
Commun. Math. Phys. 68, 209~243 (1979) 
Communications in 
Mathematical 

Physics 
@ by Springer-Verlag 1979 

Symmetry and Related Properties 
via the Maximum Principle 

B. Gidas 1., Wei-Ming Ni 2, and L. Nirenberg 2.* 
1Rockefeller University and 2Courant Institute of Math. Sci., Nev) York University, New York, 
NY 10012 USA 

Abstract. We prove symmetry, and some related properties, of positive 
solutions of second order elliptic equations. Our methods employ various 
forms of the maximum principle, and a device of moving parallel planes to a 
critical position, and then showing that the solution is symmetric about the 
limiting plane. We treat solutions in bounded domains and in the entire space. 

1. Introduction 

1.1 In an elegant paper I-8], Serrin considered solutions of second order elliptic 
equations satisfying over-determined boundary conditions. For equations with 
spherical symmetry he proved that the domain on which the solution is defined is 
necessarily a ball and that the solution is spherically symmetric. The proof is based 
on the maximum principle and on a device (which goes back to Alexandroff; see 
Chap. 7 in [3]) of moving parallel planes to a critical position and then showing 
that the solution is symmetric about the limiting plane. 

In this paper we will use the same technique to prove symmetry of positive 
solutions of elliptic equations vanishing on the boundary - as well as related 
results (including some extensions to parabolic equations). Some of the equations 
we treat are related to physics and our techniques should be applicable to other 
physical situations. We study solutions in bounded domains and in the entire 
space. The simplest example in a bounded domain is 

Theorem 1. In the ball ~:lxl < e  in IR", let u > 0  be a positive solution in C2(~) of 

Au+f(u)=O with u = 0  on ]xL=R. (1.1) 

Here f is of class C 1. Then u is radially symmetric and 

c~u 
~ < 0 ,  for 0 < r < R .  
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The point of interest is that the result holds no matter what f is. We should 
note that f ( u ) >  0 for all u, implies that any nontrivial solution is automatically 
positive in £2. 

Theorem 1 is a special case of Theorem 1' in Sect. 2. Another simple special 
result is : 

Theorem 2. Let  u > 0  be a C 2 solution of(1.1) in a ring-shaped domain 

R' < Ixl < R . 

Then 

Ou R' + R 
~-~ <0  for ~ < [ x [ < R .  (1.2) 

This implies that u can have no critical point in this larger half of the ring. Note 
that no condition is imposed at the boundary Ix[ =R'.  

A third simple result (see Theorem 3' in Sect. 3 for a more general form) is : 

Theorem 3. Let  u(x) be a C 2 solution of  the ordinary differential equation 

i i+b(x ) i t+ f (u )=O on 0 < x < l ,  (1.3) 

with u continuous on 0 < x < l  and u(x)>u(1) for 0 < x < l .  Here f 6C  1, and b(x) is 
continuous in 0 < x < 1. I f  b(x) > 0 everywhere then 

r i<0 on ½-<x<l .  (1.4) 

Furthermore if  it(½)= 0 then u is symmetric about ½ and b(x) is necessarily identically 
z e r o .  

As an example : u = 1 -  cos 27cx is a solution of 

/i+ 47r2(u-- 1) = 0 ,  0_<x_<l 

satisfying all the conditions of the theorem. 

1.2 Our interest in these questions grew out of a study of positive solutions in 1R n, 
n > 2 (n = 4 in particular) of the equation 

n + 2  

A u + u  "-2 =0 .  (1.5) 

This is the Euler equation for the function ("action") 

1 2 2n 
A(u)=~,(~lgradu[  - f l = n - 2 "  

Equation (1.5) and the associated action are conformally invariant in the sense 
that if u is a solution, then after a conformal mapping x ~ y  the function 

2 - - / l  

v(y) = u(x)J 2, (x), (1.6) 

where J is the Jacobian, is also a solution. For n=4,  Eq. (1.5) as well as the 
n + 2  

corresponding, but simpler, equation A u = u  " - z  studied in E5], and the linear 
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equation u =0, give rise to bona-fide solutions of the classical Euclidean Yang- 
Mills equations via ' tHooft 's  Ansatz [1,9]. Equation(1.5) has the explicit 
solutions (replace x by ix in the solutions of page 250 of [5]) 

n - 2  

[n(n -- 2))]. 2] ; 
u(~): ( , ~  ix_~ol ~)¢~_~ (1.7) 

for Z > 0, x 0 ~ R". These solutions yield the well-known one-instanton solutions in a 
regular gauge of the Yang-Mills equations. We used the same methods as in the 
proofs of the preceding results to show that these are the only positive solutions in 
R" with reasonable behaviour at infinity, namely u=0(]x12-"). This behaviour 
follows from the finiteness of the action as was proved by K. Uhlenbeck (private 
communication). This uniqueness result together with the well known properties 
(see [5]) of Au = u ~"+ 2)/~,,-2) and of A u = 0 ([43) show that a@ finite action solution 
of the full Yang-Mills equations given by 't Hooft's Ansatz is self-dual. 

Subsequently it was brought to our attention by R. Schoen that our uniqueness 
result is equivalent to the following geometric result due to Obata [6]: A 
Riemannian metric on S" which is con.formal to the usual one and having the same 
constant scalar curvature, is in fact the pullback of the usual one under a 
conformal map of S" to itself. 

As a demonstration of the use of our methods in the full space we present a 
related result for equations which are rotationally, but not necessarily confor- 
mally, invariant. For  convenience we suppose n > 2. 

Theorem 4. Let v > 0  be a C 2 solution of an elliptic equation 

F(v, lgradvl2,~vjvkVjk, trA, t rA  2 ..... t rA")=0  in R" (1.8) 

where A=the  Hessian matrix {vo}, here F~C 1 for v > 0  and all values of the other 
arguments. 

Assume that near infinity, v and its first derivatives admit the asymptotic 
expansion (using summation convention) : 

(,5)) ajkXjXk q- 0 

v = ~ / a ° + ~  + Ixl4 (1.9) 

v ~ - - - i x l m + 2 x  i g o + T ] - ~  ixl,,+ 2 ixlm+~ajxj+O 

for some m, a o > O. Then v is rotationally symmetric about some point and v r <0 for 
r > 0 where r is the radial coordinate about that point. 

Here, to say that an equation G(x, v, v~, Yak ) = 0 is elliptic means G~j~ is a positive 
definite matrix for all values of the arguments. 

It is natural to ask under what conditions one can assert that expansions of the 
form (1.9) hold. Here is an example: 

Proposition 1. Let v~C 2+", 0 < # < 1 ,  be a positive solution of 

Av+ f(v)=O (1.g') 
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with v(x)=O(Ixl 2-n) as x~oo .  Assume that for some k >= n + 2  n---2' g(v)=f(v)v-k is 

H61der continuous on O<_v_<v o where v o is the maximum of our solution. Then 
expansions (1.9), with r e = n - 2 ,  hold for lxt large. 

Example. The function 

v(x) =(1 + ]x]4) - ( ' -  2)/4 

satisfies (1.8)' with 

n+6{ ~ W2 
f ( v ) - - ( n 2 - 4 ) v n - 2 ~ v 2 - ' - l )  . 

n + 4  
This satisfies the conditions of the proposition with k = -  

n -  2" 

1.3 Our results are based on a well-known form of the maximum principle 1-7] for 
a C 2 solution u ~ 0 of the differential inequality (we use summation convention) 

Lu -- aij(x)uxixj + bi(x)G i + c(x)u > 0 (1.10) 

in a domain £2 (open connected subset of R"), and the corresponding Hopf  
boundary lemma [7]. Here L is a uniformly elliptic operator, i.e., for some 
constant c o > 0 

aifii~ ~_>- col~l 2 , (1.11) 

and the coefficients of L are uniformly bounded in absolute value. 

Maximum Principle. I f  u vanishes at some point in f2 then u~O. 

We use the Hopf  lemma in the form: 

Lemma H. Suppose there is a ball B in £2 with a point P~0£2 on its boundary and 
suppose u is continuous in ~2uP and u(P)=O. Then if u~O in B we have for an 
outward directional derivative at P, 

3u 
0v(P) > 0 ,  

in the sense that if  Q approaches P in B along a radius then 

lim u(P) -  u(Q) > 0 .  
a-~P IP-QI  

This is well known in case c(x)<O (see Theorem 7, p. 65 of I-7]) but, as already 
observed by Serrin in 1,8] p. 310, the more general result follows by the same 
argument used to prove the maximum principle in the form above. For the 
convenience of the reader we include the derivation, using the well known result 
for case c - 0. 

Proof With 

v=e-=X~u, ~ > 0  
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one obtains 

0 < Lu = e~XlL'v + vL(e ~xl) 

where L' is an elliptic operator containing no zero-order term. Thus 

OG L'v+v(allo~ 2 +b l~  +c)=L 'v+C'V .  

For c~ sufficiently large, c ' >  0. Hence, since v < 0, 

L'v>O in O. 

As v(P) = 0 we have by the usual form of the Hopf  lemma, 

~ (P)>O,  

and the desired result follows since uv(P ) -  e G(P). 
We shall also use the following consequence of the maximum principle. 

Corollary. Suppose in (1.10) that for some positive constants m, b, c a 

a i i > m > 0 ,  b l > - b ,  c<-c 1. 

Assume that [2 lies in a narrow region 

a - e < x l  <a  , 

and u is a solution o f  the inequality (1.10) in Q with u<-_O on c9f2. Then u<-_O in f2 
provided 

c t exp (2be~m) < c 1 + 2b2/m. 

The proof  makes use of arguments in [2] pages 330-331 ; for convenience we 
present it here. See also [7] pages 73-74. 

Proof  For e = 2b/m the function 

g : e ~a _ e . x  

is positive in I) and satisfies 

- L 9 = (a 1 l~x 2 + bloOe . . . .  c ( g ' "  - e : ' x l )  

>=(m.  2 - b . ) e  . . . .  c i  (e ~ ° -  e~X9 . 

Thus 

--e : 'XlLg>m~x2-ba + c l - c l e  :'~ 

2b a 
- -  q-C 1 --Cl  ec~ (since e = 2 b / m ) ,  

m 

>_-0 by our hypothesis. 

Consequently the function 

U 

g 
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satisfies 

L ' v + v L g > o  in (2 
g 

where L' is an elliptic operator with no zero-order term. Since Lg/g < 0 and v < 0 
on Q(2, the usual form of the maximum principle yields v < 0, and hence u < 0 in (2. 

In Sect. 3 we will also make use of an extension of the Hopf  boundary lemma, 
at a corner, due to Serrin (Lemma 2 in [-8]). Since it may be of further interest we 
present a slightly more general form (requiring however a bit more smoothness of 
the coefficients) : 

Lemma S. Let f2 be a domain in IR" with the origin 0 on its boundary. Assume that 
near 0 the boundary consists of two transversally intersecting C 2 hypersurfaces Q = 0 
and cr =0. Suppose O, a<O in (2. Let w be a function in C2(~), with w<O in (2, 
w(0)=0, satisfying the differential inequality (1.10) in (2 with uniformly bounded 
coefficients satisfying (1.11). Assume 

aiioxa~j>=O at O. (1.12) 

I f  this is zero assume furthermore that aijeC 2 in (2 near O, and that 

D(ai~o~i~j)=O at O, (1.12') 

for any first order derivative D at 0 tangent to the submanifold {o=O}c~{a=O}. 
Then, for any direction s at 0 which enters ~ transversally to each hypersurface, 

at 0 in case of strict inequality in (1.12), 

0w 02w (1.13) 
~s- <0  or ~ <0  at 0 in case of equality in (1.12) 

Note that conditions (1.12) and (1.12') are invariant under change of coor- 
dinates, and of the choices of the particular functions ~ and a representing the 
bounding hypersurfaces. The proof will be presented in the Appendix together 
with a rough extension in case (1.12) is weakened (see Lemmas A.1 and A.2). 

1.4 In addition to the maximum principle and Lemmas H and S we use the 
procedure of moving up planes perpendicular to a fixed direction as in [8], and we 
shall now describe it geometrically. 

In the following (2 is a bounded domain in IR" with smooth boundary. (Some 
domains with corners will be discussed in § 3.) 

Let ? be a unit vector in IR" and let T z be the hyperplane y. x = L For 2 = 2 large, 
T is disjoint from ~). Let the plane move continuously toward f2, preserving the 
same normal, i.e., decrease 2, until it begins to intersect ~. From that moment on, 
at every stage the plane Tz will cut off from ~2 an open cap Z(2),, the part of ~2 on 
the same side of T~ as TX. Let Z'(2) denote the reflection of 27(2) in the plane T~. At 
the beginning, £'(2) will be in (2 and as 2 decreases, the reflected cap £'(2) will 
remain in g2, at least until one of the following occurs : 

(i) Z'(2) becomes internally tangent to ~(2 at some point P not on T~ 
o r  

~w 
I < 0  
~s 
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(ii) T;. reaches a position where it is orthogonal to the boundary of f2 at some 
point Q. 

We denote by T~l:7.x=21 the plane T a when it first reaches one of these 
positions and we call Z(2t)= ~? the maximal cap associated with 7. Note that its 
reflection Z'~ in Txl lies in fa. 

One of our main results will be that if u > 0 is a solution of an elliptic equation 
in fa satisfying certain conditions, with u = 0 on 0fa, then ?. grad u <0  in X 7. 

It may be that if we decrease 2 below 21 the reflection Z'(2) of Z(2) in the plane 
Tx continuous to belong to f2 as in the following example: 

Fig. 1 

J 

TX2 TX~ 

In that case Z'(2) will remain in fa for 2 in a maximal interval 

22=_<2<00, ~.2 ~)~1 . 

We will call the cap X(22) the optimal cap corresponding to the direction ?. Clearly 
either X'(22) is internally tangent to 8fa at some point not on Ta2, or T~2 is 
orthogonal to 8fa at some point. 

A word on notation : For  a set S in 8f2, by a neighbourhood of S in f2 we mean 
fan (an open neighbourhood of S in R"). 

Section 2 contains the main results for general second order elliptic equations - 
including the proofs of Theorem 1-3. Some extensions are given in 3 and 
straightforward extensions to parabolic equations are briefly described in Sect. 5. 
Section 4 is concerned with the proofs of Theorem 4 and Proposition 1, This may 
be read independently of the other sections. The Appendix contains the proof of 
Lemma S. 

2. Principal Results and Proofs 

2.1. Theorems 1 and 2 follow from a single result which, for simplicity, we first 
present in a special form. The more general form is presented in Theorem 2.1'. 

Consider a solution u6 C2(Q) of 

Au+bl(x)uxl+f(u)=O in fa (2.1) 
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with blEC(f2 ) and f i f e  1. Here f2 is bounded with smooth boundary 0f2; for 
xc~2,  v(x) is the exterior unit normal. 

In our construction of caps in the introduction, let y be the unit vector 

(1,0, . . . ,0) and assume ma_xxl=2  o. Let S=S,~=Z(21) be the corresponding 

maximal cap; the corresponding plane T~I containing part  of its boundary is 

x 1 =21 < 2  o . 

The reflection of 2~ in the plane T~I is called Z'. 
Concerning the solution u we now require 
(a) u > 0  in f2, u~C2(O~{xl >21}), and u = 0  on 3f2~{x 1 >21}. 
Note that no condition on u is required on the rest of the boundary. 
For  any x in f2 we use x z to denote its reflection in the plane Tz :x 1 =2. 

Theorem 2.1. Let u be as above, satisfying condition (a) and assume 

b;(x)_>_0 in Su~' . .  

For any 2 in 21 < 2 < 2  0 we have 

G,(x)<O and u(x)<u(x ~) for xES(2). (2.2) 

Thus u~ <0  in S. Furthermore if u~ = 0  at some point in f2 on the plane T~ then 
necessarily u is symmetric in the plane T~, 

I2 = Su22 'u (Tz~f2) ,  (2.3) 

and bl(x)-O. 

Theorems 1-3 are immediate consequences. 

Proof of Theorems 1. Applying Theorem 2.1 we see that 

G I < 0  if x ~ > 0  

- for any choice of our x 1 axis. It follows that u~ > 0  if x 1 <0. Hence u~ = 0  on 
x 1 =0.  By the last assertion of Theorem 2.1 we infer that u is symmetric in x~. Since 
the direction of the x a axis is arbitrary it follows that u is radially symmetric and 
u , < 0  for 0 < r < R .  

Proof of Theorem 2. We may again choose any direction ? as positive x I axis. It 
follows from Theorem 2.1 that in the corresponding maximal cap S~, y. grad u < 0. 
The union of these maximal caps is the region (R'+R)/2<Ix[ <R. 

Suppose for some point y with lYl =(R '  +R)/2, u~(y)=0. Then with ? =Y/]Yl we 
conclude from the last assertion of Theorem 2.1 that f2=$7~S' ~ which is 
impossible. 

The proof  also shows that for IxI>(R'+R)/2, v.gradu(x)<O for any vector v 
making an angle less than (re/2-0) with the vector x (see Fig. 2). 

Proof of Theorem 3. There are sequences e,, 6,---,0 such that u(x)> u(1 - G )  on the 
interval 6, < x  < 1 - e , .  Applying Theorem 2.1 to u(x)-u(1-e,l ) on that interval 
and then letting n ~  oo we easily obtain the result. 
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2.2. For  convenience we write u x = u  i etc. Before proving Theorem 2.1 we first 
apply the maximum principle and Lemma H to derive two preliminary results. 

Lemma 2.1. Let Xo6~f2 with vl(x0)>0. For some e > 0  assume u is a C 2 function in 
~ where f2~=~?c~{IX-Xol<e}, u > 0  in f2 and u = 0  on ~f2c~{IX-Xoh<e }. Then 
3 6 > 0  such that in Oc~{IX-Xol<3}, uxl<0. 

Proof. Since u > 0  in ~2, necessarily, u ,<0 ,  on Og2c~{]X-Xo[<e}=S, and hence 
uxl < 0  on S, for v 1 > 0  everywhere there, which we may assume, by decreasing e if 
necessary. 

If the lemma were false there would be a sequence of points xJ~Xo, with 
Ul(XJ ) >0. F o r j  large the interval in the x 1 direction going from x j to 0~2 hits S at a 
point where u 1 <0.  Consequently, by the theorem of the mean, 

u t (xo)=0 and u l l (xo )=0 .  

Suppose f ( 0 ) >  0. Then in f~, u satisfies 

A u + b 1 u~l + f ( u ) -  f(O) <-_ 0 ( ~  

or, by the theorem of the mean, for some function cl(x), 

Au + blu 1 + cl(x)u <0. 

Applying Lemma H to the function - u  we find 

u,(Xo)<0, and so Ul(Xo)<0 

- a contradiction. So suppose f ( 0 ) <  0. From (2.1) we see that at x o, gradu = 0 and 
A u = - f ( 0 ) .  But then it follows that 

Ux~xj=--f(O)viVj at x o. 
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In part icular  u 1 l ( x o ) > 0  - again a contradiction.  The l emma is proved. 

L e m m a  2.2. Assume that for some 2 in 21 < 2 < 2  o we have 

u l ( x ) < 0  and u(x)<u(x ~) but u(x)~u(x  ~) in 2;(2). (2.2') 

Then u(x)<u(x ~) in Z(2) and Ux(X)<0 on f2nT~. 

Proof. In Z'() ,)= the reflection of Z(2) in the plane T~, consider 

v(x) = u(x ~) ; 

note  x~aZ(2). In Z'(2) v satisfies the equat ion 

A v -  bl(xa)vl + f(v) = 0 

and v 1 __>0. If  we subtract  (2.1) we find 

A(v - u) + b1(x)(v - u)l + f(v)  - f (u)  = (bl(x ~) + bl(x))v 1 

> 0  (2.4) 

in £'(2), since v 1 > 0 and b a > 0. Using the theorem of the mean  in integral form we 
see that  in S'(2) 

w(x) -  v(x)-  u(x) < O, w ~ O, 

and 

w(x) + b l(x)wl + c(x)w >__ 0 (5_. 1) 

for some function c(x). Since w = 0 on T)~f2 it follows f rom the m a x i m u m  principle 
and L e m m a  H that  w < 0  in S'(2) and w 1 > 0  on Tx. But on T~, w 1 = v  1 - u  a = - 2 u l ,  
and the l emma  is proved.  

Proof of Theorem 2.1. It  follows f rom L e m m a  2.1 that  for 2 close to 2 0, 2 < 2  0, (2.2) 
holds. Decrease 2 until a critical value # >21 is reached, beyond which it no longer 
holds. Then (2.2) holds for 2>/~, while for 2 = p  we have by continuity,  

u l ( x ) < 0  and u(x)<u(x ~) for xeZ(# ) .  

We will show that  # = 21. Suppose/~ > 21. Fo r  any point  Xoe c3E(#)\T u we have 
x ~ f 2 .  Since O=u(xo)<U(X~) we see that  u(x)~u(x  ~) in 2(/1). We m a y  therefore 
apply  L e m m a  2.2 and conclude that  

u(x)<u(x ~) in Z(#) and u l < 0  on g2c~T~. 

Thus  (2.2) holds for 2=/~. Since u 1 < 0  on f2~T~ we see with the aid of  L e m m a  2.1 
that  for some e > 0 

u 1 < 0  in f2c~{x l > / ~ - e } .  (2.5) 

F r o m  our  definition of # we must  then have the following situation. Fo r  
j = 1, 2 . . . .  there is a sequence 2 j, 

)~1 < J~J/"/.t, 

and a point  xj in Z(2 j) such that  

~(xj)__>,(x~). 
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A .subsequence which we still call xj will converge to some point x in 27(#); then 
x~ J ~ x  u and u(x)> u(xU). Since (2.2) holds for 2 =/1 we must have x ~ ~ .  If x is not 
on the plane Tu then x ~ lies in f2 and consequently 

O=u(x)<u(x~) 

which is impossible. Therefore xeTu and x ' = x .  On the other hand, for j 
~J belongs to f2 and by the sufficiently large, the straight segment joining xj to xj 

theorem of the mean it contains a point yj such that 

ux(yj)>O. 

Since y ~ x  we obtain a contradiction to (2.5). Thus we have proved that #--21 
and that (2.2) holds for 2>21. By continuity, Ul(X)GO and u(x)<u(x~0 in 22 

To complete the proof of the theorem suppose u 1 = 0 at some point in f2 on T;~. 
By Lemma 2.2 we infer that 

u(x)=-u(x ~) in 22. 

Since u(x)=0 if x~0f2 and x 1 >21 it follows that u(xZl)=0 at the reflected point 
and thus (2.3) holds. Finally, suppose b 1 >0  at some point xe~2 (we may take 
x6Txl). Then from the Eq. (2.1) and the (now proved) symmetry of the solution in 
the plane T~I we see that 

b l (x)ul (x ) = b l (xX')Ux (X;~) . 

If x~22, the left-hand side is negative while the right-hand side is nonnegative - 
impossible ; similarly if xe  U. Q.e.d. 

Theorem 2.1 admits various generalizations and applications. 

2.3. Remark 1. (This was pointed out to us by Spruck.) In some equations of 
interest, of the form (1.1), the function f (u)  is not in C 1. For  example, in a certain 
plasma problem, f ( u ) = ( u - 1 ) + = t h e  positive part of ( u - l ) .  In case f is 
monotone increasing the result of Theorem 1 still holds i.e. we have, more 
generally : 

The results of  Theorems 2.i and I,, and of  Lemmas 2.1, 2.2 hold if f ( u ) =  fl(u) 
+ f2(u) where f l  ~ C1 andf2 is monotone increasing. In particular the results hold if  
f is locally Lipschitz continuous. 

The proofs are the same as before. We have only to verify that Lemmas 2.1, 2.2 
continue to hold; it was only there that the C 1 hypothesis on f was used. In the 
proof of Lemma 2.1 the C Q~ hypothesis was used in the argument assuming f(0) > 0. 
In that case in place of (2.1) we have 

Au 4- blU 1 4- fl(u) - L(O) <= f2(O) - f2(u) <=0 

since f2 is increasing, and the argument proceeds as before. Similarly in the proof 
of Lemma 2.2 we have from (2.4) 

A(v - u) + bl(x)(v - u)~ + fl(v) - f l(u) > f2(u) - f2(v) 

>0  
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and the proof  proceeds as before. In fact if f is monotone increasing (i.e., we take 
fx =0)  we need only the usual form of the Hopf  boundary lemma. 

It is natural to ask whether Theorems 1 and 2.1 hold if the condition u > 0  in f2 
is replaced by the condition: u > 0, u ~ 0 in O. This is not the case in general as we 
see from the example after Theorem 3. If however f (0 )>  0 in both theorems, then 
u>0 ,  u~O in O implies u > 0  in O. For, with f = f l  +f2,  f l  ~C1, f2 increasing, we 
have, from (2.1), 

Au + blu 1 + fl(u) - fa(0) = f2 (0) -  fe(U) - -  f (0) 

__<0, 

and the results follow with the aid of the maximum principle. In particular i f f  is lo- 
cally Lipschitz continuous, f(0) > 0, and u > 0, u ~ 0 in f2 then the results of Theorem 
2.1 hold. If the condition of Lipschitz continuity is weakened to H61der continuity 
the results need not hold. For  example, if p > 2 ,  the function w(x)=(1-Ix[2)  p in 
Ixl < 1, w = 0  in Ix[ > 1, is in C2(R ") and satisfies (1.1) with 

f (w)  = - 2p(p - 2)w I - 2/p + 2p(n + 2p - 2)w 1 - 1/p 

The function f is H61der continuous with exponent 1 - 2/p, and f(0) = 0. However 
the function 

u(x) = w(x) + w ( x -  Xo), 

with some fixed x 0 satisfying ]x0[=3 , satisfies (1.1) in ]x]<5 with the same f .  
Obviously u does not satisfy the conclusions of Theorem 1. 

2.4. Theorem 2.1 extends to a class of nonlinear elliptic second order equations. 
With O, 22(2) etc. as before, consider a C 2 solution u in O of such an equation 

F(x, u, 1A1,... , bin, 7.111,..., Unn) = 0 (2.1') 

which is elliptic, i.e., for positive constants m, M 

M[~I e =>F~,,~,~j>ml~12. 

The function F(x, u, pi, pjk) is assumed to be continuous and to have continuous 
first derivatives with respect to u, Pl and Pjk for all values of these last arguments, 
and x e ~ ,  and to satisfy the following conditions: 

(b) On ~f2~ {x 1 > 21 } the function g(x) = F(x, 0, ... ,  0) satisfies 

g(x)>OVx,  or g(x )<OVx .  

(c) For every 2 in )-i < 2 <){o and for x e N(2), and all values of the arguments u, 
Pj, Pjk with u>0 ,  Pl < 0 ,  

F(x~; u, - Pl, P2, " " ,  Pn, Pl 1, - -  P l  . . . . . .  Pp~) > F(x, u, Pl, P~, Pij)" (2.6) 

Here i, j range from 1 to n and e, fl, y from 2 to n. Note that condition (b) is 
automatic in case F is independent of x. Furthermore, in the first case in 
condition (b), it follows from condition (c) that g(x) > 0 for x in a neighbourhood in 
/2 of Of 2~{x i  >21} - because g(x) is a decreasing function of x I there. 
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Theorem 2.1'. Let u satisfy condition (a), and F satisfy conditions (b) and (c). Then 
(2.2) holds, and u 1 <0  in X. Furthermore if u 1 =0  at some point in Y2 on T& then, 
necessarily, u is symmetric in the plane T< and (2.3) holds. 

The proof of this is exactly the same as that of Theorem 2.1, in particular 
Lemmas 2.1, 2.2 hold, and is left to the reader. As an immediate application we 
have the following symmetry result: 

Corollary 1. With f2 as before, suppose that "~1 =0, and that g2 is symmetric about the 
plane x l = 0 .  Suppose our solution u > 0  in f2, u--0  on OY2. Assume F satisfies 
condition (b) and, in place of condition (c), conditions 

(c'1) F is symmetric in xl ,  and decreasing in x 1 for x 1 >0. 
(%) F(x,u,-Pl,P~,Pll,-Pl~,P~v)=-F(x,u,p>P~,Pij) if u>0.  

Then u is symmetric in x 1 and u~l<O for x 1 >0. 

Proof. Conditions (c't), (%) imply condition (c) since, by (c'1), for 21 <__2, the left- 
hand side of (2.6)>the left-hand side of (%). By Theorem 2.1' we find 

u l (x )<0  and u ( - x l , x ' ) > u ( x , , x '  ) for x l > 0 .  

If we replace x 1 by - x  1, i.e., reverse the xl-axis, we may apply the theorem again 
and obtain just the opposite inequalities. Here x' = (x 2 . . . .  , x,). 

2.5. We also obtain generalizations of Theorems 1 and 2. 

Theorem 1'. Theorems 1 and 2 hold for f = f(r, u) depending also on r, with f ,  fu 
continuous, provided f is decreasing in r. 

One might ask whether positive solutions u in a ball ix] <R,  vanishing on the 
boundary, of 

Au+ f(r,u)=O 

are necessarily spherically symmetric - even if f is not decreasing in r. This is not 
the case in general. For example, let w be an eigenfunction of 

Aw+2w=O,  w = 0  on Ix l=R,  

which is not spherically symmetric. Then for e > 0  small, the function u = R 2 -  Ixl 2 
+ew, is positive in Ixl <R,  vanishes on the boundary and satisfies 

A u + 2 u + 2 ( r 2 - R 2 ) + 2 n = O  in N < R ;  

but u is not spherically symmetric. 
Using Theorem 2.1' one may prove further symmetries. The following, whose 

proof is left to the reader, is an example. See also Remark 2 at the end of Sect. 3. 
Let f2 be the unit ball in IR 2" and denote the points in IR 2" by (x,y), x,y~lR". 

Corollary 2. Let u~C2(~), u > 0  in f2, be a solution of 

Au+f ( x , y , u )=O in f2, u = 0  on ~2. 
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Assume f and f ,  are continuous in ~ × {u>0} and 
(i) f ( x ,  y, O)> 0 everywhere on ~2, or f ( x ,  y, O)< 0 everywhere on ~2. 

(ii) f ( x ,  y, u) = f (y ,  x, u). 
(iii) For every point (x, x)~ ~2 and for  every vector z~ 1R" and Vu > O, the function 

f ( x  + sz, x -  sz, u) 

as a function of  s > 0 is nonincreasing (wherever defined). 

Then u(x, y) = u(y, x) and for x, z~ IR", ix] < 1 / ] ~  

d 
~s u(x + sz, x -  sz)<O 

for 

1 
0<s< iz r / l - I x ? .  

The function f ( x ,  y, u) = g([x - y], u) with g(t, u) decreasing in t, for t >0, satisfies 
the conditions (ii) and (iii). 

Theorem 1' admits extension to still more general rotationally symmetric 
equations. In particular, if ~2 is rotationally symmetric with respect to some of the 
x variables, say (Xl, ..., xk) and the Eq. (2.1') also has this property, then one may 
prove an extension of Theorem 2.1' showing, under suitable hypotheses, that u is a 

k 

function of (O, xk+ p . . . , x , )  for Q= ~x~,  and u o<0  for 0>0.  
1 

2.6. We also have the following extension of Theorem 3. 

Theorem 3'. Let  u be as in Theorem 3 but satisfying a more general equation than 
(1.3): 

i i + f ( x , u ,  iO=O on 0 < x < l .  

Here f (x ,u ,p ) ,  f~ and fp are continuous. Then u (x )<0  for  ½ < x  < 1 provided f 
satisfies 

f (y ,  u, - p) >= f ( x ,  u, p) (2.6') 

whenever u>u(1), p<O, and y + x > l ,  y < x .  Furthermore i f  ~t(1)=0 then u is 
symmetric about x =½. 

The following is a simple consequence: 

Theorem 3". Let  u~ C2(R 1) be a positive function satisfying 

/ i+f(u,~t)=O on R 1 

with f EC 1 and f ( u , p ) =  f (u ,  - p) for u>O. I f  u (x)~O as x ~ +_ ~ and u assumes its 
maximum at the origin, then u is symmetric in x and ~t(x)< 0 for  x > O. 

2.7. Here is another application of  Theorem 2.1 with a novel conclusion. 

Corollary 3. Let  (2 be a convex domain which is close to a ball rxl < R in the sense 
that their boundaries are close in the C 2 topology. In (2 let u be a positive solution o f  

A u + f ( u ) = O ,  u=O on OY2. (2.7) 
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Then all stationary points of u in f2, in particular wherever u takes its maximum, lie 
in a small neighbourhood of the origin. 

Proof. According to Theorem 2.1 u has no stationary point in any maximal cap. 
Their union covers all of ~2 except for a small region about  the origin. 

This result suggests the following: 

Problem: Suppose u > 0  is a solution of (2.7) in a bounded domain f2 in IR", u = 0  
on ~f~, say u~ C2(~). Is there some e > 0 depending only on ~2 (i.e., independent of f 
and u) such that u has no stationary point in an e-neighbourhood of 8f27 

This is true for n = 2 in case f(u) > 0 for u > 0, but for n > 2 the problem is open. 

Proof. Given any boundary point x o of g2 we will show that there is a 
neighbourhood of it in ~, determined solely by the geometry, which contains no 
stationary point of u. The desired result then follows. Let D be a closed disc 
touching ~ only at the point x o. For  convenience we suppose it is the unit disc with 
centre at the origin. 

We perform a reflection in the unit circle 

x 

x ~ y -  ix12 

and set 

u(x)=v(y). 

The image 8 of ~?, lies inside D, and ~ touches the boundary only at x o. A simple 
calculation shows that in 8, v(y) satisfies 

Av + lyl-4 f(v) = 0  ; (2.7') 

for n > 2 the equation has additional terms. 
Let X =N~o be the maximal cap of 8 corresponding to the direction x o which 

we may take to be (1, 0). Since ~ is strictly convex near x o, X contains a full 
neighbourhood of x o in 8. Since f > 0  for u>0 ,  we see that condition (c) of 
Theorem 2.1' is satisfied. We may therefore apply the theorem and infer that 
grad v 4 = 0 in 22. Hence grad u + 0 in the image of Z under the reflection in the unit 
circle. This image contains a full neighbourhood of x o in ~2, in fact it is ~ {a 
circle passing through the origin with some radius > 1}, and the proof  is finished. 

As a direct application of this and Theorem 2, whose details we leave to the 
reader, we have: 

Example. Suppose u is a positive solution of (here f is locally Lipschitz): 

Au+f(u)=O in R'<lx[<R,  in lR 2, 

which vanishes on the boundary. Suppose f (u)>0 for u >0. Then all the critical 
points of u are in the region 

2R'R R' + R 
- -  < I x I < - -  
R ' + R  2 
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Remark I'. As in Remark 1, the results of Theorem 2.1', Corollary 1 (Theorems 1', 
3' and Corollaries 2, 3 respectively) hold if F=Fz + F  2 ( f = f l  +f2 respectively), 
where F l ( f l  ) has continuous first derivatives with respect to u, p~, P i~, and F2(f2) has 
continuous first derivatives with respect to p,, pjk, and F 2 is monotone increasing 
in u; both F1, F 2 are to satisfy conditions (b) and (c). 

2.8. Theorem 1 yields a positive response to a question put us by C. Holland. For  
p > 1, is the positive solution u of 

Au+uP=O in lxl<R, u = 0  on IM=R (2.8) 

unique? (The question is still open for other domains.) According to Theorem 1 
the solution is spherically symmetric, and so satisfies 

n - 1  
Gr+ ~ G + u v = O ,  0 < r < R ,  ur(0) = 0, (2.9) 

with u(R)= 0, and ur(r)<0 for r > 0. We use 

Lemma 2.3. Let u and v be positive solutions of (2.9). For 22/IP-1)=u(O)/v(O), 
u(r)  =)~ 2/(p a)v(}or). 

Proof. The function w(r)=-22/(v-1)v(2r) is also a solution of (2.9) and at r = 0  it 
agrees with u(0). 

. As solutions of the elliptic Eq. (2.8), u and w are analytic, i.e., they are analytic 
functions of r 2. But in fact all their derivatives at r = 0 may be computed in terms of 
u(0) showing that w - u .  For example if we let r ~ 0  in (2.9) we find 

nu~(O) + u'(O) = O. 

By further differentiation we may compute all the derivatives, and the lemma is 
proved. 

From the lemma it follows easily that the positive solution of (2.9) vanishing at 
R is unique. 

3. Further Results 

3.1. In this section we take up extensions of results of Sect. 2 to optimal caps and to 
special domains with corners. We shall use the same notation. 

We first try to extend Theorem 2.1' to optimal caps. Consider a solution u of 
(2.1') with F independent of ul~ for c~> 1 : 

f(x, U, Uj, U 11' Uaqt) = 0 ; (3.1) 

here j ranges from 1 to n and cq fl from 2 to n. This includes Eq. (2.1). 
Assume that u satisfies, in place of (a) of Sect. 2.1 : 
(A) u~C2((2), u > 0  in f2, u = 0  on Of 2. 

We assume that F satisfies conditions (b), (c) as before but in an optimal cap: 
(B) On Of2c~{x 1 >22} the function g(x)=F(x,O, . . . ,0) satisfies 

g(x)>OVx, or g(x)<OVx. 
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(C) For every 2 in 2 2 ~ 2 < 2  o and for x~2;(2) and all values of the arguments 
u, p j, pj~ with u > 0, pl < 0, 

F(x~', u, -- PDP2, "" ,P,,Pl~,P~t3)> F(x,u, PD '"  ,P,,P~)" (3.2) 

Theorem 3.1. Assume conditions (A), (B) and (C) are satisfied. Then for 22 < 2 < 2o, 

ul(x)<0 and u(x)<u(x  ~) for xES(2). (3.3) 

Furthermore, if u 1 =0 at some point on f2n T~.2, then u is symmetric in the plane Tz2 
and 

f2 = Z(22)wS'(22)w(Tx nf2 ) . (3.4) 

Proof  of  Theorem 3.1. The proof begins like that of Theorem 2.1. By Lemma 2.1 
(see Sect. 2.4), for 2 close to 2o, 2<2o, we find that (3.3) holds. 

Decrease 2 until a critical value/z > 2  2 is reached beyond which it no longer 
holds. Then for 2 = # we have 

ul(x)<0 and u(x)<u(x  ~) for xe£(#) .  (3.5) 

We will show that # = 2 2. Suppose # > 22. For some point x 0 e #Z(p)\T~ we have 
x~eO. Since O=u(Xo)<U(X~) we see that u(x )~u(x  u) in Z(#). In S'(#) we set 

v(x) = u(xU), w(x) = v(x) - u(x) (3.6) 

so that w<0,  w~0. The function v satisfies, v~ >0  and 

F(x,  v(x), v j, v~ 1, v~p) 

= F(X ,  U(X#), --  U I(X#), UT(X#), 1.,l I 1 (Xtt)' Uo:fl(X'U)) • (3.7) 

Since xUeS(#) and ul(xu)<O we see from (3.2) that the last expression is 

F ( X  g, U(X"), Nj(X#), U 11(X#), U~t6(X#)) (3.8) 

~ 0 .  

Using F(x, u, . , . )=0  in U(#) we may apply the theorem of the mean in integral 
form and conlcude that w satisfies a differential inequality of the form (1.10) in 
S'(#) with a~= = 0 for e > 1. 

By the maximum principle, w < 0 in N'(#), and by Lemma H, since w achieves 
its maximum, zero, at every point of T,, 

O < W l - = - - 2 U  1 on Tum~2. 

Thus 

u(x)<u(x  u) for xeS(#) and ua<0 on (2mTu; 

in particular (3.3) holds for 2=#.  Furthermore, by 
Qe~?~2nT, where T, is orthogonal to 0f2, 

0w 02w 
~ < 0  or ~s2 <0 a t Q  

(3.9) 

Lemma S, at any point 
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for any direction s at Q entering Z'(#) nontangential ly.  At Q however  the functions 
v and u have the same normal  derivative to ~ and zero tangential  derivatives, so 
that  Ow(Q)/&=O. Hence 

(?2w 
~s 2 (Q) < 0 .  (3.10) 

F r o m  our  definition of/~ one of the following holds : 
(i) There is a sequence yj converging to some point  y on T, with 

u 1 (Y) > 0 

Or 

(ii) There are sequences 2 j, 22 <2J,~ ~, and x j~Z(2  J) such that  

u(x) >= u(xy). (3.11) 

Consider  case (i). Clearly ul(y)>=O. By (3.9), y must  lie on ~2. Suppose T, is not  
o r thogona l  to 0~2 at  y. Then necessarily v l (y )>0 ,  and by Lemma2.1 ,  u I < 0  in a 
ne ighbourhood  in f2 o f y  - a contradiction.  Thus  T, must  be or thogona l  to •f2 at y;  
we m a y  suppose v(y)=(0  . . . .  , 0 , 1 ) = %  Choose  the direction s to be 

( -  1 /1~ ,  0, .. . ,  0, - 1 /1~) .  Then according to (3.10) 

+ w < 0  at y 

i.e., 

0 ~ / 2  0 + ~ u at 
y. 

But VlZ =/211  , Unn~blnn, Vln= - - U l n  a t  y, s o  

tq,>O at y and hence near  y. 

If  we integrate this on the segment  in the e,, direction f rom yj (j large), to the point  x 
where it hits 8~2 we find that  Ul(X)>0. But for x~2;(22)c~6f2 we have Vl(X)>0 and 
hence Ul(X)<0. Thus  case (i) is impossible. 

On to case (ii). We m a y  suppose xj converges to x in Z(#) ; then u(x) > u(x"). By 
xJ lies in f2, (3.9), x ~ Z ( # ) .  If  x lies on T u then f o r j  large the segment  f rom xj to x~ 

and then contains a point  yj satisfying the condit ions of case (i) - which we know 
to be impossible. Thus x6  T w If  xUe ~ then 0 = u(x)<u(x"), a contradict ion,  so we 
also have xU~ 0Q. Since # > J~2 it follows that  v(x)= v(x u) and these are o r thogona l  
to (1, 0, . . . ,  0). We m a y  suppose these normals  are e, = (0 . . . .  ,0, 1). But then in Z'(#) 
the function w(x) defined in (3.8) achieves its max imum,  zero, at x ~ and hence by 
L e m m a  H 

w,(x u) > 0 .  (3.12) 

On the other hand, since Z ' (2 )  C (2, the segment  I j  in the e, direction f rom xj to 
).J 

~2 is not  longer than that,  I j, f rom xj to 0~2. Using the fact that  u = 0 on 3~? it 
follows f rom the theorem of the mean  that  I v and [j  contain points  z j, ~j respectively 
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such that 

- u ( x f l  = u , ( z j ) l I~ l  

2 J  ~ ~ - u(xj ) =u,(z j) l l j l .  

Here I/jl denotes the length of I v. Hence 

- u . ( z j ) l l j l  > - u~(~j)ll j l  > 0  

and since Iljl < Iial, 
- u n ( z )  >_ - u n ( ~ ) .  

Letting j-+ oo we find 

- u n ( x )  >= - u o ( x " ) ,  

contradicting (3.12). Thus case (ii) is impossible. 
We have proved that g=22,  and hence (3.3) for 22 < ) . < 2  o. The remainder of 

the proof of the theorem is the same as for Theorem 2.1 and will be omitted. 
Theorem 3.1 admits various applications as in Sect. 2. We mention only one: 

Corollary 1. Let  #2 be symmetric about x~ = 0 and convex in the x 1 direction. Suppose 
u~C2(~) is a solution o f  

d u +  f ( x , u ) = O  in f2, 

satisfying condition (A). Assume f and f~ are continuous for  x ~ f2, and f is symmetric 
in x t with f decreasing in x I for  x 1 >0. Then u is symmetric in x 1 and uxl <0 for  
x t > 0 .  

3.2. Our results have required smoothness of ~O. Next we consider a special 
domain with corners, namely a finite cylinder: f ~ = ( - a ,  a)x G where G is a 
bounded domain in R"-1 with ~G smooth. (It will be clear that this result can be 
extended to more general situations.) Corresponding to ? = e 1 we have ).2 =0,  i.e., 
the optimal cap is ~2c~{x 1 >0}. We consider a solution u in #2 of (3.1) satisfying 

(A') u~C2(~), u > 0  in f2, u = 0  on ~O, 

The function F in (3.1) is assumed to be independent of u~, i.e., (3.1) has the form 

F(x, u, u 2 . . . . .  u~, u 11, u~)  = O . 

Also F is to satisfy condition (C) which now just takes the form: 

(C') F is decreasing in x 1 for x 1 >0 .  

We do not require condition (B), 

Theorem 3.2. Under the preceding conditions on u and F the results o f  Theorem 3.1 
hold. 

Proof. It is the same as that of Theorem 3.1 except at the very beginning, when we 
assert that for 2 less than, but close to, ).0 conditions (3.3) hold. We cannot rely 
here on Lemma 2.1 since the boundary is not smooth. To get around this difficulty 
we will use the corollary of the maximum principle of § 1 to prove: 
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Lemma 3.1. For 2 less than but close to 20, (3.3) holds. 

Proof  For  2 o - e < 2 < 2  o the region Z'(2) has width <e  in the direction 
e 1 =(1,0, ...,0). In 27'(2) the function v(x)=u(x a) satisfies 

F(x, v(x), v ,(x), v 1 l (x), v p,(x) ) > F(x a, v(x), v ,(x), v 1 l (x), v ~,(x)) = 0 .  

Hence w = v ( x ) - u ( x )  satisfies an inequality of the form (1.10) with bounded 
coefficients in U(2). Also w < 0 on 0X'(2). It follows from the maximum principle 
and its corollary that for e small, w < 0  in X'(2); by L e m m a H ,  on T,, 
0 < w ,  = - 2 u  1. Consequently (3.3) holds for 2 close to 2 0. Q.e.d. 

Theorems 3 and 3' are essentially special cases of Theorem 3.2. 
Using the same argument one proves the following results. 

Theorem 3.2'. Let  f2 be an isosceles triangle in the plane with base on the x axis, 
centered at the origin. Let  u6 C2(~\corners)c~C(~) satisfy 

A u + f ( u ) = O  in (2, u = 0  on c3£2, 

with f locally Lipschitz continuous. I f  u > 0 in £2, then u is symmetric about the y axis, 
and u x < 0 for x > 0 in (2. 

Theorem 3.2". Let u and f be as in Theorem 3.2', but with £2 an infinite angular sector 
0 < 0 < 0 o < ~z. Then for any f ixed angle ¢ in Oo - ~/2 < (o < ~/2, ux cos q5 + Uy sin q5 > 0 
at every point of  Q. 

Both results admit various extensions to higher dimensions. 

3.3. Let us specialize this still further and suppose that G is a ball ]x'] < b  in R" 1 ; 
here x' = (Xz, ..., x,) ,  and that the equation has rotational symmetry in G. 

Can we conclude the same of the solution ? We will take up a simple case : u > 0 
is a solution in £2 of 

all(Xl)Ull + E u=+ f ( x ,  lx'l ,u)--o 
a > l  

with ue C2(~), u = 0  on af2 and f, f ,  continuous in f~ x R ÷. Assume conditions (B) 
and (C) in the following form: 

(I3) f ( x p b ,  O)>O for Ix~l<a 

o r  

f ( x , b , O ) < O  for Ix l r~a .  

(C) f ( x l ,  ~, u) is decreasing in 0 for 0 < Q < b. 

Theorem 3.3. Under the conditions above, u is radially symmetric in the variables x', 
i.e., u=u(x l ,  fx'l), and 

uQ(xl,0)<O for I x l l < a ,  0 < Q < b .  

The proof uses the analogue of Lemma 2.1 : 

Lemma 3.2. The set ~ = { r x l l  <a}  x (0Gc~{x,>0}) has a neighbourhood in Q in 
which u, <0. 
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Proof Lemma 2.1 (with the variable x~ in place of xl) applies to any point 
XoS {x 1 <a}  x (OGc~{x,>0}) and gives the desired result. Thus we need only 
consider a point x o in S with xol = _+a; suppose xol =a .  So 

n 
2 2 Xo=(a, Xo2, ...,Xo,), ~Xoj=b , Xon>0. 

2 

Consider the first case in (t~). By ((~), for x=(xl,x') close to x0,we have 

, > f(Xl, IX 1,0) = 0 .  

Consequently by the theorem of the mean we see that in such a neighbourhood of 
Xo, u satisfies 

a l lU l l - [ -  2 Uo~+C(X)u~O 
~>1  

for some continuous function c. We may therefore apply Lemma S to - u  and 
conclude, since grad u(xo)= 0, that (5~ + ~?,)2u > 0 at x o. Since u~ ~ = un, = 0 there we 
have 

Uln(XO) > 0 .  

Hence u ~  > 0 near x o and since un = 0  on xl = a the desired conclusion follows. 
In the second case of (t~) we have allul~+ ~ u ~ > 0  at x o. But in fact this 

~t>l 

expression is zero at x o so that the case does not apply. The lemma is proved. 

Proof of Theorem 3.3. We will prove u is symmetric in x~ and u, < 0 for x~ > 0. Since 
we may rotate the coordinates x' the general result will follow. Using Lemma 3.1, 
we see that for 2 < b  but 2 close to b, the analogue of (3.3) holds, i.e., 

u , (x)<0 and u(x)<u(x a) for 2 < x , < b ;  (3.3) 

here x ~ is the reflection of x in the plane x~ = 2. It suffices to prove that (3.3) holds 
for every 2>0 .  To do this we proceed as in the proof  of Theorem 3.1. Decrease 2 
until a critical value g > 0 is reached beyond which (3.3) no longer holds. Then we 
have 

u , (x)<0 and u(x)<__u(x u) for x , ,># .  (3.7) 

We wish to show that ~=0 .  Suppose # > 0 .  We follow the proof of Theorem 3.1, 
and have to consider cases (i) or (ii) there (with x, in place o fx  0. In case (i) we also 
have to look at the possibility that y lies on Tj~{c~G x [ - a , a ] } .  This is excluded 
by Lemma 3.2. Case (ii) is treated as before and we may regard the proof  as 
complete. 

Remark 1. All the preceding results remain valid if we replace F (respectively f )  by 
FI+F2 (fl  +f2)  where F>Fz(fl,f2 ) are as in Remark 1' in Sect. 2 - under the 
additional condition (3.1). 

3.4. We conclude with an analogue of Corollary 2 of Theorem 2.1'. 
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Remark 2. Let £2 = ( -  1, 1) x ( -  1, 1) in 1112 and let u(x, y) be a positive solution in Q 
belonging to C2(~) of 

Au+f(x,y,u)=O in ~?, u = 0  on 0f2 

where f, f~ are continuous in ~ x R +. Assume f satisfies 
(i) f is symmetric in x and y and nonincreasing on each segment S perpendicu- 

lar to the diagonal D:x = y as we go from the diagonal to 092 
(ii) f(x,y,O)>O for all (x,y)E3f2 or f(x,y,O)<O for all (x,y)e3Q. 
Then u is symmetric in x and y and is strictly decreasing on each such interval 

S. 

Proof For  convenience we set £~ as in the figure so that f(x, y, u) is symmetric in x 
and nonincreasing in x for x > 0. 

The proof  is then identical to that of Theorem 2.1, moving lines x = 2, once we 

can get it started, i.e., for 2 less than but close to 1/]/2. 

Y 

P ( l / 'd'~, 

Fig. 3 

We have only to show that u 1 < 0  in a neighbourhood in fl of P, and the proof  
then proceeds as before. This is proved as in the proof  of Theorem 3.1 using 
Lemmas H and S. 

4. The Proof of Theorem 4 

First, the 

Proof of Proposition 1. Under the change of variables 

x 
x - + y =  ixl~, v(xl=lyr" 2u(y) 
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The Eq. (1.8') transforms to the equat ion in y # 0  

A u(y) = - ]Y[-"- 2f(ly[,- 2u(y)) = _ F(y) (4.1) 

and u(y) is bounded  near y = 0. Fur thermore  

r ( y )  = [y[-  n 2f(lyln 2U(y)) = blkg(ly[n-- 2U(y)) ly[k(n- -  2)--(n + 2) 

is bounded  near y = 0 .  It is then easy to see that  u is a distribution solution of (4.1) 
in R" including the origin. Since F(y) is bounded  near the origin we see that  
ue W 2,p, Vp < oe; thus u~ C 1. But then F(y) is H61der continuous near the origin 
and it follows that  u has H/51der cont inuous second derivatives. F r o m  the 
max imum principle it follows that  u(0)= a o > 0. Consequently near the origin we 
have 

u(y) = a o + ui(O)y i + ½u~j(O)yiy j + o([y[2) 

and 

u~(y) = ui(O ) + ui~(O)y J + o(lyl) • 

These yield (1.9) for v(x)=lxl2-"u(]~]2). 

Proof of Theorem 4. We shall apply the procedure of moving planes from infinity 
but  in order  to get it started we first shift the origin in order  to simplify the 
expansions (1.9). Replace x by x - x  o where 

a i (4.2) 
XOj  = - -  m a  0 " 

Since, for q > 0, 

'X -  Xo' Ix' 0 q ) 
- + ~ [ ~ X j X o j +  . . .  

we find 

m a~(xj- xoj) + + o 
v= l +  ~FX~Xoj+ ... go+  ix_x012 ~ 

- 1 ~  (% + aijxixj + o  (~]2))  (4.3) 

with different coefficients a~j. Similarly 

m ( x i - - X _ o i ) ( 1  m + 2  ) (  aixj] 
v ~ -  ixl,,,+= ~ + I~-XkXok-I-... ao-l-ix12 ) 

a i 2 x  i 
+ IXlm+2 IxIm+4ajxj+O(Ix] -m-3) 

m 
= - IxIm+2 aoXi + 0 ( Ix l -m-  3), (4.3') 
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In these new coordinates we will prove that v is rotationally symmetric about 
the origin and that v~ < 0 for r > 0. Note that the equation is rotationally invariant. 
For any unit vector 7 we will prove symmetry of v in the plane 7 " x = 0  and 
7 . g r a d v < 0  if 7 .x>0 .  Performing a rotation we may suppose 7=(1,0  . . . . .  0). 
Observe that from (4.3') we find that for suitable constants Co, R1, 

V 1 <0  for x 1> Co and I x l > R 1 .  (4.4) 
-IxP 

As a consequence of (4.3) and (4.4) we first derive 

Lemma 4.1. For any 2 >0, 3R=R(2)  depending only on min (1, 2) (as well as on v) 
such that for x = (xa, x'), y = (Yl, x') satisfying 

x I < Y l ,  x1 +Yl >22,  IxI_->R, 

we have 

v(x) > v(y). (4.5) 

Proof We shall show that if we have a pair of points x = ( x t ,  x'), y=(y , , y ' )  with 
[xl >R1 ; yl >x~, yl + x  1 >22, and for which the inequality opposite to (4.5) holds, 
i.e., 

v(x) <= v(y), (4.5') 

then necessarily Ixl, [yl <some R depending only on rain (1, 2). Note  that lyl > Ix[. 
The proof just involves a bit of tedious calculation using (4.3), (4.4). We will use C, 
C~ etc. to denote various constants independent of 2, x and y. From (4.3) we have 
(using summation convention) 

( 1  l ) _  [ YiY, xlxj )+Cl(]x[- , , - ,+ly[ -m-3)<C[x[- , , , -2 (4 .6  ) 
ao ]xl,,, [y]" ~=aij l jy~4 l.X[rn+4J 

Observe that for p > 1, since ]Yl > Ix[, 

1 1 > ]xlpl~l ([~ [ - ]y~) (4.7) 
[Xl P lYl v = 

As a first consequence of (4.6) we find then 

[xl m-a Ixl m lyr  Ixl '~+2 

so that 

lYl_lxl<Cllx~ 2 < c { l Y l - l x l  + 1 

Hence if C[x[ 2 ~ 1  we find 

2C 
ly[ - lx l<vw,  and lyl<2lx]. (4.8) 

IXl 
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Inequality (4.8) has been proved assuming IX[2 ~-~ 2C. We may assume this from 
now on; for if Ixl2<2C, then since v(y)--*O as lyl--*~, it follows from (4.5') that 
lYl < R  for some R independent of 2. 

We will now improve the estimate (4.8) by using it in (4.6). Returning to (4.6) we 
have 

ao(,; 1 )  ( y 2  X~ I 
I.v]" <a,a \lYl,,,+~ ixl,,,.+4) 

+2 2 aijxj ]xT~+4 j > a  lY~ -+4 

+ y, ajkx,xk(iyl+4 1 ) 
a,k>~ Ixl ~+4 

~-C 1 (Ixl-~-3 +lYl-m-S). 
As before we may infer that 

1(1 1) 22 2(1 1) < C y[ - xi + CIxl 
Ixl " - x  ~ [ -  ~ = lYl,.+4 ]xl m+4 lYl~-+4 

Yl - x ~  C 
+ C  ]xV+ ~ + ixV+ 3 

<cYT-X 2 C 1 1 
= ixim+~ + 

Yl - x l  C 
+ C  ixlm+3 + ixlm+3 

Using (4.8) we find easily that 

lyl_lxl~clyl2-1xl 2 c l y I - N  cYl -X ,  c 
- i x i ~  + ixl ~ + ixl 2 + ix12 

Multiplying by ]y] + ]x] and recalling that 

lyl 2 -  Ixl 2 = y  2 - x 2  >22(y I - xl) 

we find 

2 2 <  C 2 , ,]X~](Yl--X1)q-~]" y , _ x l = ~ ( y l _ x ~ ) +  C 

Once again, if Ixl2> 2C - as we may assume - it follows that 

y ~ _ x 2 < £ ( y l _ x , ) ~  c 
t=  Ixl Ixl 

Hence, by (4.9), 

(4.9) 
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Thus if 2 2 "  Clxl -* >2, i.e., 
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C 
fxl _-> (4.10) 

we see that 

C 
Y' - x l  < 2rxl 

Consequently, since y~ __>22-x~, we find 

C 
2 2 - 2 x l  < 2lxl 

o r  

C 
X 1 ~ 2 - -  221x~" 

But (see (4.4) for Co) 

2 _  C > C 0  
221xl = Ix[ 

provided. 

@2 C° (4.11) Ixl + 

Thus if (4.11) and (4.10) hold we conclude that 

C o 

But then (4.4) implies that v is strictly decreasing on the straight segment going 
from x to y - contradicting (4.5'). Thus either (4.10) or (4.11) cannot hold and the 
lemma is proved. 

As in Sect.2, for any 2 >0  and for any x =(XlY) ,we  denote by x a its reflection 
in the plane x 1 =2, i.e., x~=(22-x>x ' ) .  

Lemma 4.2. There exists 2 o > 1 such that V2 > 2 o, 

v(x)>v(x ~) if x 1 <2 .  (4.12) 

Proof. Set R~ =max  {1,R(1) of Lemma 4.1}. By Lemma 4.1, if Ixl >R1, 2__> 1 and 
x 1 < 2  we have 

v(x) > v(x~). (4.12') 

But 

v(x)~co>O for Ixl~R 1. 
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Furthermore for 1 < R  2 sufficiently large we have 

v(y)<c o for [yl__>R 2. 

Thus (4.12) holds if 2>=R 2 and Ixl<R1. Combining this with (4.12') we obtain 
(4.12) with 20 = R  2. Q.e.d. 

Lemma 4.2 asserts the desired reflection property (4.12) for planes Tz:x I = 2  
with 2 sufficiently large. Now we may begin our procedure of moving the plane T~ 
by decreasing 2. First we have the analogue of Lemma 2.2. 

Lemma 4.3. Assume that for some 2 >0  

v(x)>v(xZ), v(x)~v(x ~) for Xl<)` , 

Then v(x)>v(x ~) if x 1 <2, and 

Vl(X)<0 on Tx. (4.13) 

Proof The function w(x)= v(x ~) is also a solution of (1.8) in x 1 < 2 and w __< v there. 
Thus the function 

z(x) = w(x) -  v(x) < O, z ~ 0 

satisfies an elliptic equation of the form 

Lw=O in x 1 < 2  

with L as in (1.10), and it achieves its maximum, namely zero, at every point on T~. 
By the maximum principle and Lemma H, z < 0 and 

0<Z 1 = --2V 1 on Tz. 

The lemma is proved. 

Lemma 4.4. The set of positive ),for which (4.12) holds is open. 

Proof Suppose (4.12) holds for 2 = 2 > 0 .  Set/~ =R(2/2) of Lemma 4.1; then (4.12) 
holds for 2 > 2/2 provided [xl >/~. We have only to consider [x[</~. If (4.12) did not 
hold for all )` in some neighbourhood of 2 there would be a sequence {x J}, 
j = 1, 2,. . .  in [x J[-<_R and a sequence ) ` J~ ,  )`J >~/2, with x{ <2  j and 

v(x j) <-_ v(xJXJ) . (4.14) 

Then a subsequence, which we still call x j, converges to some x in Ix1 < R  and 

v(x) <= v(x~). 

In view of (4.12) it follows that x I =2. But then from (4.14) we must have 

vl(x)>O 

- contradicting Lemma4.3. Q.e.d. 
From Lemmas 4.2, 4.4 and 4.3 we may conclude that (4.12) and (4.13) hold for 

all 2 in some maximal open interval 0<21 < 2 <  oc. In particular we also have 

v l (x)<0 for x l> ) `  1. (4.15) 
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In addition, by continuity 

v (x )>v(xa9  if x 1 < 2 1  . (4.16) 

Corresponding to the direction 7 which we took to be (1,0,...,0), we have 
found a maximal open interval 

0 < 2 1 ( v ) < 2 < ~  

such that the reflection property (4.12) holds for all 2 in the interval. 
Suppose for some vector 7, which we may take as (1,0 ..... 0), 21(7)>0. By 

Lemma 4.3 we either have 

v ( x ) - v ( x X ' ) ,  for xa<21 ,  

or else property (4.12) holds for "~1" The former cannot occur, by Lemma 4.1, while 
the latter cannot, by Lemma 4.4 and the definition of 21. Hence for all unit vectors 
7, 21(7)=0. It follows from (4.16) that v is symmetric about each plane 7 . x = 0 .  
Hence it is radially symmetric about the origin, as was to be proved. 

The remainder of the theorem follows from (4.15). 

Remark.  Theorem 4 yields rotational symmetry of our solution. If we wish to prove 
symmetry in only one direction, say with respect to x 1 then it is clear that the 
argument extends to more general equations than (1.8). For example we may 
consider elliptic equations of the form (here e, fl range from 2 to n) 

F(xe , . . . ,  x , ,  v, v 2, v2, . . . ,  v,, I) 11' 1)~fl) = 0  (4.17) 

Theorem 4'. Let  v > 0 be a C a solution of(4.17) in IR n with F, F v, FvI, ..., F ~  e C and 

a 1 v satisfying (1.9). Then 1) is symmetric with respect to the plane x 1 = - -  and 
mao 

a 1 1)1 <O for  x 1 > -  - -  
m a  ° • 

5. Parabolic Equations 

For parabolic equations the maximum principle as well as its Corollary 1, and the 
Hopf  boundary lemma (see [7], Chapter 3, § 3) hold. Therefore all our results 
admit extensions to such equations with essentially the same proofs. We shall 
content ourselves with the statement of several results for functions u(t, x) defined 
in a cylinder f2 = (0 < t < T) x G, G is a bounded domain in IW with ~?G smooth. By 
a (maximal) cap of f2 we always mean [0 < t < T) x [a (maximal) cap of G]. 

Condition I. With G = R ' <  N <R,  let u be a positive solution of 

- u , + A u + f ( t , r , u ) = O ,  u = 0  on I x l = e  (5.1) 

with ut, u j, Uk~ belonging to C in the closure. Here f and f ,  are continuous in 
x R ÷. Assume that f is decreasing in r and that u(0, x), is rotationally symmetric 

and decreasing in r. 
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Theorem 5.1. Assume Condition I. Then 

R + R '  
ur<0 for ~ <r  < R .  

If, in addition, u is a solution in [x I <R, then Vt, 0 < t <  T, u is radially symmetric and 
ur<O for 0 < r < R .  

The next result extends Theorem 2.1' in which we consider a maximal cap 
~r'~t"3 {X 1 > ~ 1}. 

Condition II. Consider a positive solution in G of 

- -u t+F( t , x ,u ,  ui, ujk)=O, u = 0  on 0G 

with F as in Section 2.4 satisfying in particular condition (c), and assume u(0, x) 
satisfies condition (2.2). 

Theorem5.2. Assume Condition II. Then Vt in 0 < t < T ,  u(t,x) satisfies con- 
dition(2.2). Furthermore if  u l = 0  at some point (X, to) in QCh{Xl=21} then for 
0<t<__to, u is symmetric about the plane x 1 =21 and (2.3) holds. 

The results in Sect. 3 also admit extensions to parabolic equations. 

Appendix. Lemma S and Related Results 

One may ask what happens if condition (1.12) in Lemma S is dropped. The 
following example shows that it is essential. In R 2, using polar coordinates, the 
function 

rcO 
w = - r ~/°° s i n - -  

0o 

is negative in the angle (2 : 0 < 0 < 0 o < n/2, vanishes on the boundary and satisfies 
Aw--O. But it does not satisfy (1.13); here aijQiaj<O at the origin. 

Since it may be of interest we will also prove a rather primitive extension of 
Lemma S to the case where condition (1.12) does not hold. The preceding example 
is then seen to be typical. 

Lemma A.1. Let  f2 be as in Lemma S. Let  we  C2(f2)c~ C(~), with w <0 in f~, w(O) =0, 
be a solution of  the elliptic differential inequality (1.10) in fL Assume that the leading 
coefficients aijE C(ff2), and satisfy (1.11), and that the others are bounded. In place of  
(1.12) assume that 

Zaijoitrj=l~l/~aij~i~j ~ at O, (A.1) 

for some constant I~," clearly - 1  <1~ < 1. Set 0 o = arc cos ( -  #). 
Suppose 

7"C 

P>Ooo 
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Let cg be a closed cone with vertex at the origin such that for some e>0,  
cgc~ {0 < Ix[ < e) lies in (2. Then there is a positive constant 6 and a neighbourhood in 
c~ of  0 in which 

w+fNP<=O. 

In particular if # > 0  we may take p < 2  and it follows that if  waCl((2) and 
gradw(0)=0, then on any ray from 0 entering f2 transversally to the surface, the 
second derivative of w cannot be bounded near the origin. On the other hand, if  # < 0  
and wEC r in (21 near O, for r > ~/Oo, then at least one of  the derivatives 

[:o] w, j = l  . . . . .  

is negative at O. 

The following may also prove useful. 

Lemma A.2. Let 0 be a component of  a cone." c~=biJxixj>O. Assume 
wECE(Q)c~C(~) near the origin, that w < 0  in ~ except at the origin, w(0)=0, and 
that w satisfies (1.10) in ~. Let p be such that the quadratic form 

Q=(p-1)aij(O)@~j+c~aij(O)c~ij>O , x~:O, x~(2. (a . l ' )  

Then there is a ~ > 0 and a neighbourhood of  0 in ~2 in which 

W-J-6~P <O. 

Both lemmas will be proved at the end of the Appendix. 
Our proof of Lemma S is an extension of Serrin's; it makes use of suitable 

comparison functions. 

Proof of Lemma S. We first remark that it suffices to prove it in case c(x)= O. The 
general case then follows by the same argument we presented for Lemma H. The 
case of strict inequality in (1.12) follows from Lemma A.1. So we just consider the 
case of equality. 

We may suppose that w < 0 in ~\0  for we may simply replace the hypersurfaces 
by spheres tangent to them at 0 and lying, otherwise entirely in ~2. 

In the closure ~ of (2 = (2c~ {Ix[ < e} we will construct a C 2 function z with the 
properties : 

z < 0  on 6 = 0  and on a = 0 ,  
(A.2) 

z(O) = zs(O) = O, zss(O) > O, 

Lz>=O. (A.3) 

Using such a function the proof is easily carried out. Set 

V=W+tZ  

1 If r is not an integer this means: weC E~I, and the derivatives of w of order [r] satisfy a H61der 
condition with exponent r - [ r ]  
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with t > 0 so small that w + tz < 0 on the part of the boundary of ~ where Ix] = e; 
recall that w < 0 on that compact set. On the other parts of the boundary of ~ we 
have v < w. Thus v < 0 on the whole boundary of ~2~. In f2~ we have 

Lv  > O. (A.4) 

By the maximum principle v achieves its maximum on the boundary - in 
particular at the point 0. Thus v~(0)<0 and if v~(0)=0 then v~(0)<0. Now v~(0) 
= %(0) and v~(0) -- w~(0) + tZ~s(O ) > w~(0), and (1.13) follows. 

After a C z change of variables we may suppose that the new surfaces are given 
by xl = 0  and x , = 0  and Q is in {xa <0}c~{x, <0}. Condition (1.12) now takes the 
form 

a l , (0)=0 .  (A.5) 

We proceed in  several steps. 
(i) First we make a linear change of variable so that in the new variables we 

also have 

al~(0)=a~,(0)-0 for l < ~ < n .  (A.6) 

Set 

Yl = X l ,  Y ~ = X n  

y~ = x~ + c~x 1 + d~x, 

with constants % d~ to be chosen. The boundaries x~ =0,  x , = 0  become Yl =0,  
y, = 0. Let us compute, using summation convention (e, fl, 7 are summed from 2 to 
n - l ) :  

aij~ x f  x: -- a 11( ~yl -~ C0(~y~)(0)~ 1 -~- CflO yfl) 
+ 2al~(0y ' + c~y.)t?y, 

+ 2al,(Oy~ + c~gy~)(0y. + d ~ . )  

+ a~pOyOy: + 2a~.(Oy. + d~Oy.)Oy.: 

+ a,,,(8,. + d=8,=)(~?y. + daS,o ) 

~-  b i j ~ y i O y  j . 

Thus 

bz,(0) =al , (0)  =0  

bt~(0 ) = a 11 (0)c~ + aa~(0) 
~ = 2 , . . . , n .  

b~,(O) = a,,,(O)d~ + a~,(O) 

We now require that these be zero - determining the c~ and d~. 
For convenience we will continue to call the new variables xj and the 

coefficients of L, aij etc. They now satisfy (A.6). In the new coordinates condition 
(1.12') means that 

0~ a l , (0 )=0 ,  1 < ~ < n .  (A.7) 
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(ii) We will now replace f2 by a slightly smaller region. With k to be chosen 
suitably large, set 

n 1 
2 

2 

~ = x . + k F ~ .  

Consider the smaller region G = £Jc~ {~b <0} c~ {~p <0}. In G near 0 we will use the 
comparison function 

z=gh  (A.8) 

with 

g=e-~O_ l ,  h = e - ~ _  l 

and c~ suitably large. Clearly 

z > 0 ,  

z = 0  on 0 = 0  and on l p = 0 ,  

zs(O)=0, zss(0)>0. 
We will choose k, e and an 8 ne ighbourhood G~ of O in G so that z satisfies 

(A.3) in G~. 
(iii) Computing,  we have 

Lz = gLh + hLg + 2aiflih.i. (A.9) 

Here g~=gx, etc. Now (here fl, , / a re  summed from 2 to n - 1 )  for c~ large: 

e~ ~22 =a,,O,O , -  ! (a,jO,, + b,O,) > co > O. 

(1.10) 
1 = O~ - 2eC~(~ + V)aljgih j =- aijOil~j 

= al,  + 2kalvx ~ + 4k2aTaxex~ + 2ka,vx ~ . 

We first choose k so that I is nonnegative on {~b = O} c~ {~p = 0}, i.e., for points of 
the form 

-kE~).  (x~, ..., x ° ) = ( - k ~ x ~ ,  x>- . - ,~° -  1, 

At such points, because of (A.7) we have 

lain t <= C(IXl] q-[Xnl-k-~X~) 

with some constant  C. C will denote various constants independent  of k and c~. 
Therefore,  supposing k > 1, 

lal.I < Ck~x  2 . 

In addition, from (A.6) we see that 

< 2 Icq~l, I%1 < Clxl = C(~ Ixal + k~x~) 
<CY~lxel 
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provided we require 

k~lxel<l. 
Inserting these in (A.10) we find 

>(cok2-Ck)~x 2 for some Co>0 

by uniform ellipticity. We now fix k > C/c o and infer 

I > 0  on {4=0}cn{W=0}a{~lx~l<k-1}.  

It follows that, with k so fixed 

I>C(O+~p) in ac~{lx]<6} (A.11) 

for some small 6 independent of ~. 
(iv) Next, for ~ large, we have 

1 ~+ ! (avq~ + 
~ e  Lg=aij(aiO j -  bf/)i) 

>Co>0 

for some positive constant c o. A similar estimate holds for Lh. Inserting these in 
(A.9) and using (A.10) and (A.11) we find 

~ e  ~ )Lz>co(1-e~°+l-e~)+2C(4)+~) (A.12) 

in ac~{Ix I <~}. 
By the theorem of the mean, for 4) __< 0, 

1 - e ~ > - ~ e ~ b .  

Let us now restrict ourselves to the region 

1 
- -  <qS,~p<O, ~ large. 

Then 

e 

(z 
1 - e ~ > - - ~ .  

e 

Inserting these in (A.12) we find 

le~(4+~Lz>(C;~cx 2 = - 2 C ) ( k b l + M ) > 0  
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for c~ large - in the region 

- -  <o~,,;<0 m{lxf<a}=G~ +. 

With ~ so fixed, in the region G~. a, the function z has all the desired properties. 
The proof  is complete. 

We turn now to Lemmas A.1 and A.2. As before it suffices to consider the case 
that c ( x ) -  O. 

First, the 

P r o o f  o f  L e m m a  A.2. We need only show that near O in f2 the function 

satisfies L z > O .  Then the proof  proceeds as before. 
A computation yields [see (A.I')] 

1 
- (o 2 - PLz = (p - 1)aij(a/~ ~ + OLO 
P 

=Q+O(Ix[ +) 
> 0  i n ~ n e a r O  

by (A.I'). Q.e.d. 

P r o o f  o f  L e m m a  A.1. As before, we may suppose w < 0  in ~\0. After a smooth 
change of variable we may suppose that the boundary hypersurfaces are hyper- 
planes x a = 0  and x, = 0. By a further linear transformation of the variables xl,  x, 
we may suppose that at 0, 

a l l = a n n = l ,  a l n = O ,  

and that (2 is the wedge: 

Xn>O, X 1 >XncotO o 

where # = - c o s 0  o. After these changes of variables the cone cg has become a 
deformed cone, but it suffices to prove the result in the new O for any closed cone 
in (2 as before - which we still denote as of. 

Near  the origin in O we shall construct a function z~C2( f2 )nC( (2 )  satisfying 

z = 0  on ~f2 (A.13) 

z(x)>Co[Xl p in c g ,  with Co>0 (A.14) 

L z > O  in f2. (A.15) 

As in the proof  of Lemma S we find that for some small t > O, w + tz  < 0 in ~ ,  and 
the desired conclusion follows. 

Introduce the complex variable 

~ = x  I + ix , , .  
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The  wedge f2 is t hen  g iven by  0 < a r g O <  0 o a n d  on  ~2 the func t i on  

v = Im(~V°°) 

is h a r m o n i c  in  the var iab les  ( x > x n )  a n d  van i shes  o n  0f2. F o r  k = P O o / ~ >  1 set 

Z = U  k . 

T h e n  z satisfies (A.13) a n d  (A.14), a n d  we will p rove  tha t  z satisfies (A.15) the 
p r o o f  of  the  l e m m a  will t h e n  be complete .  

N e a r  the  or ig in  in  • we have,  for i , j  = 1, n, 

zx~ = k v  k -  *vx, = O ( l & -  1) 

Z x ~ x , = k v k - % ~ , x j + k (  k -  1)v k 2v x,vx, = O(l~lP- 2)- 

T h u s  

z . . . .  + z  . . . .  = k ( k  - 1 ) v k - 2  ( x l  v2x.) 

>cl l~[  v - 2  for some  c 1 > 0 .  

Since L z  = z . . . .  + z . . . .  at  O, a n d  the  l ead ing  coefficients of L are c o n t i n u o u s ,  wi th  
the  o thers  b o u n d e d ,  it follows tha t  

L z > O  

in  Q n e a r  the origin.  
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