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A F F I N E  T R A N S L A T I O N  S U R F A C E S  W I T H  

C O N S T A N T  S E C T I O N A L  C U R V A T U R E  

Martin Magid and Luc Vrancken 

In this paper we characterize affine translation surfaces with constant Gaussian curvature. 
We show that  such surfaces must be flat and that one of the defining curves must be planar. 

1 I N T R O D U C T I O N  

In 1993 Nomizu and Vrancken ([4]) introduced a new transversal plane for affine surfaces 
in affine 4-space. Such surfaces come equipped with a metric, g, which is invariant under 
the group of special affine motions. One class of surfaces, for which the induced metric is 
Lorentzian, is that  of translation surfaces. By definition a translation surface is one which 
can be written, locally, as a sum of two curves. This class coincides with those surfaces 
which are both Lorentzian and harmonic. 

Affine surfaces in 4-space have been investigated in the past ([1], [2]) using transversal planes 
which are, in general, distinct fi'om those employed here. We should note that  in the case 
V9 = 0 and &gf  = 0, for the immersion f ,  that  the transversal plane defined by Klingenberg 
[2] and our own coincide. This obtains in the case of translation surfaces and so the first 
result on affine translation surfaces with our equiaffine normal plane is 

T h e o r e m  1.0 ([2]) Let M 2 be an affine translation surface in R 4. M 2 is maximal (~Tgf = O) 
iff M 2 is equivalent to an open subset of 

f (u ,  v) =- (u, u 2, P~(u), P2(u)) + (0, 0, v, v2/2), 

for  P1, P2 arbitrary functions of u. 

In this paper we will classify those translation surfaces with constant Gaussian curvature, 
i.e., the sectional curvature of the Levi-Civita connection associated to 9 is constant. We 
will prove 
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T h e o r e m  1.1 The Gaussian curvature of a translation surface is 0 iff one of the defining 
curves is planar. 

T h e o r e m  1.2 I f  the Gaussian curvature of a translation surface is constant, then it is O. 

2 BASIC EQUATIONS FOR A SURFACE IN R 4 

In what follows f : M 2 ~ R 4 will be a surface immersed in R 4. We first give the fundamental 
equations for a surface in R 4 equipped with an arbitrary transversal plane bundle or, i.e., 
( f . ) (TM)  (9 a = T R  4. Eventually we will choose a to have certain properties. 

Given any transversal a, we have the two fundamental equations. 

D x Y  = V x Y  + h(X, Y)  (1) 

Dxr : -S X + (2) 

where V x Y  and S{X are in T M  while h ( X , Y )  and V ~ (  are in a. Note that,  in these 
equations, we have suppressed the mention of f..  

Because the codimension is two, we can choose a local basis {rh, r/2} of a and rewrite h(X, Y)  
and V~7/j as follows. 

h ( X , Y )  = hl (X,Y)rh  + h2(X,Y)rl2 (3) 

Beginning with RD(X, Y ) Z  = 0 : RD(X,Y)~I, where R D is the curvature tensor of the 
standard connection in R 4, using the equations 1, 2, 3, 4 and calculating the tangential and 
a components, we obtain the structure equations of the immersion. These equations are 
called the Gauss, Codazzi and Ricci equations of the immersion. 

Choose a local frame u = {Xl, X2} on M. We define 

1 
G~,(Y, Z) = 2([X,,  X2, DyX1, DzX2] + [X1, X2, DzX , ,  DyX2]), 

which is the same as 

(5) 

(h'IXl, YI t,'lx2,zl I hxlx,,zl h'Ix ,YI ) 
G,~(Y,Z)=I[X1,X2,~I,~2] h2(X , , y )  h2(X2, Z) + h2(X, ,Z)  h2(X2, y )  (6) 

We have used [X, Y, Z, W] to denote the determinant of four vectors in R 4. The second 
expression is more useful for calculations, while the first shows that  Gu(Y, Z) is independent 
of tile choice of a, and basis {~1, ~2}. Note that  the non-degeneracy of G~ is independent of 
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the choice of frame. Thus we will say that  M is non-degenerate if G~ is non-degenerate for 
some choice of frame. In this case if we set 

G.(XI ,X1)  G~(X1,X2) 
detuG~ = G~(X1,X2)  G~(X2,X2) ' 

which is non-zero, then we can define an invariant metric g by 

g(Y, Z) - a~(Y, Z) ~ .  (7) 

We note tha t  the expression on the right-hand side of the equation can be shown to be 
independent  of u. We will only consider surfaces that  are nondegenerate with respect  to G, 
and note that ,  for non-degenerate translat ion surfaces, the metric is Lorentzian. 

Call a local frame field {Y1, :1~} a normalized null frame if g(Yj, Yj) = 0 and 9(]1"1, Y2) = 1. 
Following [4] we can find a basis {r/l, r]2} of any transversal bundle a with the following 
properties.  

[Yl, Y=, v~, v~] = 2 
h~(}q, Y,) = 1 h2(Y~, ]1"1) = 0 
hi(Y2, Y2) = 0 h2(Y2, ~6) = 1 
h~(Y. Y~) = 0 hUYt, Y:) = O. 

There is also a metric g• which can be defined on a such that  g• ~j) = 0 and g• r]2) = 
- 2 .  Final ly  we can fix a transveral plane bundle a by requiring tha t  

(vg)(Y~, yj, ~ )  = 0 = ( v g ) ( ~ ,  ~ ,  ~) ,  

where i , j  = 1,2. This condition implies that  Vw~ = 0, i.e., (V, wg) form an equiaitine 
structure.  

3 F L A T  T R A N S L A T I O N  SURFACES 

Assume tha t  we have a t ranslat ion surface given, locally, by 

f ( s ,  t) = ~(s)  +/3(t) .  (8) 

Denoting ~ by Os and ~ by Or, we see, using 6, tha t  

g(Os, Os) = 0 = g(Ot, Ot) and g(Os, Ot) = ( -d /2 ) �89  

where d = [ar, /3,a " , /3].  Here differentiation with respect to s is denoted by ' and with 
respect to t by ', for fnnctions of one variable. We use subscripts for par t ia l  differentiation 
with respect  to s or t. For convenience we write ( -d /2) �89  = cc 2, with c = 4-1 and assume 
tha t  c ~ 0. 
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We can also determine,  using Yt = -~ and Y2 = e ~ , tha t  the canonical t ransversal  plane a 
is spanned by 

ca" -- 2a'cs c/3"' -- 2/3"ct 
r h = ca ~= = ca 

Before beginning the proof of Theorem 1.1, we have a crucial lemma. 

L e m m a  3.1 I f  M 2 is a translation surface in R 4 then the induced connection V equals the 
Levi-Civita connection of the affine metric g. 

Proof of Lemma 3.1: As above, suppose that  the surface is given by f ( s ,  t) = a(s)  + t3(t). 
We note first tha t  

P r2e~ , 1 
Dos f ,  = o/' = - -  c [ 7  a + 7/lj , 

so thatVosas  = 2c-~-'Osc and, similarly, VotOt = 2~--tcOt. It is clear, of course, tha t  VasOt = 
VatOs = O. 

Using^the fact tha t  {as, at} is a null basis with respect to g and g(Os, Or) = ec 2, one can see 
that  V x Y  = • x Y .  [] 

Proof of Theorem 1.1: The Gaussian curvature of g is zero iff 

(0 
R(at, a s ) a s  = 0 = % , % s O s  - %,%~as = 2 -~ as. 

This holds iff 
0 U- ln(c~) = O. 
at as 

We note finally tha t  the sectional curvature of g equals zero iff the determinant  d is a p roduc t  
of a function of s and a function of t. 

Now assume tha t  one of the curves, say a(s ) ,  is planar. Then - d  = [o/, a " , /3 , /3 ' ]  has the 
block form 

o c(t) 
and so is a product  and the Gaussian curvature is zero. 

Conversely, let us assume tha t  the Gaussian curvature is 0. Then d is a product  of a function 
of s and a function of t. In fact, by reparametrizing ~ and /3  we may assume tha t  d is a 
constant .  

Because o/, o/',/3", and/3"' span R 4 we can write 

a" = bta' + b2fl" + baa" + b4fl 
/3- = cla' + c~/3 + eaa" + q / 3 .  

By differentiating d with respect to s and t we find 

[~ ' , /3 ,  o / " , , e ]  o ' �9 = = [ ~ , # , o / ' , # ]  
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or bad = 0 = c4d, so tha t  b3 = c4 = 0. Fur thermore  we can calculate 

III b (~[ I  
a t = 0 .= (bst + elb4)ct' + (b2t -}- b4c2)/3 -t- 4c3 k- (b4t '~ b2)/3, 

which implies tha t  b4ea -- 0 and  b2 + b4t = 0. Similarly, f rom/37  = 0 we get cs + ca~ = 0. If, 
at. some p, b4(p) # 0, then  c3 is zero in a neighborhood of p, as is cs. This  y ie lds /3"  = c2/3' 
a n d / 3  is p lanar .  If at  some point  ca(p) # O, we see tha t  a is planar.  [] 

4 C O N S T A N T  C U R V A T U R E  T R A N S L A T I O N  S U R F A C E S  

To prove Theorem 1.2 we switch to null  vector fields {Y~, Y2} and  a basis {~s, r/2} of the 
affine no rma l  p lane  as in Section 1. Because the connect ion is metric,  it is easy to see tha t  
there are funct ions  as, as so tha t  

DYLY1 ---- alYs + rh D~f}~ = -as}f i  (9) 

DyIY2 = -a lY2  Dy~}~ = asY2 + ~ .  (10) 

Fur thermore ,  from the  Codazzi equat ions we get r~(Ys) = 2al ,  r~(I%) = - 2 a s ,  T~(Y1) = 
0 = r~(Y2), while the  Gauss  equat ion gives SsI% = - k } q ,  S2Y~ = -kY=, where k is the 
sect ional  curva ture  of g. Thus  

D~5Th = bsYs + b21~ + 2aph + ba~2 

Dy2~s = kY1 - 2asrh 

Dy~Tl2 = k}~ - 2a1~2 

Dv2~2 = b4Ys + bsY2 + b6~1 + 2asT]2, 

where bs,. �9 �9 ba are addi t ional  functions on the surface. 

We can simplify the  equat ions  9-14 using the next  lemma. 

(11) 

(12) 
(13) 
(14) 

L e m m a  4.1 By rescalin9 the null f lame { ~ ,  ~ }  we can set as = �89 and as = - k .  

1 Proof of  Lemma 4.1: We choose a new normalized null  frame by se t t ing Us = r U2 = $ Y2. 

We want  al  = �89 and  as = - k ,  i.e., 

VulU,  = (1/2)U1 and Vu2U2 = -kU2 .  (15) 

This  is equivalent  to solving the system 

Fie 
~r  

= (I/2) - r 
= Ca,~ + kr ~ 
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We can find such a r iff r is integrable, i.e. 

Y1(~r - Y2(Y,r = [Y1, Y21r 

which we calculate is equivalent to 

r + 2alas + Y2al + k) = O. 

This does, in fact, hold, because tile factor inside the parentheses is equivalent to the Gauss 
equation. []  

At this point we have the following values from 9 and 10: 

h l (Ya ,Y , )  = 1 h2(Y1,Y1) = 0 

h'(Y1, }~) = 0 h2(Y1, Y~) = 0 

h I(z~, ~5) = 0 h~(Y2, Y~) = 1, 

and, from 11 -14 we have 

and 

S l ~  = -b lY1  - b2Y2 

SlY2 = --kZl 

&Y~ = - k Y 2  

S~ Y2 = -b4 Y1 - bs Y2 

T:(Zl) = 0 T1'0%) = 2k 
~,~(Zl) = b~ ;,~(y2) = o 

Tile Codazzi and Ricci equations thus yield 

Y2bl = 2kbl - b3b4 

Ylb4 = -2b4 - bib6 

and 

Y2b2 = 4 k b 2 - b 3 b 5  

Ylb5 = - b 2 b 6 - b 5  

3k = b3b 6 

Y2b3 = 5kb3 - b 2  

Ylb6 = - b 4 - ( 5 / 2 ) b 6  

If we assume that  k ~ 0, we can set b6 = 3k/bz, and get from 31 

}'] b3 ba b~ 5 b 

(16) 

(17) 

( i s )  

(19) 
(20) 
(21) 
(22) 

(23) 
(24) 

(25) 
(26) 

(27) 

(28) 

(29) 
(30) 
(31) 

(32) 
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P w o f  of  Theorem 1.2: We break tile proof of Theorem 2 into three parts. We are assuming 
we have a constant curvature tranlation surface with k ~ 0 and will derive a contradiction. 
We first assume b2b4 7 ~ 0 and set 

}qb2 = 5kba + 2b2 + g, (33) 

with g to be determined. 

From the integrability condition for ba we find 

while from b2 we get 

3kg 2b2b4 (34) 
Y2b4 = -4kb4 -- b7  + 5-'7-' 

b2ab4b5 
Y2g = 12kb2 + 5kg - - -  

3k 

Using these values we calculate the integrability condition for b4 and find 

b] (4b4g 2b2b~ 3blb2k 15kg'~ 
Ylg  = - ~  \ ba 3k + 3b4k - b-----~a + 2623 ,}" 

At this point we can calculate that the integrability condition of 9 yields 

b3 + g  2 0 k - - - ~ - - ] + \  9k ~ 16b~bab4 = 0 .  

Solving for g we find 

2b2b3b4k - 15bak a 4- v /~ /4b2b~b4k  4 - 15b~k 6 

g = 6k 2 

If we now differentiate 37 with respect to Y1 and Y2 and use 38 we get 

baba(-2b2bab4k§ 2) 
b 1 = 6 b 2 k a  �9 

5 5 ~. - -  2bab4k 

Substituting these values into 27 gives 

5ba (36k 2 _ 7b2b4) = 0 
b2 

or b4 = 36k2/Tb> From 28 we then get, (with the choice of the + ) that  

49b~k 

(35) 

(36) 

(37) 

(as) 

(39) 

(40) 

(41) 
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or b3k = 0, which is a contradiction. 

To end the proof we must take care of the cases when b2 ----- 0 and b4 = 0. 

If b2 = 0 then we can see from 27 that  b~ = 0. If we now set I~b4--  g, a function to be 
determined, we get, from the integrability of b 3 that  

15k  (42) 
g = k  - 4 b 4 +  b3 ] "  

The integrability of b4 shows that  b4 = bl = 0. Finally, the integrability of b3 gives b3k = O. 
which is a contradiction. 

Finally, if we assume that  b4 = 0 we set Ylb2 = g and find that  g = 2b2 + 5kb3. The 
integrability of b2 shows that  b2 = 0 which again forces kb3 = O. [] 
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