Convergence of the Quantum Boltzmann Map

R. F. Streater *

Bedford College, Regent's Park, London, NW1 5NS, England

Abstract. We consider a non-linear map on the space of density matrices, which we call the Boltzmann map τ . It is the composition of a doubly stochastic map T on the space of *n*-body states, and the conditional expectation onto the one-body space. When T is ergodic, then the iterates of τ take any initial state to the uniform distribution. If the energy levels are equally spaced, and T conserves energy and is ergodic on each energy shell, then iterates of τ take any initial state of finite energy to a canonical distribution.

1. Introduction

(1.1) This paper is the quantum version of [1]. Let \mathscr{H} be a Hilbert space with dim $\mathscr{H} = N \leq \infty$. A (normal) state ϱ is then a positive operator with unit trace. We denote the set of trace-class operators by $\mathscr{B}(\mathscr{H})_1$ and the normal¹ states by $\sigma(\mathscr{H})$. A stochastic map is a linear map T from $\mathscr{B}(\mathscr{H})$ to $\mathscr{B}(\mathscr{H})$ mapping $\sigma(\mathscr{H})$ to itself and preserving the trace: $\operatorname{Tr}(T\varrho) = \operatorname{Tr} \varrho$, $\varrho \in \mathscr{B}(\mathscr{H})_1$. A doubly stochastic map is a stochastic map T such that $T1_N = 1_N$, where 1_N is the identity on \mathscr{H} [4].

A unitary or anti-unitary conjugation $\varrho \mapsto T\varrho = U\varrho U^{-1}$ is doubly stochastic, as is any convex combination of such maps.

(1.2) Let \mathscr{K} be a Hilbert space, the one-particle space, and

(1.3) let $\mathcal{H} = \mathcal{K} \otimes \ldots \otimes \mathcal{K}$ (*n* factors) be the *n*-particle space.

We shall be interested in a doubly stochastic map $T: \mathscr{B}(\mathscr{H}) \rightarrow \mathscr{B}(\mathscr{H})$ that preserves the symmetry under permutations of the factors \mathscr{H} . To such a T we define the corresponding *Boltzmann map* τ to be the composition of maps:

(1.4)
$$\varrho \mapsto \varrho \otimes \ldots \otimes \varrho \mapsto T(\varrho \otimes \ldots \otimes \varrho) \mapsto \operatorname{Tr}_{2 \ldots n} T(\varrho \otimes \ldots \otimes \varrho) = \tau(\varrho).$$

Here, $\operatorname{Tr}_{2...n}$ means the trace over the second, third, ..., n^{th} factors \mathscr{K} . Obviously, (1.4) defines a non-linear map $\tau: \sigma(\mathscr{K}) \to \sigma(\mathscr{K})$.

^{*} Present address: Department of Mathematics, Kings College Strand, London WC2 R2LS, England

¹ Normal in the sense [2] of linear functionals on the W^* -algebra $\mathscr{B}(\mathscr{H})$, not in the sense of [3]

(1.5) Alicki and Messer [5] have suggested a similar map for continuous time, where the analogue of T is completely positive. Our choice is motivated by the following result:

(1.6) **Theorem.** Let $\varrho \in \sigma(\mathscr{K})$ have finite entropy: $S(\varrho) = -\operatorname{Tr} \varrho \log \varrho < \infty$. Then (1.7) $S(\tau \varrho) \ge S(\varrho)$.

Proof.

$$nS(\tau \varrho) = \sum_{i} S(\mathrm{Tr}_{1 \dots \hat{j} \dots n} T(\varrho \otimes \dots \otimes \varrho))$$

by symmetry, where \hat{j} means *j* is omitted

$$\geq S(T(\varrho \otimes \ldots \otimes \varrho))$$

by [6, Proposition 2.5.6]

 $\geq S(\varrho \otimes \ldots \otimes \varrho)$

by [4, Lemma 2-5, Corollary]

 $= nS(\varrho)$. \Box

(1.8) To show that $\tau^m \varrho$ converges to the uniform distribution if $N < \infty$, we must postulate some ergodic properties. Now, T is a linear operator on the Hilbert space of Hilbert-Schmidt operators on \mathscr{H} . Let us say T is *ergodic* if 1_N is the only fixedpoint of T in $\mathscr{B}(\mathscr{H})$. Let us say that T has a spectral gap Δ , $0 < \Delta < 1$ if it is ergodic and the spectrum of T^*T is contained in $[0, 1-\Delta] \cup \{1\}$.

2. Entropy Gain Under a Doubly Stochastic Map

We give a sharp estimate which will imply the convergence of $\tau^m \varrho$ when T is ergodic.

(2.1) **Lemma.** Let \mathscr{H} be a Hilbert space with dim $\mathscr{H} = N < \infty$, and denote by $\mathscr{B}(\mathscr{H})_2$ the Hilbert space of operators on \mathscr{H} with scalar product $\langle A, B \rangle = \operatorname{Tr}(A^*B)$. Let $T: \mathscr{B}(\mathscr{H})_2 \to \mathscr{B}(\mathscr{H})_2$ be a doubly stochastic map, ergodic with spectral gap \varDelta . Let $A \in \sigma(\mathscr{H})$ and let B = TA. Then

(2.2)
$$S(B) - S(A) \ge \frac{\Delta}{2} \|A - N^{-1} \mathbf{1}_N\|_2^2.$$

Proof. Let $\{\varphi_i, a_i\}$ and $\{\psi_i, b_j\}$ be the orthonormal eigenvectors and eigenvalues of A and B, respectively. Then $0 \le a_i, b_j \le 1$. Let $f(x) = x \log x, c_{ij} = \langle \varphi_i, \psi_j \rangle_{\mathscr{H}}$. Then, as in [6, 2.5.2] we have

$$\langle \varphi_i, \{f(A) - f(B) - (A - B)f'(B) - \frac{1}{2}(A - B)^2 \} \varphi_i \rangle_{\mathscr{H}}$$

= $\sum_{i,j} |c_{ij}|^2 \{f(a_i) - f(b_j) - (a_i - b_j)f'(b_j) - \frac{1}{2}(a_i - b_j)^2 \}.$

Now, in the range of a_i, b_j we have

$$f(x) - f(y) - (x - y)f'(y) = \frac{1}{2}(x - y)^2 f''(\xi),$$

where $0 \leq \xi \leq 1$ and $f''(\xi) = \frac{1}{\xi} \geq 1$. Thus

$$f(a_i) - f(b_j) - (a_i - b_j) f'(b_j) - \frac{1}{2} (a_i - b_j)^2 \ge 0.$$

Summing over i gives the following sharper form of [6, Proposition 2.5.3]:

$$\operatorname{Tr}\{A\log A - B\log B - (A - B)(\log B + 1) - \frac{1}{2}(A - B)^{2}\} \ge 0,$$

i.e.

(2.3)
$$\operatorname{Tr}\{A(\log A - \log B)\} \geq \frac{1}{2} \operatorname{Tr}(A - B)^2.$$

By [4, Theorem 2-2], there exist unitaries U_{α} and non-negative numbers w_{α} with $\sum_{\alpha} w_{\alpha} = 1$ and $B = TA = \sum_{\alpha} w_{\alpha}A_{\alpha}$, $A_{\alpha} = U_{\alpha}AU_{\alpha}^{-1}$. Then for each α , $\operatorname{Tr} A_{\alpha}(\log A_{\alpha} - \log B) \ge \frac{1}{2}\operatorname{Tr}(A_{\alpha} - B)^{2}$, so multiplying by w_{α} and summing, and noting that $\operatorname{Tr} A_{\alpha} \log A_{\alpha} = \operatorname{Tr} A \log A$ and $\sum w_{\alpha} = 1$:

$$\operatorname{Tr}(A\log A - B\log B) \ge \frac{1}{2} \sum_{\alpha} w_{\alpha} \operatorname{Tr}(A_{\alpha} - B)^{2}$$

i.e.

$$S(B) - S(A) \ge \frac{1}{2} \sum_{\alpha} w_{\alpha} \{ \langle A_{\alpha}, A_{\alpha} \rangle - \langle A_{\alpha}, B \rangle - \langle B, A_{\alpha} \rangle + \langle B, B \rangle \}$$

= $\frac{1}{2} \{ \langle A, A \rangle - \langle B, B \rangle \} = \frac{1}{2} \{ \langle A, A \rangle - \langle A, T^*TA \rangle \}.$

Now 1_N is a simple eigenvalue of T^*T , and we may write the orthogonal decomposition $A = \frac{1}{N} 1_N \oplus \left(A - \frac{1}{N} 1_N\right)$. Hence

$$S(B) - S(A) \ge \frac{1}{2} \langle A, (1_N - T^*T) A \rangle$$

= 2⁻¹ \lap A - N⁻¹1_N, (1_N - T^*T) (A - N⁻¹1_N) \lap
\ge \frac{A}{2} \left| A - \frac{1}{N} 1_N \left|_2^2

since Δ is the smallest eigenvalue of $1 - T^*T$ apart from 0. \Box

(2.4) Corollary. Let $A = \varrho_{12}$ on $H_1 \otimes H_2$, and $B = \varrho_1 \otimes \varrho_2$, where $\varrho_1 = \text{Tr}_2 \varrho_{12}$, etc. Then $-\text{Tr}A\log A = S_{12}$, $-\text{Tr}A\log B = S_1 + S_2$ in the sub-additive entropy inequality [4, Proposition 2.5.6] gives a quantitative estimate

$$S_1 + S_2 - S_{12} \ge \frac{1}{2} \| \varrho_{12} - \varrho_1 \otimes \varrho_2 \|_2^2.$$

(2.5) **Theorem.** The microcanonical limit. Let dim $K = k < \infty$, and T a symmetry – preserving ergodic doubly stochastic map on $K \otimes ... \otimes K$. Then for any $\varrho \in \sigma(K)$, $\tau^m \varrho \rightarrow k^{-1} \mathbf{1}_K$ as $m \rightarrow \infty$.

Proof. The entropy $S(\tau^m \varrho)$ is increasing and bounded above, and so converges. Hence the increment $S(\tau^{m+1}\varrho) - S(\tau^m \varrho)$ converges to 0. In finite dimensions $\Delta > 0$, so (2.2) implies that

$$\left| \left| \tau^{m} \varrho \otimes \ldots \otimes \tau^{m} \varrho - \bigotimes_{1}^{n} k^{-1} 1_{\mathscr{X}} \right| \right|_{2} \to 0,$$

and so $\tau^m \varrho \rightarrow k^{-1} \mathbf{1}_{\mathcal{K}}$, as $m \rightarrow \infty$.

3. Energy Conservation

(3.0) In order to discuss the canonical Gibbs state, we must introduce an energy operator H on \mathscr{K} (\mathscr{K} can be ∞ -dimensional in what follows). Thus let H have spectrum 0, 1, 2, ... and suppose that the multiplicity m(j) of the energy-level j is finite and that for some $\kappa > 0$ and integer r,

$$(3.1) mtextbf{m}(j) \leq \kappa j^r, j = 1, 2, \dots$$

These conditions ensure that $e^{-\beta H}$, $\beta > 0$, is of trace class. The equal spacing of the energy levels limits the theory to a rather special class; but it does allow thorough mixing to take place by scattering that conserves energy. This would not be possible if, for example, the energy levels were not commensurate.

(3.2) Let $H = \sum_{j=1}^{\infty} j(E_j - E_{j-1})$ be the spectral resolution of H, and let $H_M = \sum_{j=1}^{M} j(E_j - E_{j-1})$. Then $H_M \in \mathscr{B}(\mathscr{K})$. We say that a state ϱ on $\mathscr{B}(\mathscr{K})$, not necessarily normal, has finite mean energy \mathscr{E} if

$$\lim_{M\to\infty} \operatorname{Tr}(\varrho H_M) = \mathscr{E} < \infty \,.$$

(3.3) We again consider a doubly stochastic map T on $\bigotimes^n \mathscr{H} = \mathscr{H}$. We require T to mix up states in \mathscr{H} of the same energy, but not to mix up states of differing energy. Thus let \mathfrak{h} be the generator of $\bigotimes^n e^{iHt}$; then \mathfrak{h} is an operator on \mathscr{H} with spectrum 0, 1, 2, ... and having finite multiplicity. Let \mathscr{H}_n , $\eta = 0, 1, ...$ be the subspace with energy η . $\mathscr{B}(\mathscr{H}_n)$, called the "energy-shell η " is a finite-dimensional space that can be identified with the subspace of $\mathscr{B}(\mathscr{H})_2$ consisting of operators mapping \mathscr{H}_n to \mathscr{H}_n and being zero on \mathscr{H}_n^{\perp} . In the scalar product of (2.1), we may write $\mathscr{B}(\mathscr{H})_2$ as a direct sum of orthogonal subspaces

$$\mathscr{B}(\mathscr{H})_2 = \bigotimes_{\eta=0}^{\infty} \mathscr{B}(\mathscr{H}_{\eta}) \bigotimes \mathscr{L},$$

where \mathscr{L} is orthogonal to all energy shells. We consider doubly stochastic maps T that mix up each energy shell $\mathscr{B}(\mathscr{H}_n)$:

(3.4) T maps $\mathscr{B}(\mathscr{H}_n)$ to itself, $\eta = 0, 1, 2, ...$ and maps \mathscr{L} to itself. Restricted to $\mathscr{B}(\mathscr{H}_n)$, T is ergodic. T commutes with permutations of the *n* factors $\mathscr{B}(\mathscr{K})$.

This class of doubly stochastic maps is the quantum analogue of the classical version [1]. Our assumption (3.4) leads to the conservation of mean energy under τ (but not the mean of functions of energy, such as its variance):

(3.5) **Theorem.** Let T map each $\mathscr{B}(\mathscr{H}_{\eta})$ and \mathscr{L} into itself, and commute with permutations. Then the mean energy is invariant under τ .

Proof. Let $\varrho \in \mathscr{B}(\mathscr{H})_1$ be such that

$$\operatorname{Tr}(\varrho H) = \lim_{M \to \infty} \operatorname{Tr}(\varrho H_M) = \mathscr{E} < \infty$$

We note that

$$\mathfrak{h}_{M} = H_{M} \otimes 1 \dots \otimes 1 + \dots + 1 \otimes \dots \otimes 1 \otimes H_{M}.$$

Then by the symmetry of T

 $\operatorname{Tr}(H_{M}\tau\varrho) = n^{-1}\operatorname{Tr}_{1\dots n}\{\mathfrak{h}_{M}T(\varrho\otimes \dots \otimes \varrho)\}.$

This is a finite-dimensional trace and it can be evaluated in any basis, e.g. in a basis of eigenvectors of \mathfrak{h}_M . Then it involves only the block diagonal terms of $\varrho \otimes \ldots \otimes \varrho$, which are in $\mathscr{B}(\mathscr{H}_{\eta}), \eta = 0, \ldots, nM$. On each of these subspaces, \mathfrak{h}_M is $\eta \cdot 1_{\mathscr{H}_{\eta}}$, and so commutes with T. Hence

$$\operatorname{Tr}(H_M\tau\varrho) = n^{-1}\operatorname{Tr}_{1\dots n}(T(\mathfrak{h}_M\varrho\otimes \dots\otimes \varrho)) = n^{-1}\operatorname{Tr}_{1\dots n}(\mathfrak{h}_M\varrho\otimes \dots\otimes \varrho)$$

as T is trace-preserving

$$= \operatorname{Tr}(H_{M}\varrho).$$

Hence $\lim_{M\to\infty} \operatorname{Tr}(H_M\tau\varrho) = \mathscr{E}$, so $\tau\varrho$ has finite mean energy, \mathscr{E} the same value as ϱ .

(3.6) Remark. It has been pointed out by the referee that it is not enough to suppose that T commutes with the time-evolution $A \mapsto e^{i\mathfrak{h}t}Ae^{-i\mathfrak{h}t}$ of density matrices $A \in \mathscr{B}(\mathscr{H})_1$: the mean energy fails to be conserved in general unless T maps $\mathscr{B}(\mathscr{H}_n)$ and \mathscr{L} to themselves. As a counterexample in two dimensions, let $\mathfrak{h} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $T\begin{pmatrix} a & b \\ b^* & c \end{pmatrix} = \begin{pmatrix} c & 0 \\ 0 & a \end{pmatrix}$. Then T commutes with $[\cdot, \mathfrak{h}]$, but does not leave the diagonal blocks invariant. Average energy is not invariant under T.

Physically, such transformations T are "too stochastic" and do not lead to the canonical ensemble.

4. Weak * Convergence

(4.1) The set of all states of $\mathscr{B}(\mathscr{K})$, not necessarily normal ones, is w*-compact. The sequence $\{\tau^m \varrho\}_{m=0,1,...}$ therefore has a w*-convergent subnet $\{\varrho_{\alpha}\}_{\alpha \in I}$. If ϱ has mean energy \mathscr{E} , then by (3.5)

(4.2)
$$\operatorname{Tr}(\varrho_{\alpha}H) = \mathscr{E} \quad \text{for} \quad \alpha \in I$$
.

(4.3) The entropy of a state $\varrho \in \mathscr{B}(\mathscr{H})_1$ of finite mean energy is finite and \leq the entropy of the Gibbs state of the same energy. Since the entropy is non-decreasing under τ , $S(\tau^m \varrho)$ converges as $m \to \infty$, and $S(\varrho_n)$ converges to the same limit as $\alpha \to \infty$.

(4.4) Lemma. Let
$$\varrho_{\infty} = w^* \lim_{\alpha \to \infty} \varrho_{\alpha}$$
. Let $P_j = \varrho_{\infty}(E_j), j = 0, 1, 2, \dots$. Then $\lim_{j \to \infty} P_j = 1$.

(4.5) Remark. This is tantamount to showing that ρ_{∞} is normal.

(4.6) Proof. Let $p_j = P_j - P_{j-1}$, j = 0, 1, 2, ... and $p_j^{\alpha} = \operatorname{Tr} \varrho_{\alpha}(E_j - E_{j-1})$. Then $\mathscr{E} = \operatorname{Tr}(\varrho_{\alpha}H) = \sum_j jp_j^{\alpha}$, and $p_j = \lim_{\alpha} p_j^{\alpha}$. Hence p_j obeys the conditions of [1, (3.15)], and so $\sum_{0}^{\infty} p_j = \lim_{j \to \infty} P_j = 1$.

(4.7) It does not seem easy to prove that $\sum jp_j = \mathscr{E}$ unless, of course, $k = \dim \mathscr{H} < \infty$. This might indicate that, for certain initial states, energy can escape up the energy ladder, say, by "heat solitons". But since for any M, $\sum_{1}^{M} jp_j^{\alpha} \leq \mathscr{E}$, we have $\sum_{1}^{M} jp_j \leq \mathscr{E}$. Hence $\lim_{M \to \infty} \varrho_{\infty}(H_M) = \sum_{j=1}^{\infty} jp_j \leq \mathscr{E}$ and the limit state ϱ_{∞} has finite mean energy $\leq \mathscr{E}$. (4.8) We now give an estimate for the entropy in the tail of a state.

(4.9) **Lemma.** Let H be as in (3.1), and ϱ be a positive operator of trace class such that $\operatorname{Tr} \varrho = q$ and $\operatorname{Tr} (\varrho H) \leq \mathscr{E}$. Then $-\operatorname{Tr} (\varrho \log \varrho) = O(q \log q)$ as $q \rightarrow 0$.

(4.10) *Proof.* The largest value of $-\operatorname{Tr} \rho \log \rho$, subject to the conditions $\operatorname{Tr}(\rho H) \leq \mathscr{E}$, $\operatorname{Tr} \rho = q$ is achieved at the Gibbs-like operator ρ , diagonal in a basis provided by the eigenvectors of H. Then the problem reduces to the classical case: maximize

$$s = -\sum_{0} m(j) p_j \log p_j$$

among sequences of non-negative numbers $\{p_i\}$ obeying the constraints

(4.11)
$$\sum_{0} m(j)p_{j} = q, \quad \sum_{1} m(j)jp_{j} \leq \mathscr{E}$$

When the multiplicity m(j) is 1 for all j, then Lemma 3.19 of [1] shows that

$$s \leq -2q \log q + q(1 + \log \mathscr{E}) = O(q \log q).$$

The same method also works when $m(j) \leq \kappa$. So we have proved the lemma when the index r of (3.1) is zero. We proceed by induction on r. Suppose the lemma is true for all sequences $\{p_j\}$ obeying (3.3) with $m(j) \leq \kappa j^{r-1}$, j = 1, 2, ... Now let $\{p_j\}$ satisfy (4.11) with $m(j) \leq \kappa j^r$. Write $\{p_j\}$ together with repetitions for multiplicity as the union of sequences $\{p_j^{(\alpha)}\}, \alpha = 1, 2, ...$ defined by

(4.12)
$$p_j^{(\alpha)} = \begin{cases} p_j & \text{if } j \ge \alpha, \\ 0 & \text{otherwise.} \end{cases}$$

In the sequence $\{p_j^{(\alpha)}\}_{j=0,1,...}$ we repeat $p_j^{(\alpha)}$ with multiplicity $m(\alpha, j)$ which might be 0 or as large as $m(j)/j \leq \kappa j^{r-1}$. It is possible to do this so that $m(j) = \sum_{\alpha} m(\alpha, j)$. Define

$$q^{(\alpha)} = \sum_{j} m(\alpha, j) p_{j}^{(\alpha)},$$
$$\mathscr{E}^{(\alpha)} = \sum_{j} m(\alpha, j) j p_{j}^{(\alpha)} \leq \mathscr{E},$$
$$s^{(\alpha)} = -\sum_{j} m(\alpha, j) p_{j}^{(\alpha)} \log p_{j}^{(\alpha)}.$$

Then $\sum_{\alpha} q^{(\alpha)} = q$, $\sum_{\alpha} \mathscr{E}^{(\alpha)} \leq \mathscr{E}$, $\sum_{\alpha} s^{(\alpha)} = s$.

Now, the induction hypothesis implies that $s^{(\alpha)} = O(-q^{(\alpha)}\log q^{(\alpha)})$ uniformly in α . Also, the condition (4.12) implies $\sum \alpha q^{(\alpha)} \leq \mathscr{E}$:

$$\sum \alpha q^{(\alpha)} = \sum_{\alpha} \sum_{i} \alpha m(\alpha, j) p_{j}^{(\alpha)} \leq \sum_{\alpha} \sum_{j} j m(\alpha, j) p_{j}^{(\alpha)}$$
$$\leq \sum_{j} j \sum_{\alpha} m(\alpha, j) p_{j}^{(\alpha)} \leq \sum_{j} j m(j) p_{j} = \mathscr{E}.$$

Thus $\{q^{(\alpha)}\}$ itself obeys the conditions of [1, Lemma 3.19], namely $\sum_{\alpha} q^{(\alpha)} = q$, $\sum \alpha q^{(\alpha)} \leq \mathscr{E}$. So by [1, (3.19)]:

$$-\operatorname{Tr} \varrho \log \varrho \leq s = 0\left(\sum_{\alpha} - q^{(\alpha)} \log q^{(\alpha)}\right) = O(-q \log q). \quad \Box$$

The main point is that $s \rightarrow 0$ as $q \rightarrow 0$. This result gives an extension of the classical theory [1] to the case with multiplicity m(j) as in (3.1).

5. Convergence to a Gibbs State

(5.1) Suppose now that T maps \mathscr{L} to itself and each $\mathscr{B}(\mathscr{H}_{\eta})$ to itself, and is ergodic on each $\mathscr{B}(\mathscr{H}_{\eta})$. Let $\sigma_m = \tau^m \varrho \otimes \ldots \otimes \tau^m \varrho$ and let $\sigma_m(\eta)$ be the diagonal block matrix obtained from σ_m by restricting to \mathscr{H}_{η} . Then, as in Theorem (2.5), we see that the component of $\sigma_m(\eta)$ orthogonal [in the sense of $\mathscr{B}(\mathscr{H})_2$] to multiples of the identity $1_{\mathscr{H}_{\eta}}$, converges to 0 as $m \to \infty$. In particular, the off-diagonal elements converge to 0. This does not (yet) show that $\sigma_m(\eta)$ converges, as we have not controlled the trace. But along the convergent subnet ϱ_{α} we also get convergence of σ_{α} and of $\sigma_{\alpha}(\eta)$: this must converge to a multiple of $1_{\mathscr{H}_{\eta}}$. To see clearly why this implies that ϱ_{∞} is diagonal in the energy basis, first take n=2. Write, in Dirac notation

$$\varrho = \sum \varrho_{ij}^{\mu\nu} |\mu i\rangle \langle \nu j|,$$

where *i*, *j* are energy labels and $1 \le \mu \le m(i)$, $1 \le \nu \le m(j)$; μ, ν label the multiple states of energy *i*, *j*, respectively. Then $\sigma = \rho \otimes \rho$ has the off-diagonal terms

$$\varrho_{ij}^{\mu\nu}\varrho_{i'j'}^{\mu'\nu'}|\mu i\rangle|\mu' i'\rangle\langle\nu j|\langle\nu' j'|,$$

including the case $i \neq j$ or $\mu \neq \nu$ where i' = j, i = j', $\mu' = \nu$, $\mu = \nu'$. Thus the coefficient $\varrho_{ij}^{\mu\nu}\varrho_{ji}^{\nu\mu} = |\varrho_{ij}^{\mu\nu}|^2$ converges to 0 as $m \to \infty$. This is the general off-diagonal element of ϱ . Thus ϱ_{∞} is diagonal in the energy basis.

If n > 2 we note at least one diagonal element $\varrho_{kk}^{\mu\mu}$ does not converge to zero, by (4.4). Then if $(n-2)k+i+j=\eta$, the off-diagonal element of $\sigma(\eta)$,

$$\varrho_{kk}^{\mu\mu}\ldots\varrho_{kk}^{\mu\mu}\varrho_{ij}^{\lambda\nu}\varrho_{ji}^{\nu\lambda}=|\varrho_{kk}^{\mu\mu}|^{n-2}|\varrho_{ij}^{\lambda\nu}|^2$$

converges to zero for any *i*, $\lambda \neq j$, ν ; then $\varrho_{ij}^{\lambda\nu} \rightarrow 0$. Thus ϱ_{∞} is diagonal in the energy basis. The argument now reduces to the classical case [1]: in order for $\sigma_{\infty} = \varrho_{\infty} \otimes ... \otimes \varrho_{\infty}$ to be a multiple of the identity on each H_{η} , ϱ_{∞} being diagonal, we obtain the result: ϱ_{∞} is a Gibbs state, ϱ_{β} . From (4.7), its energy is $\leq \mathscr{E}$. To be precise, we have shown that ϱ_{∞} coincides with ϱ_{β} as a state on $\bigcup_{i} \mathscr{B}(E_{j}\mathscr{K})$.

Recalling that $\{E_i\}$ is the spectral resolution of H, we have for any j and $A \in \mathscr{B}(\mathscr{K})$,

$$\varrho_{\infty}(A) = \varrho_{\infty}(E_{j}AE_{j}) + \varrho_{\infty}((1-E_{j})AE_{j}) + \varrho_{\infty}(E_{j}A(1-E_{j})) + \varrho_{\infty}((1-E_{j})A(1-E_{j})).$$

By Schwarz' inequality for states,

$$|\varrho_{\infty}(1-E_{j})AE_{j}| \leq [\varrho_{\infty}(1-E_{j})]^{1/2} [\varrho_{\infty}(E_{j}A^{*}AE_{j})]^{1/2},$$

and by (4.4), $\varrho_{\infty}(1-E_j) \to 0$ as $j \to \infty$, the other factor being bounded. Similarly, the other terms converge to 0 as $j \to \infty$. But $\varrho_{\infty}(E_jAE_j) = \varrho_{\beta}(E_jAE_j)$, and this converges to $\varrho_{\beta}(A)$ as $j \to \infty$, as ϱ_{β} is normal. Hence $\varrho_{\infty}(A) = \varrho_{\beta}(A)$ for all $A \in \mathscr{B}(\mathscr{K})$.

(5.2) The same argument shows that any other w^* convergent subnet $\{\varrho_{\beta}\}_{\beta \in J}$ of $\{\tau^m \varrho\}$ converges to a Gibbs state of energy $\leq \mathscr{E}$, but (so far), it could be different from ϱ_{∞} . We show they are the same by showing they have the same entropy, namely $\lim S(\tau^m \varrho)$.

(5.3) **Theorem.** Under the above conditions, $S(\varrho_{\alpha}) \rightarrow S(\varrho_{\infty}), \alpha \rightarrow \infty$. Proof. Choose $\varepsilon > 0$. Write $\varrho_{\alpha} = E_i \varrho_{\alpha} E_i + A$, $A = \varrho_{\alpha} - E_i \varrho_{\alpha} E_i \ge 0$ and

(5.4)
$$q = \operatorname{Tr} A = \sum_{k=j}^{\infty} \operatorname{Tr} (E_{k+1} - E_k) \varrho_{\alpha} \leq j^{-1} \sum_{k=j}^{\infty} \operatorname{Tr} k (E_{k+1} - E_k) \varrho_{\alpha}$$
$$= j^{-1} \operatorname{Tr} (H \varrho_{\alpha}) = j^{-1} \mathscr{E}.$$

Choose j_0 large enough so that q is small enough so that, by (4.9), $S(A) < \varepsilon$ for all α and all $j \ge j_0$. Then, by the subadditivity of the entropy [7],

(5.5)
$$S(\varrho_{\alpha}) \leq S(E_{j}\varrho_{\alpha}E_{j}) + S(A) \leq S(E_{j}\varrho_{\alpha}E_{j}) + \varepsilon$$

for all α and all $j \ge j_0$. Since $E_j \varrho_{\alpha} E_j$ (*j* fixed) has finite rank, *S* is continuous on this subspace. Taking limits of (5.5) gives for $j \ge j_0$:

(5.6)
$$s = \lim_{\alpha} S(\varrho_{\alpha}) \leq \lim_{\alpha} S(E_j \varrho_{\alpha} E_j) + \varepsilon = S(E_j \varrho_{\infty} E_j) + \varepsilon.$$

Taking the limit $j \to \infty$ gives [8, Appendix] $s \leq S(\rho_{\infty}) + \varepsilon$. Since this is true for every $\varepsilon > 0$, we get $s \leq S(\rho_{\infty})$. Now let j be so large that

$$S(\varrho_{\infty}) \leq S(E_j \varrho_{\infty} E_j) + \frac{\varepsilon}{2}.$$

This is possible [8, Appendix].

For this *j* choose α_0 so large that for all larger α ,

$$S(E_j \varrho_{\alpha} E_j) \geq S(E_j \varrho_{\infty} E_j) - \frac{\varepsilon}{2}.$$

Then

$$S(\varrho_{\infty}) \leq S(E_j \varrho_{\infty} E_j) + \frac{\varepsilon}{2} \leq S(E_j \varrho_{\alpha} E_j) + \varepsilon \leq S(\varrho_{\alpha}) + \varepsilon$$

for all larger α ,

 $\leq s + \varepsilon$.

Since this is true for every $\varepsilon > 0$, we have $S(\varrho_{\infty}) \leq s$. This gives $S(\varrho_{\infty}) = s$. \Box

(5.8) We can now put together the results.

Theorem. Let H be a self-adjoint operator on \mathscr{K} with spectrum 0, 1, 2, ..., and the finite multiplicity m(j) of eigenvalue j obeys $m(j) \leq \kappa j^r$, j = 1, 2, ... Let $\mathscr{H} = \mathscr{K} \otimes ... \otimes \mathscr{K}$, and let T be a symmetry-preserving doubly stochastic map on $\mathscr{B}(\mathscr{H})_1$, T mapping \mathscr{L} and each $\mathscr{B}(\mathscr{H}_n)$ to itself and ergodic on each energy shell. Let τ be the corresponding Boltzmann map. Let ϱ be any density matrix on \mathscr{K} with finite mean energy \mathscr{E} .

Then $\tau^m \varrho$ converges as $m \to \infty$ in trace norm to a Gibbs state $\varrho_{\infty} = e^{-\beta H} / \text{Tr} e^{-\beta H}$ of energy $\leq \mathscr{E}$, as $m \to \infty$.

Proof. Any convergent subnet of $\{\tau^m \varrho\}$ converges w^* to a Gibbs state (Sect. 5.1). All such limit states have the same entropy (Sect. 5.3) and are therefore the same.

Therefore, $\{\tau^m \varrho\}$ converges in the w* topology to a Gibbs state. Its energy is $\leq \mathscr{E}$, by Sect. 4.7. The convergence in trace-norm follows from

$$\begin{split} \|\tau^{m}\varrho - \varrho_{\infty}\|_{1} &\leq \|\tau^{m}\varrho - E_{j}\tau^{m}\varrho E_{j}\|_{1} \\ &+ \|E_{j}\varrho_{\infty}E_{j} - E_{j}\tau^{m}\varrho E_{j}\|_{1} + \|\varrho_{\infty} - E_{j}\varrho_{\infty}E_{j}\|_{1} \end{split}$$

and (5.4), using that $\tau^m \rho \to \rho_{\infty}$ when restricted to the finite-dimensional space $E_j \mathscr{K}$.

(5.9) If T is not ergodic on the energy shells, but is ergodic when restricted to a smaller slice conserving two numbers (e.g. energy and particle number), we prove convergence to a grand canonical ensemble in a similar way.

(5.10) If dim $\mathscr{K} < \infty$, then Tr(H ϱ) is continuous, and so ϱ_{∞} has mean energy \mathscr{E} . Then $\lim \tau^m \varrho$ is the same state for all ϱ with mean energy \mathscr{E} .

Acknowledgements. I thank D. Ghikas for discussions about related problems, and the referee for criticism leading to a clearer version of the paper.

References

- 1. Streater, R.F.: Convergence of the iterated Boltzmann map (to appear in Publ. R.I.M.S., 1984)
- 2. Dixmier, J.: Les algèbres d'operateurs sur l'espaces hilbertiennes. Paris: Gauthier-Villars 1969
- 3. Manuceau, J. et al.: Entropy and normal states. Commun. Math. Phys. 27, 327 (1972)
- 4. Alberti, P.M., Uhlmann, A.: Stochasticity and partial order. Dordrecht: Reidel 1982
- Alicki, R., Messer, J.: Non-linear quantum dynamic semigroups for many-body open systems. J. State Phys. 32, 299 (1983)
- 6. Ruelle, D.: Statistical mechanics. New York: Benjamin 1969
- Lanford, O.E., Robinson, D.W.: Mean entropy of states in quantum-statistical mechanics. J. Math. Phys. 9, 1120 (1968)
- Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938 (1973) (Appendix by B. Simon)

Communicated by J. L. Lebowitz

Received September 29, 1983; in revised form June 14, 1984