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Abstract. Square integrable Wiener functionals may be represented as sums of 
multiple It5 integrals. This leads to an identification of such functionals with 
square integrable functions on the symmetric measure space of the Lebesgue 
space R +. When the pointwise product of Wiener functionals is thus carried 
over, the product takes a pleasing form (cf, Wick's theorem) and various 
non-commutative perturbations of this "Wiener product" have been considered. 
Here we employ cohomological arguments to analyse deformations of an 
abstract Wiener product, This leads to the construction of L~vy fields which 
are neither bosonic nor fermionic, and also gives rise to homotopies between 
quasi-free boson and fermion fields. Finally we unify existence and uniqueness 
results for quantum stochastic differential equations by treating mixed noise 
differential equations. 

Introduction 

Any square integrabte Wiener functional F has an expansion in terms of multiple 
It6 integrals: 

F = f o +  ~ S ' " ~ f , ( t l  . . . .  , t , )dB~,",dBt. ,  
n = 1 V n 

where V" is the increasing quadrant { t ~ _ :  tl < ' - .  < t.}. The sequence {f.} may 
be viewed as a single function f on the collection F ( ~  +) of all subsets of R + having 
finite cardinality: 

f(~Z~) = )Co; f(cr) = f,(s) for n = #(r > 1, 

where sl, s 2 . . . .  , s, is an enumeration of the set ~ in increasing order. There is a 
natural measure 2 on F(R+),  derived from Lebesgue measure on R+, for which 
the correspondence F ~ f  is an isometric isomorphism from ~ ,  the space of 
square integrable Wiener functionals, to ,N =L2(F(R+),2).  Under pointwise 
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multiplication the Wiener functionals form an associative algebra and numerous 
subspaces of ~/~ are closed under this product, for example the Malliavin domain. 
A natural question arises: how is this algebraic structure manifested in i f?  This is 
answered by the elegant formula 

f *g:a~ y" ~ f(au(.o)g(c.ou~)d2(co), (0.1) 
ez=a F(R+) 

where ~ denotes the complement of a in a. Dense subspaces of ~- which are stable 
under • may be identified, and if f and 9 correspond to Wiener functionals F and 
G respectively, then f , g  corresponds to the pointwise product FG. 

The form of the Wiener product (0.1) immediately suggests the following 
generalisation: replace the Lebesgue measure space R+ by an abstract one (S, m), 
(F([~ + ), 2) by the symmetric measure space (F(S), #) of(S, rn), and • by the operation 

f *~9:a-~ • ~ p(cn, c~,~)f(o~uco)O(cou~:)d#(co). (0.2) 
~=a F ( $ )  

Incorporating an involution ,-~ on F(S), induced from a pointwise involution i on 
S, we may further generalise: 

f~pg:a-* ~ ~ p(co, o~,~)f(~w(5)a(cow~Od~(co). (0.3) 

Such an approach unifies the various products considered by Maassen, Lindsay 
and Meyer. The Wiener product is implicit in [Maa] and is highlighted in [Me 1] 
where algebraic variations, including the Clifford product, are explored. The Bose 
product, extensively studied in [L M 1] is obtained by taking the measure space 
to be the sum of (•+,rnl) and (~+,m2), where ml,rrl 2 are non-zero multiples of 
Lebesgue measure, and the involution to be (0-1, az)- = (a2, al). The Fermi product 
[L M 2] is obtained by a similar modification to the Bose product as is required 
to form the Clifford product from the Wiener product--namely the introduction 
of a { + 1}-valued function p, which is dependent only on the relative position of 
the points of co, 0~ and ~ on the line, in (0.3) and (0.2) respectively. 

The analysis of functions p for which (0.3) is associative rests on an analysis of 
the solutions of the functional equation 

q(c~,fi)q(~ufl,~)=q(a, fluT)q(fl,~) ~,fl,~F(S) disjoint (0.4) 

for non-vanishing complex-valued functions q. If F and u are replaced by a group 
G and its binary operation, then (0.4) becomes the condition for q to be a second 
order cocyele on G with values in C ×, the group of non-zero complex numbers. 
Such objects arise in the theory of projective representations of groups, in particular 
they play a vital r61e in quantum theory [Var]. Our analysis has been inspired by 
the work of E. P. Wigner, V. Bargmann and G. W. Mackey [BaW, Bar, Mac]. 

The second order cocycles on F(S) with values in C × are classified in Sect. 2 
and the associative products *p are described and classified in Sects. 3 and 4. The 
pointwise product of Poisson functionals also gives rise to a product on Fock 
space [Me 1], [L M 2]. An analysis of deformations of this Poisson product, similar 
to (0.2) and (0.3) for the Wiener product, wilt appear elsewhere ([LP]). 

Several authors, particularly P-A. Meyer, have raised the subject of non- 
commutative Poisson and Wiener type products [Me 2]. 
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The last two sections give some applications of these ideas. In Sect. 6 operator 
fields, which are deformations of the quasi-free boson and fermion fields, are 
constructed in a natural way from cocycles and multipliers on F. These fields 
satisfy local commutation relations and provide bridges between boson and fermion 
fields--two such bridges are discussed. A continuum of inequivalent Levy fields 
[A P] with common covariance is also obtained, showing that commutation 
relations do not follow from martingale (fair game) assumptions alone [P]. In 
Sect. 7 we unify existence and uniqueness results for quantum stochastic differential 
equations by establishing the explicit form (cf. [Maa]) of the unique solution of 
linear stochastic differential equations driven by mixed noise. 

1o Set Notations 

For a set S, F(S) or F s will denote the finite power set of S: {~ c S:#~ < ~}  which 

has the partition ~) F,(S), where F,(S)= {a = S:#a = n}. When S is fixed and 
I I = 0  

there is no danger of confusion we shall frequently drop mention of it in the 
notation, writing F, F ,  etc. The cartesian product S" will be understood to be the 
single point set with element 0 when n = 0 and the collection of coordinates 
{sl . . . .  ,s,} of a typical element s = (Sl,.. . ,s,)eS" will, by convention, by empty 
when n = 0. To each element ~r of F ,  is associated n! points of S ' - - those  points 
which have a as the set of their coordinates. S (") (n = 0,1 . . . .  ) will denote the subset 
of S" consisting of those points s with distinct coordinates: sl # sj for i ¢ j. To any 
function f on F(S) is naturally associated a sequence of symmetric functions f ,  
on S~"):f,(s) = f({sl  . . . . .  s, }), and conversely such a sequence determines a function 
on F(S). In particular, by considering indicator functions, there is a natural 
correspondence between subsets E of F(S) and sequences of symmetric subsets E, 
of S ("). 

For each n, F(")(S) will denote the subset 

{ a =  (al . . . . .  a,)~r(S)":a/~a~ = q~ i f / ~  j} (1.I) 

of F(S)", and A"(S) will denote the set diaoonal: 

r(s).\r,.,(s). (12) 

For a~e/"(n), ~1 u-- .  u ~. will be abbreviated to I~I. In any summation over subsets 
of an element a of /" ,  ~ will always denote the complement of ~ in o-. 

~(A;  B) will denote the set of B-valued functions on A, and will be abbreviated 
to ~(A)  when B = C. For a group valued function f we call {a:f(a) ~ identity} 
the support off .  6~ will always denote the function equal to one at ~ and zero 
elsewhere in F, and an empty product will always be understood to be equal to one. 

2. Second Order Cohomology on F(S)  

In this section we describe the second order cohomology of I'(S) for an arbitrary 
set S. Since S will be fixed we shall frequently drop references to it in the notation. 
A second order cocycle on F(S), with values "n the multiplicative group of non-zero 
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complex numbers C ×, is a map q: F(2)(S)~ C × satisfying the cocycle identity 

q(a, fl)q(a w t ,  7) = q(a, fl t3 y)q(fl, ~), (~, t ,  y)~F(3)(S). (2.1) 

The collection of such 2-cocyctes forms an abelian group under the pointwise 
product which is also closed under complex conjugation and the involution 

~(a, r) = q(fl, ~). (2.2) 

If f is a map from F into C × then 

f ( a  w r) (a, r)e/~2) (2.3) 
zI:(a' r) ~'-}f (a) f (fl)' 

is called a trivial cocycle. For f ,  g e ~ ( F ,  C ×) to determine the same trivial cocycle, 
h = f / 9  must be mulfiplicative (homomorphic): h(o~wfi)= h(a)h(fl) for (~,fl)~F (2). 
The trivial cocycles form a subgroup of the group of 2-cocycles. We denote the 
quotient group by 3¢~2(F) and say that 2-cocycles ql ,q2 are equivalent written 
ql ~ q2, if their ratio is trivial. 

If k is a map from S ~2) to C × then 

~*:(a, fl)~--~[I k(a,b), (a, f l )eF (2) (2.4) 
a N g  

is called a product cocycIe. Thus a 2-cocycle is a product cocycle if it is multiplicative 
in each argument. 

Proposition 2.1. Let k be a map from S (z) into C ×. I f  k is symmetric then gk is trivial, 
and conversely. 

Proof. If k is symmetric, then the function f : F ~ C  ×, 

~ I-[ k(s, t) 

is well defined and 

f ( a  w r) I ]  k(s, t) = nk(a, fl). 
• f(a, r) -- f (a)  f (  -- ,~,b~ 

In other words zc k is trivial. The converse is obvious. [] 

Putting f l = ~  in (2.1) we see that q (~ , ' )  and q( ' ,~)  are equal constant 
functions on F ;  dividing by q (~ ,  ~ )  therefore gives an equivalent 2-cocycle which 
is normalised: q(~ ,  ~ ) =  1. (The equivalence is effected by the function equal to 
q(2f, ~ )  at ~ and 1 elsewhere). Although F(S) is a semigroup under the union 
operation, and even a group under symmetric difference, all the 2-cocycles on these 
structures turn out to be trivial. Our less restrictive definition, only involving 
disjoint elements, is therefore needed for obtaining non-trivial cocycles. 

When a = {sl . . . . .  s,}, z = {t l , . . . ,  tin}, where (a, z)~F~2),q(a,'c) will sometimes 
be written q(sl . . . . .  s,; tl . . . . .  t,,). The next result shows in particular that (normalized) 
2-cocycles on F are determined by their restrictions to F a x  F, i.e. {({s}, z)eFt2)}. 

Proposition 2.2. Let q be a 2-cocyele on F(S) 
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(i) F o r  (cr, z )~F (2), /f a = { s l , . . . , s , }  n >= 1, then  

. - 1  q ( s ~ ; ~ u { s , +  ~ . . . . .  s.}) 
q(a,  z) = q(s , ;  z) ]-I . . . . . . . . . .  • (2.5) 

i=i q ( s l ; S i + l , . . . , S n )  

(ii) q/71 iS a p r o d u c t  cocyc le ,  w h e r e  7t is de f ined  b y  (2.2). 

P ro o f .  

(i) Applying the cocycle identity to the triple ({s 1 . . . . .  sn-~  }, {s,}, z) we obtain 

q(a,  z) = q(s.;  z) q(s l  " "  "-'- s_._ !.; z w {s .  })  
q ( s a , . . . , s n _ l ; s ,  ) " 

Iterating this identity for the numerator and denominator there is a cancellation 
of terms of the form q(s i  . . . .  , s j; s~ + 1) for j = 1,. . . ,  n - 2, leaving the expression (2.5). 
(ii) Let (c~, t ,  7 ) eF  ~3), then 

q(fl, 7) , ~, _ q(fl, 7)q(a, y) 
q ( a w f l , ' / ) =  ~ q t ~ , y w p ;  q(~t, fi)q(y, fl) q ( ~ w a ,  fi) 

q(fl, 7)q( a, Y)q(a, t )  , 
= ~ ~  qtT, aufl),  

so that 

q/71(a w t ,  7) = q/71(~, 7)q/71(fl, 7). 

By symmetry q/71 is also multiplicative in the second argument. []  

A 2-cocycle q is s y m m e t r i c  if 71 = q and s k e w - s y m m e t r i c  if 71 = q-  1 Clearly all 
trivial cocycles are symmetric, and a 2-cocycle is both symmetric and skew- 
symmetric if and only if it is (skew-)symmetric and { + 1}-valued. 

Proposition 2.3. E v e r y  2 - c o c y c l e  on F ( S )  is equ iva len t  to a s k e w - s y m m e t r i c  p r o d u c t  
cocye le .  

P ro o f .  Let q be a 2-cocycle on F which we suppose without loss to be normalised, 
and let rc be the product cocycle determined by the function (s, t)-- ,  q(s; t). Define 
a sequence of function fn on S (~), n = 0, 1, 2 . . . .  recursivety by letting fo(0) = 1 and, 
for n > 1, 

f , : ( s i , . . . ,  s , )~- ,  f ~ _  l ( s i  . . . .  , s~_ 1 ) ( q / ~ ) ( s ~ ; s i , . . . ,  s , _ , ) .  (2.6) 

f l  ( s ) =  fo(O)(q/n)(s;  ¢ ) =  I and, for n > 2, the cocycle identity applied to the triple 
({s,}, {s._~ }, {s~,. . . ,s ,_2}) yields 

f ~ ( s  1 . . . .  , s , )  = f ,  _ 2 (si  . . . . .  s ,  _ z)(q/zc)(s,;  s 1 . . . .  , s , _  1 )(q/70(s~ - i ; s i , .  . . ,  s~_ 2) 

= f . _  2(si  . . . .  , s . -  2)(q/rc)(s.; s, ,-  a ) (q /zc)(s . -  i , s . ;  s l  . . . . .  s . -  2) 

= f .  - 2 (sl . . . .  , s . _  2)(q/rc)(s._ i ,  s .;  s l , . . . ,  s . _  2). (2.7) 

Thus, if f1 is symmetric for j < n, by (2.6) f .  is symmetric in its first n - 1 arguments, 
and by (2.7) it is also symmetric in its last two arguments; in other words f .  is 
symmetric. Since fo and f l  are symmetric, it follows by induction that each of the 
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functions f .  is symmetric. The corresponding function f on F satisfies 

f(z u {s}) 
(q/rc)(s; z) = f(~) f ( {s} ), 

so that q = zi~z. Now let l be a logarithm of the function (s, t)-,q(s; t) on S ~2), then 
= ~Zk~ k, where k = e x p ( l -  1)/2 and k '=  exp(l + T)/2. Since k' is symmetric ~k' is 

trivial, z o say; on the other hand k is skew-symmetric and q = zlgTc k, so that the 
proof is complete. [] 

Corollary 2.4. 

(i) The trivial cocycles are the symmetric cocycles. 
(ii) Two skew-symmetric product cocycles nk~ and ~k2 are equivalent if and only if 

ka/k2 is skew-symmetric and { +_ 1}-valued. 

Since C × and C×/{_+ 1} are isomorphic groups the above degeneracy is not 
revealeA in the second cohomology group of F s. 

Theorem 2.5. 

)f~(Fs) ~ d(S~2~; ¢ ×), 

the muttiplicative group of skew-symmetric C ×-valued functions on S ~2). 
In terms of any given partition S~ u . . .  u S. of S we have the following alternative 

representation for 2-cocycles on F s. 

Proposition 2.6. Let $1 u ... ~ S, be a partition of S. Any 2-cocycle on F s is equivalent 
to a 2-cocycle of the form I-[ qi2, where each qi2 is a product cocycle, (s, t)-~ qii(s; t) 

i>j 
has support in S i x Sj u S]x Si and the qu are skew-symmetric. 

Proof. By Proposition 2.3 any 2-cocycle is equivalent to a skew-symmetric product 
cocycle n which may be written 17[ hi J, where rci~(~, t ) =  n(ctc~Si, f in  St .  Define a 

i,j 
function f and product cocycles qii (i > j) as follows: 

~nij/~jl if i > j  
f(cO = i<iI] nij(ct, ~); qi2 = tnii if i = j '  

Then, by the multiplicativity of nlj (in each argument), 

( ) ~l-l~iJ(ctwfl'ctufl) I - i ~ i ~ ( c t ' f l ) ~ ) ~  i>Jl~ ~j(fl, ct) 

i<j 

= H Tgij(~, fl), 
t,j 

and the result follows. [] 

Each 2-cocyctc q determines an algebraic structure on ~(Fs )  as follows: 

f°qg:a ~ ~ q(ct, c~)f(a)g(~), (2.8) 
c t ~  
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where g denotes the complement of e in ~r:o-\cc The cocycle identity expresses the 
associativity of this product. The resulting complex, associative algebra ./~(Fs, q) 
has unit q (~ ,  ~ ) - 1 6 e  and is non-commutative unless q is trivial. 

M :  will always denoted the pointwise multiplication operator g~-~fg on 
complex valued functions defined on the same space as f.  

Proposition 2.7. Let ql and q2 be 2-cocycles on Fs and f Eo~(Fs). Then the following 
are equivalent: 

(i) ql/qz = z:, 
(ii) M::o~(F, q 1 ) -* ~ ( I ' ,  q2) is an isomorphism. 

Proof. Immediate. 

Remark. Algebras of functions of several variables under products of the form 

f oqg(a) = ~q(ot, fl)f(at)g(p), aeF(S1)  x ... x F(S, )  

(where the sum is over pairs (a~,p) for which each a~wfli is a partition of a,) may 
be reduced to the one variable case through the obvious identification of 
/-'($1) × .-. ×/ '(Sn) with F(SI  ,, "" ~S , ) .  

When q = ( - 1 ) "  where n is defined, in terms of an ordering of S, by 
n(e,/?)=#{(a,b)ec~ x l~:a>b}, ~ ( F , q )  is isomorphic to the algebra of anti- 

o~ 

symmetric functions on ~ S (') under the antisymmetric product. When q is the 
n = O  

unit cocycle J~ is (naturally) isomorphic to the symmetric function algebra. Taking 
a cue from P-A. Meyer [Me 2] we call o~(Fs, q) Wick-Grassmann algebras on S. 
By heeding the previous remark one can see that algebras of functions of several 
variables which are symmetric in some of the variables and anti-symmetric in the 
remaining variables are also covered by (2.8). 

3. Wiener-Clifford Algebras 

In this section we construct associative algebras of measurable functions on F(S, m), 
the symmetric measure space of a measure space (S, m) [Gui], by means of three 
argument multipliers. Study of the isomorphism classes of these algebras shows 
that the generic product is obtained by a welding of two paradigm products: the 
Wiener product [Maa] and the Clifford product [Me 1]. 

Let X = (S, m) be a a-finite, non-atomic measure space. The correspondence 
co 

between Fs and ~j S (") induces a measurable structure on Fs:E c Fs is measurable 
t l = O  

if each E, is of the form E', c~ S (") for some E'. which is measurable in the product 
space X". A measure/~x is then defined by 

/~x(E) = ~ (n[)-lm"(E',), (3.1) 
n = O  

where m ° is point measure on S o and m" (for n > 1) is the product measure on S". 
We denote the resulting measure space, the symmetric measure space of X, by F(X)  
or F x and usually abbreviate d#x(a) to da. 
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Remark. Non-atomic a-finite measures take all intermediate values between 0 and 
the (possibly infinite) total measure. It follows that each set diagonal A"(S) is 
(contained in) a null set of the corresponding product measure. In particular/~x 
is unambiguously defined. 

The algebras considered here result from the convolution-like products: 

f*po :a --* ~ ~ p(co, ~, a)f(e u co)9(co w a)de), (3.2) 
c~ c ff 

where the requirement of associativity imposes some restriction on the form of p. 
From now on ~-(Y; Z) will denote the space of measurable maps between the 

measure spaces Y and Z. We introduce two further function spaces: 

~ , ( F " )  = { f e ~ ( F " ;  C ×):f  has relatively compact range and f = 1 
on the set diagonal A"(S)}, 

•(X) = {feff(Fx):Ia#~lf(a)lZda < ooVa > 0} = (-] N(a~"), 
a> '0  

where a N is the multiplication operator: (aNf)(a) = a#"f(cr), on L z (Ix). The algebraic 
structures will be on N#(X) and the products will be determined by functions from 
~ , (F3) .  Recalling out set notations (Sect. 1) the following elementary identities 
are crucial: 

Proposition 3.1. 

O) For f ~  .~(F(2)), (¢, z) e F  (2), 

2 f(7,7)= ~ 2 f(~ufl,~ufi).  (3.3) 

0i) I f  g~Jr(F" ) is integrable in the product measure #n, then 

~...~g(o- 1 . . . . .  a ,)da 1--.da. = ~ ~ 9(~t)da. (3.4) 

Proof. First suppose that 9 is non-negative, and j = ( j t , . . . , j , ) e N "  let gj be the 
function on SJ~x . . -x  S j"= S j'+'''+~" corresponding to 91rj~ ..... rj. which is 
symmetric in its first j~ arguments, and in its second J2 arguments, and so on. 
Then for (si,..., sN)eS tin, 

O(al . . . .  , e . ) =  ~ ( j l ! '" j , ! )  - i  ~ gj(s~(i),'",s~(N)), 
]~1 = {Sl,,..,SN} j l  + " "  + i n  =N ~ze,9ON 

so that, by the invariance of the product measure m N under (the natural action of) 
the permutation group b* N, and regrouping courtesy of Fubini, 

I Z 9(~)d~:(N!) -~ Z (Jl!'"J,!) -~ Z f '"fOJ(u~,'",u,)dui'"du, 
r N laj=a j l  + " "  + j n = N  ~ U  

= Z I "" I . . . . .  
J l + ' " + j n = N  F)~ F j .  

where we have abbreviated dm~(u) to du. By summing over N we obtain the identity 
(3.4). Since an integrable function is expressible as a linear combination of 
non-negative integrable functions (ii) follow by linearity. (i) is immediate. [] 

Remark. Proposition 3.1 (ii) also follows by repeated application of the case n = 2 
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which is proved in [L M 1]: 

E f(~)da=j' E E f(e, . . . . .  e._~,ff)do 

=I5 E f(e, , . . . ,e ,_, ,7,)d~dT, 

= S"" ~ f(71 . . . .  ,7,)dYt, . . . ,  dT,, 

We have included a full proof here since much of the subsequent analysis depends 
on (3.4) which we shall refer to as the integral-sum identity/lemma. 

Proposition 3.2. For f, geY{'(X) and p ~ ( F  3) essentially bounded, f %9 is well- 
defined and satiOes the L2-norm inequality 

II aS(f  %g)It < sup lpl II (a,J3)uf tt I1 (a~/3)ug {I, a > 1, (3.5) 

while/f q e ~ - ( F  2) is essentially bounded and f %g is defined by (2.8), 

II aN(f %0)II _-< sup i ql II (axf2)~f II II (a,4/2)~9 II, a > 0. (3.6) 

In particular, f %g , f  %geN'~(x). 

Proof. (cf. [ L M 2 ] )  An application of the integral sum identity (3.4) gives for 
f e f ( X ) ,  

~ 3#°tf(~)t 2d~-- ~ Z 2~=ff(~)? d~ = S~ 2#~lf(e~)?dedt~; 
~ c 6  

in other words, f~:fi~-+f(eufl) is square integrable for almost all e and 

N x/3Nf ][ 2 = ~ 2#= [[ f~ ]I 2 de. (3.7) 

By Cauchy-Schwartz and more applications of (3.4), 

(sup Ipl) -z ~ l(aN(f,g))(~r)lZda < ~ l(aNf)(eueD(aUg)(oJw~)l d~ do 

< S 2#~ 2 It (aNN) ~ II 2 II (aNg) ~ II 2 da 

= 5 ~ 2#= [I (aN f )  ~ Jt 2 2#~ II (aNg) e 1] 2 do 

= ~ 2#= N (aS f )  ~ II 2 de [. 2 #e l[ (aUg) e tl 2 dfi 

= II(a,,/7)'<f IIZ II(a~/D-)"g II z, 
in particular f*pg is defined almost everywhere and (3.5) holds. Again by the 
integral-sum lemma, 

tI aN(f %g)If z = S I a#~ ~ q(e, ~)f(e)g(~)I2da 
= c f f  

< j" (2a 2)#~ ~ [q(e, 07)f(e)g(~)l 2 da 
~ c c ~  
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< (sup I q I) 2 ~ ~ ( 2a2)#~ +#~ If(a)g(fi)t 2 dadfl 

= {suplql H(av/2)Nfll U (ax/~)Ng U }2, 

giving (3.6). []  

Proposition 3.3. Let p s ~ ( F  3) be essentially bounded and satisfy the identity 

p((.O2 U O)a, O~l , ~X2 U O~ 3)p((.Ol , O~2 k-J O)3, 0~3 U O.)2 ) 

= p(o)~ u o~ ,  ~i u ~2, c~)p(o~,  cq u o~2, ~2 u o~)  

for almost all (o~, cO~F 6, then * ~ is associative. 

(3.8) 

Pro@ By the non-atomicity of the measure m, {o-~F:a n z # ~ }  is a//-null set for 
each zeF. Applying (3.3) with (a, z) = (o, ~l) and then (3.4) with n = 2  and 
(cq, a) = (0) 2, co) gives 

f ,(g,h)(a)= ~ ~p(o,~l,~l)f(o~w~l)g*h(~ou~i)do) 
¢~ c t7 

= ~ ~ ~, ~ P(O, oq,~l)P(C°l,(52ue2,°2u~2)f(elU°~) 
~ l C t 7  C t 2 c ~  1 0 ) 2 c ~  

"g(o) i U~b 2 U ez )h ( (o  1 kilO) 2 U ~2)do)do)  1 

= E .[ISP((D2U(D3 ' ~ l , c t 2 U ~ 3 ) F ( O ) l ' O 3 U ~ 2 , O ) E U ~ 3 ) f ( ~ l U O ) 2 U 0 3 3 )  

"g(oD 1 U 0~ 2 U 0 3)h(cO i W 0 2 U ~ 3 ) d ° l  d6°2 d°93. 

On the other hand, applying (3.3) with (a,z)=(co,~3) and then (3.4) with 
(~i, a ) =  (~2,co) gives for (f,g),h(a), 

~ 3 C ¢ r  

= E I I  2 E P(fD'~3 '~3)p( fD3,(D2U~2,(O2U~2)  
at5 ~ tS ¢~2 C ¢~3 092 ~ ¢0 

"f(o) 3 w e~ 2 w c~2)g(o 3 w o32 u ~2)h(o) w ~3) dm d¢03 

= E . [~IF(691UfD2 '~IU~x2'(x3)p(O)3'(LO2U~xt'( 'OIUO~2) 

" f ( ~ l  U(D2 U ('O3)g((D1 g 0~ 2 U (D3)h(L9 1 g 60 2 uo:3)dCOldCO2d03 3 . 

Thus if p satisfies (3.8) *p is associative. []  

Thus the a.e. equality (3.8) is a sufficient condition on an essentially bounded 
p for the associativity of *p. When X is a separable measure space the condition 
is also sufficient. Since the proof does not illuminate the rest of the paper, where 
separability plays no r61e, we defer it to [LP]. In view of (3.5) *p descends to the 
quotient of N°(X) by the #x-null functions. By abuse of notation we also denote 
the quotient by NO(X). 

Elements p of ~ ( F 3 ) ,  satisfying (3.8) for all (o~,c 0 in /-(6) will be called 
multipliers. We do not know the answer to the following natural question: suppose 
that p belongs to ~ ( / - 3 )  and *p is associative, then does p agree almost everywhere 
with a multiplier on X? A positive answer to this would permit a more liberal 
definition of multipliers. 
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The first interesting non-trivial multiplier is the Clifford multiplier given by 

p(0), ~, fi) = ( - 1) "l°'~a'°~), (3.10) 

where n(a, z) = #{(s, t)a x z:s > t} and > is some measurable ordering on X. We 
shall call pairs (3if(X), %) Wiener-Clifford algebras on X. 

Proposition 3.4. p is a multiplier i f  and only i f  there are f s f f  r(I" ) and q ~ , ( F  a) 
such that 

(i) q satisfies the cocycle identity (2.1), 
(ii) zfqt~ = z}q 4 - 1, 

(iii) p(0),~,fl) f(0)) q(~'fl) V(0), ,--(3) = e,  f l ) e ~  . (3.11) 
q(a, 0))q(0), r) 

Proof. Since p satisfies (3.8) if and only if non-zero multiples of p do, and since 
such multiples may be absorbed by f in (3.1 t), we may assume p to be normalised: 
p(q~, q~, q~) = 1. Suppose p is a multiplier and define q and f by 

q(~,fl)=p((a,~,fl); f(0)) = p(0), ~b, q~). (3.12) 

Putt ing to = J~ in (3.8) we see that  (up to a null set) q is a 2-cocycle, and putting 
= O we obtain the cyclic relation 

f(0)2 k3 0) 3)p((.O1 , 6,93, 0)2) = f(0)l  w 0)2)P(0)3,0)2, 0)1 ). (3.13) 

Putt ing ~2 = a3 = 0)2 = 0)3 = ~ in (3.8) and applying (3.13) gives 

f(0) u~) 
f(0)) = p(0), a, ~)q(0~, 0)) = f(cO q(0), cOq(c~, co), 

so that  
zfq~ = 1. (3.14) 

Putt ing 0)3 = ~ in (3.13) and using (3.14) gives 

f(0)1 u o)2) f(co 0 
P(0)D~'0)2)= f(0)2) q(0)2 '0)0= (3.15) 

q(0) 1,0)2)" 

Putt ing cq = a2 = 0)2 = ~ in (3.8) and applying (3.15) now yields 

P(0)l, 0)3, ~3) = P(0)I, ~ ,  a3)P(0)3, ~ ,  0)1) __ f(0)l)f(0)3) q(0)3, C@ 
P(C03' ~ ,  Ct3) f(0)3) q(0)1,0~3)q(0)3,0)1)' 

Thus p is composed from a function f and a 2-cocycle q, which stand in the 
reciprocal relation (3.14) through the formula (3.11). It remains to show that a 
function p given by such a pair (q, f )  through (3.tl) is a multiplier if and only if 
z}q 4 = 1. Let p be such a function, then the ratio 

p(O) 2 U 0)3, ~1, ~2 k) (x3)p(0)I, ~2 t y 603, ~3 U (02) 
P(0)I k..J 0)2' e l  U ~2, a3)P(0)3, CZl k) (.02,0~ 2 k) 091) (3.16) 

may be expressed as a product PIP2P3, where 

P1 = f(m2 w 0)3)f(o91) 
f(co 1 w co2)f(oJ3) ' 
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q(oq, a2 ~ a3) q(o~ ~ C02, 0%) q(oq W c02,0)3) q(03, O~ 2 k3 0)1) 
P2 = q(~l ~ ~2, ~3) q(oh, ~3 v 0 9  q(~, 0~ w 03) q(~ w 0 3 , 0 0  

= q(~, ~ )  q(o~, ~3) q(o~, 03) q(03, ~z) 
q(a2,0%) q(0)1, co2) q(a~, 0)2) q(o~2,01)' 

q ( ~  v 03,  c~3 ~ 0 9  q (~  ~ ~z, oa ~ 02) 
P3 = 

q(~l k) 02, 0~2 ~ 01) q(02 ~ (-03, ~2 k30~3)" 

Moreover, by (3.14) 
q(o2, O1) q(~t, 0~2) q(o2, ~3) q(o3, ~2) 

P~P2 = 
q(03, ¢02) q(o~2, C~3) q(oh, C02) q(o~2, O1)" 

Applying the cocycle identity successively to the triples (a~ ~ 0 2 ,  ~2,00,  (al ~ a2, 
02, c01) and (02, al ,  ~2), and using the fact that q/gt is a product cocycle, 

q(al k')(Z2' 0 1  U 0 ) 2 )  = 

and similarly, 

q(cq W 02,  a 2 W C01) 
q(al u ~2, °1 u ° 2 )  q(~2, °1) 
q(~z 1 U ~Z 2 t.) 0/)2,0)1) q(~l u o)2, a2) 

q(~1u~2,0~2) q(~2,00 q(o2, ~1) 
q(o2,0)0 q(~02,~u~2) q(~,~l) 

q(a2, ol)  q(Oz, 
= ~ - ( )  q ( ~ i  --~, q /g l (~ ' ° z )  q/gl(°~2'°2) 

q(a2, co~) q(cfl, 02) . . . .  

qt 2, ~)q( 1, 2) 

q(~2 w 0)2, ~3 w 0)9 q(~2, ~3) q(03,02) . . . .  
- q/qt 2, o3 . 

q(o 2Uco 3,~2U~3) qt 2 3) qt 3 2~ 

Therefore the ratio (3.16) is (q/~t)2(~2,02) or by (3.14), 

v~ (a2, o)2) q4(0~2, c02). 

Thus the identity (3.8) holds for a function p given by (3.11), where q is a 2-cocycle 
and zyqgt - 1, if and only if z}q 4 -= 1, and the proof is complete. [] 

A function f :  F s ~ C is called muttipIicative if 

f(c~ w fi) = f(ct)f(fi) for ~, fl disjoint. 

Thus multiplicative functions are of the form 

G I-[ 4)(s), 
~tr 

where 4) is a function on S. Notation: ~ .  If 4)1 and 4)2 are measurable functions 
on X which agree a.e. m, then e4,1 = e+~ a.e. #. If 4)~LI(X) then s4,~LI(Fx) and 
~%d/~ = exp {~4)drn}. When 4)~L2(X) e~ is called the exponential vector determined 
by 05. 

Note that a product cocycle in o~ (/-2) must be of unit modulus (outside a null 
set in/-(2)). 
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Lemma 3.5. Le t  q e ~ r ( F  2) be a 2-cocycle  and f e a r ( F 1 ) ,  then the fo l lowing  are 
equivalent: 

(i) z fq[l = z~ q4 =_ 1, 
(ii) q = Zh~k, where/C~: = 1,/C(S 2) c {1 , i , - i}  a n d f h  2 is muItiplicative. 

Proof .  Suppose that q is of the form (ii), then rfq?l = Zlh2~Zk~k = r f h 2 -  1 and 
zErq 4 = (Zfh2)2(~k) 4 =-- 1, SO (ii) implies (i). Suppose now that q, f satisfy (i), let g0 be 
a measurable square root of f and let ~/= Zgoq. Then 

qfl = zfq~l - 1; q* = ry2q 4 -- 1, 

so that ~ is skew-symmetric with range in (1, i, - 1 ,  -1} .  Let k~(s, t )=  ~(s, t), then 
r/= Za~kl for some g~e~r(F1). Define k 2 by 

S - I '  if /cds, t ) = - l ;  
/C2(s, t) 

1, otherwise. 

Then, since k 2 is symmetric, ~k~ is trivial: zg~, say. Letting h -- g~ Xglg2 and k = k~k 2 
we have q = zhx k and 

1 -- zfqgl = Zfh~Xkr , = Zlh2, 

SO that f h  2 is multiplicative. Since/C has range in { 1, i, - i) the proof is complete. []  

If g e ~ ( X ;  C ×) and e is the multiplicative function determined by a measurable 
square root of g, then %(co) = e(~ w B)- ~e(~ w o))e(co w fl). By letting g be the function 
s~-+(fh2)(  (s} ), Lemma 3.5 combines with Proposition 3.4 to give: 

Proposition 3.6. L e t  p be a mult ipl ier on F x ,  then 

f ( a  w c~)f(o9 w fl) ~(~, fi) 
p(~o, :t, fl) = f(c~ u fl) 7z(e, og)~z(co, fl)' (3.17) 

where f E a r ( 1  -'1) and ~ = Zk, w h e r e / C ~ ( S  2) is s /cew-symmetric  with range in {1, _ i}. 

Note  that the functions k that arise in (3.17) are all the functions of the form 

fl /CF:(S,t)~ -- on F; (3.18) 
1 elsewhere, 

where F is a (measurable) subset of S (2) satisfying Fc~ff = ~ .  
Writing p = (f, k) for a multiplier with representation (3.17) we define equivalence 

for multipliers by (f, k )~  (f',/C') if ~k and ~k, are equivalent cocycles, modulo a 
null se t - - in  other words ~k' = %~k a.e. for some g ~ r ( F 1 ) .  We denote the group 
of equivalence classes of multipliers by d/l(Fx) .  The justification for this definition 
of equivalence will come later. 

Proposition 3.7. Le t  p = ( f ,  k), p' = ( f ' ,  k') be multipliers on F x.  T h e n  the fo l lowing  
are equivalent: 

O) P ~ P ' ,  
(ii) supp/cA supp/C' is null. 



350 J.M. Lindsay and K. R. Parthasarathy 

Proof. Let E be the symmetric set suppkA suppk' and let k 1 be the symmetric 
function agreeing with k 'k-  ~ outside E and equal to 1 on E. Then rCkl agrees with 
r~k,rCk -1 outside the set/~ = {({s} u~,  {t} u fl): (s, OeE, ~, f ieF}.  Since/~ is #2-null 
if and only if E is m2-null the result follows [] 

Theorem 3.8. 

~¢(rx) ~ (~(v~), a), 

the measure algebra of F 2 considered as a oroup under symmetric difference. 

Proof. By Proposition 3.7, q~: [ ( f ,  k)] ~ [supp k] is a well-defined injective map 
from Jg(Fx) to the equivalence classes of symmetric measurable subsets of 
S ~2). Let E be such a subset of S ~z) then, if F u f f  is a measurable partition 
of E. ~([(1,kv)])=[E ], so • is bijective. Now suppose that E = E ~ A E 2 ,  where 
E~, E2 are symmetric subsets of S (2), and let F u P be a measurable partition 
of E and F3uf f3  a measurable partition of ElopE2. Define kl =k~,~,v~ and 
k2 = kh~vl,  where F, = F c~ E, (i = 1, 2), then supp k¢ = E, and supp k l k  2 = E. Thus 
q)-I ([EIAE2] ) = ~0-1([E1])~-I([E2]), and the theorem now follows since the 
measure algebra of F z is isomorphic to the symmetric measure algebra of X (z). [] 

Suppose that p = ( f , k )  and p ' =  ( f ' ,k ' )  are equivalent multipliers so that 
nk" = rhTZk almost everywhere and, for a.a. a, h(a)= I-[ (k/k')(s, t) and is {-t-1}- 

valued. Then Mhl/s' is an isomorphism from (:C(X), %) to (~¢l(X), %,), justifying 
our notion of equivalence for multipliers. Again Wiener-Clifford algebras of 
functions of several variables may be reduced to one variable function algebras 
via the natural identification of F ( X O  x ... x F(X,,) with F(X),  where X is the 
sum of the measure spaces X~ , . . . ,X , .  In particular super-symmetric Wiener- 

Clifford algebras arise by choosing multipliers p of the form (co, c~,/3) --. I-I p(co c~ si, 
g 

c~c~Si,flnS~), where PIr¢~(so is a Clifford multiplier for i =  1, . . . ,k,  say, and the 
Wiener multiplier ( - 1 )  for i =  k + 1 . . . . .  n. 

4. Twisted Wiener-Clifford Algebras 

In this section we construct and classify a further class of algebras by means of 
an involution on S, that is a map i:S ~ S  whose square is the identity map. The 
Bose and Fermi products, which are discussed extensively in [L M 1], are included 
and also some interesting new products. The results of this section subsume those 
of the previous one since the involution may be the identity map. 

Let Z = (S, m, i, S+), where X = (S, m) is a a-finite, non-atomic measure space, i is 
a measurable involution on S and S+ is a measurable subset of S such that if 
So = {seS :i(s) = s} and S_ = i(S + ), then So u S + u S _  is a partition of S. Let ,-~ be 
the involution on F"(S) induced by i: 6-= (an,... ,  al), where {s~,..., sn}~= {i(s0,..., 
i(s,,)}, and for f e ~ ( F " )  l e t f  be the induced map: f(o-)=f(#).  Note that this does 
not conflict with the previous use of ~ .  For Z as above, F(Z)  or F z will denote 
the measure space F(S, m) together with this extra structure. ~ (and i) will be 
referred to as the twist. 
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We are interested in those elements p of ffr(ff '3) for which the twisted 
convolution 

fZ,,g:a~-~ ~ ~p(o.~, ~, a)f(a u &)g(0) u ~)d0) (4.1) 

defines an associative product on W(Z):= 3¢(S, m + th). A similar inequality to (3.5) 
holds so that J r (Z)  is closed under 7,p which again descends to the quotient modulo 
~tx-null functions. 

Proposition 4.1. For p ~ r ( F 3 ) ,  let D p ~ ( F  6) be given by 

(~, O))>'+p(0) 2 V..) 0)3, al,  a2 U 0~3)p(0)1,093 U ~2, 0)2 U ~3) 

-- P(0) I U 0)2, C~ 1 U ~2,0~3)P(0)3, ~1 U (-02, C¢ 2 U ¢b 1), (4.2) 

then the vanishing of Dp (a.e.) is sufficient for the associativity of ~p on Jr(Z). 

Proof. The same applications of Lemma 3.1 as were used in the proof of 
Proposition 3.2 lead to the expression 

S~Dp(ot, to)f(cq u ~2 u ~s)g(~l u ct 2 u 0)3)h(0)1 u 03 2 U g3)d(o,d0):dco 3 
lal=~ 

for {fC,(g.~h)- (fZ, g).~h}(a) and the result follows. []  

Elements p of ~-r(F 3) for which Dp vanishes identically will be called multipliers 
on F z. In our analysis of multipliers on I" z we continue to denote by l:f and 
rc k the trivial and product coeycles determined by f ~ r ( F  1) and k~Yr(S  2) 
respectively. 

Proposition 4.2. p is a multiplier on F z if and only if there are f ~ r ( F  1) and 
q~ffr(ff '2) such that 

(i) q satisfies the cocycle identity (2.t), 

(ii) ~sqq = 1, (4.3) 

q(a, fi) q(e,/~) 
(iii) q(fi, a ) - - q ( f l ,  a) = 1, (4.4) 

~'  " q(e' fi) g(0), a, (4.5) (iv) p(0),a, f l ) = j t C ~ ) q ( a , ~ , f l  ) fl)~F (3). 

Proof. Applying identical steps to (4.2) as were applied to (3.7) in the proof of 
Proposition 3.4 leads to the identities (4.3) and (4.5), q being a 2-eocycle on F(S). 
Further identical steps lead to the expression 

q(a2, o52) q(~2, c%) 

q(o32, ~2) q(0)2, ~2) 

for the ratio (3.t6)'. Thus p is a multiplier on F z if and only if p is of the form 
(4.5), where (q,f)  satisfies (4.3) and q is a 2-cocycle satisfying (4.4). []  

Lemma 4.3. Let qSf f r (F  2) be a 2-cocycte on F(S,m) and f ~ f f  ~(F1), then the 
following are equivalent: 
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(i) z eq(t = 1, 

(ii) q = Zhnk for some he~r (F1) ,  where kTc = 1 and f h h  is multiplicative. 

Proof. Suppose that (q,f) satisfies (i). Then, by Proposition 2.3, q = Zhfik, for some 
h i e ~ ( F  i) and product cocycle nkl, moreover k 2 = (klkl) -1 is both ,-~-invariant 
and symmetric. Let k a be a measurable square root of k 2 which is also ,-,-invariant 
and symmetric. Then rck~ = z o for some gear(F1) ,  and if k = k lk  a, h = hlg-2,  then 
the pair (h, k) satisfies (ii). The converse is immediate. 

Proposition 4.4. Let p be a multiplier on F z, then 

, , g(o~ w cb)g(co u t )  u(a, t )  (4.6) p(co, a, fl) = ~t~o~ ~ i  ~(~,o)~(o,t~)' 

where 8 e ~ ( F  l) is multiplicative, g e ~ ( F  i) and ~ = Uk, where k is determined by 
a skew-symmetric { 4-i, 1}-valued function ~ on So x So, a skew-symmetric function 
on S+ x S+ and a {+_1}-valued function tl on So x S+ as follows: 

(?(s,t) on S+ x S+ f tl(s,t) on So x S+ 

= )" ~(~, 0 s_ x s -  l ,(t, ~ s_ x So 
/4s, t) = ¢(s, t) on So x So, ~ ( r ,  s) S+ x S_ '  = 1 S+ x So 

(~(t,s') S_ x S+ 1 So x S_ 
(4.7) 

Proof. Combining Proposition 4.2 and Lemma 4.3 we obtain the form (4.6) for p 
in which ee~-,(F~) is multiplicative and n = nk,, where k~ satisfies 

klk 1 = 1, (4.81) 

ka(s, t) kl(s, g) = 1. (4.8b) 
kl(t, s) kl(r, s) 

By the analysis of Sect. 3 we may assume that k~ has the required form on So x So, 
and by taking a measurable logarithm of ks on S+ x S+ (and arguing as in the 
proof of Proposition 2.3) we may assume that 7:= k~ Is. × s+ has the required form 
also. Let ~=kl l s+×s_ ,  6=ki[s+×so and ~=kl[so×s+ then by (4.8b) t/:(s,t)~--~ 
6(t,s) a(s,t) -1 is {_+ 1}-valued on So x S+, thus kl has the following form on the 
rest of S(2): 

{ y(~, t') o n  S _  x S _  

~(t,s) ~,(t, s-) ~,(~,t) -1 s _  x s+  
kl(s, t) = ~(~, s)- i S O x S_ 

,~(t, s) ~(s, t) So x S + 
~(~, t )-  irl(t, s') S_ x S O 

Define k2 on S (2) by 

{ 6(s,t)-I  on S+ xSo 

k2(s,t)=~y(~,s)((s,t)-l, on S + x S _  = 6(t,s) -1 S o x S +  
(y(~,t) ~(t,s) -1 S_ x S+' 6(F,s) S O x S_ 

b(g, t) S_ x S o 
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and 1 elsewhere, then k 2 satisfies (4.8) and is symmetric, so rck2 is trivial. The product 
klk; is of the required form and the proof is complete. [] 

We write (f, g, k) for the multiplier (4.6) where e = el and rc = ~k. By taking a 
measurable logarithm o f f  one may divide out the ~-invariant part of e to obtain 
a representation (f ' ,g' ,k) in which f , = f , - 1 .  Then the extent to which the 
representation of a given multiplier is unique is as follows: ( f  g, k) =- 1 if and only 
if k -  1,9 is multiplicative, ey = g0 and is {_+l}-valued. As before we define 
equivalence for multipliers by equivalence of the corresponding 2-cocycles (modulo 
null sets), and denote the group of equivalence classes of multipliers on F z by 
~(Fz) .  We remind the reader of our convention that a group valued function f 
on Y x Y is skew-symmetric if f( t ,  s) = f(s, t)- 1 

Lemma 4.5. With the above notation let p and p' be multipliers on F z. Then p ~ p' 
if and only if  almost everywhere ~/~' and ~/?' are { + 1 }-valued and tl = rf. 

Proof. p and p' are equivalent if and only if ~/~', 7/?' and r//r/' are symmetric outside 
a null set. But ~/~' and ~'/7' are skew-symmetric and q/t/' (t, s )=  r//r/' (s, t) if and 
only if q/~f(s, t) = U~f(t, s) = 1. The result follows. [] 

Combining this with Proposition 4.4, identifying r/with its support q-1 ({_  1}) 
and again accommodating the group isomorphism between C ×/{ + 1} and C ×, we 
have: 

Theorem 4.6. 

~(rz) ~-Ot(rdZo)), A) x ~'~(Z~); C ×) x (#(Zo x Z+), A), 

where a¢~ is the group of (equivalence classes of) skew-symmetric .functions with 
relatively compact range. 

Finally notice that if p = (f, g, k) and p ' =  ( f ' ,  g', k') are equivalent multipliers 
on Fz,  then JCho/¢ is an isomorphism from (S(S,  m, i, S +), ; , )  to (At(S, m', i, S + ), ;%), 
where m' is the measure given by din'= (f/f ')dm, if h is the almost everywhere 
{ +_ 1}-valued function a ~ 1-[ (k'/k)(s, t). 

5. Levy Fields and Bose-Fermi Bridges 

In this section X = (S, m) is a fixed (non-atomic, a-finite) measure space, so we 
abbreviate At(X) to Yf, dm(s) to ds and so on. L2(X) is naturally included in L2(F), 
in fact in S - - w e  use this without further comment. 

A field of operators {lq(f):f~J~r}, with common domain J r ,  is associated with 
each bounded 2-cocycle q. It is shown that ~ is cyclic for {Iq(f):f~L2(X)} and 
that {lq(f),l~(f):f~LZ(X)} is irreducible. Local commutation relations are then 
obtained under various conditions to be satisfied by the cocycles on sets in F ~2) 
determined by the supports of the test functions. In particular we obtain bridges 
from Boson to Fermion quantum fields, and also a continuum of inequivalent 
smooth Levy fields with common covariance. This highlights some of the obstacles 
in the problem of deducing commutation relations fi'om martingale conditions 
which was raised in lAP]. 
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Definition 5.1. Define a map ^from F(F  (2)) to operators on F(F), a product x on 
F(F  (2)) and a bilinear map F(F)  x F(F  (2)) to F ( F  (2)) by 

(5.1) 
I~l=~ 

u X V(a, "C) = 2 U(~I, 0~2 U'Y)V(~2, Z), (5.2) 
la]=a 

g.v(a, z) = g(a)v(a, z). (5.3) 

The map ~ is well defined by (3.6) and is clearly injective so that associativity for 
the product x follows from the easily verified relation u--x-v = az3. If u = g.v where 
gCJ(  and v is bounded then, by (3.6), a leaves • invariant permitting the following 

Definition 5.2. For a bounded 2-cocycle q and function f in ~'~, define an operator 
on L2(F) with domain 3f" by 

l~(f) =.fiq. 

By the previous remarks each operator leaves 2/f invariant and if (q,, f~) i = 1 . . . . .  n 
are as above 

lq~(f~). . . lq~(f ,)=f~.ql x ... x f , .q~.  

Moreover 
tq~ ( f  ~ ). . .  lq~(f~) f~+ ~ = f ~ °q~f 2 °q~"" °q,f~+ ~, (5.5) 

where the right-hand side is independent of bracketing, generalising the associativity 
of Oq (2.8). 

Lemma 5.3. Let  f eJ~F and let q be a bounded 2-cocycle. Then JT ~ ~ ~( lq( f )*)  and 

[l~(f)g] (a) = I f(co)~(m, a)g(a u re) de), (5.6) 

where l~(f) denotes the restriction o f /q( f )*  to 3V. 

Proof. For gEo,T" the integral (5.6) is well defined, and the identity is established 
by taking inner products and applying the integral-sum lemma. []  

Note. For operators c having domain 5 f  we shall consistently use the notation 
c ~ to denote the restriction to 2/f of the adjoint of c. Moreover a sentence or 
equation involving terms c # is to be understood as two statements: one in which 
each # is replaced by ]" and another in which each # is deleted. Elements of X 
will sometimes be referred to as test functions, and those whose support is contained 
in F 1, F ,  or F o w . . .  u F m (for some m) as 1-particle, n-particle or finite particle 
functions respectively. 

Proposition 5.4. Let  q l , . . . , q ,  be bounded 2-cocycles and f ~ , . . . , f ,  belong to 
L2(X), then 

lq,(f  l )" ' lq . ( f , )6;~ = n ! P s Q , f  l ® "'" ® f , ,  

n - 1  

where Q,(s)= 1-I qi(s~; si+ l . . . . .  s.), Ps is the symmetrisation projection: (n!) -1 ~ U~ 
i = 1 ~ e r a  n 

((U~f)(s) = f (s , - , (1)  . . . . .  s~-~(~))) and the left-hand side is considered as a symmetric 
function on S ("). 
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In particular for any sequence {qi: ie N } of bounded 2-cocyctes the linear span of 

{lq1(f l ) . . . lq , ( fn)(~z:ne~, f  l . . . .  , fn~L2(X)} 

is dense in L2(F). 

Pro@ A straightforward induction gives the first part and the second part follows 
from the fact that, for each n, {Q, f l  ® "'" ®f , : f i~L~(X)}  spans L2(X ") since each 
Q. is non-vanishing. [] 

Proposition 5.5. Let q be a bounded 2-cocycle, then 

{lq(f), Itq(f):f~L2(X)} (5.8) 

is irreducible in the sense that the only bounded operators which, together with their 
adjoint, leave • invariant and commute with this set are the multiples of  the identity. 

Proof. Suppose that T is an operator on L2(F) which commutes with the family 
(5.8) and, together with its adjoint, leaves Y{ invariant. Then, since (5.8) is symmetric, 
T t will commute with this class, and 

T ( f l o f 2 ) =  T t ( f l ) f2  = f l o T f 2 ;  T t ( f l o f 2 ) = f ~ o T * f 2 .  (5.9) 

Letting h = Tae,  k = T*ae and iterating (5.9) we have 

T f  = f oh; r t f  = f o k  

for f in ~ffo:= linear span {f ,  . . . . .  f , :neN, f i eL2(X)} .  Thus for fev~ffo, 

( ( ~ ,  T*g } = ( h, g } = S h(o-)g(a)da, 

whereas 
(6~,  Ttg } = ( 6~, g o k } = g(~)k(~) ,  

so that h = k(~)6~.  In other words T is a multiple of the identity on -:Uo which, 
by the previous proposition, is dense in Lz(/-'). Thus if T is bounded then it must 
be a multiple of the identity. [] 

Proposition. 5.6. Let f ,  g ~ X  and ~, t 1 be bounded product cocycles, then for ~, 5~C, 

l,(g)I¢(f) + bl¢(f)l,(g) = c~, 

where 
q(a. ~) = 2 g(a)f(5)~(e, r)~(cT, r){t/(a. 5) + c~¢(a, e)}. 

amt if  f and g are one-particle functions, then 

( {l~(g)t¢(f) + et¢(f)lt,(g) }h)(a) 

where .(2(a) = .[ Of (t)q~(t, a)dt. 

Proof. Remembering our convention that cocycles take the value 1 on the set 
diagonals, these identities are immediate. []  
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For ~EC, define a bracket on the algebra of operators on d(  by 

IX,  Y]~ = X Y  + eYX.  

For e = _+ 1 this is the anti-commutator (Jordan product) and commutator 
(Lie bracket) respectively--in general it is a deformation of these. 

Corollary 5.7. Let f ,  g ~ ~ and let ~, ~l be bounded product cocycles, then for 6, ~ C, 

(i) /f ~/+ 6~ = 0 on s u p p f  x suppg, then [ln(f),l¢(g)] ~ = O, 
(ii) if f and g are one-particle functions and ¢ ~ + e = 0  on s u p p f  x suppg, then 
[l*,(g), l¢(f)]~ = Mos.,;¢,, the multiplication operator. 

In particular, if f is a one-particle function and ~/~ + e = 0 on s u p p f  x s u p p f  
where e > 0, then l ,( f)  is bounded. 

Corollary 5.8. Let q be the product cocycle determined by a function of the form k v 
(defined in (3.18)) and let E = Fwf f ,  then for f ,  g~L2(X), 

(i) supp f x supp g = {E c = S\E  ~ [l(f), l(g)] + = 0; lit(g), l ( f ) ]  + = (9, f ), 

(ii) If s u p p f  = ~ A~ for a finite collection of measurable subsets {Aj} of S for 
j = l  

which ~) Aj x Aj ~ E, then lq(f) is bounded. 
j = l  

Proof. On E, q + q = 0 and qq + 1 = 0, whereas on U, q = q = q = 1. The result 
follows from the linearity of t~(.): 

lq(f) = ~ lq(fZA), each lq(fZa) is bounded. []  
J 

An interesting class of examples where the above applies is given by X = (~ ,  
Lebesgue) and F such that E = {(x,y):lx -- Yl < 2}, 2~(0, oo), then I(f) is bounded 
whenever the test function f has compact support. We shall return to this example 
shortly. 

Right o-multiplication may be similarly defined: 

rq ( f )g=go , f  (f, g e S ) .  

By the generalised associativity (5.5), the left and right o-multiplication operators 
commute. When the cocycle takes particular form we can say more: 

Proposition 5.9. Again let q be the product cocycle determined by a function of the 
form kr, then there is a { +_ 1}-valued function ~ on I ~ such that 

M~,t(f)M~, ~ = r(~f),  f ~ X .  (5.10) 

Proof. Let f ,  g e ~ f  , then 

I t ( f  )g] (tT) = ~ q(5, ~)f(~)g((O = ~ q(~, 5)q2 (~, ~)f(~)g(~), 
c t ~ r  ¢ z c 6  

but q2 is skew-symmetric and { +_ 1}-valued--it  is therefore symmetric and so 
equal to z~ for some { _+ 1}- valued function ~. Since ~b -- ~b- 1 (5.10) follows. []  
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For  each multiplier p on F and test function f in 4f ,  let Lp(f), Re(f)  be the 
left and right , -multiplication operators on X :  

L e ( f ) : g ~  f %g; R p ( f ) : g ~ g * p f .  

Proposition 5.10. Let p be a multiplier on F, f ,  gs6f' .  

(i) L~(f)g = f*og, where/~:(co, ~, fl) ~/~(e, co, fl). 
(ii) I f  p(co, c¢ fl)= tt(e, fl)/tl(a, co)tl(co, fl), where t t is a skew-symmetric, unit modulus 
2-cocycle, then 

L~(f) = Lp(f). 

(iii) I f  further f is a one-particle fimction, then 

Lp(f)  = ln(f) + l~(f), 

Rp(f)  = lq(f) + I~(f) = L~(f), 

where 

P:(co, ~, fl) - ,  p(co, fl, ~). 
Pro@ 

(i) Follows from the applications of the integral-sum lemma and (ii) and (iii) are 
immediate. [ ]  

Proposition 5.11. Let f ,  g, h e N  ~ and ~,rl be bounded 2-cocyctes, then 

[j [ l ~ ( f )  - -  l~(g)]h [1 =< [] x/@'~h [I { [1 f [1 [J ~ - r/I[ ~o + [I q 11 ~ J[ f - g 11 }, 

[[ [t¢(f) -- l,(g)]h II _-__ l[ x/~Nh tJ { tl x/-3Nf II tt ¢ - n II ~ + It ~ II ~ 1 t , / 3 N ( f -  g)11 }. (5.1 t) 

Proof. Several applications of the integral-sum lemma give the identities 

( h, l¢(f) l;(g)h ) = S g h(a u fi) f (a)~(a, fl)0(Y)q(Y, fl)h(fl u y)dedfl dy, 

(h, l~(f)l~(g)h ) = SSS~ h(~ w fl)f(7 w 6) ~-(7 v 6, a u fi)t/(a u2 7, f l u  6) 

. g(a w 7)h(fi u 6) dedfi d 7 d& 

Applying the estimate ~ ]1 k ~ 112 de =< [I w/~N k [] 2 (k E J¢~), which follows from (3.7), then 
gives the inequalities (5.11). [ ]  

Corollary 5.12. Let ~ = 7rk~,t 1 = ~ck~ be bounded product coeycIes and f , g  be one- 
particle functions. For h in the linear span of  the exponential vectors {s¢:f~L2(X)}, 

max {]t [l¢(f) - 1,(g)] h t], 1] [l}(f) - l~(g)] h 1]} < c{]] f ]1 ]1 k~ - k 2 [] co  -I- ]] f -- g [1 }, 

where c is a constant dependent only on h. 
Let F c S (2) be such that  F w ff is a measurable partit ion of S (2) and consider 

the family of 2-cocycles {~v: v ~ [t3, 1] }, where ~ is the product  cocycte determined 
by the function k:= eiw/zzF + e-ivn/2Zp , then [1 ¢ , -  Go[] < ((~/2)e~/2)1 v -  ~], so 
{F:f~--q¢,(f)Jv~[O, 1]} is a homotopy  between the boson and fermion Fock 
representations over L 2 ( X ) - t h e  first Bose-Fermi bridge. 

In the notat ion of (3.7) the following estimates are easily obtained by more  
applications of the integral-sum identity. 
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Proposition 5.13. Let f ,  g, h~3ff and let 4, tl be bounded 2-cocycles, then 

K(~,t/) -111[l~(f)-  l~(g)]h][ 2 ~ SS lf(~)l [[h~][ [f(fl)l Ilhalld~dfl 
E l ( f  ,~,~l) 

+ c(f, g, h)It f - g II, 

K(~,tl)-~ll[le(f)-ln(g)]h[l 2< ~ l[f~ll IIh~ll Ilfall [Ihalldadfl 
E2(f,¢,n) 

+ C.(V/3Nf, x/~Ng, h)IIv/3N(f--g)I[, (5.12) 

where 

E 1 = {(cq f l ) e suppf  x suppf : (~  - r/)(c0, (~ - t/)(fl) ~ 0 as functions of  r}, 

E 2 = S f  x S f ( " ~ S ¢ _ ~ I N S ¢ _ r l  , 

c( f ,g ,h)= tlx//3NhllZ{llf-glI +211fit}; K(g,r / )=5max{l lgl l2 ,  llnll2}, 

and Sq = {(~, fl):~ c a, fl c z, q(a, z) = 0} with similar definition for one argument 
functions. 

Let X be a finite dimensional Euclidean space with Lebesgue measure and 
{~/a:2e~+} be the product cocycles determined by functions kv, (see 3.18) 
(Fa = {(s, t): Is - tl < 2, sl < tl }, then for functions f of compact support the sets 
Ei(f, ~/z, t/~) (i = 1, 2) tend to zero, as 2 approaches #, in measure. Since, for 2 = 0, 
I~:f~-->l#z(f) is the boson Fock representation and as 2 ~  ~ ,  l~ approaches the 
Fermion Fock representation, we have a second Bose-Fermi bridge. In fact, 
if f and g are one particle functions and { I s - t l : f ( s ) ,  g(t)v~0} ~ [0 ,2 ] ,  then 
l~(f), l~(g) satisfy the canonical anti-commutation relations (Corollary 6.8) whereas 
if {Is - t I: f(s), g(t) ~ 0} c (2, ~ )  they satisfy the canonical commutation relations. 
If f and g have compact support then the former condition will eventually be 
satisfied (for large enough 2). 

Quasi-free, or positive temperature, Bose-Fermi bridges may also be constructed; 
either via fields of operators {Lp(f):f~L2(S, m)} defined through suitable multipliers 
p on a twisted finite power set Fz,  or by employing linear/conjugate linear operators 
R, T on L 2 (S, m) and defining 

L(f )  = l¢(Rf) + l~(Tf) TeL2(S, m) 

for well-chosen pairs of 2-cocycles (4, t/). 
The central result of l A P ]  (see also [P]) is that two smooth Levy boson 

(fermion) fields with a given covafiance kernel are equivalent, and that smooth 
Levy boson (fermion) fields may be constructed for any covariance density. The 
question of whether other smooth Levy fields exist or not is left open but has been 
a source of lively speculation. We now demonstrate the existence of a plentiful 
supply of such smooth Levy fields in which the past and future satisfy no fixed 
(anti-) commutation relations. A Levy-type theorem characterising quantum 
Brownian motion thus remains beyond our reach at present. The reader is referred 
to [A P] for the definitions of Levy-field, covafiance kernel etc. 

Lemma 5.14. Let ~ be a bounded 2-cocycle and let f ,  g, h e w  be such that supp g ~ / ' t  
and supp g w supp h ~ I ' j ,  where t c~ J = (2~, then 
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( f ,  [l~(g) - g#(~) ]h)  = O, (5.13) 

where g*:= ~. 

Proof. Under the above asumptions on f ,  g, h and 4, 

( f ,  l¢(g)h) = y f(a) ~, ~(a, ~)g(ct)h(~)d¢ 
c t ~ ¢ ;  

= ~ f(c~ v fl)~(e, fl)g(e)h(fl)dadfl = g([2J) ( f ,  h)  

by the integral sum identity and (5.13) follows. [] 

Proposition 5.15. Let q be a unit modulus 2-cocycle on F(N +), then the family 

3~ = {X(f):= lq(f) + l~(f)]f ~L2(N+ )} 

is a smooth Levy field, with cyclic vector 6 e and covariance kernel ( f , g ) ~  yg, 
whenever 3£ consists of  bounded operators. 

Proof. Since lq(f)= ½{X(f) - iX(if)},  6 e is cyclic for the linear span of {X(fl). .-  
X ( f , ) f e : n s N ,  fieL2(N+ ), i = 1 . . . .  , n} by Proposition 5.4. ( f i  . . . .  , f~)~--~X(:~)6 e is 
clearly real multilinear, and for fixed f{~),...,f(~) the continuity of the map 
t~-+X(f~)).. • X(f}~))6 e is ensured by the estimates (5.11). The martingale property: 
(u, X(ftt)v J = 0 whenever supp u, v c Fio,,l, is an instance of Lemma 5.14; in fact 
t~(ft,)u = l~(Ji,)v = 0 and 

( u, X(frr)X(gt,)v ) = ( u, ttq(ftt)lq(gt,)v) 
o o  o o  

= <u,v> f 7g 
F[O,t  I t t 

in other words t is a Levy field with the given cyclic vector and covariance kernel. 
Now suppose that u eL 2 (F) has support in F~o.~ J and f ,  g eL 2 (N + ) have support in 
Is, t], then it is easy to see that It(f)l(g)u = ( f , g ) u ,  so that 

II {X( f )X(g)  -- ( f , g )  }u tl 2 = II l(f°a)u It 2 

= I~dfldyft(fi)foo(7)fog(~)u(fi) 
= tlulleltfog[lZ<4llult2llf®gll 2. 

The smoothness condition now follows from this inequality by the dominated 
convergence theorem. [] 

Theorem 5.16. For 2 >_= 0 let ~ be the Levy field (5.I4) in which the 2-cocycle is the 
(skew-symmetric) product cocycle determined by the function 

(s, t)--, - i  on P:.; 

I elsewhere, ~ / i [  ~ 
i t  

where f:. = {(s, t):s < t < 2 or 2 < s < t}. Then the family { ~ : 2  > O} consists of  
inequivalent smooth Levy fields with common covariance kernel (f, g)-~ ~ fg. 
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Proof. By Corollary 5.8 (ii) 3U consists of bounded operators for each 2 (~+ = 
[0,2)w[2, co), (0,2) x [0,2)w [2, ~ )  x [2, ~ )  = Fzwffx). Since these fields satisfy 
distinct local commutation relations, they must be inequivalent. 

Remark. The Levy field 3~ ° is equivalent to the Levy fermion field. Smooth Levy 
fields with more general covariance kernels (inequivalent to the Bose and Fermi 
fields) may be constructed from operators l~(f), where q is a 2-cocycle on 
F(S, m, i, S + ) in which S + = J x {0}, So = 1, S_ = {0} x J, where I w J is a partition 
of ~+ , i  interchanges (s,0) and (O,s) and mo,m+,m_ are absolutely continuous 
measures on the line. 

6. Differential Equations with Mixed Noise 

In the final section we solve linear stochastic differential equations driven by mixed 
noise, giving the action of solutions on vectors from ~ explicitly. This extends 
results from [H P 1, 2, Maa, ApH, Me 1 and L M 2]. Our formula (6.2) for the 
solution is inspired by Theorem 5.3 of [Maa]. The equations we treat are those 
having the form 

dX, = ~ Li(t) t0(q~(0( ", t))dA*(t) + .~ M,j(t) ~(~YJ)(-, t))dA~j(t) 

+ ~ Nj(t)cI)(~tlJ)(',t))dAj(t) + K(t)dt } X t  (6.1) 

on ho ®L2(F(~+)  ") = L2(F(~+)";ho) • The reader is referred to [HP 1] for the 
definitions of the creation, gauge and annihilation processes: A*, A,j and Aj 
respectively, and for the meaning of Eq. (6.1) and a solution for (6.1). For a linear 
operator T on ~)t")L2(~+), ~(T) denotes the operator defined on o~:= linear span 
{v @ el: v eh o, fe O(n)L2([~ + )} by ~(T)v @ ef = v @ F, rf. L i, Mij, Nj and K are locally 
bounded, strongly measurable ~(ho)-valued maps on ~ + and ~b (i), 2 (iJ) and ~ )  are 
locally bounded, measurable diagonal M,(C)-valued maps on N2+ which are 
adapted in the sense that they take the value I on {(s, t):s > t}. Here N(h0) is the 
algebra of bounded linear operators on the complex separable Hilbert space 
ho, M,(C) is the algebra ofn x n complex matrices and the indices i, j run from 1 to n. 

To state the theorem we need a little more notation, f l=  (~i) will denote a 
matrix of elements of F(R+), while f f  will denote the n-tuple of sets whose i th 
component is fl~ u fiE ~ . . .  u fi7 with ft. similarly defined. For  n-tuples of sets a, 7, 
the n-tuple whose i th component is a, uT, will be denoted a u  ~, and dkt"(to) will be 
abbreviated to dto. 

Theorem 6.1. The quantum stochastic differential equation (6.1) has a unique solution, 
with initial condition X o = I, given by: for tE~+, I~rl c [0, t] and k e g  with support 
in F'([0, t])", 

(x,k)(a)= S y~ P(r,a,~,~,)x,(a,~_,o~)k(o~u#.wr)do~, (6.2) 

where, if [(a, fl, 7)1 = {t~ < t~ < ... < tu}, the kernel x, is given by 

xt(ot , fl, ~,) = P(aw fl', or, fl, r)r,(~r, fl, r), 
r,(ot, fl, ?') = R,(RL ~ G(tu)R,~,)... (R£ ~ G(t~ )R,~), 
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R being the solution of the ordinary differential equation 

dR 
-dt= KR; R o = I, 

G being given by 

(;(t)= M j(t) /f t #l, 
Nj(t) if t~?s 

and the multiplier P being given by 

P(to, ~, fl, 7) = PI(  t°, ~t) P2 (to, fl)P3( to, 7) 

= H [I 
t <-_i,j,k<-_n a~cti,b~fl] 

c~Tj, t~o) k 

Proof (sketch). In the above notation consider the family of functions o~-= 
{F(u, v; f ,  9,-):u, veho, f, g~ G<n)L2 (~ +)} given by 

(. 
F ( [ O , t ] )  n a u # ' ~  ?= fo 

where V(~, fi, 7) is the product V 1 V2.." VN in which 

( ~(~(O(.,tk))U~ k if t k ~  i 
Vk = ~(7di4)(',tk))U~ if tk~flJi 

(~([ff(J)(', tk) ) if tk6Tj 

and U is defined by (U,k)(to) = k(o~u ~), (U~k)(to) = k ( to~(~  .... , ;25, t, ~ , . . . ,  ~))  
with t in the i th place. 

By extracting the highest component s =  tN from Ito[, taking into account 
each of the possibilities se~,f l i  or ?j, applying the integral-sum identity and 
differentiating, it may be seen that the family ~" satisfies the system of ordinary 
differential equations 

dF 
- ~  (u, v; f, g, t) = ~i f i(t)F(L * (t)u, v; ¢o(0( ", t)f, g; t) 

+ ~.~9i(t)F(M*(t)u, v; ~(ij)(., t)f, g; t) 
Z,3 

+ ~ gj(t)F(N*(t)u, v; ~J)(', t)f, g; t) 
J 

+ F(K*(t)u, v; f, g, t), 

F(u,v,f,g, O) = < u®ef, v®eg>. 

On the other hand, applying the commutation relation 

U k ~(q~) = ~k(s) ~(q~)U k for q~ = diag [4~ . . . . .  q~,] 

and the integral-sum identity, it may be seen that 

F(u, v; f, g; t) = < u ® el, X, v ® % ), (6.4) 



362 J.M. Lindsay and K. R. Parthasarathy 

where Xt is given by (6.2). Combining (6.3) and (6.4) we see that X is a solution 
of (6.1). Uniqueness for solutions of (6.1) follows by minor modifications of the 
arguments employed in [H P 1]. []  

Remark. Equation (6.2) makes good sense when k¢ f , moreover X t k e  bCF for each t. 
Here • has to be redefined to take into account the initial Hilbert space ho: 

N/':= {k~L2(F; h0): aNk~L2(F; ho) Va > 0}. 

The quantum It6 formula [H P i]  yields sufficient conditions for a process X 
satisfying (6.1) to be isometry valued and necessary conditions for it to be 
co-isometry or unitary valued. The following are necessary conditions for X to be 
unitary valued: 

(i) M~j = U u - J~j, where {Uij } is unitary Mn(~(ho))-valued; 

(ii) Nj = 2 L* Uu; 
i 

1 V L ,  L (iii) K = i H  - -~ z.  i i, where H is self-adjoint valued; 
i 

(iv) ~b (0 and 0~o are unitary (diagonal) Mn(C)-valued; 

(v) { U~j ® ~0(2 ~j) + fi~j ® [I - 00(2u)] } is unitary M,(CC(h o ® L 2 (F ~)))-valued; 

(vi) Nj~(O u)) + L* [q~(~u)) _ q~(q~O)2JJ)] + ~ L* U,jCP(~(1).~.'J) = O; 
i 

(vii) L* q~(~o~) + Nj[q~(O~)) _ q~(izOu~)] + ~ N~ U* q~(i.~,(o) = O; 
, (6 .5)  

they are also sufficient conditions for X to be isometry valued. We leave the 
non-trivial question of whether (6.5) implies unitarity for the solution of (6.1), and 
indeed the more general question of whether reasonable conditions may be found 
on a kernel x for the corresponding operator: 

(Xk)(,~) = J E x(o,, ~, fl, r) k(o~u #. u r)ao~ 
ewp't..) ~,= f f  

to be unitary. 

Remark. The following special cases of isometry-valued processes satisfying a 
quantum stochastic differential equation of the type (6.1) may be noted: 

(i) 0 ~j~ = ~(J~; 2 ,j = ¢(~qS(J~; 

(ii) 0 u) = qSu); 2 j : fi~jI~ on {(s, t):s < t}; Nj : - L* U z (i.e. ~ j  L* U~j = 0).; 

(iii) 0 (j) = ~(J);~JJ : 0 o n  { ( s ,  t ) : S  < ~ } ; N j  = - -  Le f ;  

and when n = 1: 

(iv) ~ = qS;2= )~E; for each t either ,~.t -= 1 or N ( t ) = - / 2 ( 0 ,  where E c N2+ is 
measurable and contains {(s, t):s > t}; 

(v) ( x , k ) @  = ~ 1-I ( v ,  - ~)k(~); 

{1,} 
(vi) (W{'~k)(a) = exp - ~ ! lfl  2 ~ rc~(a, e) f rc~(a, o))e,y(e~)ey(co)k(co w e)dco; 
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in which conditions (i)-(iv) of (6,5) are understood in each case. (iv) is the general 
solution to (6.5) in the case n = 1. (v) is the special case of(iv) in which K = L = N = 0, 
and is unitary valued by the characterisation of unitary valued martingales in 
[HLP]. (vi) is the special case of (iv) in which K = M = 0 and h o = C - t h e s e  are 
analogues of Weyl operators and satisfy 

= I~,(f)@,il) - I)(fZto,o ). W~s,~ 
x = O  

We end with a few remarks on quantum stochastic integrals. The following 
extensions may be defined: 

[A*(F)k] (a) = ~ [F(a)k](~), (6.6) 
@ C 6  

A(F)k = S F(co) U,okdco, (6.7) 

A(F) = A*(FU), (6.8) 

where (Uo~k)(a) = k(a u co), (6.7) is a Bochner integral and the following identity for 
the singular operators {Uo~} is pertinent: 

Y tl aNU~,k It 2rico = I[ (1 + aZ)N/2k It 2 (a > 0) (6.9) 

from which, in particular, we see that for each k e Y ,  U~,ked( for almost all c9. 
Thus kE~(A(F)), the domain of the operator A(F), if and only if co~--~F(co)Uo~k~ 
LI(F; Yf) (Yf = h o ® L2(F)) and, if F is 1-particle, the condition: S t[ F(s)ey It 2ds < (30 V f 
(from [HP1]) amounts to g c ~ (A(F)). Sufficient conditions for k to lie in ~(A*(F)) 
or N(A(F)) (and also for A*(F)k,A(F)k to belong to 2f) are obtained from the 
estimate 

1t aNA*(F)K [12 < Y [1 (av/2)N+#°~F(co)k l[ 2dco (a > 0). (6.10) 

Equations (6.9) and (6.10) follow from the integral-sum identity, as does the fact 
that the definitions (6.6 - 6.8) do extend those of [HP1] and that 

A(F)* = A*(F*); A(F) t = A(F*). 

An advantage of these definitions is that no adaptedness conditions are required, 
but we shall not pursue this further here. 
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