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Lower Bounds for Volumes of Convex Bodies 

By 

W r ~  J. FreEr I) 

1. Suppose V (K) signifies the volume of a convex body K in Euclidean n-space. 
There are available in the literature, cf. [1], a number  of  inequalities of the type 

V (K) <= [(p(K), q(K) . . . .  ) ,  

where p, q, ... are rigid motion invariants of K. However  inequalities of the type 

V(K) >__ g(p(K), q(K),...) 

seem to be much less common: trivially we can estimate V (K) from below by  the 
volume of the insphere of K, and, for n ~ 2, PgL has shown in [4] tha t  the equilateral 
triangle of height A has the least area among convex bodies of least width A. 

Here we develop several inequalities of this second sort. For each direction or unit  
vector u, let k(u) be the orthogonal projection of K onto the (n - -  1)-dimensional 
linear subspaee L(u) orthogonal to u and let k' (u) be the orthogonal projection of K 
onto the orthogonal complement of L (u). The volumes (of appropriate dimensionality) 
of k (u) and k' (u) will be denoted by  s (u) and w (u) ; these are the brightness and width 
of K in the direction u. Set 

A = m i n w ( u ) ,  D- - - -maxw(u) ,  a - - - -mins(u) ,  

where these are attained extrema over the unit sphere ~ .  Also let S denote the sur- 
face area of K. We shall prove tha t :  

(1) Da/n ~ V, 

(2) AS/n(n + 1) ~ V. 

Some consequences of (1) will also be taken up. 

2. We first prove (1) for a special case. Let  u be a direction in which the width of K 
is the maximum D, and suppose tha t  K is a polyhedral convex body, none of whose 
(n - -  1)-dimensional faces contains a vector parallel to u. We remark, cf. [1], p. 51, 
tha t  there is a chord of K in the direction u which has length D; let P and P '  be its 
end points and choose Q to be an interior point of the chord. 
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Take the boundary of/c (u) as the directrix for a cylindrical surface Z whose genera- 
tors have the direction u. Note that  Z n K is made up of (n --  2)-dimensional poly- 
hedra since no (n --  1)-dimensional face of K contains a vector parallel to u. Using P 
and P' as vertices, we form two conical surfaces each having Z c~ K as a direetrix. 
These surfaces bound two closed cones C and C' each of which contains Q. We set 
K ' - - - - C n C ' .  

From the convexity of K it follows that  K '  C K. Hence, to prove (1) in this case, it 
suffices to show that  

(3) V(K')  >= D a l u .  

Let us decompose the (n --  2)-dimensional polyhedra which make up Z c~ K into 
simplexes Si, i = 1, 2 . . . . .  r. We form 

p 

T t = S t w Q w P ,  T i = S t u Q w P '  

where the bar denotes convex closure. Then 

r 

V(K')  = ~ [ V ( T t ) - b  V(T~)]. 

Denote by vi the (n --  1)-dimensional volume of S~ u Q and by ~l the volume of the 

projection ofS~ ~) Q onto L(u). Ifu~ is a unit vector orthogonal to Si ~J Q, we have 

(u~, u) v~ = ~r 

where (u~, u) denotes the inner product. Write 6 for the length of Q P and 5' for that  of 
Q P ' .  Then 

V ( T d  + V(T~) = (u, ud (,~ + ,~')vdn 

= D ~t/n 

since 0 + ~' = D. We sum over i and note that  

4=1 

and so 
V(K')  = Ds(u) /n  >--__ Da/n  

from the mlrdmal character of o. 
Standard approximation techniques and the continuity of s(u), D and V as set 

functions allow us to conclude (1) generally. 

The following example shows that  the factor 1In is the largest possible. Let xl, 
x2 . . . . .  xn be Cartesian coordinates of a point x and let P, P '  be the points (4- a, 
0 . . . . .  0). Let k be the set of points for which 

�9 1 = 0 ,  I + . . .  + Ix .  I __< 1 

Ohoose K to be/c u P u P ' .  For a ~ 1 we have D = 2a. The minimum of s(u) will 
be in a direction u lying in the 2-dimensional linear subspace spanned by a vector 
from the origin to P and a vector from the origin to one of the vertices of/~. Let 
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u(O) ---- (cos O, 0 . . . . .  sin 0), and 00 ----- Arctan a. For s(u(O)) ----/(0) we have 

/ (O)= 2n- l cosO/ (n - -1 ) !  for 0 ~ 0 ~ ( ~ / 2 ) - - 0 0 ,  

/(0)---- 2n - la s inO/ (n - -  1)! for (g /2 ) - -  00 ~ 0 ~ g / 2 .  

From this representation we conclude tha t  

a = 2n - la / (n - -  1)! Ul + a 2, 
and so 

D a / n  = 2 na~/nl Vl + a 2 <  V = 2 na/n! . 

Hence n V/D a can be made arbitrarily close to one by choosing a sufficiently large. 
The example suggests the cases of equality, namely if and only if K is degenerate. 

In  this case a = V = 0. We omit the proof. 

3. In  this section, in addition to (2), we prove tha t  

(4) v < D S/2 n .  

We let H be the support  function of K and S (co) the value of the surface area function 
of K corresponding to the Borel set o~ on the unit sphere Q, cf. [2]. Then 

S H (u) S (d~)/n S S (d~2) = V/S .  
~2 s 

Further  we use V1 as an abbreviation for the mixed volume 

[. g (-- u) S (dg)/n 
a 

of K and its image under  a reflection in the origin. Since 

H (u) + H ( - -  u) = w (u) ,  
we have 

]w(u)S(d,Q)/  SS(d[2) = n ( V  + V1)/S. 

The left side of this last equation is a weighted arithmetic mean of w (u) and so we 
conclude tha t  

(5) A <= n(V + V1)IS <= D . 

We now make use of the following bounds on V1, cf. [1], pp. 52--53 and p. 105: 

(6) V =< V1 =< n V 
which shows tha t  

AS/n (n -~  1) < V <=DS/2n.  

We take up the cases of equality in (2) and (4). 
Consider the right side of (5) and the left side of (6). In  the latter, there is equality ff 

and only ff K has a centre of symmetry.  We suppose H is defined relative to this 
centre and so 

H ( u )  = H ( - - u ) .  
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Let/20 be the union of those Borel sets w for which S((o) ----- 0. Then 

.[w(~)S(d/2) = j" w(~)S(g /2 )  
~--~o 

and so, from the continuity of w, there is equality in (5) if and only ff 

w(u)----D over / ' 2 - - /20 .  

Hence 
H(u)----D/2 over / 2 - - / 2 0 .  

Therefore the boundary of K contains pieces of the spherical surface of radius D/2 
centred at the origin. The remainder of the boundary is of zero area. From these 
observations and the continuity of H over /2 ,  it follows that  K is a sphere. Hence 
there is equality in (4) ff and only ff K is a sphere. 

In  the right side of (6) there is equality if  and only if K is a simplex or K is dege- 
nerate.  

This is not specifically mentioned in [1]; however the discussion there, on pp. 
52--53, with a little amplification gives the cases of equality. Inequal i ty  (6) rests on 

(6') nil(u) ~ H (-- u) 

where the origin is taken to be the eentroid of K. There is equality if and only if K is a 
pyramid (possibly degenerate) having a base with outer normal u. From this it easily 
follows that,  i f  there is equality in (6') in all directions u for which S (u) :~ 0, then K 
is a simplex or is degenerate. Hence the cases of equality in (6). 

From (5) we conclude tha t  the heights of such a simplex are all equal. Thus, there is 
equality in (2) if  and only if  K has equal altitudes or is degenerate. 

4. We remark tha t  in (1) and (2) the constants are not only the best possible, but  
we cannot replace the minimum width in (2) by the max imum w i d t h / ) ' o r  even the 
arithmetic mean of the widths. For, ff K is a degenerate convex body lying in some 
linear subspace L of dimension n - -  1 and if, as a convex body in L, K is not dege- 
nerate, then w (u) = 0 if and only if u is orthogonal to L. Hence the arithmetic mean 
of the widths ove r /2  is positive. So also is S which is twice the (n - -  1)-dimensional 
volume of K. However V = 0 and so S J~/n (n -k 1), where J~ is the mean width, is not 
necessarily bounded above by  V. A/ortiori, we cannot replace A by D. From this we 
conclude that ,  in (l), we cannot replace ~ by  the arithmetic mean of s(u) over /2  since 
this last is proportional to S i n virtue of Cauehy's surface area formula. 

5. A convex body is of constant width or of constant brightness when w(u) or 
s (u) is constant over/2.  Spheres are the only figures which are both of constant width 
and of constant brightness. Further,  from Urysohn's  inequality 

V ~ ~n (B/2)n, equality ff and only if K is a sphere, 

where gn is the volume of the unit sphere in n-space, we know tha t  a sphere of con- 
s tant  width B is the unique figure of greatest volume among convex bodies of the 
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same constant width. Also, from the isepiphanic inequality 

(7) V ~ Zn (S/nun) hI(n- 1), equality ff and only ff K is a sphere, 

and Cauehy's surface area formula 

~2 

we conclude tha t  a sphere of constant brightness ~ is the unique figure of greatest 
volume among convex bodies of the same constant brightness. All these matters  are 
discussed in [1]. 

From (1) we can obtain lower bounds for volumes of bodies of constant brightness a. 
We have, ef. [1] p. l l0 ,  

P __> 2 (S ln~)  ~/(~-', 

Whence, by  (1) and 

this last from (8), we obtain 

equality ff and only ff K is a sphere. 

~_--</), 

a -~- ~ n - l S / n x ,  n , 

V > 2 ~-i (S/n u,)nl(,-1)/n. 

The inequality is strict because a body of constant brightness cannot be degenerate. 
We may  put  the mat te r  this way:  the Volume of a body of constant brightness is 
greater than  2Un-1/nUn times tha t  of a sphere of the same brightness. 

Inequali ty (1) also permits us to compare the volume of a body of constant width 
with tha t  of a sphere of the same width. We proceed inductively, beginning with the 
plane case. From the work of Lv.BESOUE [3], we have for the area A of a convex body 
of constant width: 

A > ( ~ -  Vs)B2/2 

with equality ff and only ff K is a Reuleaux triangle. 
The inequality to be proved is 

(10) v >__ (~ - l / g ) B n l ~ !  

which is true for n = 2 and so we suppose it  established for n ---- r. We remark tha t  
k (u) is of constant width • ff K is. Hence 

ff K is a convex body of constant width in (r -~ 1)-dimensionai space. We apply (1) 
with D = B and complete the inductive argument.  I f  n > 2, inequality (10) is a 
strict inequality and, in fact, not the best possible. That  (10) is strict in these cases 
follows from the conditions for equality in (1) since a body of constant width cannot 
be degenerate. On the other hand, with the use of BLASC~KW'S selection theorem, one 
concludes tha t  there are convex bodies of least volume for a given constant width. 
Hence (10) is not the best possible inequality. Similarly (9) is not the best possible 
inequality. 



74 W.J .  FmEY ARCH. MATH. 

W e  conclude by  no t ing  t h a t  an  a r g u m e n t  s imi lar  to the  preceding one establ ishes 
for a genera l  convex body  K :  

v _> A ! 

Here  we commence  wi th  PXL's resul t  for  n ---: 2. Again ,  for n > 2, the  inequa l i ty  is 
no t  the  bes t  possible.  
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