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Convergence of the Quantum Boltzmann Map 

R. F. Streater* 

Bedford College, Regent's Park, London, NWl 5NS, England 

Abstract. We consider a non-linear map on the space of density matrices, 
which we call the Boltzmann map z. It is the composition of a doubly stochastic 
map T on the space of n-body states, and the conditional expectation onto the 
one-body space. When T is ergodic, then the iterates of z take any initial state to 
the uniform distribution. If the energy levels are equally spaced, and T 
conserves energy and is ergodic on each energy shell, then iterates of • take any 
initial state of finite energy to a canonical distribution. 

1. Introduction 

(1.1) This paper is the quantum version of [1]. Let ~ be a Hilbert space with 
dim oYg = N < oo. A (normal) state Q is then a positive operator with unit trace. We 
denote the set of trace-class operators by ~ ( ~ ) 1  and the normal 1 states by a(~gg). 
A stochastic map is a linear map T from ~(J(~) to ~(o~) mapping a(~X(~) to itself and 
preserving the trace: Tr(TQ)=TrQ, Q c ~ ( ~ ) ~ .  A doubly stochastic map is a 
stochastic map T such that T1N = 1N, where 1N is the identity on ~ [4]. 

A unitary or anti-unitary conjugation Q ~-~ T~ = UQ U-  ~ is doubly stochastic, as 
is any convex combination of such maps. 

(1.2) Let o f  be a Hilbert space, the one-particle space, and 

(1.3) let ~¢g = o~f ® ... ® s f  (n factors) be the n-particle space. 

We shall be interested in a doubly stochastic map T:~(~t~)~M(~,~) that 
preserves the symmetry under permutations of the factors N r. To such a T we 
define the corresponding Boltzmann map z to be the composition of maps: 

(1.4) ~ ~--~ Q®... ®Q ~-~ T(0®.. .  ®Q) ~--~ Tr 2 .... T(Q®...QQ)=~(~). 

Here, Tr2..., means the trace over the second, third,. . . ,  n th factors Sf. Obviously, 
(1.4) defines a non-linear map z : a (~ )~a (3 f ' ) .  
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(1.5) Alicki and Messer [5] have suggested a similar map for continuous time, 
where the analogue of T is completely positive. Our choice is motivated by the 
following result: 

(1.6) Theorem. Let 0 ~ a O f )  have finite entropy: S(O) = - Tro log0 < ~ .  Then 

(1.7) S(~o)~S(o). 

Proof. 

nS(ze)= ZS(Tr, . . . i  .... T(O® -.. G0)) 
d 

by symmetry, where f means j is omitted 

by [6, Proposition 2.5.6] 

by [4, Lemma 2-5, Corollary] 

>-_ S(T(e®... ®e)) 

_->s(o® ... ®e) 

=nS(e). [] 

(1.8) To show that v"O converges to the uniform distribution if N <  ~ ,  we must 
postulate some ergodic properties. Now, Tis a linear operator on the Hilbert space 
of Hilbert-Schmidt operators on ~vf. Let us say T is ergodic if 1~ is the only fixed- 
point of T in ~(~f).  Let us say that T has a spectral gap A, 0 < A < 1 if it is ergodic 
and the spectrum of T * T  is contained in 1'0, 1-A]u{1}.  

2. Entropy Gain Under a Doubly Stochastic Map 

We give a sharp estimate which will imply the convergence of z"O when T is 
ergodic. 

(2.1) Lemma. Let ~ be a Hilbert space with dim ~ = N < 0% and denote by ~(;'~f)2 
the Hilbert space of operators on ~ with scalar product (A, B> = Tr(A*B). Let 
T: ~(~g)2~&(oeg)2 be a doubly stochastic map, ergodic with spectral gap A. Let 
A ~ a(~,uf) and let B = TA. Then 

(2.2) S(B)- S(h) > -~ IIA- N-11NIl 22" 

Proof. Let {qh, at} and {~Pt, bi} be the orthonormal eigenvectors and eigenvalues of 
A and B, respectively. Then 0 < ai, b j<  1. Let f ( x )  = x logx, cij = (q~t, ~>~e. Then, as 
in I6, 2.5.2] we have 

(q~t, {f(A) - f ( B )  - (A - B)f ' (B)  - ½(A - B) 2} q~,>Je 

= ~ ]ctjl2{f(ai) - f (b~)  - (a t -  bj)f'(bj) -½(a  i - b j)2}. 
t , J  

Now, in the range of at, bj we have 

f (x) - f ( y )  - (x - y) f ' (y)  = ½ (x - y) 2 f "( 0 , 
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i.e. 

S(B) - S(A) > ½ • w~{<A~, A~> - (A~, B> - (B, As> + <B, B>} 

= ½ {(A, A > -  <B, B>} = ½ {(A, A > -  (A, T*TA>}. 

Now i N is a simple eigenvalue of T'T,  and we may write the orthogonal 

1 1N). Hence decomposition A = l  l N ( ~ ( A - ~  

S(B) -  S(A) > ½ (A, (1 N-  T* T)A> 

= 2 - 1 ( A - N -  11N,(1N__ T ' T )  (A-N-11N)> 

= > A A - I ~  1N I 

since A is the smallest eigenvalue of 1 - T* T apart from 0. [] 

(2.4) Corollary. Let A----p, 2 on HI@H 2, and B=~I@Q2 , where QI =Tr2Qi2, etc. 
Then -TrAlogA=S12,  - T r A l o g B = S I  +S2 in the sub-additive entropy in- 
equality [4, Proposition 2.5.6] gives a quantitative estimate 

-->~ 11~12-~x®~2112- St  _[_$2_$12 1 2 

(2.5) Theorem. The microcanonical limit. Let dimK = k <  0% and T a symmetry - 
preserving ergodic doubly stochastic map on K®. . .  ® K. Then .for any Q ~ tr(K), 
zm~-~k- l lr as m~oo. 

Proof. The entropy S(zmp) is increasing and bounded above, and so converges. 
Hence the increment S(z ~ + ~ Q)-S(zmQ) converges to 0. In finite dimensions A > 0, 
so (2.2) implies that 

zmo® ... ®zmQ_ + k - l l j r  2___r0 ' 

and so zmQ~k-~l~c, as m~oo. 

1 
where 0 -< ~ _<_ 1 and f"(~) = -~ > 1. Thus 

f (a,) - f(bj) - (a , -  b)f'(bj) - ½ ( a , -  b j) 2 >= O . 

Summing over i gives the following sharper form of [6, Proposition 2.5.3]: 

Tr {A logA - B logB - (A - B) (logB + 1) -½(A - B) 2} > 0, 
i.e. 

(2.3) Tr {A(logA-logB)} =>½Tr(A - B) z . 

By [4, Theorem 2-2], there exist unitaries U, and non-negative numbers w, 
with ~w~---1 and B=TA=~,w~A~, A~=U~AUd-t. Then for each ct, 

Gt 

TrA~(logA~-logB)>½Tr(A~-B) z, so multiplying by w~ and summing, and 
noting that TrA~logA~ = Tr A logA and Z w~ = 1: 

~t 

Tr(A logA - B logB) > ½ ~ w~ Tr(A~- B) 2 
~t 
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3. Energy Conservation 

(3.0) In order to discuss the canonical Gibbs state, we must introduce an energy 
operator H on .¢I ( ~  can be oe-dimensional in what follows). Thus let H have 
spectrum 0, 1, 2,... and suppose that the multiplicity re(j) of the energy-level j is 
finite and that for some x > 0 and integer r, 

(3.1) m(j)<=tcf, j = l , 2  . . . . .  

These conditions ensure that e -pn, fl > 0, is of trace class. The equal spacing of the 
energy levels limits the theory to a rather special class; but it does allow thorough 
mixing to take place by scattering that conserves energy. This would not be 
possible if, for example, the energy levels were not commensurate. 

oo 

(3.2) Let H = ~ j ( E j - E j _ I )  be the spectral resolution of H, and let 
M 1 

HM= Z j ( E j - - E j - 1 ) .  Then HMeN(:~r). We say that a state Q on N ( ~ ) ,  not 
1 

necessarily normal, has finite mean energy N if 

lira Tr (QHM) = # < oe. 
M ~ o e  

n 

(3.3) We again consider a doubly stochastic map T on @ ~ = J4 ~. We require T to 
mix up states in ~ of the same energy, but not to mix up states of differing energy. 

n 

Thus let [~ be the generator of @ e~nt; then [? is an operator on g with spectrum 
0, 1, 2 . . . .  and having finite multiplicity. Let o~,, r/= 0, 1,... be the subspace with 
energy t/. N ( ~ ) ,  called the "energy-shell t/" is a finite-dimensional space that can be 
identified with the subspace of N(~¢~)2 consisting of operators mapping ~ to 
and being zero on ~ ± .  In the scalar product of (2.i), we may write N ( ~ ) 2  as a 
direct sum of orthogonal subspaces 

09 

where La is orthogonal to all energy shells. We consider doubly stochastic maps T 
that mix up each energy shell N(Jg~): 

(3.4) T maps N(o~g~) to itself, r/= 0, I, 2 . . . .  and maps ~ to itself. Restricted to 
N(;cg,), T is ergodic. T commutes with permutations of the n factors N(~7). 

This class of doubly stochastic maps is the quantum analogue of the classical 
version [1]. Our  assumption (3.4) leads to the conservation of mean energy under r 
(but not the mean of functions of energy, such as its variance): 

(3.5) Theorem. Let T map each ~(,Nf,,) and ~q~ into itself, and commute with 
permutations. Then the mean energy is invariant under z. 

Proof. Let Q e N(~g)i be such that 

Tr(QH)= lim T r ( q H u ) = ¢ < o e .  
M---r  oo 

We note that 

DM=HM@I. . .  ®1 + ... + 1® ... ® I ® H M .  
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Then by the symmetry of T 

Tr(HMz0) = n-  1 Tr~ .... {buT(oN... ®0)}. 

This is a finite-dimensional trace and it can be evaluated in any basis, e.g. in a basis 
of eigenvectors of [?M- Then it involves only the block diagonal terms of 0®. . .  ®0, 
which are in N(o~), t /=0, ..., riM. On each of these subspaces, I)M is I/- l~e,, and so 
commutes with T. Hence 

Wr(nM-c0) = n-  1 Trl .... (T(I)M0® .-- ®0)) = n-  1 Trl... ~(I)M0® ... ®0) 

as T is trace-preserving 
=Tr(HMQ). 

Hence lim Tr(HM~0)= ~, so z0 has finite mean energy, 6 the same value as 0. 
M - - +  oo 

(3.6) Remark. It has been pointed out by the referee that it is not enough to 
suppose that T commutes with the time-evolution A~--~e~tAe -~t of density 
matrices A s N(o~f)~ : the mean energy fails to be conserved in general unless T 
maps N ( ~ )  and La to themselves. As a counterexample in two dimensions, let 

[)= (10 0 0 ) a n d T ( ; ,  bc)= (~ Oa).ThenTcommuteswith[',I)],butdoesnot 

leave the diagonal blocks invariant. Average energy is not invariant under T. 
Physically, such transformations T are "too stochastic" and do not lead to the 
canonical ensemble. 

4. Weak  * Convergence 

(4.1) The set of all states of ~(se) ,  not necessarily normal ones, is w*-compact. 
The sequence {ZmQ}m= 0,1 .... therefore has a w*-convergent subnet {Q,},~I- If Q has 
mean energy 8, then by (3.5) 

(4.2) T r ( e , H ) = g  for e e l .  

(4.3) The entropy of a state 0 • N(~gt°)l of finite mean energy is finite and __< the 
entropy of the Gibbs state of the same energy. Since the entropy is non-decreasing 
under ~, S(z"0) converges as m ~  o% and S(q~) converges to the same limit as ~ ~ oo. 

(4.4) Lemma. Let o~=w* lim O~. Let Pj=eoo(E~),j=O, 1,2 ..... Then tim P j = I .  
~t --* oo j---~ (x) 

(4.5) Remark. This is tantamount to showing that 0oo is normal. 

(4.6) Proof. Let pj=Pj-Pj_~, j = 0 , 1 , 2  . . . .  and p~=TrQ~(Ej-Ej_I). Then 
6 = T r ( e f l ) =  EJPT, and p i=  limp~. Hence pj obeys the conditions of [1, (3.15)], 

oo J 

and so Z ° pj = lim Pj = 1. 
j - -*  oo 

(4.7) It does not seem easy to prove that ~JP3 = 6 unless, of course, k = dim ~ < oe. 
This might indicate that, for certain initial states, energy can escape up the energy 

M M 

ladder, say, by "heat solitons". But since for any M, Y, jp~ < 6, we have ~jpj < & 
oo 1 1 

Hence lim 0oo(HM) = ~jpj<6 and the limit state 0oo has finite mean energy N& 
M ~ o o  
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(4.8) We now give an estimate for the entropy in the tail of a state. 

(4.9) Lemma. Let H be as in (3.1), and Q be a positive operator of  trace class such 
that Tr Q = q and Tr (QH) < 8. Then - Tr (Q logQ) = O(q logq) as q ~ 0 .  

(4.10) Proof. The largest value of - T r e l o g ~ ,  subject to the conditions 
Tr(QH)<g,  T r e = q  is achieved at the Gibbs-like operator Q, diagonal in a basis 
provided by the eigenveetors of H. Then the problem reduces to the classical case: 
maximize 

s = - Z m(j)pj logpj 
0 

among sequences of non-negative numbers {Pi} obeying the constraints 

(4.11) ~.m( j )p i= q , ~_,m(j)jp~<=8. 
0 1 

When the multiplicity re(j) is 1 for all j, then Lemma 3.19 of [1] shows that 

s < - 2q logq + q(1 + logd °) = O(q logq). 

The same method also works when re(j) < to. So we have proved the lemma when 
the index r of (3.1) is zero. We proceed by induction on r. Suppose the lemma is true 
for all sequences {p j} obeying (3.3) with re(j)< tcj'-1, j =  1, 2 , . . . .  Now let {p j} 
satisfy (4.11) with re(j) < xf. Write {p j} together with repetitions for multiplicity as 
the union of sequences {p~)}, a = 1, 2 .. . .  defined by 

p}~)=fPi  if j>=o~, 
(4.12) to otherwise. 

In the sequence {P~)}i = 0,1 .... we repeat p}') with multiplicity m(a,j) which might be 
0 or as large as m(j)/j <= x j ' -  1. It is possible to do this so that re(j) = ~ m(a,j). Define 

q(~) = ~, m(a,j)p} ~) , 
J 

~(~) = ~, m(e,j)jP} ~) <__ ~ ,  
1 

s ~ ' )  = - Z m(e,J)p} ~ logp} ~). 
J 

Then Z q~') = q, ~ g~') < g, Z s(~) = s. 

Now, the induction hypothesis implies that s(')= 0( -q~ ' ) logq (~)) uniformly in 
a. Also, the condition (4.12) implies Z e q  (') < g: 

<-<_ x <__ X:m<:)p,=e. 
1 

Thus {q(')} itself obeys the conditions of [1, Lemma 3.19], namely ~q ( ' )=q ,  
~2~q(~)~g. So by [1, (3.19)]: 

- T r Q l o g Q < - _ s = O ( ~ - q ' ~ ' l o g q ' ~ ' ) = O ( - q l o g q ) .  ~ 
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The main point is that s ~ 0  as q~0 .  This result gives an extension of the classical 
theory [I]  to the case with multiplicity re(j) as in (3.1). 

5. Convergence to a Gibbs State 

(5.1) Suppose now that T maps ~ to itself and each ~ ( ~ )  to itself, and is ergodic 
on each ~ ( ~ ) .  Let tr,, = zmQ®. :. ®zmQ and let tr,,(t/) be the diagonal block matrix 
obtained from tr m by restricting to ~ .  Then, as in Theorem (2.5), we see that the 
component of tr,~(~/) orthogonal [in the sense of ~(dct~)2] to multiples of the identity 
1 ~e,, converges to 0 as m ~ ~ .  In particular, the off-diagonal elements converge to 0. 
This does not (yet) show that a,~(r/) converges, as we have not controlled the trace. 
But along the convergent subnet Q~ we also get convergence of tr~ and of a~(r/): this 
must converge to a multiple of l g .  To see clearly why this implies that Q~ is 
diagonal in the energy basis, first take n = 2. Write, in Dirac notation 

Q = Z ~ l g i >  <vii, 

where i , j  are energy labels and 1 < #  <re(i), I < v < re(j); #, v label the multiple 
states of energy i , j ,  respectively. Then tr= Q®Q has the off-diagonal terms 

[ I V  ]Zt '~  t " I ' /  " 1 " I  

~i  0~'j' ]~z>[~ z ><vjl<vj 1, 

including the case i 4=j or # 4= v where i' = j ,  i =j ' ,  #' = v, # = v'. Thus the coefficient 
g v  v g _  /Lv 2 Q~j Qj~ - IQtj I converges to 0 as m-~ oo. This is the general off-diagonal element of Q. 

Thus q® is diagonal in the energy basis. 
If n > 2 we note at least one diagonal element Q~' does not converge to zero, by 

(4.4). Then if ( n -  2)k + i + j  = t/, the off-diagonal element of a(t/), 

~k/~ .~##,~,~v,~v). __ I,~##1 n -  21,~2Vl2 
• "" ~ k k ~ i j  ~ j i  - -  I ~ k k l  I ~ i j  I , 

converges to zero for any i, 2 # j ,  v; then ~ - - , 0 .  Thus Q® is diagonal in the energy 
basis. The argument now reduces to the classical case [ i ] :  in order for 
a~ = Q~®... ® ~  to be a multiple of the identity on each H,, Q~ being diagonal, 
we obtain the result: Q~ is a Gibbs state, Qa. From (4.7), its energy is < &  To be 
precise, we have shown that Q® coincides with Qp as a state on U &(E~r )  • 

J 
Recalling that {Ei} is the spectral resolution of H, we have for anyj  and A e ~(SC), 

e.o (A)  = Q ~ ( E j A E j )  + ~ ~ ((1 - E j ) A E j )  + Q ~ ( E j A (  1 - E j)) + Q ~ (( 1 - E j )A(1  - E~)) . 

By Schwarz' inequality for states, 

1~(1 -- E~)AEi  [ ~ [O~(1 - E~)] t /2[e ,~(EjA*AE~)]  ~/2, 

and by (4.4), 0~o(1 - E ~ ) ~ 0  as j ~  oo, the other factor being bounded. Similarly, the 
other terms converge to 0 a s j ~  ~ ,  But o~(E~AE~) = oa(E~AE~), and this converges 
to ea(A) as j - - , ~ ,  as Oa is normal. Hence e~o(A)=on(A) for all A c ~(oW). 

(5.2) The same argument shows that any other w* convergent subnet {ea}a~-, of 
{zme} converges to a Gibbs state of energy < 8, but (so far), it could be different 
from e , .  We show they are the same by showing they have the same entropy, 
namely lim S(z'0). 

t i t  



184 R . F .  Streater 

(5.3) Theorem. Under the above conditions, S(O~)~S(Qo~), c t ~ .  

Proof. Choose e > 0. Write O~ = Ejo~Ej + A, A = O~-- EjQ~Ei > 0 and 

( 5 . 4 )  q = T r A =  ~ Tr(Ek+~--Ek)Q~j  -~ ~'. Trk(Ek+~--Ek)O~ 
k=j  k=j  

= j -  i Tr (H0~) = j -  i~. 

Choosejo large enough so that q is small enough so that, by (4.9), S(A)< e for all a 
and all j >Jo. Then, by the subadditivity of the entropy [7], 

(5.5) S(O~) < S(Ejo~E~) + S(A) <= S(EjQ~Ej) + 

for all ~ and allj >Jo- Since EjQ~E~ (j fixed) has finite rank, S is continuous on this 
subspace. Taking limits of (5.5) gives for J~Jo: 

(5.6) s = lim S(Q~) ~ lim S(EjQ~Ej) + ~ = S(Ejoo~Ej) + ~ . 

Taking the l imit j~ oo gives [8, Appendix] s < S(oo~) + e. Since this is true for every 
e>0, we get s<S(o®). Now let j  be so large that 

s(o ) <-_ s( jo Ej) + 

This is possible [8, Appendix]. 
For this j choose go so large that for all larger g, 

Then 
S(Eio~Ej) >= S(EjQ~Ej) 2" 

S(o o~) <- S(Ejo o~E~) + e < S(EiQ~E~ ) + e < S(Q~) + e 

for all larger g, 
~ s + e .  

Since this is true for every e>0, we have S(o~)~s .  This gives S(Qo~)=s. [] 

(5.8) We can now put together the results. 

Theorem. Let H be a self-adjoint operator on A r with spectrum O, 1,2 . . . . .  and the 
finite multiplicity re(j) of eigenvalue j obeys m(j)<~j r, j = l , 2  . . . . .  Let 
AP= ~ff ®.. .®JY',  and let T be a symmetry-preserving doubly stochastic map on 
~ (  ~ ) 1 ,  T mapping ~ and each ~ (  ~ )  to itself and ergodic on each energy shell. Let 
z be the corresponding Boltzmann map. Let O be any density matrix on ~ with finite 
mean energy ~. 

Then zmQ converges as m-~ c~ in trace norm to a Gibbs state 0o~ = e-~U/Tr e-gn 
of energy <e ,  as m~oo .  

Proof. Any convergent subnet of {zmQ} converges w* to a Gibbs state (Sect. 5.1). 
All such limit states have the same entropy (Sect. 5.3) and are therefore the same. 
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Therefore,  {rmQ) converges  in the w* t opo logy  to  a G ibbs  state. I ts  energy is < g ,  
by  Sect. 4.7. The  convergence  in t r ace -no rm follows f rom 

[[ vm0 - 0 ~ 1t 1 < [['rs0 -- Ef:moEj II1 

+ IIEjo~Ei--Ej~mOE~II1 + I10®-Eje~Ej l l l  

and  (5.4), using tha t  zmQ ~ Q ~  when restricted to the f ini te-dimensional  space EH~f. 

(5.9) I f  T is no t  ergodic  on  the energy shells, bu t  is ergodic  when  restr icted to a 
smaller  slice conserving two numbers  (e.g. energy and  particle number) ,  we p rove  
convergence  to a g rand  canonical  ensemble  in a similar way. 

(5.t0) I f  d i m ~ f  < ~ ,  then  Tr(HQ) is cont inuous ,  and  so Q~ has  m e a n  energy $.  
Then  lim~mo is the same state for all Q with m e a n  energy $. 
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