules 

0* t/* 0 , h*(MUQ,_I) __I__+ h*(MUQ,) ~ h*(MUQ,_I) > O. 

Using (4.6) and (3.5) the result follows by induction on n. 
Now the next point is to show how (4.12) can be used to construct transforma- 

tions of M U-module theories MUQ*(-)- -*  h*(-) .  Let M be a h*(MU)-comodule 
with structure map ~M. An element aeM is called primitive (with respect to 7J~t), 
if tPM(a ) = 1 [] a. 

(4.13) Lemma. Let h* ( -  ) be an MU-module theory with locally finite coefficients 
and suppose hq(S~ for q>0.  Let E be a (-1)-connected MU-module spectrum 
and g: E--->h a map of spectra, g is a morphism of MU-module spectra if and only 
if it is a primitive element of the h*(MU)-comodule h*(E). 

Proof By definition, g is a map of M U-module spectra iff the diagram 

(,) M U A E -  ~ >E 

id^g I g 
M U A h  ~" ~h 

commutes in S. Because h is ( -  1)-connected, (,) induces a diagram (compare (3.14)) 

h*(h) ~ h*(E) 

h*(MU) [] h*(h) i ~  h*(MU)[] h*(e). 
h* h* 



252 U. Wiirgler 

But g=g*(idh)~h*(E ) and (*) commutes iff 

v~ (g) = v~ (g* (ida)) 

= (id[~g*) v~, (idh) 

= (id ~ g*) (1 [~ idh) 

=1 gig. 

This proves the lemma. 
The next lemma shows, that the restriction hq(S~ for q > 0  in (4.13) is not 

essential. 

(4.14) Lemma. Let h*(-)  be a cohomology theory, k*( - )  its (-D-connected 
cover. I f  h*(-)  is an MU-module theory, k*( - )  admits the structure of an MU- 
module theory such that the canonical transformation r e : k * ( - ) ~ ,  h* ( - )  becomes 
a transformation of MU-module theories. 

Proof. Because kq(S ~ = hq(S ~ for q _< 0, k* is a subring of h*. Using the description 

kq(X) = im {h~(X/X q-~) ~ h q ( x / x q - 2 ) }  

for k*( - )  (X a CW-complex), it is easily seen that the natural transformation 

k*| h*| ~ h*(X) 

factors through k*(-) .  So k*( - )  becomes a cohomology module. The canonical 
map ~: k * ( - ) ~  h* ( - )  is a transformation of cohomology modules by construc- 
tion of the k*-module structure on k*(-) .  Now recall that the (= 1)-connected 
cover k of the spectrum h is characterized by the property that if E is any ( -  1)- 
connected spectrum and g: E ~ h  a map of spectra there exists a unique lift 
~,: E--,k, such that the diagram 

(4.15) k 

E g ~h 

commutes. As MU/x k is ( -  D-connected, the unique lift of the map 

M U A k  idAr~ ~MUAh ~ ,h 

turns k into an MU-module spectrum, re is clearly a map of MU-module spectra. 
l~k: MU-+ k is a transformation of cohomology modules because it is the unique 
lift of I, lh: M U--'* h and by the construction of the k*-module structure on k*(-) .  
This proves the lemma. 

Let {E._I--'~E,}.>=1 be a system of (-1)-connected MU-module spectra 
and morphisms of MU-module spectra, h* ( - )  an MU-module theory with 
locally finite coefficients. Clearly, E = l i m  E. is again an MU-module spectrum 
and the canonical maps kt.: E.-+ E are morphisms of M U-module spectra. The 
easy proof of the following lemma is left to the reader. 
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(4.16) Lemma. I f  {a,},, o is a sequence of primitive elements a,6h*(E,) such that 
q*(a ,_l )=a . for all n, a= limm a, sh*(E) is again primitive. 

For any two MU-module spectra E, F denote by Hom*v(E, F) the graded 
abelian group of maps of MU-module spectra. If E*( - ) ,  F * ( - )  are in addition 
M U-module theories, let NatMv(E, F) be the set of transformations of M U-module 
theories. Finally, let e: E A [rio,/31, .-.]--+ A be the homomorphism of A-modules 
defined by e(/3c)=0 for C+0,/3(1)= 1, and denote by Pr {M} the set of primitive 
elements of the h*(MU)-comodule M. 

(4.17) Theorem. Let h*(-  ) be an M U-module theory with locally finite coefficients, 
Q an invariant regular sequence and suppose i~h(Q)= O. There is a degree-preserving 
isomorphism 

Hom~v(MUQ, h)~Eh* [[flo, ill, ~2 . . . .  ]] 

and an element 0 of Hom*v(MUQ, h) lies in NatMv(MUQ, h)/fie(0)= 1. 

Proof Note first that by (4.14) and the universal property of the (-1)-connected 
cover construction (4.15) we may assume that the spectrum h is (-1)-connected. 
From (4.12), (4.13) and (4.16) we know that 

Hom~v(MUQ, h)~- Pr {h*(MUQ)} 

-~ Pr {h*(MU) N1E[[flo, fll, ...]]} 
h* 

Pr {h*(MU)} NIE[[/~ o,/~ . . . .  ]]. 
h* 

Next one sees that there is an isomorphism f :  Pr{h*(MU)}~h* such that 
f (#h)= l"  if O~Hom~tv(MU, h), 0 satisfies O(xy)=x.O(y). Taking y = l  we get 
O(x)=x. 0(1), so 0 is determined by 0(1). Define f by f(O)=O(1). Because any 
elementofh clearly determines a primitive element ofh (MU), f is an isomorphism. 
Note that f (#h)=#h( l )= l .  So we get 

Hom~v(M UQ, h) ~- E [[flo, fil . . . .  ]I- 

Because #Q: MU*--,MUQ* is epic, an element 0~Pr {h~ corresponds 
to a transformation of M U-module theories iff #~(0)= #h ~ h~ i.e. iff e(0)= 1. 

From (4.17) it follows that, under the conditions of the theorem, the set 
Nat~v(MUQ, h) is not void. How many elements there are in NatMv(MUQ, h) 
depends of Q and h*: let e~ be 0 or 1 and n > 0 and set 

(4.18) J(h,Q),= 2~h'12+0,  121 = - i=o ~ ~i(1-lq~l), ~e~4=0. , 

J(h, Q)= U J(h, Q),. 
n~_O 

It is easily seen that Nat~v(MUQ, h) contains exactly one element iff J(h, Q)=~,  
so in this case there is a canonical transformation MUQ*(-)--+h*(-).  This 
remark applies for example if Q=(p) and h* ( - )  is such that p. h*=0, h -~ =0. 
This implies that M U ~ * ( - )  is universal for MU-module theories h*( - )  such 
that p. h* =0, h -1 =0. 
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5. Landweber-Novikov Operations in M U Q * ( - )  

As a first application of Theorem (4.17) we construct in this section a family of 
operations s~ in the theory M U Q * ( - )  (Q an invariant regular sequence) with 
properties analogous to those of the Landweber-Novikow operations in M U * ( - ) .  
Although we are not able to determine the behaviour of the operations s~ under 
composition, they may be used to give a very simple proof of a version of Land- 
weber's filtration theorem. 

(5.1) Theorem. Let Q be an invariant regular sequence. There exists a family 
{s~} of natural and stable operations (one for each exponent sequence E = (e 1 , e2, ...)) 

MUg/(-) MUQ I+2 

such that 

(i) sg(ux)= 2 
F + G = E  

where ueMU*(X) and xeMUQ*(X) 

(ii) the diagram 

M U * ( - )  s~ , M U * ( - )  

L I 
I 
l 1 

M U Q * ( - ) -  ~ -~ MUQ*(- )  

c o m m u t e s .  

Before proving Theorem (5.1) we briefly recall the  construction of the opera- 
tions s E as presented e.g. in [9]. Let { t l ,  t 2 . . . .  } be a sequence of indeterminates of 
degree ( t i ) = - 2 i .  Set t o= 1, As usual we write t E for the expression t~ lt~ 2 .... 
E an exponent sequence. If h* ( - )  is a cohomology module, we denote by h* ( - )  It] 
the cohomology module h*(-)@h*[tt, t 2 . . . .  ] over W s. M U * ( - ) I t ]  is a multi- 

h* 

plicative cohomology theory in a canonical way. If C~MU2(p| denotes the 
Euler class oft/, C| defines a r for MU*(- ) I t ] .  
From the well known universal property of M U * ( - )  it follows that there exists 
a unique transformation of multipticative cohomology theories 

(5.2) st: M U * ( - ) - - , M U * ( - )  [t] 

such that 

(5.s) s,(C)= 2 . 
i > 0  

The Landweber-Novikov operations s ~ may be defined by the formula 

(5.4) st(x)=2s~(x)| ~. 
E 

Proof of (5.1). MUQ*(- )  It] is a cohomology module in an obvious way. Using 
the transformation st of (5.2) we define a natural homomorphism 

VQ., : MU* (X)| [t] ~ MUQ*(X) It] 
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by the formula 

%,t(u|174 ~) = F~ %(s~(u)|174 ~ + F . 
E 

It is easy to see that vQ, t turns the cohomology module MUQ*(- )[ t ]  into an 
MU-module theory with Conner-Floyd map (/~a| st. Now from Theorem 
(4.17) we know there exist a transformation of MU-module theories st ~ which 
makes the diagram 

MU*(--) s t  , M U * ( - )  l,t] 

! 1 "Q| 

s Q 
MUQ*(-  ) - - * - ~  M U Q * ( - )  It] 

commutative. If we define the operations s~ by 

(5.5) s?(x)=Ys~(xlot ~, 
E 

the properties stated in (5.1) are easily checked. Using (3.12) we can extend every- 
thing on the category W. 

Let SQ* be the abelian group of MUQ~ combinations of the operations 
s~, i.e. 

(5.6) SQ*=MUQ~ 

and let S* be the Landweber-Novikov algebra. Obviously, the s~ give rise to 
homology operations s~: M U Q , ( - ) - , M U Q , ( - )  of degree -2[IEll.  By SQ, 
we denote the (graded) abelian group of MUQo-linear combinations of the s~. 
An ideal A c MUQ* is called SQ*-invariant, if sf2(A ) c A  for all exponent sequences 
E. SQ,-invariant ideals of MUQ, are defined similarly. 

Recall that M U * = M U _ , = ~ [ x ~ , x 2  . . . .  ], and that for each prime p the 
generators x~EMU 21 may be chosen such that all Chern numbers of Xp,_ 1 are 
divisible by p. If we fix a set of polynomial generators xi of MU* with this property 
thesequencesQ(p, n)= {p, xv_ 1 . . . . .  xp . . . .  1}andQ(p, oo)= Q) Q(p, n)areobviously 

n>O 
regular and they are invariant according to a theorem of Landweber ([-6], Theo- 
rem 2.7). In fact Landweber shows that the ideals l(p, n)=(Q(p, n)) are the only 
non-trivial finitely generated invariant prime ideals of M U*. 

(5.7) Lemma. Let Q be an invariant MU*-regular sequence. A finitely generated 
ideal P of MUQ* is an SQ*-invariant prime ideal iff it is of the form P=I(p, n)/(Q) 
for some Landweber ideal I(p, n). 

Proof Because the diagram 

MU,(S o) s~ , MU*(S~ ) 

MUQ,(S o) s6 , MUQ,(SO) 
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commutes for all exponent sequences E by 5.1, #Q is surjective and the inverse 
image / ~ ( P )  of a finitely generated prime ideal is again a finitely generated 
prime ideal this is immediate from Landweber's theorem mentioned above. 

Call an M U Q,-module M connective, if M i = 0 for i<  N (some N) and let MUQ 
be the category whose objects are connective and finitely presentable MUQ,- 
modules together with operations s~ = s~(M): M--,  M of degree - 2  IIE H (one for 
each exponent sequence E) which are additive and satisfy the relation 

(5.8/ s (u. x)= Z s (x) 
F + G = E  

for u~MUQ,,  xcM. We further suppose that for all a~MU, ,  

(5.9) s~(#Q(a)):#Q(se(a)) 

where #Q: MU, ~ MUQ, is the canonical projection and the seare Landweber- 
Novikov homology operations. The morphisms of MUQ are homomorphisms 
of MUQ,-modules which commute with the operations s~. Note that it follows 
from (5.1) that for all invariant regular sequences Q, the homology theory M U Q , ( - )  
takes values in MUQ (over the category of finite complexes). 

(5.10), Lemma. Suppose Q is a finite invariant MU*-regular sequence. Each 
object M :~0 of MUQ admits a finite filtration 

O = M o ~ M l c . . . c M ~ = M  

in the category MUQ such that for O<=i<n, Mi+I/Mi=MUQ,/P~ (up to possible 
dimension shift) where the Pi ~ MU Q, are ideals of the form l (p, m)/(Q). 

Remark. This is a variant of Landweber's filtration theorem ([7], Theorem 3.3'). 
A similar statement (in the BP-case) appears in [12] and [13] and our argument 
is modelled on the one given in [13]. Note however, that because we have a better 
knowledge on MUQ*(MUQ), our category MUQ seems to be more transparent 
than the category considered in [13]. 

Proof Because Q is finite, in the exact sequence 

0 ~ (Q) ---, MU, ~ MUQ, = MU,/(Q) --~ 0 

the first and second terms are coherent MU,-modules, so MUQ, is also a coherent 
MU,-module. Any non-trivial object M of MUQ contains a non-zero element 
a of lowest degree. From (5.8), (5.9) it follows that s~(MUQ, . a ) c M U Q ,  .a, 
so MUQ, .  a is a subobject of M in MUQ. Again from (5.8) and (5.9) it follows 
that the annihilator ideal AnnMv,(a ) ~ MU, is S,-invariant. Because AnnMv,(a) 
MUQ, .a ,  AnnMv,(a ) is finitely generated and contains (Q). Using induction 
and the preceding remarks one easily shows that any object M of MUQ admits 
a finite filtration 

(*) O = M o c M I ~ . . . c M ~ = M  

in the category MUQ such that M~+I/M ~ is stably isomorphic to MU,/J~ where J, 
is some finitely generated S,-invariant ideal of MU, containing (Q). The result 
follows now from [7], Theorem 3.3 

(5.10) will be essential in the next section. 
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We close this section by indicating a 

Proof of Theorem (2. l 6). 2.16 is an easy con sequence o f (4.12), (2.8), (5.1), (4.13) and 
a limit argument. 

6. The Relationship between MUQ*(-) and Formal Groups 

Let FMv(X, Y) be the universal formal group law of complex cobordism theory. 
For any prime p we have the series 

(6.1) [p]~M~(X)=pX + ~ ckX k. 
k>=l 

As is well known (see for example [6]) the coefficients cpk_l of (6.1) may be taken 
as generators of the Landweber ideals I(p, n) and we will do so from now on. 
We shall write MU(p, n) for MUQ(p, n) and #~v,,) for #a(v,,)" Let F~v,,)(X, Y) be 
the formal group law (#(;,n)). FMv(X, Y)" Recall from (2.!3) the notion of a n-flat 
formal group law. 

(6.2) Lemma. The formal group law F(v,n)(X, Y) over the ring MU(p,n)* is 
universal for n-flat formal group laws over rings of characteristic p > O. 

Proof Let F(X, Y) be a n-flat formal group law over the ring A of characteristic p 
and denote by ~: M U*--~A the unique homomorphism with ~ . ( ~ v ) - - E  Because 
~ .  [p]v~:(X) = [p]v(X) and F(p, n) is clearly n-flat, the result is obvious. 

Note that (6.2) implies in particular, that any n-flat formal group law over a 
ring A of characteristic p induces a canonical MU(p, n)*-module structure on A. 

(6.3) Lemma. Let A be a graded ring of characteristic p. I f  F(X, Y) is a n-fiat 
formal group law over A, the functor - @ A is exact on the category MU(p, n). 

MU (p, n),~ 

Proof We have to show that for all objects M of MU (p, n), Tor~ v(p' n)*(M, A)= O. 
In view of Lemma (5.10), this is equivalent to the statement 

Tor~ v(p' n)*(MU,/I (p, m), A)= 0 

for all m > n. But this follows easily from the definition of a n-flat formal group law. 

(6.4) Remark. Note that (6.3) may obviously been generalized by allowing A 
to be an MU(p, n),-module with appropriate properties. With a little more care 
the converse of (6.3) may also be proved. 

(6.5) Remark. Note that the formal group laws F~p ' n)(X, Y) are n-flat for all n 
and p. 

From (6.3) it follows immediately that, over the category W f, any n-flat 
formal group law F(X, Y) over a ring of characteristic p can' be realised by an 
MU-module theory, namely by 

(6.6) A ~ ( - ) = M U ( p , n ) * ( - )  @ A. 
MU (p, n) 

If A happens to be locally finite, A ~ ( - )  can uniquely been extended on the cate- 
gory W by (3.12). The next theorem shows that the realisation (6.6) is unique up 
to isomorphism. 
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(6.7) Theorem. Let h*(-)  be an M U-module theory with locally finite coefficient 
ring h* of characteristic p. I f  the formal group law Fh(X, Y) is n-flat, there exists 
an equivalence 

(6.8) ~:E(MU(p,n)*( - )  @ h*)-~-~h*(-) 
MU (p, n)* 

of MU-moduIe theories over W such that ~pt=id. Moreover, if J(h, l(p, n))=~,  
is unique. 

Proof We have just seen that the left side of (6.8) is an MU-module theory with 
coefficient object h* and formal group F h. From (4.17) we know there exists a 
transformation of M U-module theories (p : M U(p, n)*(-  ) ~ h*(-) ,  the comparison 
theorem for additive cohomology theories implies that the transformation 
~b = (p | has the desired properties. The uniqueness statement is a consequence 
of (4.18). 

(6.9) Remark. The notion of a n-flat formal group law does not contain formal 
group laws over rings of characteristic p which satisfy [p]F(X)= 0. This case has 
been treated in [11~. 

We illustrate Theorem (6.7) by some examples. 

(6.10) Example. Let K*(-,2gp) be complex K-theory with coefficients 7 / .  
We have K*(S ~ 2~p)= igp[_t, t ' - l ] ,  It] = - 2 ,  and the formal group law of K * ( - ,  2gp) 
satisfies [p]v(X)=tP-lX v. Because t p-1 is a unit of Zp[t, t - l ] ,  (6.7) applies and 
we get a unique isomorphism of MU-module theories (for all primes p !) 

(6.1'1) E(MU*(-,7Zp) @ 2gp[t,t-1])~K*(-,Zp). 
MU*I(p) 

This is the Conner-Floyd theorem mod p. 

(6.12) Example. For any prime p consider the polynomial ring Zp[v,], v,, an 
indeterminate of degree - 2  (p"-  1), n > 0. From Lemma (4.3) of [6] we know that 
for all p, n there is a formal group law G((p,.)(X, Y) over Zp[V.] so that 

(6.13) [p]G,p,.,(X)=v.XP". 

Over •p[v., v~-l], G(p,.)(X, Y) becomes n-flat, so by (6.6), 

(6.14) K*(p,n)(u)=E(MU(p,n)*(-  ) @ 7/p[v.,v21]) 
MU (p, n)* 

is an MU-module theory with coefficient object 7Zp[V,, v~ -a] and formal group 
G(p,,)(X, Y). A simple dimension consideration shows that J(K(p, n), Q(p, n))=~,  
so, by (6.7), the theories K (p, n)* ( - ) are - up to a canonical isomorphism - uniquely 
determined by their coefficients and their formal group law. The exotic K-theories 
K(p, n)* ( - )  have been studied by Morava, see also [3]. Note that this charac- 
terisation of K(p, n)* ( - ) impl ies  a rather strong improvement of Theorem (3.1), 
(b) of [3]. 

In [15] Adams has shown that for each prime p, K*(-7Z(p)) contains a multi- 
plicative theory G*( - )  as a direct summand. If we put coefficients Tip into G*(-) ,  
G*(-,  2g,) becomes a multiplicative theory for p odd and an MU-module theory 
for p=2.  Moreover, G*(S ~ Zp)=2gp[u, u -~] where degree u=  -2 ( /9 -1 )  and the 
formal group of G * ( - ,  7Z, p) satisfies [p]F(X)=u. X p. 
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From what has been said above we immediatly see that there is a canonical 
isomorphism of MU-module  theories 

(6.15) K(p, 1 ) * ( - ) ~ G * ( - , ~ v ) .  

(6.16) Example. Considerations completely analogous to those of examples 
(6.10) and (6.12) show that the theories P(n)* ( - )  considered in [3] are canonically 
isomorphic to 

E(MU(p,n)*(-) @ BP*/I.). 
M U  (p, n)* 

(6.17) Remark. Note that (6.6) and (6.7) immediatly imply (2.14). 
We conclude the paper by some remarks. 

(6.18) Remark. As is easy to see, the obvious BP-analog of Theorem (4.17)holds. 
This is significant because it allows one to determine completely the structure 
of a very large subalgebra of P(n)* (P(n)). These calculations will appear elsewhere, 
they depend on the special structure of the ring P(n)* = BP*/I n. 

(6.19) Remark. In I-3], Proposition 4.14, Johnson and Wilson showed that there 
is a natural homomorphism (we use their notation) 

A: P(n), ( - )  --~ K(n), (-)| [-v~+t, v.+ 2 .. . .  ] 

which, for n < 2 ( p - 1 ) ,  induces a natural isomorphism 

A: B(n).(-)~-K(n).(-)| v,,+2 .... ]. 

An inspection of their proof shows that the BP-version of Theorem (2.16) implies 
that the condition n < 2 ( p - 1 )  can be droped. In particular, it follows that there 
is a natural isomorphism 

K(n)* (X) ~ Homr(,). (K(n). (X), K(n)*) 

for all n. 
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