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Abstract. This article is a study of the mapping from a potential q(x) on R 3 
to the backscattering amplitude associated with the Hamiltonian - A  + q(x). 
The backscattering amplitude is the restriction of the scattering amplitude 
a(O,09,k) , (O,09,k)~S2xS2x~+, to a(O,-O,k) .  We show that in suitable 
(complex) Banach spaces the map from q(x) to a(x/Ixl,- x/Ixl, Ixl) is usually 
a local diffeomorphism. Hence in contrast to the overdetermined problem of 
recovering q from the full scattering amplitude the inverse backscattering 
problem is well posed. 

This article is a study of the mapping from a potential on R 3 to its quantum 
mechanical scattering amplitude. The scattering amplitude associated with a 
potential q(x) can be described as follows. One assumes that for each k > 0 and 
each OgES 2, 

( - d + q - k 2 ) u = O  

has a unique solution of the form exp (ikog. x) + v(x, 09, k) such that v = lim v,, where 
~$0 

v~ is the square-integrable solution of 

- Av,  + qv~ - (k + ie)2v, = - e~k~"Xq. (I.1) 

Much work has been devoted to showing that, under general hypotheses on 
q, v(x, o9, k) exists and is unique (see Agmon [1], and the references given there). 
When q e C~ (R 3) and hence ~iv + k2v ~ C~ (R 3), it is an elementary consequence of 
(I.1) that 

1 - eikLx-rl 2 
v(x) = -- ~ jaa ~ _  yl (A + k )v(y)dy, and hence 

/ eiklxl "~ 
v(x) = ~ ~ )(a(x/lx],  ~o, k) + O(I xl-  1)) (I.2) 

as Ixl--* oo. The function a(O, og, k) on S2x S2x R+ is known as the scattering 
amplitude. If we replace functions in (I.2) by their Fourier transforms, we have 
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v(x, co, k) = lim,0 (2re)- 3 R, [ ~ Z ~ i ~ 2  d ~ , (  eiX'¢g(~, o9, k) 

~ ¢ 9 ~ '  og~k012 d~, (I.3) =(2rc)-3d3l¢ I _ ( + )  

where # is the Fourier transform of - ( A  + kZ)v. Evaluating (I.3) in spherical 
coordinates and using stationary phase in the angular integration to derive 
asymptotics as Ix [ ~ 0% we find that 

a(O, o9, k) = 9(kO, o9, k). (I.4) 

Given qeC~(R3), taking the Fourier transform of (I.1) and the limit ~ 0 ,  
one arrives at 

a(¢, o9, k) + (2 ,0 -  3 ~ q(¢ - ~)g(r/, o9, k) ,3 ~ l ~ ( k + i o )  2 d r ~ = - O ( ~ - k o 9 ) .  (I.5) 

In this article we will take (I.4) and (I.5) as the definition of the scattering amplitude, 
i.e., when the integral equation (I.5) has a unique solution g for (o9,k)eS 2 x R+, 
the scattering amplitude is defined by (I.4). 

Since we are dealing with a singular integral equation involving the Fourier 
transform of the potential q, we will assume q belongs to one of the weighted 
H61der spaces H~, N with 0 < a < 1 and N > 1. Spaces of this type have been used 
in scattering theory by L. D. Faddeev in [3] and K. O. Friedrichs in [5]. The norm 
in Ho~,N is [Ifll~,N = 11(1 + l~[2)N/ef]l~, where 

II f II= = sup (If(¢)l + IAI-=lf(¢ + A) - f (0 l ) ,  
IAI_-<I 
¢~113 

and H~, N is defined as the closure of C~(R 3) in this norm. We do not assume that 
q is real-valued, though our main interest is in potentials with small imaginary parts. 

As our title implies we are interested in the inverse problem of determining the 
potential given the scattering amplitude. This problem is quite overdetermined 
and there has been considerable work devoted to characterizing which scat- 
tering amplitudes actually arise for given classes of potentials, beginning with 
L. D. Faddeev [4] and more recently Newton [11], Beals-Coifman [2], Nachman 
Ablowitz [9], Melin [7] and Novikov-Khenkin [6]. We are concerned here with 
the inverse backscattering problem, i.e. determining q from a(o9,-og, k). In 
dimensions n > 1 the only work that we know of is the numerical study of Bayliss, 
Lin and Morawetz [8] using wave equation methods, and the formal solution of 
the three-dimensional problem for small potentials by Prosser [13]. 

For technical reasons we will replace (I.5) by 

h(¢, (, k) + (2n)- 3 ~3 0(~ - r/)h(r/, ~, k) 
Ir/[ 2 - (k + i0) 2 dtl = - q(4 - 0, (I.6) 

where now (~, ~, k) ranges over R 3 x R 3 x R+, i.e. k = 0 is now included. Thus (I.4) 
becomes 

a(O, o9, k) = h(kO, kog, k). (I.7) 
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Let H~,,N denote the (real) subspace of H,,N consisting of Fourier transforms of 

real-valued potentials, i.e. the set of OeH~,u such that 0(~)= 4 ( -4 ) .  The back- 
scattering map is well behaved on H~, N and we have the following result which is 
proven in Corollary 3.5 and Remark 4 after Theorem 3.1 in the text: 

Theorem A. The backscattering map 

S:O--, h(~, - ~,141) 

is a continuously Frechet differentiable function from an open, dense set (9 in H~, N 
into H~,N. Moreover, (9 c~ H~, u is dense in H~.N. 

Since continuously differentiable functions on complex Banach spaces are 
analytic, S is analytic. The set (9 is the set of 0 such that I + A(O, k) is injective on 
/-/,,N for k > 0, where 

[A(O, k)f]({) = (2n)- 3 R5 , 0(4 -- ~1)f(tl)dtl 

The proof that h ( ~ , -  4, I~ I) belongs to precisely the same space H,.N as c)(4) for 
0e(9, i.e. the proof of Theorem A, is quite technical and takes up about half of this 
paper. 

Next we prove that the Frechet derivative of S is a Fredholm operator of index 
zero for 0e(9 (Theorem 4.3) and that (9 c~ H~,N is contained in a connected component 
(91 of (9 (Proposition 5.3). This leads to the following theorem (Theorem 5.4): 

Theorem B. The Frechlet derivative of S at 0 is an isomorphism of H,,N for 0 in an 
open, dense subset (92 of (gt. Moreover, (gzc~H~,N is an open, dense subset of H~,N. 

The implicit function theorem then implies: 

Corollary C. S is a local analytic homeomorphism in a neighbourhood of each g1c(9 2. 
This is the main result of this paper. Corollary C implies that (locally) recovering 

from backscattering data is a well-posed problem, since small changes in 
h ( 4 , -  4, I~l) will lead to small changes in 0(4) in H~,u norm. Note also that the 
results in Theorem B and Corollary C do not depend on the number of negative 
eigenvalues of - A + q. This follows from the fact that (92 is a subset of the connected 
set (91- 

Even the backscattering problem is overdetermined when we restrict the domain 
of our mapping to real-valued potentials. Therefore in the final section we consider 
a restricted backscattering problem for the case of real-valued potentials. Let S, 
denote the mapping 

h(~, - 4,141) + h ( -  4, 4, 141) 
Sr:O--' 

2 

Note that @ -  ~ S~ is the real part of ~ - 1 S .  This map is well-behaved on H~,N: S~ 
is real-analytic with a Frechet derivative which is Fredholm and index zero for 
gleH~, N c~ (9, (Theorem 6.1). However, we only know that its Frechet derivative is 
an isomorphism on an open dense set (9~ of the component (9] of H~,uc~ (9 
containing the zero potential (Theorem 6.2). The component (9] does contain all 
0 such that qeC~(R 3) and - A  + q has no bound states with energies E < 0 or 
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half-bound states at E = 0 (Proposi t ion 6.3). We plan to study other  approaches 
to the formulat ion of the restricted backscattering problem in the future. 

S e c t i o n  1. P r e l i m i n a r i e s  

We will use the weight function A(~)= (1 _~_ [~[2)1/2 and the Lipschitz norms 

If({ + A ) -  f({)['~ 
[I f [l~ = sup [f(~)[ -~ [ ~  ] ,  

where 0 < a __< 1 and the supremum is taken over {~ER3, A~R3:0 < [A I ~ 1}. The 
Banach space of all functions f on R a with IIf [l~ < ~ will be denoted by C~(Ra). 
We also use IlflLo to denote the supremum of [f(~)l over R 3. The principal 
Banach spaces in this paper  are H~, n, 0 < a < 1, N > 1, the closures of C~ (R 3) in 
the norms 

II f I[~,N = II Ar~f II ~. 

While H~,N does not  contain all functions f on R 3 with II f II~,N < 0% one does have 
the following. 

Lemma 1.1. H~,N contains all functions f on R 3 such that I[flI~,,N, < oo for some 
c~' > ~ and N' > N. 

Proof. Let j~ be the s tandard mollifier and choose (p~C~°(R 3) with ~0(¢)= 1 for 
I ~1 < 1. Then for R > 1 

II (1 - q)('/R))f II ~,,, _-< c RN-N" II f II ~,N, 

and for fixed R, setting g(¢) = ~o(~/R)f(~), 

[I g -- J ~ * g [[~,N 

< C/ ' sup  Ig(¢ + r/) - g(¢)[ + sup [g(¢ + r /+  A) - g(¢ + A) - g(¢ + r/) + g(¢)l.'~ 
-- \ IAI  " J '  

where the suprema are taken over {~,rl, d:ltll < e, IA[ < 1}. Thus 

lig-j,*gll~,N<C e~'llvll~,+ts~Pl I Ig( '+A)-g( ' ) I I~ , -~  • 

Hence, since IAI-~ II g(" + A) -- g(.)I1~'-~ --- 3 II g II~', 

I Ig-  j,,gll~,N<__Ce~'-~llgll~,. • 
We will also deal with functions defined on R 3 X R 3 X R+. For  functions on 

+, we define 

i l f l l = s u p ( l f ( k ) [ _  ~ I f ( k + ~ - f ( k ) [ ) ,  

where the supremum is taken over { k s f l + , O < d  < 1}. No te  that, since we take 
the supremum in k and A, I lf l l~< oo does imply f e C ~ [ 0 ,  oo). Fo r  0 < e < 1, we 
define a C~-norm on functions on 113 x R 3 x R+ by 
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Ilfll~ = sup(ll f ( ' ,  C,k) ll~ + IIf(4, ",k) ll, + II f (¢ ,  (, ') l l :)  (1.1) 

with the supremum taken over (¢, (, k)aR 3 × R 3 × R+.  
Translations of functions will often be denoted by subscripts, i.e. f~(~) = f (4  - 0. 

In particular we will often use A~(4) for A(¢ - 0. 

Section 2. Estimates of the Operator A(O,k) 

We define for O~H~,N and f ~ C ~ ( R 3 ) ,  
71( ~ -- tl) f (tl)dtl 

[A(O, k ) f ]  (4) = (2u)- 3 ~3 I,#12 (k + i0) 2 

Theorem 2.1. The operator A( O, k) satisfies the folIowin9 estimate for ( ~R 3 and k > O, 

C 
II AS~A(CI, k)A(UA~f If, < (1 + k) ~ II 0 ll~,~ II f [[~-~, 

where 0 < a < l ,  N > I ,  0 _ < e < a ,  O<=6<min{1, N - 1 } ,  and 7 < r a i n { i - b ,  
N - 1 - 5}. The constant C is independent of k, ~, 0 and f .  

Theorem 2.1 is the principal estimate in this article. To prove it we need to 
know the asymptot ic  behavior of integrals of the weight functions. 

Lemma  2.2. Define for k > O, N > 0 and (4, 0 ~R6, 

i<,>lf ~ ~ (1 + I¢ - ffl=) '</~ dco. I(k, 4 , 0 =  = ( l+[4-kcot2)svi2( l+lko~-(12)  Ni2 

Then 
I(k, 4, 0 < CN max { (1 + k)- 2 log (1 + k), (1 + k)- N }. 

Proof of Lemma 2.2. 

l(k) < CN .[ [(1 + t~ - kcol2) -N/2 + (1 + tk~o - ([2)-NI2]d03 
I °'  F:= i 

< 2 C N s u p  ~ (l+14-kco[2)-NI2da). 
¢ i~ot = 1 

Introducing spherical coordinates with the z-axis in direction 4, 

i j = l  (1 +14-kc°12)-U12dw=ZTri(lo + 1412 -214[kc°sO+k2)-N/2sinOdO 

1 
= 2 ~  ~ (1 +141 = - 2 1 4 1 k ~ + k 2 ) - N l 2 & .  

- 1  

Letting u = ]¢]2 _ 21 ¢lk'c + k 2, we have 

(1¢1 +k) 2 

IoJ=l (1 + I ~ -  kc°lz) -m2dc° = I~tk (l¢l~-k) ~ (1 + u)-Nt2du 

Iln f( l¢l  + k)2 + 1~ if N = 2  
--~ t t'(141-k)~+i) 

141/,:/. 2 ((l+(k_l~l)~)(2_,)/~_(l+(k+141)~)~_N)/z) if N4:2. 
l l~ z 

(2.1) 
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If I [ 41 - k l > ½k, we have 

(1 +14-k~ol2)-N/2do <= &z(1 + ¼k2) -m2 
lo~l= 1 

and, if l t g I -  kI <½k, formula (2.1) shows 

2 
if N > 2  

N - 2  

< 27z ( 25k 2 "~ 
I ( l q - l ~ - k ° o l 2 ) - N / 2 d ° = ~  - l n \ l + T )  if N = 2  

I~o1=1 

2 _ ~ ( 1  + 2 5 k ~ )  (2-N)/2 if N < 2 .  

Thus we have the desired estimate (note that for 0 _< k _< 1 the estimate is trivial). 

An immediate corollary of Lemma 2.2 is the following. 

Lemma 2.3. For 0 < ~ < rain { 1, N -- 1 } let 

(1 + 14- ffi2)N/2( 1 -I-]r/12) a/2 
d(k ,~ ,0  = cj~ (1 + I g - nl2)N/Z(lnl 2 - k2)(1 -I-In --~12) N/2 dn" II , l - I  >1 

Then for N > 1 + 6 and ? < min {N - 1 - 6, 1 - c5} we have d(k, 3, 0 < Cr,ma(1 + k)- L 

By applying Lemma 2.2 with I nl playing the role of k and Proof  of  Lemma 2.3. 
o = t//I t/I, we see 

(1 + Inl2)a/21r/i2dlnl , (2.2) 

I Ir~l-kl_-> 1 

where ]3 = 2 if  N > 2, a n d  B = N - e, e > 0,  for  N < 2. Substituting kn' = n, we have 

J <- Ck j l,,i- ! >t,-1 (1-I- k2ln'la)°-e)/Zln'12 lr/'12 - 1[ 

For  k > 1/2 we have 

in, lg+a-~ 
a <- Ckka-P 5 1)dl~'l 

- i I ¢ l - l l > l / k  I I n ' l  - l l ( I n ' l  + 

and, hence for/~ - ~ > 1, we have 

J < Ck 1 +a-~(1 + Ink). (2.3) 

For  k < 1/2, we have immediately from (2.2) 

J < C ~ (1 + Inle)o-~)/2dlnl. (2.4) 
1 

From (2.3) and (2.4) we conclude 

Y < C(1 + k) -~ 
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for any 7 < fl - 6 - 1 when fl - 6 > 1, which is the desired result for N > 2. Choosing 
e so that  N - e > 1 + 3, when N < 2, completes the proof. • 

Proof of Theorem 2.1. We begin by reducing the theorem to the case e = 0. For  
this let A(#) denote the operator (A(#)f)(0 = f (~  + #) - f(¢). Then A(#)A(q, k)f = 
A(A(#)q,k)f, and assuming Theorem 2.1 in the case e = 0, we have 

C 
1#1-~}l A~A(p)A(O, k)A~A~Nf ]l ~-~ < (1 + k) ~ I~l-~ II 40z)0 II ~-,,~ II f II ~-~. 

For  p e R  the mean value theorem implies 

IA(~)AP(~)I < I~l laeAV(¢')l, 

where 1~ ' -Cj  < 1#]. Since lacA(4)[ < 1, and hence A(~')/A(4) and A(O/A(~') are 
bounded for ] 4' - 4] < 1, we have for ]#[ < 1, 

I A(#)Af(01 < C I~IA~- 1(~). (2.5) 

As in the proof of Lemma 1.1, we have 

sup I ~1 -~ II A(~)  0 II ~-  ~,N < 3 II 0 tl ~,N. 
lul _-< 1 

Moreover, it is also true (see Proposit ion 8, Sect. 4, Chap. V in Stein [-14]) that  
(ll f [1~, + sup [#1-~ II A(#)f I1~,) >= 1/C II f I1~+~,- Thus, using (2.5) we have, 

[I A~ A(O, k)A~ A( N f lI~ _-< C(IIA~A(q,k)A~AfNfII~_~ 

+ sup I#I-~I]A~A(#)A(Gk)A~A~-NfII~_,). 
I~,1 _-< i 

Thus we only need to consider Theorem 2.1 in the case ~ = 0. 
To prove Theorem 2.1, we begin by defining h(4, t / )= A~V(t/)0(4- r/)f(t/). Then, 

using (2.5) we conclude 

l/h(', r/)I1 ~ + II h(~, ")[I ~ < C l[ q II ~.N II f II 

uniformly for (4, t/) ~R6- 
Next we decompose (2~)3A~VA(q, k)A[NAOf into three terms: 

Af(OA~(~I) h(¢,~l) d~l f 
I Inl2kl> t A~(tl)A~07)I~12 - k 2 

A~(4) [A~(~)h(~,rl) A°(kco)h(~,kc@ ] d 

A~'(4) A ~ ( k ~ ) a G  k~o) 
+ ,i,i-J~l<~ (Itll2-(k+iO)2)Af(k°9)A~(k°g) drl 

= I t + I 2 + I 3 ,  

where o ) =  t//lt/] in 12 and 13. In 13 we introduce polar coordinates and compute 

A~ v(4) h(4, k~) (1 + k=)~/= I ~ I ~ d lnl 
13 = I. dco j" A~ ( k~o) Al~ (ko)) i i~ l_kl<Ll~l>0 I t / [ 2 - ( k + i 0 ) 2  s~ 
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Moreover 

Hence 

lira <~. 1.1>o I~1 = 1~12 ~-~o l},l-kl , - ( k  + i~)2 dl~l 

( k/ [2k+a\ .~ 
___ 12a-stlnt,2 : --a) 

{a + k-~(ln(1 + ~ ) -  ~ i )  

if k>a 

if k<a. 
(2.6) 

kzci 
]q[2 ~ - - + 0 ( 1 )  as k ~ o o  

Ilnl kl<~l Inl>O ItllZ--~-+iO) 2d[ql= 
- ' 1 + O ( k )  as  k ~ 0 .  

Applying Lemma 2.2 and (2.5) we have lI3l <(1 +k)~-P-lsuplh(~.r / ) l  and for 
(~,n) 

I# [<  1, I#[-~IA(#)I31 < (1 + k) ~ -~ + 1 sup H h(., t/)II ~, where as in the proof of Lemma 

2.3 /7 = 2 for N > 2 and/7  = N -  e,e > 0, for N =< 2. Taking e small enough that 
N - 1 - ~ - e > 7, if N < 2, this shows that  13 satisfies the estimate of the theorem. 
Hence we need only consider 11 and [2" 

The estimates of 11 follow immediately from Lemma 2.3 and (2.5). We have 
Illl < C(1 + k)-~'sup Ih(~,t/)l and for I#[<I,I#t-~IA(#)III<C(1 + k)-~sup IIh(',~/)ll~, 

(~,n) 
which again is the estimate of the theorem. 

The estimate of 1121 is also easy. Once again (2.5) implies for I1~1- k[ < 1, 
~ N I X  

A'~(tl)h(¢,tl, a ' (k~ j )h t¢ 'k~ l )  m,(rl, 
a~(tl)a~(tl) A~(k~ l )A f (k~ l )  <=C, ,tl,-k,~A~(tl,A~(tl) sTp [,h(,..),,~. 

Hence by Lemma 2.2 

]I2i < c ' (l + '"{2)°-al/zltl'2 ( ) 
II.l-~l<~ (1~/I +k)l  I~1-kl  1-~dlql s lP Ilh(~,~)ll~ , 

where/7 is as before. This gives 

1121 < C(1 + k) ~-~+ 1 II 0 [I~,N II f It~ 
as desired. 

It is the estimate of IA(/~)I21 that  presents some problems. For  this we need 
first to split the domain of integration in the integral into {1 I~71 - k l < 21#1 }, getting 
J1. and {21#1 < I [r/I - kl < 1}. getting J2- To estimate A(#)J 1 = J l (~ + #) - Jl(~). 
we use [A(p)JI[ __< ]Ja(~ + #)1 + [Jl(~)]. Since the procedure used to estimate 1121. 
shows that  for I~l < 1, 

[Jz(~ + #)l + [Jl(~)l < C  ~ [[tl[-k[-X+"d[q[(l+k)~-P+~llOH~,,NllfI[,,, 
Ilnl-kl<21#l 
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and 
I t'~l - ~ l -  * +=dl'~I < Cl#I ~, 

IInl-kl<21#l 

we have the estimate required for IA(#)J~ I. 
To estimate A(#)./2 we must use the special form of h(~,t/), i.e. h(¢,r/)= 

A~(tl)O(~-tl)f(tl). We have 

(A(#)Af(~)) VAa(tl)h(~ + #, ~l) A~(kw)h(~ + #, ko9)l. 

A~(~) [ aa(tl) . . . .  aa(ko9) 1 
+ 21~1 <11nl~ -kl < 1 1 ~ 5 ~ - - - k 2 L ~ q t ¢  + # - n )  Af(kco) gl({+#-k°))j f( t l)dtl  

A~V(~) [ A~(t/) . . . .  Aa(kc°) l 
-2,.,<,,#,-~,<~ 1~(~--~2 [ ~ qt~ - n' ~) c1(¢ - kc°)~f(")d" 

A~(~) A~(k~o) 
+ =1.1<1 I!1-~1<, [nl ~ - k 2  Af(kc°) (q(~+#-k°9)-O(#-k~°))(f(tl)-f(kc°))d~l 

- K 1 + K 2 - K3 + K, .  

We can estimate IKal exactly as  1121 was estimated and, using Lemma 2.2 and 
(2.5), one can easily verify that for I#1 _-< 1 

IK41~fl#l°'(l+k)'~-a+'llOIl~,NlIfll~ [. l I , I -  kl-l+~dl~/I. 
l inl- kl < 1 

Hence K 4 also satisfies the required estimate. 
In estimating K z - K3 we need to make the cancellation between q(¢ + # - t/) 

and ~(~ - t/) as good as possible. For this we replace r/in K 2 by t /+  #. This gives 

Af(~) V Aa(t/+ #) A,~ 
K~- K3 = I (z + - z-) l~ + # 7 -  k ~ L ~ ( ~ 7 - ~  at~ + # -  ~ - #) 

Aa(kC~) ~ ~ A~(~) 
~ q ( ¢ + # - k c S ) j  f ( r /+  #)&/+ 21,1<1 I!1 - k.< 1 In + #12 - k 2 

[ Aa(tl + #) Aa(k°9) 1 
L ~  (~ 7-~ O(¢ - ,7) Af(k(o~) gl(~ + # - k(5) J (f(t  t + #) - f(tl))dtl 

+ ! A~V(~)I 1 
21ul<[I I - k l < l  i t / + # [  2 - k 2  

[ Aa(*l + #) AO(kCo) 
L ~ - ~  0 ( ¢ + # - " - # )  Af(k(5) 

a~(¢) V ao(~/+ #) 
+ =l.J <, ,!,-~,< ~ I ,? - k~ L ~ + ) 3  

A~V(¢) (1 + k2) b/2 
+ I!1 *1 (It/I 2 - -  k2) 21ul<[ - <1 

1] 
I t /12-k 2 

+ # - kc~)~ ~(~ fOl)&l 

Aa(tl) 1 
A ~ ) J  0(4 -- tl)f(tl)dtl 
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"L ~ X ~ ;  j j tn )dn  

= L~ + L2 + Ls + L~. + L s. 

Here o s = ( t / + # ) / I n + # l  and Z+ is the characteristic function of {n:21/q< 
I In + ~l - k[ < 1 and I I nl - k[ > 1 or I In I - k[ < 21#1 } and Z- is the characteristic 
function of {n:2[#l < l l n l -  kl < 1 and I ln + / ~ l -  kl > 1 or I In + ~l - k[ < 21~l} .  

The first two terms in the expansion of  K 2 - K 3 are like terms we have already 
considered. The integral L~ can be estimated as g~ was, and L 2 is another  term 
like K4. The remaining three terms require further explanation. Since 

we have 

IGI _-< c 

I [ n + a l + k l > ½ 1 1 n l + k l  when IIr/[-kl >21/~1, 

+21.1<,l{,-kl<tL A~-~-kfl) 

=- M I  + M2 + M s. 

Here 
koJ +14 

Ikco+~l 

gl(~ + # - k(5)1 f(kco) , 

- cSIInl=k. 

j I~1(1~1 + 1)1nl2 
21,1<11,1-~1<1 (Inl + k )  2 I l n l - k l~ -2d ln l ( l÷k )a -~ l l qH~ 'NI I f l b  

< C ( l  +k)a-~+ltlq[l~,Nllf[[o ! I#1dtttl 
21~l<ll I-kl<,  I l n l - k l  2-~  

__<C(1 + k)~-'+ll~Fll 0 II~,Nll f II 0 
By (2.5) we have 

A~(n + ~) A~(n) A~(n) 

Thus, we can estimate L 4 by 

IL4I _-< Cl#l(1 + k)~-'ll qllo,N II f IIo )/J2 21.,i<ll!l_kl<l I inl 2 -k~l  dlnl 

< CI/~l(I Iln I~1[+ 1)(1 + @-'+1 II 0 IIo.N II f IIo. 
Since e < 1, this is stronger than the estimate we need. 

The term L s must be decomposed again (but this is the last decomposi t ion 
we will use): 

I- k )-i-i Ls = (1 + k2)~/2A~(¢)L 2j#j<ljrlj-kj<lJ' L X~'~ A~'(k~) j j  

[" f ( n ) -  f(kco)'~ , Vgl(~-_kco) gl(~ + # - k f l ) ]  f(kco) , 1 
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The point  of this decompos i t ion  is that  the mean  of the in tegrand in M z over  
spheres jr/l = c is independent  of  [q[, and hence we can est imate the integral in [t/I 
accurately. On  the other  hand  o 5 -  fl is so small that  we can control  M 3. 

We claim that  

ik(~ - 3)1 < Cl~l I Ittl - kl(It/I + I~tl)- 1 + Cl~lZ((k + I~1)- x + (It/I + I~t l ) - ' )  (2.7) 

for all r/, k and ~t. One  can arrive at this est imate in the following way. If  k < 2 [/~ 1, 
we have 

[k(o5 - fl)l < 2k < 4l/~l < 121#12 
-- - - - k + l # l "  

Similarly, if t n [ < 21#[, we have 

ik(~_3)l<_2k<21~l+211~l_kl < 121#12 6l~tl l l t l l-kl  
- = I~1 + I~1 ~ 1,71 + It~l 

When I~/I > 21#1 and k > 2J#], we use Tay lo r  series in #. Thus  

n + v  = , 7 + v ( 1 + N ~ n  . I~,t2"~ - ' /2  

# (#.@09 + (2.8) 
---o~g 1,1t Inl t , t~l~J ' 

and, since fl = chll,l= k, 

3 = c , + s t  (~.,o)a, + ...,{I,ulZ'k 
k ~ ts t ~ ) "  (2.9) 

Thus  

It/12) ' 

and, 

ik(Co_3)l<21ullk-lnll~_cl#lZ(1 1 I l n l - k l ~  
= Ir#l k + ~ +  Ir#l 2 )"  

Thus, since 2lffl<k and 21~l<lr/i, wee see that  (2.7) holds. However ,  since 
1~12(k + I~tl)- ' < 1~12(Inl + lul) - I  + I~11 l n t -  kl(lql + Iffl)-', we actually have 

I ,u l l l r# l -  k l l  + I,ul 2 Ik( /7-  @1 < c (2.1o) 
Ir#l + Is4 

F r o m  (2.8) we have for I•1 > 21~1 

/x (kt'og)~o + - fl/xlE'k/~/ 
~ -co  

Inl 1,11 U\l,71",/" 
Thus for I~/I > 21~tl, 

Ik(cD- @1 < Ck 1,71 + lug' (2.11) 
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and this estimate also holds (with C = 6) for I~l< 2lItl. Finally, from (2.9) we see 
for k >  21/~1, 

Ik(co -/~)l < 21~1 + ck~2__< Cl~l, (2.12) 

and again this estimate also holds (with C = 4) for k < 21#1. We will use (2.11) to 
estimate M1, (2.12) to estimate M2 and (2.10) to estimate M 3. We have by 
Lemma 2.2 and (2.11), 

( k~ ) [ r / 1 2 d l r / I  
IM~I<C(I+k)'~-alI~WIIqIG"NIIfII~' !kl<l lq" 

I1,1- (Irtl +-/~1) ~ (Irtl+k)l Irll - kl ~-~ 

< C(1 + k)a-a+~l~l~'llqtl~,,NIIf~, 
as desired. 

The integral M2 is given by 

where 

M2 = (1 + k2)~/2p(k, It, ~, ~) 1~12 dl~/I, 
21~1<11!l-kl<l I~/I ~C k 2 

( q(~ - kco) q(¢ + # -  kfl) ~ 
P = A~(~)~2 \ A~(k¢o) -A--~-(kfi) )f(kco)dog. 

Lemma 2.2 and (2.12) show 

IPl _-< C(1 + k)-~l~l ~ II 0 II~,N IIf II o. 
We have 

I•12 , , ,  k dl , l  
1 >l i,t-kl> 21.1 Inl ~ - - ~ a l n l  = 2  x>l L,t-~kl > 21,1 I n l - k  

The second integral is bounded by 2, and 

IO, k > l ,  
 C}I k- -lnk. 2J l<k<l 

x>ltm- I ( - ln21/~l, k < 21/~1. 

Since k In k is bounded for k < 1, we conclude from (2.13), 

IM21 < C(1 + k)a-al~WIIOll~,NIIfllo, 

which suffices. 
By Lemma 2.2 and (2.10) we have 

[M3t < C(1 + k)'~-allqlG,,Nllfllo 

21,i<1 - 11~12 k21 ~I~WI Irll - kl~ + [itl2~'~ "' / 

< C(1 + k) ~-~÷ x-~ II q II~,N I1 f II o(l~l ~ + l#12~(1 + I ln I~11)) 

which suffices. • 

(2.13) 

- - +  _ 2lr/I+k 
1>11~i ~kl>21.1 2([r/I +k)  d[r/I. 
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In  addit ion to the est imate in Theo rem 2.1 we also need control  of Lipschitz 
norms  in the variable k. This is provided by the following theorem. 

Theorem 2.2. Let A(s), 0 < s < 1 denote operator (A(s)f)(k) = f ( k  + s) - f(k). Then 
one has the estimate 

1 

~ , ~  R 3 

C s  ~ 
< sup  IIA-%)A~(')A~(')f(',g,(,k)[I= 
= (1 + k) ~ e.; 

with C independent of k for ct, N, 6 and ~ in the set given in Theorem 2.1. 

Proof of Theorem 2.2. Here we will write 

f _ ir/[2 ( k + i 0 )  2 dr/ 

- I 1 +12+13,  

where f (q)  = f(r/, 4, (, k) and d(s)f(ke)) = f ( (k  + s)o), 4, ~, k) - f(k~o, ~, (, k). 
By L e m m a  2.2 for some fl > 1 + 6, setting h = A-a(~l)A~O1)A~(r/)f(r/, ~,(,k), 

we have 

(ks + s2)O + [r/I) -p+~ 
[I i]<Csuph]  ~ &l 

~.C II, l-kl>l [Irl l2-k2il l t l[E-(k+s)2[ 

< C s u p l h ] ( k + l ) s  I (1 + It/l)-~+a 
- e.~ II,i-kt>~/2 I l r / l - k l  2 dlr/I 

< C s u p l h l ( k + l ) s [  I (1 + [r/I)-P+a 
¢,~ 1/2 <l I.L-kl<k/2 l i t / l - -k[  2 dlt/I 

+ ~ ( l+ l r / I ) -P+°d l r l l l<Csup lh l ( k+l ) s  
[ [ t t [ -k[>max{1/2 ,k /2}  I lr/I - -  k l  2 = {,~ 
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The last term 13 is also easy to estimate, 

13 = A~(~)((A(s)g) ~s2 f((k + s)og)do + g S A(s)(f(ko))dco), 

where (see (2.6)) 

f k /  /2k+ 1\ .\ 2 - ~ l n ~ 2 ~ l _ l ) - T u )  if k > l  
g(k) = 

l+k-k2(ln(2k+l)-~i)  if k < l .  

Since g has Lipschitz constant  bounded on R+,  

C s  ~ 
= sup II A-%)Af(.)A~(.)f(., 4, ~, k)I1~. 1131 < (1 + k) p-~- I  ~,¢ 

The term 12 here we decompose to 

dr/ 
12 = A~V(0 I lnl-!1 < 2~ (f(r/) - f(k + s)o))lr/[2 _ (k + s) 2 

dr/ 
- A~( 0 ~ (f(r/) - f(ke))) 12 k~ 

I [nl-kl<2s It/ --  

(f(r/) -- f(kco)) I r~ 12 - ( k  + s) 2 

(1 
+ A~( 0 (f(ko) - f((k + s)co)) [r/12 _ (k I 

2s<] Inl-kl< 1 

~"11 +"12 + J 3  + J 4 .  

1) 
it/[2 _ k2 d~/ 

+ s) 2)dr/ 

Here ["111 and [J21 can  be estimated in the same way that  [A(I/)JI[ was estimated 
in the proof of Theorem 2.1 with s in place of I/~l. Likewise I J3l can be estimated 
as L 3 was estimated. Finally "14 is like M 2 in the proof of Theorem 2.1. Carrying 
out the integration in Jr/[, we have 

where 

e(< s) = 

"14= ( A~(O ~2 (f(kco) - f((k + s)o))doo)P(k,s), 

S lr/I~ s)2-dir/] 
2,<ll,,j-kl<~ Ir/]2--(k + 

_ k  + s ~ dlr/I + 

2 2s<pt,,i-kl<, I r / l - ( k + s )  

As in the proof of Theorem 2.1, this suffices. 

S 2 1 r / l + k + s  
2,<t j,t-kt<, 2(1,71 + k + s) dlr/l  
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Section 3. Existence and Regularity of h(~, (, k) 

The function h(4,(,k) on R 3 × R 3 × R+ is defined to be the solution of 

3 q(~ - ,7)h(~, (, k) 
h(~,(,k) + (2re)- d3 ~ 2 - ~  dr/= - 0(4 - 0- (3.1) 

We will assume that qeH~,N for some a and N. We will not assume that q is the 
Fourier transform of a real-valued function. In this situation one has the following 
existence theorem, considering ~ and k as parameters. 

Theorem 3.1. Given (a,N), 0<c~< 1, N >  1, for all (eR 3 and k >=O, (3.1) has a 
unique solution h(~, ~, k) such that A~(')h(', (, k)~C~(R3), when Cl belongs to an open 
set (9 in H~, N. Moreover, the intersection of(9 with H~,,N = {4eH~,N:~(--3)= ~(~)} 
is dense in H~, N. 

Remark 1. Note that H~, N is simply the subspace of H~. N (considered as vector 
space with real scalars) consisting of Fourier transforms of real-valued functions. 
The set (9 in this theorem is actually dense in H~, N (see Remark 4 following the 
proof), but it is the stated density of (9 c~ H~, N in H~, N that is important for our 
main results here. 

Remark 2. One does not have existence for all real-valued q~C~(R3), as the 
following family of examples shows. Let u(x) be any positive function in 
C~°(R 3) such that u(x)= Ix1-1 for [xl >R ,  and define q=du/u~C~(R3) .  Then 
- A u + q u = O .  Since [O~u(x)l<=C~(l+lxl) -1-1~1, for all e,/O(~)[<fk/~/-k for 
[41 > 1 for all k. Moreover, since u =  [x1-1 +9,9  supported in Ixl _-<R,~(0= 
- 4rcl 41 - 2 + 0, and 0 is entire. We have 

it/12 ti(t/) + (2zc) -3 ~3 ~(~/- 4)fi({)d4 = 0. (3.2) 

Assuming that (3.1) has a solution h(~,O,O)eH~,N for ( =  0, k = 0 and taking the 
inner product with fi({) we conclude from (3.2) (note ~({ - ~/) = ~( t / -  4)) 

o = S ~(~)O(4)d~. 

However, by Plancherel's theorem 

(27z)-3~3 ~(~)0(~)d~mR~ 3 U(X)Q(x)dxE ~]R3 Audx = -4z t .  • 

Throughout this section we will work with the modified operators and functions, 

~t(gl, ~, k) = A~A(O, k )A(  N, h(~, ~, k) = A~(4)h(~, ~, k), 

gl(~) = AN(4)c)(~) and ~(¢) = Af(4)0(~-  if). 

We will also frequently suppress some or all of the variables 4, ~-, ~, k in A and h. 
In this notation (3.1) becomes 

h(~, k, if) + E.4(0, ~, k)h(., (, k)] ({) = - 0;(4) (3.3) 

or, more compactly 
h + A h =  -gl~. 
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Proof of Theorem 3.1. Theorem 2.1 implies that for 0sH=, N, 0 < e ' <  c~ and 
0 < ~  < m i n { 1 , N -  1}, 

]] .4A~f [I ~ < C [I f Ij ~,. 

Thus, since for e ' <  e and 6 > 0  {g:]]9l],< 1} has compact closure in C'"~= 
{g: IlA-ag[]~, < oe}, we see that ,4 is a compact operator on C'(R3). Hence, since 
c~ is in C'(R a) by hypothesis, (3.3) is a Fredholm equation in C~(R a) for h. We 
will prove the first part of Theorem 3.1 by showing that the set (9 of 0 such that 
I + A(O, ~, k) has trivial kernel in C'(R 3) for all ((, k)eR 3 x R+ is open. For 0~(9 
(3.3) has a unique solution h in C'(R3). Since C(0 -~ <=ANA[N< C(O, one sees 
that A~-Uh is the unique solution to (3.1) with AUheC~(Ra). 

Theorem 2.1 implies that given OosH~,u the operator norm on C'(Ra), 
[I-4(0, (, k)II = will be less than 1, for k > k o and ][ 0 - qo 11 ~.~ --< 1. Thus I + ,4(q, (, k) 
is injective for k > k o and II 0 -  0o I1~,~ < 1. Since (C(())- 1 __< A(NAS <= C(O, if 
I + -'t(0, 0, k) is injective on C~(R3), then I + A(0, (, k) is injective on C~(R 3) for all 
( e R  a . Applying Theorem 2.2, we have 

IA(s)A(#) A(O, O, k) f l < Cs ~" II A(#)dl [l~,,u II f II~,, 

where A(s) and A(#) are the difference operators in k and ~, respectively. Hence 
arguing as in the initial reduction in the proof of Theorem 2.1, we see for ~' = ~/2, 

II A(s)~(O, O, k)f  11~/2 <= Cs~12 II 0 II~,N II f 11~/2, (3.4) 

uniformly for k > 0. Thus, as an operator acting on C~/2(R3), .4(c~,0,k) is norm 
continuous in (0, k) with the topology of H~,N x il +. 

Now suppose I +-4(00, (, k) has no nullspace in C~(R 3) for ((, k)eR 3 x R+. If 

f ~ ^  +A(qo,(,k)f=O for some f~C~I2(R3), then Theorem 2.1, implies fEC~(R3). 
Hence I + -4(0o, (, k) has no nullspace in C~I2(R 3) for (~, k)eR 3 x R+. Thus by the 
remarks in the preceding paragraph I + ,4(c), (, k) is injective on C~/2(R 3) for k > ko 
when II 0 - 0o II ~,N < 1 and injective on C~/2(R 3) for 0 < k < ko when 11 q - 0o II ~.~ < 
for some e > 0. Thus, the set of 0 for which I + ,4(~, (,k) is injective on C~(R 3) is 
open in tL,,2v. 

To verify the density assertion in Theorem 3.1 we consider real-valued 
q~C~°(R3). The Fourier transforms of these q are easily seen to be dense in H~,,N. 
If for k > 0, f + A(0, k ) f  = 0 has a nontrivial solution with ANfsC~(R3), we set for 
e > 0 ,  

ue= I e'Xef({)d~ 
. 3 1 ~ 7 - - ~ 7 ~ )  2 

Note u~ELZ(R 3) for e > 0 ,  and, taking the inverse Fourier transform of 
f - b A ( O , k ) f = O ,  - A u  0 -]-qu 0 = kZuo which implies quo~C~(R3). We also have 
( - -  A - (k + ig)Z)u e -q- q u  0 = 0, w h i c h  implies 

- -  1 e i(k + ie)lx- yl 

u~(x) = ~-~ ~3 I x - y l  q(y) uo(y)dy, 
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and hence 

-- 1 e iMx-yl 
u°(x) = ~ ~3 ~ q(y)u°(y)dy" 

Now standard arguments show uoeL2(R 3) and hence u o - 0 .  Thus I+A(4 ,k )  is 
injective for k > 0, and I + 4(0, 0, k) is invertible on C~(R 3) for k > 0. 

Suppose I + -4(0,0,0) has nontrivial nullspace for 0eS = { LI 0 - 0o ll~,N < 3} c~ 
A H:.N. Let m =  dimNull {I + A(ql,0,0)} be minimal for 4eS. Then dimNull {I + 

A(0,0,0)} = m, for all 0 with 110 - 0111~,N < & for some 6' > 0. This follows from 
the continuity of the projection 

P(4) = Iz-!l =~ (zl + Ji(4 , O, 0))-1 dz (3.5) 

in 4 on a neighborhood of 41 for e sufficiently small. Moreover, for all f~C'(R3),  

(I + 4(4, O, O))P(4)f = 0 

for 114- 41 II,.N < 6". Let 4(0 = 41 + t4,4eH~.N. For t sufficiently small, one sees 
by substituting the power series for (zI + A(ql, 0, 0)+ t-4(4, 0, 0))-1 into (3.5) that 
P(4(t)) is analytic in t. Differentiating 

(I + J~(4(t), O, O)P(4(t))f = 0 

with respect to t at t = 0, we have 

(I + A(41,0,0)) l) -- - A(4, 0, 0) V, 

where l / =  d/dtP(4(t))flt= o and V=P(41)f .  As in Remark 2, taking the inner 
product with V(~)I 4[ - 2 A-  N(~) = w(~)[ ~1 - z, 

where h is the inverse Fourier transform of w(~)l~l-2. Since we can choose f so 
that w ¢ 0 and q is arbitrary, this is a contradiction. 

Finally we note that, since the Fourier transform/~ of the set R of real-valued 
qsCg (R a) is dense in Hr,N, i f / +  A(4, 0, 0) has a nontrivial nullspace for all 4e/~ c~ S 
it must have a nontrivial nullspace for all OeS. This follows from the compactness 
of 4(4,0,0) for 4eH~,,u and its continuity in 4. Thus the preceding contradiction 
shows that given 41 eR there is no 6 such that I + A(4, 0, 0) has a nontrivial nullspace 
for 4~i# n { II 4--~1 L,N < 6}. Thus we conclude I + 4(4, C, k) is injective for 4 in a 
dense subset of R. • 

Remark 3. The computations following (3.5) are much more transparent in x-space. 
In x-space the equation (I + A(4, 0))f = 0, becomes 

(I + qEo) f = O, 

where E o is the operator 

9(Y) dy [~og] (x )= l I3  ix_y,  • 
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Setting q = q(t) and f = f(t) and differentiating in t, we have 

(I + qEo) f = -- OEof. 

Since q is real, 

for all g. Thus 

~R 3 Eof(I  + qEo)gdx = ~R 3 ( f  + qEof)(Eog)dx = 0 

0 = ~3 4lE°fl2dx" 

We work in i-space in the proof of Theorem 3.1 and elsewhere because we have 
no simple characterization of the inverse Fourier transform of H~, s. 

Remark 4. Though our interest here is primarily in potentials with small imaginary 
parts, it is not at all difficult to extend the arguments used to prove Theorem 3.1 
to show that the set of complex potentials q in C~°(R 3) such that c)E(9 is large 
enough that ~ c~ H~, N is a dense, open subset of H~,N. A sketch of one way to do 
this follows. 

Given q~C~(lxl < e ) ,  if f sH~,N and f + A(O,k)f =o, then f eC~(tx[ <R)  and 
k < ko( I[ 0 ][~,N) (by Theorem 2.1). Thus, taking s !arge enough that [[ 0 IL~,N -<_ C [I q II s, 
where II II~ is the norm on the Sobolev space Hs(lxl < R), to show the injectivity 
of I + A(0, k) on H~,N when k > 0 for a dense set of c~ in Ha,N, it will suffice to show 
that for any R,I  + qE. is injective on g2(lx[ < R) for z > 0 for a dense set of q in 
/4s(lx[ < R), where 

1 , d zlx-yl 
Ez f  = ~ ixlj<R ~ yp f(y)dy. 

Given qo ~ C~ ° (L x[ < R), since qo Ez is both compact and entire in z as an operator 
on L2(]x[ < R) and I + qoE~ is injective for z>>0, (I + qoE~) -1 is meromorphic 
with only a finite number of poles k~,. . . ,  kM on k >= 0. Using contour integrals to 
define projections on the nullspaces of I -  qoEk~ as in the proof of Theorem 3.1, 
one can get e > 0 and functions ,~j(q, z) analytic on Dj = { Jl q - qo ]1~ < ~, Lz -- k~l < e}, 
j = 1,. . . ,  M, such that, for tl q - qo II~ < e and Iz - k~l < ~, I + qE~ fails to be injective 
if and only if 2j(q, z) = O. 

For each j an argument similar to the one given in the proof of Theorem 3.1 
shows 2j(q, k j) ~ 0. Thus one can choose h~ C~ (Ixl < R) such that for j = 1, . . . ,  M, 

di(w, z) = 2j(q0 + wh, z) 

is an analytic function on {]w] < e', I z - k~l < e'} such that (OPdfOwP)(O, k j) = 0 for 
p < N~ and 

c~ Nj dj 
c~wN j (0, k~) -¢ 0 

for some Nj > 0. By the Weierstrass preparation theorem, for each j 

dj(w, z) = (w NJ --~ a 1 (z)w N~- I +. . .  + aNj(z))r(w, z), 
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where r(0, k j) 4: 0. Thus the zero set of dj in {jw [ < e' < e, I z - k j[ < e' < e} n {real z} 
is the union of a finite set of curves (wt(k), k) where either w, -= 0 or 

wl(k) = al(k -- kj) r~ + o((k - kj) r' 

with a~ ¢ 0 and r~ rational. Thus we can choose w, ~ 0 such that dj(w,, k) ¢ 0 for 
Ik - k~] < e', j = 1 . . . . .  M for all n. Since I + qoEk is injective for k ¢ kj and w , ~ 0 ,  
we see that 1 + (qo + w,h)Ek is injective for all k > 0 for n > no. • 

Our estimates on the regularity and growth of h(~, ~, k) are primarily directed 
toward showing that the backscattering amplitude h (~ , -  4, ]~[) belongs to H,,u 
when 0 is in the set (9 c H,,u of Theorem 3.1. However, the expression we use for 
the Frechet derivative of the backscattering map O ( Q ~ h ( ~ , - ~ , [ ~ [ )  involves 
h(~, ~, [(]), and it is actually easier to treat ~, ~, k as independent variables. Thus 
our estimate takes the following form. 

Theorem 3.2. Let (9 be the open subset of  H~, u in Theorem 3.1, i.e. let (9 be the set 
of qeH~, u such that I + A(q,( ,k)  in injective on C~(R3) for all (~, k)6R 3 x R+. Then, 
for 06(9, h(~, ~, k) satisfies 

II A~h I[~ < oe. 

Here II II~_ is the norm on functions on R 3 x R 3 x R+ introduced in (1.1). 

Proof. From Theorem 3.1 we know that (I + A(0,~,k)) -1, and hence h exist for 
06(9. However, here we want to show that sup 11 h(', ~,k)ll~ < oe. For this we will 

(,k 
show that 

sup II(I + A-~/z.7t(O,;,k)A~/2) -~ 11~/2 < oe. (3.6) 

Note that Theorem 2.1 implies that if f + A - ~ / 2 A A ~ l Z f = O  and f6C'/E(R3),  
then A~/zf6C~(R3). Hence I + A - ~ I Z f t A  ~/2 is injective on C~/2(R 3) for 06(9. 
Moreover, A-° /2 f tA  ~/2 is compact on C~/2(R 3) by the argument used in the 
proof of Theorem 3.1. Thus I +A-a/ZA(O,~,k)A ~/a is invertible on C'/Z(R 3) for 
(~,k)6R 3 x R+ for 06(9. Using Theorems 2.1 and 2.2 as in the proof of (3.4), one 
has uniformly for ((,k)6R 3 x R+, 

11 A-  ~/2 (A(c), (, k + s) - -4(Cl, (, k) ) A~/2 [1 ~/2 ~ CseZ/2. (3.7) 

Moreover, simply by using (2.5) we can extend (3.7) to 

[[A-a/z(~(O,( + # ,k  + s ) -  A(O,(,k))AO/Zll~/e < C(s~/2 + l~t[), (3.8) 

where C is independent of ( and k. 
Since Theorem 2.1 implies that I1A-~/2~t(O, ~, k) Ao/2 [1~/2 ~ 1/2 for k > k(0) for all 

(6R a, we can use the Neumann series representation of (I + A-~/2~t(O, ~, k)A~/2) - 1 
to conclude that 

II (I + A-o/z.4(O, ~, k)A~/2) - ~ 11~/2 < C (3.9) 

for ( 6 R  3, k > k(O). Since for any invertible operators I + B and I + Bo, 

(I + B) -~ - (I + Bo)- ~ = (I + B)-  ~(B - Bo)(I + Bo)- ~, 
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the estimate (3.8) implies 

I1 (I + A -  o/2.A((, k) AO/2) - ~ 11~/2 S 211 (I + A-'~/2_7t(~0, ko )Aa/2) - 111=/2 

for I k - ko I + 1( - (01 < eo. Thus, for any R < o0, 

II (I + A- 'VZ A(O, ~, k)A'~/2) - 111~/2 __< cR (3.10) 

for O<k<<-k(O), I~l < R .  
To bound tl (I + A-a/2.4(4, ~, k) Aa/2)-  1 tl,/2 as 1~1 --* 00, we will begin by showing 

that  
l[ A -  a/2 (-4(4, ~, k) - h(4, k ) )A  '~/2 II=/z --, o (3.11) 

as I ~1 --+ c~, uniformly in k and 4 on bounded sets of 4. 
Given q ) ~ C ~ ° ( R  3)  with q~(~) = 1 for I~{ < 1, one sees easily that the operator 

norm of multiplication by (1 - q)(~/R))A-a/2(~) on C~/2(R 3) tends to zero as R ~ oo. 
Since Theorem 2.1 implies IIA(4,(,k)A'~I]=/2 <= CI[4{I~,N for (( ,k)~R 3 x f i+,  we see, 
letting q~a(~)= ~o(~/R), 

l[ (1 - q~R)A-a/2.4(4, ~, k )A  a/211=/2 - '  0 

and 
]I A-a l2A(4 ,  ~, k)AOl2( 1 - (OR)11~/2 --' 0 

as R ~ oo uniformly in ((, k) on bounded sets of 4. 
To obtain the estimate II A(4, k)A a 11~/2 _-< C II 4 II~,N, we must repeat the derivation 

of the bounds on 1Ii ], 1121 and 1131 without the weight factor A~(O/A~(rl) .  We have 

(1 + I~12) ~/2 
Ill] < cIIf l l0  1141io,,, i i,i-Jkl > ~ (1 + I~ --t/[2)N/2I Inl 2 - k 2 l  

and as in the proof of (2.2), this implies 

1II1 < C II fl[o II 4 I[o,~ tlnl -!kl>l (1 +l It/12 -- k2 I I t/12) {a- a}/2 i t/12dl t/[ 

with fl > 1 + 6. Hence IIl1 < C II f II o II 4 IIo,~. For  I2 we have 

(1 + It/12)°/2(1 + I~ - t/IZ) -~/2 
[Izl < C Ilfll~/2114 [I~/2,N !k dr/ 

= [ it/l_ I<1 ( I n l  + ]£)[ In] - -  k[ 1 - ~t/2 

so that  I I~[ < C II f 11~/2 II 411=/2~- Likewise, 

1131 < C Ilfllo I14 IIo,~. 

T h u s  we conclude sup l[h(4,k)Aaf](Ol<Cllfl]~,/211411~,/2,~. Then, since d(#) 
¢ 

(A(4, k ) f ) =  A(A(p)4, k)f, we have 

[1A(4, k ) A'~ f I[ =/2 < C [I 4 IJ ~,,~ II f t t  ~/2 , 

uniformly in k as desired. Thus 

[I (1 - q~R)A- a/2 A(4,  k ) A  °/2 [1 =/2 ~ 0 
and 

I[ a - ~/2 A(4,  k )A  "~/2 (1 - OR ) It =/2 ---r 0 
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as R ~ oe uniformly in k on bounded sets of O- 
Next we consider 

~ORA-~/2 (3(4, ~, k) -- A(4, k))A ~/2 qga. 

We view this as a modification of the operator A(q, if, k) in which the weight factor 
o9(4, q, () = A~(4)A~N(~I) has been replaced by 

coR(~, 0, 4) = ~OR(4)A-e/2(~)(1 -- Af(rl)A[S(4))AO/2(rl)q~R(tl)o)(4, I"1, (). 

Since for any M, A f ( q ) A ? S ( 4 ) ~ I  uniformly on {141<M, I r / I<M} as I~1--,oo, 
given e, we have mR(C, t/, () < e~0(4, ~/, () for I~1> c(e). Likewise, letting A(#) denote 
the difference operator in 4 or rI,(1/II~I)ACu)(A;~(rI)A[N(4))~O uniformly on 
{141 < M, I~tl < M} as t(I--' oo, and we have IA(#)COR(4, q,~)l < ~l~lo~(~,n,~) for 
[ ~ [ > C(R). In the proof of Theorem 2.1 we only used 

e)(4, t/, ~) < Af(~)A[  N(t/) 

and 

I A(#)~o(¢, r/, 01 < C II~IA~(4)A[ u(tl). 

Thus for I ~l > C(R) 

[I (pRA-~/2 (3(4, ~, k) - A(4, k))A-a/2q)R 11~/2 ~ e]l 4 II~,N. (3.12) 

Combining (3.12), with the previous estimates on terms with factors of (1 - ~0R) 
yields (3.11). 

From (3.11) we conclude that A-~/2A(q,k)A ~/2 is a compact operator-valued 
function on C~/2(R 3) which is norm continuous in (k,4). Thus to conclude 
that II (1 + A-~/2 3(4, (, k)AO/2) - t 11~/2 is uniformly bounded for 0 <_ k < k(O) and 
I~l > R , R  sufficiently large, we only need to show that I+A-~/2A(O,k)A~/2 is 
injective on C~/Z(R 3) for 0 < k < k(4). Note that f + A-~/2A(O, k)A~/2f = 0 implies 
f+A-~ /23(q ,O,k )A~/2 f=  O, where f =  ANf. Hence, since 0e0 ,  to complete the 
proof of (3.6) we only need the following. 

Lemma 3.3. Assume f + A -  ~/2 A(q, k)AO/2f = O, f s C ~/2 (R 3) and 4eH~,N. Then 
AN+~/2f is in C~/2(R3). Here 0 __< fi < min {1,N - 1} as before. 

Proof of Lemma 3.3. We only need consider f(¢) when ] 41 > k + 1. Then we have 

If(4)l -- IA-~/2(~)[A(4, k)Aa/2 f](4)l 

A -  ~/2 (4)0(~ - rI)A ~/2 (t/) f(t/) dr/ 
= .[ ir/12 _ (k + i0) 2 + CIIqllo,N 

Inl<k+l 

~.1 < ~ (1 + In - 412)-N/2(1 + In 12) -~ +~/4(1 + 1412)-~/41f(n)l dn 
k+ 1 

-~I1 +•2" 

We have 1Ill < C(1 + 1412) -N/2-°/a, since II ANO I1~ < oo, and the proof will proceed 
by repeated application of the inequality 

If(4)l < I2 + C(1 + 1412) -N/2-°/4. (3.13) 
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Assume that we have shown if(~)l < C(1 + i¢12) -~/2 for some r > 0. Then 

12 <-- C ~ (1 ÷ It/--  ~[2)-N/2(1 ÷ I//]2)a/4-r/2- ~(1 + ]~[2)-a/~d~/. 
k + l  <-It/[<~ 

We divide the region of integration into 

k + l < t r / l < ½ 1 ~ l  and ½f¢1<1~I<o~, 

getting J~, and J2. We have 

~C(1 + 1~12)-N/2(1 + ]~[2)(x-~)/21nl~[, r <  1 +3/2,  
J~ ~ ~C(1 + 1¢12) -~/2-~/4, r > 1 + 3/2. 

Since 

{ Clr/[ -2, N > 2 ,  

s~(1-q-II~/[co--~12)-N/2dog~ C[~/I-21nli?l, N = 2 ;  
Clrll -N,  1<N<2,  

(see proof Lemma 2.2), and 0 < ~5 < min {1, N - 1}, we have 

where fl is defined as in the proof of Lemma 2.3. Thus repeated use (3.13) gives 

To show that 

If(~) < C(1 +[412) -N/2-a/4. 

IA@f(01 < Cl~l~(1 + 1~12) -N/2-z/4, 

one merely notes that 

IA(~)@(~ - ,t)l < C l ~ l  ~ II ~ II~,N(1 + 14 - ~/12) -NI2 

and uses the preceding estimates with r = N + 3/2. • 

Continuation of the Proof of Theorem 3.2. Since from (3.3) one has 

A - a / 2 h  = - -  (I + A - ~ / 2 . 4 A a / 2 ) -  1 A-~/2q¢, 

(3.6) implies 

[1 A-~/2( ' )h(  ", (, k)ll~/2 < C II A- '~ /2q¢  ][~/2 < C II ~/¢ I1~, 

where C is independent of (~, k)zR 3 x R +. Now,  writing h = - q ~ -  .4A ~/2 A-~/2 ~, 
and using Theorem 2.1, we have 

sup II ~t(., ~, k)I1~ < c II q~ II ~ = c II ~ II~,N. (3.14) 
{,k 

Since h = A~h, sup II Tt(., (, k)[1~ is the first of the three norms in (1.1) whose sum is 

II A~h II ~_. Note that, if we replace q~ by an arbitrary element of C~(R3), (3.14) shows 

sup l lI+7t(~,( ,k))-l l l~<~, for ~cO. (3.14') 
(~,k) 

Since Theorem 2.1 fails for ~ = 0, we cannot obtain estimates on H h(~, ", k)I1~ 
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and flh(~,~,')ll~ by applying difference operators to (3.3). Instead we use the 
following procedure. Since 0 can be approximated in II II ~,N by q~ EC~(R3), we have 

+ A(ql, ~, k)h + .4(c)~, ~, k)h = - c~c (3.15) 

with tlO~ I1~,~< ~0,eo to be chosen small enough that  the Neumann  series for 
(I + A(Oa, ~, k))- 1 converges. Then we set 

q~ + ~ + ~(q~, ~, k)~ = 0, 

so that  (3.15) becomes 

0 + -A(gl~, ~, k)(I + A(ql, ~, k))- 1(0 -- q;) = 0. (3.16) 

The extra regularity of q~o and the explicit representation of (I + A(ql, ~, k))- ~ via 
Neumann series will permit us to get regularity results for ~ by applying difference 
operators to (3.16), and then pass to h via 

= (1 + A(ql, ~, k))- ~(0 - q;). (3.17) 

The Neumann  series expansion of (1 + A(q, k))- i f  is given by 

(l + A(q,k))-lf = f + ~ ( -  1)"A"(q,k)f, 
n = l  

where 

[A"f] (~, k) = q(~ - r/1)q!r/1 - r/2)"" q(r/,- 1 - r/,)f(G) dt h ...dr/,. 
"~° 17 (Ir/jl 2 - ( k +  i0) 2) 

j = l  

Expanding A(s)A"f = [A"f] (~, k + s ) -  [A"fJ (3, k) by Leibnitz' formula, we have 

( 1 ) 
A(s)A'f =p=l ~ ~R 3A(s) It/p] 2 -  (k+iO) 2 QP(~'r/P)R'(tlp)dr/P' 

where for p > 1, 

G(~,r/~) = 

and for p < n 

Rv(r/p) = 

0(~ - - /11)"" q(r/p- 1 --  r/p) dr/1 . . . . .  dr/p_ 1, 
p - 1  

R3(p-t) [ l  ([r/jl2-(k + s + iO) 2) 
j = l  

(3.18) 

q ( g l p  - -  ~p+ 1 ) " ' 0 ( r / n -  1 - -  G)f(G)dr/p+ a S "''d~n 
R3,°-~, I~I (Ir/~F 2 - (k + i0) 2) 

j = p + l  

with Q1 = q ( ~ -  r/l) and R, = f(t/,). Applying Theorem 2.2 with ~5 = 0  and then 
Theorem 2.1 with 6 = 0, we have 

sup [A~(~)s-~A(s)A"f[ < C ~ NA~Q~pII,IIA~RplI~<-_ C(nC")[IaN~ll"~lla~fl]~, 
O < s < l  p = l  

(3.19) 
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where C is the constant from Theorem 2.1. Combining (3.19) with the direct estimate 
from Theorem 2.1, 

[[ A~V(-) [A"f] (.)I[ ~ < C" I[ ANO [[ ~, I[ a ~ f  [[ ~, 

we conclude that, given 9EC~(R3), the Neumann series expansion of 

A~(I  + A(O, k ) ) - i  A f N g  = (I + .4(0, ~, k)) -1 g 

converges in C~(R 3) to a function which is C a in k when ]] 0 ]]~,N < e0. 
Now, given 0eH~,N, we choose 0~oEC~(R3)~sothat 01 = 0 - 0 ~  satisfies 

tlql II~,N < eo. Thus we have Eq. (3.16) for ~ = h + A(01, ~, k)~ + c7¢. Our next 
objective is to show that 

sup I]O(',~ + v,k + s)-(7( ' ,~,k)l l~< C(lvl~ + s ~) 

for Ivl< a , 0 < s <  1. 
Since 

(I + A(0~o, ~, k)(I + -'4(01, ~, k))- 1)-1 = (I + .4(c21, ~, k))(1 + ~t(dl, ~, k))- 1, 

it follows from the uniform boundedness of (I+A(O,~,k))  - I  and Theorem 2.1 
applied to -4(01, ~, k) that 

sup ]](I+.4(Ooo,~,k)(I+A(ql,~,k)) ) II,< oo. 

Thus (3.16) shows that sup II 9(', ~, k)I[~ < ~-  Applying the difference operator in 

k,A(s), to (3.16) we have 

A(s)O +.7t(q~,~,k)(I - ^ -1 - + A(q~,~,k)) A(s)9 

= -[A(s)( .7t(Oo~,~,k)(I+A(O~,~,k))-~](cj( . ,~ ,k+s)-~¢)-r(~,~,k ,s) .  (3.20) 

Viewing (3.20) as a linear equation for A(s)~, we need to show that the 
inhomogeneous term in this equation, r(~), is bounded in C~(R 3) by a multiple 
of s ~ uniformly in (~, k). To do this we will substitute the Neumann series for 
(I + -'t(ql, ~, k))- 1 into (3.20) and consider 0¢~r. The terms in the resulting expansion 
for 0¢~r are precisely those in (3.18) with c) (~-rh)  in each Qp replaced by 
~¢~(A~V(~)0~ (~ - t h )), all other 0's in Qp and Rp replaced by 01's and f(t/,) = A(x(~/) 
(0(t/n, ~, k + ~) - q~(t/,)). Thus (3.19) implies 

sup IO~r(~,ff, k,s)] < Cs ~. (3.21) 
(~,~,k) 

. e . c e  bound we co.c ud, 

sup IlO(.,~,k + s ) - O ( . , ~ , k ) L  <__ Cs ~ 

for 0 < s <  1. 
To get the analogous result in ff we let A(v) f  = f (~  + v ) -  f(~) for functions 

depending on ~. The analogue of (3.20) is 
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Since 

A(v)O + A(gl~o, ~, k)(I + 3(qa, ~, k)) -~ A(v)O 

= - [A(v)(,4(qoo, (, k)(I + 3(gl~, ~, k))-~)] (g(', ( + v, k) - q:+ ~) 

-- A(qoo, ¢, k)(I + A(q~, (, k ) ) -  ~(d(v)gl;) - r~ + r 2. (3.22) 

A(q~,  ~, k)(I + A(q l ,  ~, k )  - 1  - -  A~A(O~, k)(I + A(O~, k))- 1A~N, 

it follows directly from (2.5) and our  bound  on ]t~(',(,k)I]~ that  

sup [I rl(',(,k,v)]l~ < Girl.  
Gk 

To estimate r E we again substitute the Neumann  series for (I +-4(~1, (, k))-1 
and cons ide r  a~r 2. The n th term in the resulting series for a~r 2 is 

I . ( ( , ( , k , v ) =  ~ A{u(~)  
R 3n 

• 0~(A~(~)~(~ - r/a))0~(r/~ - r/2)"" ch (r/.- ~ - r/.)(A(S(r/.)(A~(~)A(v)q~(r/,J) 

(2~) 3" ~ (l~jl ~ - (k + io) ~) 
j = l  

• d r / t " "  dr/,. 
We have 

a(N(r/,)(a(v)q:(r/,)) = q(r/, - ~ - v) - q(r/ - ~) 

+ a(N(r/,)(A~+~(r/,) - A~(r/,))O(r/, - ( - v). 

If we think of ( as the variable for which we expect functions to be C ~ and ~ as a 
parameter  (note that  A~(~)= A~(~)), Theorem 2.1 and (2.5) imply 

11,(4, ~, k, v)l < Clvl=C" [I auq II, It aUgll tl n -  1( II A~(')AfN(~)O~(Af(#)q~(¢ - "))I[)~. 

Thus  

sup la~rz(~,( ,k,v)l  < C l v l  ~ (3.23) 
(GGk) 

and, using this to bound  U r:(., (, k,v)I1~ as before, we conclude 

sup II 0(', ( +  v , k ) -~ ( ' , ( , k ) t l~<  Clvl ~ 
Gk 

for Ivl < 1. 
N o w  we are ready to go back to h via the relation 

= (I + A(0,,  (, k))-  a0 - (I + 3(0~, ~, k))-  ~q~ = h~ - hz, 

That  the C~-norm in (3, (, k), II h2 II ~_, is finite follows by substitution of the N e u m a n n  
series exactly as in the derivat ion of (3.21) and (3.23)• That  I1 h, II ~ < oc also follows 
by substi tution of the Neumann  series but  first we separate terms: 

A(p)(I + ~t)-~0 = (A(p)(I + ~t)- ~)0 + (I + ,4)-~A(p)O, (3.24) 

where p = s or v and ~ is 0 with p added to the appropr ia te  variable. The first 
term on the right of (3.24) is estimated by (3.19) with f = 0 when p = s and is 
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estimated trivially when p = v. The second term can be estimated directly by (3.14') 
since ]lA(p)O(.,(,k)lt~< C]p[ ~. [] 

From the proof of Theorem 3.2 one can see that the mapping 

~e:0--,~ 

is analytic from (9 to C~(R 3 x R ~ x 11+). To do this, given 0oe(9, we consider for 
I[Oll~,u__< 1 and Izl <6 ,  

~(~, ~, k, z) = - (~ + A(qo + zO, ~, k))- ~(qo + zq)~. 

Writing 

(I + 7t(qo + zq,~,k))-~(qo + zq)¢ 
= (I + z(I + A(glo, ~, k))-  ~.4(gl, ~, k))-  ~(I + -4(qo, ~, k))-  l(gl o + Zgl)¢, 

Theorem 2.1 and (3.14') imply that for 6 sufficiently small we can expand the first 
factor on the right of (3.25) in a Neumann series which converges in C~(R 3) for 
all (~, k)ER 3 x R+. Thus for some 6 independent of (¢, ~, k) we have for ]l q I],,N < 1 
and ]z[ < 6, 

h(~,~,k,z)= 1 ~  ~ h(~'~'k'W)dw ' 
27zilw(=~ w - z  

and hence for all k > O, 

~,~ p! ~(~, ~, k, w)dw 
~z" (~,(,k,O) =2~i  ~ w "+1 

Iwl =~ 

Since ~(0o + Zdl)= h(~, (, k, z), to conclude that ~(0o + zc)) can be expanded for 
[z[ < 6  in a power series in z convergent in C~(Ra x R 3 x  R+) uniformly on 
II 0 II~,N N 1, we only need to show that 

II h ( , ,  , w)H~ _-< c 

for Iwl = 6. However, this is just the statement that the estimate in Theorem 3.2 
is locally uniform in 0. This uniformity is clear from the proof. Thus we have shown 
that ~ satisfies one of the definitions of analyticity (see P6schel-Trubowitz [12], 
Appendix A, or Nachbin [11]) and have 

Corollary 3.4. The mapping ~: f l -*h considered as a function from (9 to C~(R 3 x 
R 3 x R+) is analytic in O. 

Analyticity in the sense above is equivalent to the fact that ~ has a continuous 
Frechet derivative with respect to 0 (see references above), as one can easily verify. 
In what follows we will often make use of the continuous differentiability of 7<. If 
we restrict to the backscattering map on (9 

S:dl ---, h(~, - 4,141) = A-~V(¢)h(~, - ~, [~l), 

Theorem 3.2 implies II S(0) II~,N < oo. Moreover, choosing 0,~(9 c~ C~(R 3) con- 
verging to ~ in I[ lib,N, it follows from the analyticity and hence continuity of 
that II 7~(q,) - ~(q)I1~--' 0. Thus  II S(0.) - S(0)II ~,N--' 0. Since II s(0.)II ~,N, < ~ for 
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all N' > 1, 0 < ~' < 1, it follows by Lemma 1.1 that S(O,)eH,, N and hence S(gl)eH,,N. 
This gives: 

Corollary 3.5. The backscattering map S:O ~ h ( ~ , -  ~, I~1) is an analytic function 
from (9 to H~.N. 

Section 4. The Derivative of the Backscattering Map 

Since by Corollary 3.4 ~:c~ ~ h is a continuously Frechet  differentiable function 
on (9, we may compute  its derivative. To do this we will differentiate Eq. (3.3) 
with respect to c). Note  that Theorem 2.1 implies A(O)h(dl) is the composi t ion of a 
bounded  operator  valued function linear in 0 with a continuously differentiable 
function, and is hence continuously differentiable. We have for v e i l  ''N, Oe(9, 

dh(v) + ~t((t)d'h(v) = - ~ - 7i(v)h, 
and hence 

dh(v) = (I + A(0))-1 ( -  5~ - .4(v)h). (4.1) 

Lemma 4.1. The operator (I + .71(~))-1, ~ (9 ,  has the following form: 

[(I + A(q, ~, k)) l f ]  (3) = f(~) + (2n)- 3 ~ Af(Qh(~,  7, k )A[  N(~)f01 ) dr/. (4.2) 
]r/] 2 - (k + i0) 2 

Proof. Let f + D f  denote the right-hand side of (4.2). Then we have from (3.3) 

(I + .71(0))(I + D ) f  = f + J~(O)f + D f  + .7t(0)Df = f + ~t(gl)f + D f  - D f  - A (q ) f  = f .  

Thus I + /5  is a right inverse for I + ~(0). Since I + A(0) is invertible, it follows 
that I + /5  = (I + A(O))- ~. [] 

Substituting (4.2) into (4.1) we have 

A f  ( ~) h( ~, q, k)v¢O1)d~ 
d'h(v) = - ~¢ - (2~)-3 R~ 3 It/[2 __ (k + i0) 2 

_ (2Ir)_ 3 ~R 3 h(q, ~'~o~k)a~(~)v(~ - ~l)dtl 

6 f A~(~)h(~, t, k)v(t - rl)h(tl, ~, k)dtldt 
- (2re)- ~3 RJ3 (Itl 2 - ( k  + / - ~ ) ~ - t / ~ - ~ i f : + / 0 ~ "  (4.3) 

Changing variables so as to get integrals of v01) in all integrals in (4.3) and 
cancelling A~¢(~) in all terms, one arrives at 

h(~,tl + ~,k)v(tl) d~l 
dh( ~, ~, k)(v) = - v( ~ - ~) - (2n)- 3 R~ 3 

17 + (k + i0) 2 I 

h(~ - 7, ~, k ) v ( . )  
--(2~)-3 ~3 [/~: ~-2 ~ ) 2  d" 

h(~, t, k)h(t - tl, ¢, k)v(tl)d~l ~clt. 
--(2~)-6 ! 3 ( ! 3 ( [ t 1 2 : ( k ; ~ - ~ ~ i 0 )  2) (4.4) 

] R XR 
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Since I + / ~  is the left inverse of I + ,4(ci), we have 

h( {, 17, k)gl(r/ - ~) dn 
0 = 0 ( ¢ - - t ) + h ( ~ ' ~ ' k ) + ( 2 r c ) - 3  ~3 Iq -~- - (k -7 i6 )  g " ' "  

Sending ~ ~ - ~, ~ ~ - 4 and r / ~  - r/, we have 

0(3 -- r/)h( - ~, - r/, k) 
0 = 0(3 - 0 + h ( -  ~, - 4, k) + (2n)-3 d3 Ir/I = - (k + i0) 2 dr/. (4.5) 

Compar ing  (4.5) and (3.1) one sees that  for Oe(.0, 

h( - ~, - ~, k) = h(¢, ¢, k) (4.6) 

for (4 ,~,k)eR a x R 3 x f i+ .  Hence,  setting ( 4 , ~ , k ) = ( ¢ , - 4 , } 4 1 )  in (4.4), sending 
r/--+ 2 r / and  using (4.6), we have 

dh(4, - {, Igl)(v) -- - v ( 2 0  - 2~ -3  ]" h(¢ - 2q, - 4,14l)v(2n) dr/ 
i0) 

_2_3n_6~(~(it157(/~+/~(7~h(4,t,l{l)h(t-gr/,-{,i:l)v(2r/)dtl _\ d 

(4.7) 

F r o m  (4.7) one sees that  the Frechet  derivative of the backscat ter ing m a p  
S is given by 

dS = (I + B + F) T, 

[Tf]  (4) = - f(24), [Bf]  (4) = 2 n -  3 f h(4 - 217, - 3, ] ~])f(r/) d 

and 

( .  h(~ , t , l~ l )h ( t -  2~ , -g , l~ l ) f ( r / )dr /  "]dt 

Since S is an analytic function, dS is cont inuous  on (9 as a function with values 
in ~(H~,N), the space of bounded  linear opera tors  f rom I-I~,~ to itself. Since we 
need to know that  B and F are individually cont inuous  functions f rom (9 to 
5°(H,,N), we prove  the following. 

L e m m a  4.2. B(O) is an analytic function from (9 to Y(H~,sv). 

Proof. As in the p roof  of  Corol la ry  3.4, the analyticity will follow from the local 
boundedness  of the opera to r  no rm It ]B(0) II [~,N on  •. 

F r o m  (3.17) we have the representat ion 

h(~ - 2r/, - 4,131) = [ ( / +  A(01, I~1)) -1 (A-S~(')g( ", - 3,141) - q(" + 4))3(4 - 20.  

As in the p roof  of Theorem 3.2 we will substi tute the N e u m a n n  series for 
(1 + a (ch ,  I~1)) -1 in h and hence in B(@ This gives 

[B(O)f] (4) = 2,~-3 ~ 1.(3), 
n = O  
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where 

/ .(~)= 
R3(n + 1) 

f(n)q~(~- 2 q -  ~h)qa (nl - t/z)---4~ (q,- ~ - q,)(A2~(~1.)g(th, - ~, I¢1) - ~(n. + ~)) 

(ll-2,71 ~ - ( I l l  + io) ~ ) ( I  (1'7,1 ~ - ( I l l  + ~o) ~) 
i = 1  

"&ldrll ...dq,. 

Setting 7o = ~ - 2t/, we have 

1 

I,(~) = g R3(! + 1) 

f(~°)ql(llo-lll)ql(ql-ll2)'"Ol(rln-l-l'ln)(A--~(lln)g(lln,--l, I ~ ] ) -  q(qn + l)) 

n 

[ I  (1~1 ~ - ( l~ l  + io) ~) 
i=O 

• drlo"" drh,. 

These are precisely the terms which arose at the end  of the proof  of Theorem 3.2 
with one factor of q, replaced by f ,  ( =  - l  and k = [l]. Hence, the argument  
given there shows that 

[I ANB(q)f  H ~ < C [I f I[,,N (4.8) 

for fEH,,N, where C is locally uniform in q on (9. 
To  prove analyticity we proceed as follows. Defining h(q, ~, k, z) as in the proof  

of Corol lary 3.4, we have 

[B(qo + z~))f] (l) = 2re -3 ~3 [q[2 _ ([i12 + i0)2 dth 

and we know that  A~(~l )h(q , -  l ,  I l l ,z)  is an analytic function from Iz[ < 6 to 
C'(R 3) for each l e R  3 and ~ with )l qll~,N < 1. Thus Theorem 2.1 implies that  for 
each l ~ R  3 and f s H , , u  we can represent [B(q o + z q ) f ] ( l )  as a Cauchy integral 
over ]zl = 6/2 with 6 independent  of I and q, when IIq I]~,N < 1. Now analyticity 
follows from (4.8) just  as in the p roof  of Corol lary 3.4. 

To  see that  the range of B(q) on H,,N is contained in Ha,N, we approximate  
by q, e C ~ ( R  3) as in the proof  of Corol lary 3.5. • 

The main result of this section is that, for q~(9, the opera tor  dS(q) is F redholm 
of index zero on H~, N. To  prove this we will show that  B 2 and F are compact  on 
H,,u. To  see that  this is sufficient, note that  for 0 < ~ < 1, 

T-X(1 - 8B)(I + eB + F ) T =  I + K1, 

(I + ~B + F) T -  1 (1 - eB)) = I + K2, 

where K1 and K2 are compact  if B z and F are. Hence, (I + eB + F)T is F redholm 
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for 0 -< e -< 1, and for e = 0 it is a compact perturbation of an invertible operator, 
and hence of index zero, Thus, to conclude that  dS(O) is a Fredholm operator of 
index zero on H,,N for c)EO, we only need the following: 

Theorem 4.3. The operators B2(0) and F(gl) are compact on H~,N for Oe(-9. 
To prove Theorem 4.3 we will first take advantage of the fact that  operator 

norm limits of compact operators are compact to replace B 2 and F by the operators: 

g~ (4, th t)f(t) 
[T l f ] (~ )=  SR6(t~_2~ll2 (l~[+iO)2)([~l_2tlz_(l~ll+iO)2)d,ldt (4.9) 

and 

g2(4, t/, t)f(t) 
[Tzf](~) d~dt, 

=R J6 [t/I z -  (I 46 + i0)2)(tt/--2t[ 2 --(i4J + iO) z) 

respectively, where 9i, i = 1, 2, satisfies 

(i) g i~Cm(R 9) and all of its partial derivatives are bounded, 
(ii) 9~(4,~,t) = 0  for 131 + It/I + Itl < 6 for some 6 > 0 ,  and 

(iii) 0~(~,~,t) = 0, if 14 -~ [  > m  or I q - t l  > m  for some M <  o9. 

Then the proof proceeds by analysis of the singularities of the kernels t 1 (4, t) 
and tz(4, t) of T1 and T2. For  this we will use estimates modelled on the following 
simple lemma. 

Lemma 4.4. Assume that g(~,11) is supported in ]t 1 - tl(~)] < M and that lag J], < 0o 
for some ~6(0, 1). Assume that h(4) satisfies ]h(4 + #) - h(~)[ <= C[#[ for[#] __< 1, 4~R". 
Let 

g(4, o) (4.10) = . (  - io de 
Then 

Itsll~, < C(M, I] g II~, ]lh]ll, ~') (4.11) 

for any o~' < o~. 

Proof. Changing variables we have 

g({,tl + h(~)Ol) dtl. s(3) 
R °" ~1  - -  iO 

Letting f (~ , t / )=g(4 , t /+h(4)01) ,  we see f satisfies the same hypotheses g did. 
Expanding (4.10) we have, letting t /=  (th, t/'), 

s(~) = ~ f(~'  t/) dr/+ ~ f(~'  t / ) -  f(~, 0, t/') dr/+ ~ f(4, 0, t/') d r / -  
I~l>l th I~,1<1 //1 I~1<1 q - ~ - ~  - I 1 + I 2 + I 3 "  

Carrying out the integration in ~h in I3, 

13 = 7ri ~ f(~, 0, t/')d~/'. 
Rn- 1 

Since [[ f( . ,  t/) - f( . ,  0, t/')[[ ~, < 3It h [ ' -  ~' [l f [i ~, the a '-norm of 12 is easily estimated, 
and (4.11) follows directly from the representation of s(~) as 1~ + I 2 q- 13. • 
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The problem of obtaining (4.11) for singular integrals with more general 
denominators can be reduced to Lemma 4.4 by change of variables as long as the 
gradient in /7 of the denominator is bounded away from zero near the surface 
where the denominator vanishes. In what follows we will leave such reductions to 
the reader and simply refer to Lemma 4.4. 

Proof of Theorem 4.3. Lemma 4.2 shows that B(c~) is analytic in 0, and hence, since 
dS(O) is analytic, F(O) is also an analytic function of 0. Thus, making a change of 
arbitrarily small norm in B 2 (0) and F(0), we may assume ~ ~ C~ (R3)~ (9, and hence 
by Theorem 3.2 

IIa~'hll~, < oc 

for all N' > 1 and e' < 1. 
The operators Be(O) and F(O) are given by 

and 

(4.12) 

[B2f]({) = 4n-6 ~6 h({ - 2~/, {, Igl)h(/7 - 2t, - /7,  I~11)f(t)dtd/7 
(i ii i 7 

h(-/7,-~, l~l)h(/7-2t , -~, l~l) f( t )  dtd [Ff](4)=2-37z-6d6(l/7~[~-l+i~Z~12_-_i~i+~)2 ) /7. 

By the argument used in the proof of Lemma 1.1, (4.12) implies that, given 
c q , c ~ < c q < l ,  we can choose hn(~,~)EC~(R 6) such that h , (~,~)=0 for I~+~l 
sufficiently large, O~,~h, is bounded for all fl and 

AN(~ + ()(h,,(~, ~) - h(~, - ~, ICI)) 

tends to zero in C~1(R6). Replacing the h's in B 2 and F by h,'s with the appropriate 
arguments, we get B 2 and F,. We claim that 111B 2 - B2 II Ie,N and II IF, - F [I I~,N go 
to zero as n ~  oe. Expanding B2,- B2= B , (B , -  B)+ ( B , -  B)B and making the 
analogous expansion of F , -  F, one sees by the estimates on Ill I, 112[ and 113t in 
the proof Theorem 2.1, that I1 ]BZ-B211 ]0,N and Jl ]F,-FII Io,u go to zero. To 
estimate A(p)(AS(B 2 -  B2,)) and A(#)(AS(F,- F)) we first change variables in /7 
and t so that when 4 appears in the denominator of an integrand it is in a factor 
of the form (1/~12 --(141AV i0) 2) or (It[ 2 --([(1 + i0)2). Then [A(#)(AN(B 2 - B,2)/](() 
and [A (#)(AN(F - F,) f ]  (4) can be expanded into sums of terms where the difference 
operator acts on ([fll 2 - ([ ~[ + i0) 2)-  1, fl = 17 or t, which we estimate by Theorem 2.2; 
terms where the operator acts on f(l(~, q, t)), l a linear function, which we estimate 
by Theorem 2.1 with f playing the role of q, and terms .where the operator acts 
on A s, h,h, or h -  h,, which we again expand as 11 + 12 + 13 and then estimate 
]I1[, [I2[ and [I3[ as the proof of Theorem 2.1. It is estimating terms of the last 
type that we use c~ 1 > e and this makes all estimates substantially easier. Thus, 
making a change of arbitrarily small operator norm, we can replace B 2 and F by 
operators T1 and T2 as in (4.9) with gl and 92 satisfying (i) and (iii). 

To see that we can make the integrands in B 2 and F,  vanish for ] ~ [ + 1/7 ] + t t[ < 6o 
so that 91 and 92 will satisfy (ii) in (4.9), we proceed as follows. Given any 
~0eC~°([x[ < 1) and c5 > 0, let 
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[R.f](5~) f dt dr 
R J6 (16~ -- 2t/I 2 --(Ib~] + i0)2)(i t/-- 2tr 2 -- (i q] + i0) 2) 

b2 R~ ~ h.(6~ -- 2bt/, b¢)(o2(r/)hn(bt/-- 26t, 6rl)q)2(t)f(&) dt dq. 

Thus, by Theorems 2.1 and 2.2, 

II qo(~)[R.f] (6~)]I.,N =< C62 It qo(t)f(&)]i..t¢. 
Thus, since [I g(~)JR. < 5-"  II g(SQ it. for 6 < 1, we see that ]l Jq~(~/5)R. it H.,N ~ C5. 
Thus, making an arbitrarily small norm change in B. 2, we can assume that its 
integrand vanishes for ]~l + ]t/J + ItJ < 6o for some 5 o > 0. This argument applies 
to F.  as well. Thus we may replace B 2 and F. by the operators T1 and T 2 in (4.9) 
with g~ and ga satisfying (i), (ii) and (iii). 

We will now study 7"1. The analysis of T 2 is very similar and somewhat easier, 
and we will sketch it at the end of the proof. 

In terms of t / the integral defining T 1 is singular on the sphere (if ~ ~ 0) 

E - -  {tt : l~- 2~1-- I~1} 

and the plane (if t # 0) 

[ I  = {q:lt[2 - t/'t = 0}. 

We will see that the kernel t,({, t) of T~ is most singular at points ({, t) for which 
and F[ are tangent. This happens when 

tt:tt = ~___ T ~ c~ {t l : t t ' t -  It12 = 0} # q~, 

i.e. when ~.t+}~lltJ-21tle=O. With these facts in mind we will break up 
the integration in t/ by summing over a partition of unity generated by p~ = 
p ( l ~ -  2~1- I~l) and P2 = p(Itl-(tl't)ltl-~), where peCk(R) satisfies p(s)= 1 for 
Isl < ~ and p(s) = 0 for Is[ > 2el. Since gl = 0 for [~l + [t/I + Itl < 6, choosing el 
sufficiently small, we can assume that 1(I > 5/4 on the support of P~P2g~. 

We will also need cutoffs in t near the most singular set, 

~1 =fl(2't'-(~'t)]t]-l-'~[) and f12 = fl(2't]-(~'t)[t'-~+[~]) 

where fleC~°(R) satisfies fl(s) = 1 for Is[ < ~z and fi(s) = 0 for [s] > 2~ z. The constants 
e~ and e2 are chosen small enough that on the support of p~p2fl, g~,i = 1,2, the 
component of ~ -  2t/ orthogonal to t has length less than 1/2l~l. Note that on 
support PtP2fli9~, [ ~ -  2t/[ < 1~[ + 2~1, 

it~-(~-2t/) >1~1-2e21~1-4~ ,  and 1~1>5/4. 

Now we replace 9~ in the definition of 7"1 by (1-p~)o~ to define S~, by 
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( 1 -  P2)Pigl to define $2, by p i p 2 ( 1 -  f i l -  f12){]l to define S 3 and by PiP2fligl 
5 

to define $3+ v Thus T l f =  ~ Sif. 
i=1 

Letting sl (4, t) denote the kernel of S,,  we have 

1 hl({'q't) dq, 
q . t Z ~ i O  

where hi=(1-pl)gl( l~-2~12-1~12)  -1. Applying Lemma 4.4, we conclude 
It] Ilsi(',t)[l~, is bounded in t for all ~ '<1 .  Since we also have si(~,t)=O for 
I t - ~1 > 2M, we conclude 

IIAN+ I s t f  N=, ~ CNIIANf lIo. 

Thus $1 is a compact operator on H,,N. 
Letting s2(4, t) denote the kernel of $2, we have 

h2(4, q, t) dq, 
$2(~, t) f 

~3 I~  - 2712 -(131 + i0) 2 

where hz = (1 - Pz)Pl gt ( - 4q' t + 4it I z)- 1. Hence, changing variables 

S i n c e  l tlh2(~, (q + 4)/2, t) is bounded, vanishes for I4 - q t  > 2M, and has Lipschitz 
constant in (4, q) uniformly bounded in t, it follows that I till s2(', t)I1~, is uniformly 
bounded in t for some c~' > e. To verify this one can write 

h 2 ( 4 , ~ ,  t )  q ) ( q )  h 2 ( 4 , ~ ,  t)(1 - q'(q)) 

sz(4, t)=~3 1~/12_(141+i0) 2 dq+d~ 1q12_(141+i0)2 dq~$2,1+$2,2, 

where (0 e C~ (R 3) satisfying ~0 (7) - 1 for [,11 < 1. Then I1 s2,1 (', t)II ~, can be estimated 
using Theorem 2.2 and the early steps in the proof of Theorem 2.1 and I1 s2,2(', t)I1~, 
can be estimated directly by Lemma 4.4. Since s2 (~, t) = 0 for 14 - t[ > 2M, it follows 
that Sz like $1 is compact on H,,N. 

Letting s3(4, t) denote the kernel of $3, we have 

1 h3 (4, q, t) 
$3(~' t ) =  - - 4  R 53 14 -- 2q] 2 --(1~1 "+- i0)2)(t] "t - - I t l  2 + iO) dq' 

where h a = p l p z ( 1 - f l , - f l z ) g  i. Since ]4f>6/4 on support h 3, by taking ei 
sufficiently small we can assume that ] 4 -  2ql does not vanish on the support of 
ha. Thus all partial derivatives of h3 with respect to 4 and q are bounded on R 9. 

We want to use the coordinates//1 = Iq - 4/21 and 1'2 = (q - {/2)" t/I t l on q-space 
to study s3, since the singularities of the integrand are on level surfaces o f / q  and 
#2. To see that these coordinates are independent on support h3 and estimate 
derivatives with respect to #1 and #2, it is convenient to introduce cylindrical 
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coordinates (p, 0, z) with origin 4/2 and axis in the direction of t. Then we have 

P = , , /~ t  - #22 and z = # 2 .  

The factor Pl p2(1 --/31 - /32)  in h 3 insures that 

on support h a. Thus, choosing el sufficiently small once e2 has been fixed, we have 

#1 -1#21 _-> ~31~1 

on support h 3. Setting 

3 ~,~ + z ~  + p cos 001(0 + p sin 002(0, t 
m3(p,z, ~,t) dO, 

Jo (z z -I- p2)1/2 + 141 

where (t/ltl,Ol(t),~2(t)) is an or thonormal  frame, we see that I~lrn3 is bounded 
together with its derivatives in p, z and ~. We have 

1 m 3 pdpdz 

R×R+(2X/p2+ZZ--(]~I+iO)) Z+ --It] + i 0  

and, since 6(#1, #2)/~(p, z) = P/#1, 

1 #1 m3 d#l d#2 
s3 (~ ' t ) -  4It[ S ( ~'t  )" 

RxR+(2#I__(I~I+i0))  #2+2T[--It[+i0 

Since m 3 is supported in 

{12#l-,gll <2el}c~{ #2+~-itt[-l t '  < 2 e l } ,  

we have #2 _ #22 > e31 {]#1 > e3(2#1 - 2el)#1 on support m 3. Thus all partial 
derivatives of p with respect to #1 and #2 are bounded on support m3, and #1 m3 
and its derivatives in # and ~ are bounded. Thus, applying Lemma 4.4 twice, one 
sees that  Itl]ls3(',0]l~, is bounded on R a for c~'<l,  and, since s3 ({ , t )=0  for 
l { -  tl > 2M, it follows that $3 is compact on H=,N. 

The kernels s4 and s5 of $4 and Ss require a more detailed analysis. We have 
for i =  4,5, 

hi(i, tl, t) 
si(~, t) rj3 (l~ -- 2~/12 -- (1~1 + i0)2)([q -- 2tl 2 -- (I;71 -b i0)2) dr/' 

where h i = PtPzfligl. Thus, as for ha,h i has bounded derivatives with respect to 
(~, q) of all orders. Moreover, writing t in spherical coordinates, one sees that  
h~, i = 4, 5, as bounded derivatives of all orders as a function on R 3 x R 3 x !1+ x S 2. 



Inverse Backscattering Problem in Three Dimensions 203 

We let #1 be the e-component of 2 t / -  ~, i.e. /q = ((2~/- 4)t)lt[ -1, and #2 be the 
projection of 2 r / -  ~ on the plane orthogonal to t, i.e. 

(21/-- ~). t t. 
//2 = 2r/-- ~ it[2 

By our choices of el and e2,1/~2]<1/2141 on support hi, and, since h i = 0  if 
[ 4 - r/[ > M or [ t - r/[ > M, we also have 1~2 [ < 2M on support hi. 

We set #1(¢, e) = 2 I t [ -  (¢.t)lt[ -x, expand si(~, t) as 

h i -  hi [u~ =,~(¢,0 ) d#1 dm si(4,  t) 
~- ~ (/~ + I/~212 - (I ¢1 + i0) 2)(21 el)(~Zx (~, t) -/~a 

1 hi Iu~ = ul(¢,t) 
+ 2  ~ ( ~  + 1~212 -(141 + i0)2)(21 tl)(~(~, t) - / ~  - iO) d#~dm 

=- Si, 1 "q- Si,2, 

where dm is Lebesgue 
of the form (4.10) with 

measure on t . r /=0.  We consider s,,~ as a function 

1 h/(4,r/ ,  t) - h i I , ,=~11¢,0 

g = 4 (Ir/I + I ~l)(#x(~, e) - ~1)" 

Although g is not supported in a bounded set, it has bounded support in #2 and 
the expansion used in Lemma 4.4 shows that (4.11) holds for s = [t[si, t. Thus, since 
si,1 (4, t) = 0 for 14 - t l > 2M, si, 1 is the kernel of a compact integral operator on H~,N. 

We evaluate si,2 by computing the integral in/zl by residues (there is a simple 

pole in Im#l  > 0 at ~1 = %/(141 + i0) 2 -  [kt212) • This gives 

I tlsi,2(~, t) -- d~ ki(~2, 4, t) 
( 4"t x/l~12_ 1#212 _i0) d#2, ~/ l~[z- I#z[  z 2lel It[ 

where 

ni h 
k i = 2  i lt~l=2[tl-¢.t/itl • 

On the support of hs,2ltl-(~'e)le[ -1 < -141 +2~2141,141 >6/4 and 1#21 <min {1~1/2, 
2M}. Thus the integrand defining ss,z is smooth in 4 with bounded support in #2. 
Since one has l ell ~s5,2(4, e)[ bounded for all fl and s5,2(~, t )=  0 for 1¢ -  el > 2M, 
the integral operator corresponding to ss, z is compact. 

To simplify the study of s4,2 we use polar coordinates in the plane q. e = 0 and 
2~ 

set m4([ ~t2 [ z, 4, t) = ~ k4([ #2 [ cos 0,1#21 sin O, 4, t) dO. It is important that m4 is a 
0 

smooth function of [#zl z on R+-note that only homogeneous functions of 
(cos 0, sin0) of even degree survive the integration. Thus m4(s, 4, e) is smooth in 
(s, 4) on R + x R 3 and its partial derivatives with respect to s and 4 are bounded 
on I1+ x R 3 x R 3. It also remains true that, if we write t in spherical coordinates, 
m 4 is smooth on R+ x R 3 x R +  x S 2. 
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We now have 

1 ~ rn~(s, ~, t) 
s4 2 (¢, t) = lira ~ j ¢- t 

' ~;° Air' ° ]~ Ix / ]~ - s  ( 2It/ It' x / - ~ 1 2 - s - i e )  

and integrating by parts gives 

s+,~(¢,  t)  = 

ds 

_ ~ . t  - i 0 )  mg(O, 4,t)lnQ2ltl ~ - 1 4 1  

Itl 

1 ~ In 2It[ , / 1 4 1 2 - s - i 0  ds-v4,1+v¢2. 
Itl o It[ 

Note that  the integration in v¢,2 is over 0 < s < (2M) 2 and 12It] -  (4"t)/ltl - 1411 < 
2e214'1 on support m,. The kernel v4, 2 is superposition of the kernels 

wa(4, t) = 
m(a,4,t)ln(2[tl- (4't)lt[ -1 - , , ~ 2  - a - i 0 )  

Itl 

for O<_a<_ao, where m(a, 4,rco) is smooth on R+ × R 3 x R+ x S 2 with bounded 
derivatives in 4 and r and m = 0 for l 4 -  t[ > 2M and for 1412 < max {4a, 62/16}. 
The kernel v4,1 is wo(4, t) with m(0, 4, t) = - me(0, 4, t). Thus to complete the proof 
that  T 1 is compact it will suffice to show for W a with kernel wa, 

II AN+I W,f  I[1 ~-~ Ca 1] ANf 1[~ (4.13) 

for all c~ > 0 with C a uniform on 0 _< a _< a o. 
We have 

IAN+I(4)Waf(4)I<C ~ l ln(2l t l - (4"t) l t l - l -x  1~[2-a-iO)ldtllANfl]o 
I~- t l<2M 

and, since the integral is bounded uniformly for (a, 3)61-0, ao] x 1t 3, this gives 

sup lA N+ 1(4) Wof(4)t _-< C II ANf II o- (4.14) 

To estimate the Lipschitz norm ofA N + 1 (3) Wof(¢), we use q)(s)E C ° (R), satisfying 
~o(s) = 1 for [sl < 1 and ~o(s) = 0 for Isl > 2 ,  to  write 

W,f(4) = d3 ~0(I ti)wo(4, t)f(t)dt + ~3 (1 - q)(I t I))w~(4, Of(t)& - 11 q- 12. 

In 11 we will use spherical coordinates, t = re). Since m(a, 4,rco) is smooth in r 
uniformly in (a, ~, co), extending rm(a, 4, rco) to be zero for r < 0 gives a Lipschitz 
function of r uniformly in co, which we denote by ~h(a, 4, r, co). Thus 

11 = s~ 2 do) ! (p(r)rfi In ( 2 r -  (4.~o) - ~ 2 - a - i O ) f ( r ,  co)dr, 

where for r ~ 0 f (  _+ r, co) = f(rco). Expanding 11 as in the proof of Lemma 4.4, one 
sees that  for f e C  ~, ~ > 0,I~ is differentiable in 4 with 
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811 &h 
- - =  q~(r) ~ In (2r - ( ~ .  ~o) - , f l ~ l  2 - a - iO)f(r,e))dr 

[ do  [ - ((-°i + ~i(I ¢[2 _ a)- 1/2)q)(r)fflf(r, 09) dr ~ J1 + + J2. 

One has 
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and, since ~ and t 
Lemma 4.4 shows 

A~÷ x(OY~- ~ ~ CIIANfII~, (4.16) s u p  

for any a' > 0. Combining (4.14)-(4.16) gives (4.13), and completes the proof that 
T1 is compact on H~,N. 

In terms of r/the integrand defining T 2 is singular on the spheres (for ¢ # 0) 

H~ = {~:l~l = 141} 

and 

H 2  = { r / : f r / - 2 t l  = I~1}. 

At t = 0 these spheres coincide but the most singular part of the kernel t2 (4, t) of 
T2 is the set corresponding to tangency of H1 and/-/2, i.e. 

[t[=[~l. 

As in the proof of the compactness of T~, we introduce a partition of unity adapted 
to these sets generated by 

Pl=P(I~/t--I~I)  and p 2 = p ( I r l - 2 t l - I ~ l ) ,  

where p(s)= 1 for Isl < ~ and peC~(ls[ < 2~1). Again for e~ sufficiently small one 
has I~[ >~/4  on the support of PlP2g2, and PlP2g2 is smooth. The cutoffs 
corresponding to the more singular parts are 

IJ1(¢)1 <= C[Ifl[o 

by the reasoning that gave (4.14) and 

IJ2(¢)l-<- C ll f L[~, 

for any ~' > 0 by Lemma 4.4 applied to the integral over R. Since [ 41 is bounded 
on support ~0(Itl)m, we have 

[A~+ l(¢)Ia(~,a)l <-_ Cllfll~, (4.15) 

for any ~' > O. 
Since all functions are smooth in t for It[ > 1, the expansion used in the proof 

of Lemma 4.4 can be used to show that 12 is differentiable in ~ with 

812 f (t, ltl -~ + 4, (1¢12-a)-1/2)(1-  q~(ltl))mf(t)dt 

8~, -~3  (2 l t l - (¢ ' t ) l t [  - 1 -  I v / ~ - a - i O ) l t l  

have comparable magnitudes on support (1-~0([tl)m), 
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- 41), 
f i l=f l ( [ [£ l l )  and fia = / 3 ( ] t [ ~ [  I 

where fl(s) = 1 for Isl < e2 and/3eC;°( ls l  < 2e2). Note  that  for e2 sufficiently small 
/31 and/32 are smooth on support  PlP2g2. 

Next  we define $1 . . . . .  $5 precisely as in the proof  for T 1. Thus the integrand 
of S 1 vanishes on a ne ighborhood o f / / 1 ,  the integrand of Sa vanishes on a 
ne ighborhood o f / / 2 ,  and on the support  of the integrand of $3 we can introduce 
coordinates for which / /1 and /72 are level sets. These three terms are treated 
exactly as before: in place of It[ the weight factor in the denominator  is I t / -  2t[ + [ 4[. 

For  S 4 w e  introduce spherical coordinates in t/, t /=  re), [co[ = 1, r > 0. Then  

I t l -2 t l  2-1412-- r 2 - 4 r c o . t  +4It[ 2 -  1412 

= (r - 2t.co - x/[~l 2 + 4(t. co) 2 - 4It[ z) 

(r - 2t-co + ~/1 ~12 + 4(t.co)2 _ 41t12), 

and for e2 sufficiently small 1412 - 81tl 2 > 1/21412 on support  h4. Thus, the kernel 
s4(~, t) of $4 given by 

~or k4(4, r, co, t) 
$4(4, t) i" dco dr, 

sJ2 Jo ( r - I ¢ l -  iO)(r- 2t co-,/1412 + 4(to) 2 -  41tl = --iO) 

where 

k 4 -  r2h4 ( r -  2t'co + x/[412 + 4(t'co)2-41tl2) -1 
r + 1 4 l  

is a smooth function on R a x R+ x S 2 x R 3. 
Expanding in the usual manner,  we have (with A = I~12 + 4(t.co) 2 - 4It] 2) 

s4(4,t) = i dco ~ k4(~,r,~,t)-ka(4,1~l,co, t) 
s2 o ( r T ~ ~ . ~ - - ~ )  dr 

09  

+ ~2 dco ! k4(4,141, co, t) dr 
(r - 1 4 1 -  iO)(r - 2t.co - x / A - i O )  

- s4,1 (4, t) + s4,2(4, t). 

The  main point  here is that, since the integral in s~, 2 is the limit as e ~ 0 of the same 
integral with i0 replaced by ie, we can deform the integration on [0, oo) to a con tour  
in the upper  half p l a n e - - f o r  instance z = r(1 + i). Since 141 > a/4 and [4 - tl < 2M 
on support  k4, this shows s4,2(4, t)eC~(R6).  Since 

k4(4, r, co, t) - k4(4,141, co, t) 

r - 1 4 1  

is a smooth function supported on 

{[41 > 6 o / 4 } m { l ~ - t l  <2M}c~{l t l  < 2 ~ 2 1 ~ l } c ~ { I r - 1 ~ l l < 2 e l } ,  

it follows that  s<1(4, t) also has compact  support,  and it has enough regularity in 
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4 that the corresponding integral operator is compact  on H~, N. Thus $4 is compact. 
For  $5 we introduce the t-component of t/#1 = ~' t/[t[, and set #2 = ~ - (~" t/[ t 12)t. 

Since [ t - - t / [ < M  on support hs, we have ] # 2 [ < M  on support hs. Moreover, 
since we also have 

I I { l - l t l l < 2 e 2 I { I ,  l l t / t - l { l l < 2 e l ,  l l t / - 2 t l - t 4 I t < 2 e l  

and ]41 > 6o/4 on support hs, it also follows that, choosing e, and e2 sufficiently 
small we can make 1#21 < 1/21~1 on support h s. The kernel of S s is given by 

hs({, ~, t)&l 
s5(4, t) 

RJa (#2 + 1#212 --]412 -- i0)((#1 -- 21tl) 2 + 1#2[ 2 --[~12 -- i0) 

k5 (3,17, t)dtl 
= R  J3 (ill -- N/J4[ 2 --[/A2[ 2 - - i0)(#1 -- 2[tl + x/[ 4[2 --[]A2 [2 "[- i0)' 

where 

h 5 
k s =  

(/q + ~ [4 [  2 --I/z2 [2)(/~1 -- 21tl- ~l~l 2 -I/z212) 

Note that, since for ~1 and g2 sufficiently small one has I # 1 -  l t l l <  1/4141 and 
Itl > 3/4131 on support hs,k5 is a smooth function satisfying (1 + 1~1)21~..,,k51 __< C 
for all ft. 

Expanding s5(4, t), we have 

(ks (~, t/, t) - ks) [m =,/J~l 2 -lu212 dr/ 
s5(4, t)  f 

if3 (~1 - x/1412 - 1 # 2 1 2 ) ( ~ 1  - 21tl + x / l~I  2 -1~212  + io) 

k5 [u~ ='/1~12-1~212 d#l + f d~: f 
- 01i,.-21 1 + i0) 

= s5,1 (4, t) + s5,2(~, t). 

F rom the restrictions on the support of h 5 one sees that  s5,1 is a smooth function 
supported in 13 - tl < 2M, satisfying sup(1 + 141)lO~ss,x(4,t)l < 0% for all ft. Thus 
the integral operator corresponding to s~, 1 is compact  on H~, N. 

Calculating the integral in #~ in Ss, 2 by residues, we have 

s5.2(~, t) = hid2 k5 [u~ = ~  d/~2" 
x/l~] 2 -1~212 - I t l  + i0 

Multiplying numerator  and denominator  by x/[ 4 [2 _ [P212 +] t l ,  which is smooth 
on support hs, we have 

S5,2 =Tzi I /5(~' t ' / /2) d//2, 
R 2 ]4] 2 --[].~2 [ 2 - - [ t [  2 + i0 

2x 
where l~ = (x/I  ~l 2 - I~ ,~ l  2 + Itl)k~ Ira1 = x / l~ l  2 - 1 ~ 2 7 .  N o t e  that m 5 = ~i/2 ~ 15dO 

0 
is a smooth function of (4, r 2, t) supported in {[t - ~[ < 2M} n {r < M}, satisfying 
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sup(1 + Ill)lO~,r,tms[ < oe. Thus 

ss ,2({, t)=2 i ms({'rZ't) rdr= - ~ ms(l's't) io ds 
1~12 - ~ - - - ~ 1 ~  + i0 0 s - l ~ 1 2 + l t l  2 

c~m 5 
= ms(l, O, t)ln(Itl 2 - I l l  = - iO) + ~ ~ - s  (~,s, t)ln(s + Itl 2 -1412 - iO)ds 

0 

= ms(C, O, t)tn (I t I -  I l l -  i0) + 
0ms 

o ~ - s  (~'s' t)ln((s + [tl2) 1/2 - I l l -  iO)ds 

0ms 
+ ms(l,O,t)ln(lt[ + Ill) + ~ ~ - s  (~, s, t)ln((s + [t[2) 1/2 + [ ~[)ds 

0 

~- Vl 71- V2 "J- 1)3 "q- /)4, 

The kernels v 3 and/)4 are supported in ]l - t[ < 2M and they satisfy ]l A~(')vi( ", t)II1 < 
C, t zR  3, i= 3,4, for s + 1. Thus the corresponding integral operators, V3 and V4, 
are compact o n  H~, N. 

The remaining terms in T2f, V1 f and Vzf, are super positions of the operators 

IV, f ]  (3) = ~R3 ms (l, a, t) In ((a + [t I z) lie -- Ill -- iO)f(t)dt 

for O < a < M .  
Since t and ~ are bounded away from zero on the support of ms, the expansion 

used in the proof of Lemma 4.4 again shows that 1/1 f is differentiable and 

OVaf c3m5 ( l ' l¢l-~f(t) ) dt. 
O¢i -~3 ~ i  ln((a+lt l2)l /2-l~l- iO)f( t)dt  +d3 m5 (a+lt l2) l /2- l~l- iO 

Thus, since ~ and t have comparable magnitude on the support of m 5, V. satisfies 
the estimate (4.13), i.e. 

11 AN + ~ (4) V, ll~ < C~, 1l AUf 11 ~, 

for any a' > 0. Thus Va is compact o n  H~, N. • 

As we showed earlier, Theorem 4.3 has the following corollary. 

Corollary 4.5. The Frechet derivative of the backscattering map, dS(gl), is a Fredholm 
operator on H~, N of index zero for gle(9. 

G. Eskin  and  J. Ra ls ton  

Section 5. Local Invertibility of the Backscattering Map 

In this section we present the consequences of the results of Sects. 3 and 4 for the 
inverse backscattering problem. The extent of the connected component of (9 
containing the zero potential is of interest here. We can show that the intersection 
of d) with H~,u is contained in a connected component of (9. The proof of that fact 
requires the following pair of lemmas. 

Lemma 5.1. For some c(, ~ < ~' < 1, let q(t) be a curve in H~,,N continuous in the 
topology of H,, N, such that q(t) is a real-/)alued function in C~(R 3) for all t. Assume 
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that I + A(O(O), O) has a one-dimensional nullspace, and that I + A(O(t), O) is invertible 
for t ¢ O. Then, given c~ > O, there is a curve ql (t) in C~ (R 3) continuous in the topology 
of H~, N, such that 

(i) ql(t) = q(t) for Itl > cS, and 
(ii) I + A(ql(t), k) is invertibte for all t and k >= O, i.e. 01 (t)~(9 for all t. 

Proof. Let f(q, k) # 0 be an element of the range of the projection: 

1 
P(0, k) - -  [ (A(O, k) - coI ) -  1 d o .  (5.1) 

27ci I,o +]1 =c 

Since c( > ~, for 0 in H,,N, A(0, k) is continuous in (4, k) in operator norm on H~,N 
and compact on H,, N by Theorems 2.1 and 2.2 (see 3.4). Thus it follows that  for 
c sufficiently small P has 1-dimensional range and is continuous in (4, k) on 
{l[O-O(o)tl~,,N<q,O<_k<_q} for c 1 sufficiently small. Moreover, P(O,k) is 
differentiable in 0 and OP/00 is also continuous in (4, k). 

We have 
(I + A(O, k))f(O, k) = 2(4, k)f(O, k), (5.2) 

where 2(4, k)eC and 2 has the regularity of P. Evaluating (5.2) at (4, k )=  (z0(0), 0), 
differentiating with respect to z, evaluating at z = 1, and taking the inner 
product with [f(c)(0), 0)] (~)1~1-2, we have (see Remark after Theorem 3.1) 

~/~(Z0(0)'OZ 0 )  z =1  = - -  l .  

We split H~,N into the direct sum of span 4(0) and 

fo(OA(~) ,~ , = o t  ' H' = { O~H~"N: S.3 ~.3 0(~ - ~) I ~ 1 ~  .a~ a~ 
3 

where f0 = f(0(0), 0). 
Let 2(0', z, k) = 2(0' + zO(O), k). We consider 2 as a function on H'  x {Iz - 1] < 6} x 

{0 _< k _< ~}. By the implicit function theorem there is an e > 0 such that  for 
II O' [I~,,N < e, 0 _< k _< e the unique solution to 2(4', z, k) = 0 in I 1 - z[ < e is given by 
z = z(O',k) and z(O',k) is continuous in (O',k). Note that  2(O',z,k)= 0 means 
Null  (I + A(zO(O) + 0', k)) ~ {0}. 

Now suppose O(t~) = 0'~ + z~0(0), i = 1, 2, with t 1 < 0, t 2 > 0, ]10'i 11 ~',N < e' < e and 
] z i -  11 < e'. By hypothesis this will hold for Itil < 6, 6 sufficiently small. Also by 
hypothesis z ~ R  and z(O'i, O) # z~. Since q(t) is real valued, q'l and q~ are real, and 
hence z ( ( 1 -  s)O'l + Sdl'2, k) does not  intersect the real-axis for (s,k)s[0, 1] x (0,el. 
Thus we may choose z(t) with z ( h ) = z  1 and Z(tz)=Z2 with z(t) for te(q, t2)  
lying in the half-plane, { I m z > 0 }  or { I m z < 0 } ,  which does not intersect 
{z((1 -s)c)'l + sO'a, k):(s, k)e[0, 1] x [0,el }. Then we define 

0~(t)= 1 t - 5  0 1 +  O'~+z(t)O(o) 
t 2 - -  t 1 J t2  - -  t 1 

for t e [h ,  t2]. Finally, we note that  we may construct 01(t) so that  

II 0~(t) - 0(o)[l~,,N _-< (2 + II c)(0)II~,,N)~' 
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for [tl ,  t2]. Thus, taking e' sufficiently small, we will have I + A(O 1 (t), k) invertible 
for k >8, te[t l , t2].  For t¢[t l , t2] we set ql(t)=q(t). • 

Lemma 5.2. Suppose that I + A(Oo, O) has a kernel of dimension m > O, for some 
Oo~H~,N. Then for some 5>0 ,  the set of ~ in H~,Nc~ { l[O--Oo ll,,N < e} such that 
I + A(O, O) has a kernel of dimension m is contained in a smooth surface ofcodimension 
m in H~,N. For all 0 on this surface (I + A(O, 0)) has a kernel of dimension > 1. 

Proof. Let P (0 )=  1/2rci .[ (A(g,O)-o~I)-ldco, as in (5.1). Here P has an 
Io~+-1 i=c 

m-dimensional range for c sufficiently small, and is differenfiable for ]10 - 0o ]l ~,N < el 
for cl sufficiently small. Since A(g,0) leaves H~.N invariant when OaH~,N, as one 
sees taking inverse Fourier transforms, P(O) inherits this property. By construction 
1 + A(O, 0) has an m-dimensional null space if and only if (I + A(O, 0))P(O) = 0. Let 
f l  . . . .  , f , ,  be a basis for range P(Oo). Note that, since gloeH'~,N, we may choose 
A r fiEH,,N. Let 

d,(0) = (2~)- I ~ [(I + A(c~, 0))P(g)fi] (¢)d~ 
R 3 I "~ l 

= ~3 [E°f l  ] (x) [(I + qE o)gi] (x)dx 

by Plancherel's theorem, where 9~ is the inverse Fourier transform of P(O)fi, see 
Remark 3 after Theorem 3.1. The set of~ for which I + A(~, 0) has an m-dimensional 
nullspace intersected with [I g -  g0 [I,,N < cl is contained in 

= {g:di(g) = 0, i =  1,. . . ,m} 

and d~ is real-valued on H~,u. Taking Frechet derivatives at g = go, 

d'i(Cto)? =_ ~ (Eofl)(Eofi)rdx, 
R 3 

since 9i(qo) = fi. Since - A E o f  i + qoEofi = 0, unique continuation implies no E o f  i 
can vanish on an open set. The linear independence of (f~}~"= ~ implies the linear 
independence of {Eofz}~= ~. Thus we conclude ((Eofa)(Eof~)}~fl=~ is linearly 
independent as well. Thus we may choose real-valued e f t  C~°(R~), j = 1, . . . ,  m such 
that 

I (EofO(Eof~)q~flx = i ¢ j .  
R ~ 

Now we restrict d I . . . . .  dm to H~, N and let H' be a closed complementary 
subspace to span {~oj}j% ~ in H~,N. By the implicit function theorem the system of 
equations 

d~ ' sj(~j = 0  i = i  .. . .  ,m, 

where geI-I' and s = (sl . . . . .  s,~)eR m can be solved for s(g') when O' + ~ siOi is near 
j = l  

g0- Now we are ready to prove, 
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Proposition 5.3. The set (9 n H~, N is contained in a connected component o f  (9. 

Proof. Since (9 ~ H~,,N is an open dense set in H~,,N by Theorem 3.1 and the density 
of C~ in H,.N implies the density of Fourier  transforms of real-valued Cff in H~, N, 
it will suffice to show that  we can connect  any pair of functions c)~ and c)2 in (9, 
when ql and q2 are real-valued functions in C~ (R3). Given two such functions, let 
q(t) = tql + (1 - t)q z, tel-0, 1]. Since A(~(t), 0) is real-analytic as an operator-valued 
function of t on H~,N, and 1 + A(c~(0), 0) is injective, I + A(O(t), 0) has a nontrivial  
nullspace for at most  a finite set S of t in ['0, 1]. 

Suppose that  toeS and 

dim Null  (I + A(~(to), 0)) = m 

is maximal  for t e l0 ,1 ] .  If m > l ,  we choose eo small enough that  
dim Nul l ( I  + A(~(t),O)) < m for 0 < It - tol < e0. Taking eo smaller if necessary, we 
may assume [I O(t)-  c~(to)II ~.N < ~a, where by Lemma 5.2 the set oft) in l] ~ -  c)(to)II~,N < 

el such that dim Null  (I + A(~, 0)) = m is contained in the set of 4' + ~ sj(O')~bj with 
j=l 

c)'eH', a closed complement  of span {~bj)jm_- 1 in H~, N. Then, c~(t)= c~'(t)+ ~ rj(t)(gj 
j = l  

for It - t01 < eo, where ~'(t) and r(t) are affine linear in t. Since m > 1, the set in R m+ 1, 

2;~,~ = {(u, s)eR m+ 1:Is - s(~'(to))] < 6, lu - tol < a,s ~ s(~'(u))} 

is connected for all 6 and e. For  6 sufficiently small 

^ !  ^ . 

sj q)j. [s - s(0'(to)) I < ~ and II 4' - gf(to)II~,N < ~ / 2  

is contained in 114-0(to)[1 < el. Likewise for e sufficiently small ( t , r ( t ) ) ~  for 

I t -  to l = e. Hence, we can replace (t, r(t)) by a piecewise linear function (a(t), f(t)) 
for It - to l _-< e such that f(t o ± ~) = r(t o __+ e), a(t o ± e) = t o +_- e and (a(t), f ( t ) ) ~ .  Now 

w e  s e t  

01(t)=fgl(t) for I t - t o l > e  

~q'(a(t))+ ~ fj(t)Oj for I t - t o l < ~ .  
j=l  

The function 01(t) is piecewise linear, and, since (9 ~H~,N is dense in H;,s ,  we may 
assume its corners are in (9. 

Continuing in this way, we arrive at a piecewise linear function gls(t) with 
corners in (9 such that  dim Null  (1+ A(O~(t), 0))<  m for te[0,  17, 0~(0) = 0~, 0~(1) = 0~, 
and q~(t )eCg(R 3) for te [0 ,  1]. Since the set o f t  in [0, 1] such that  d i m N u l l ( I  + 
A(gl~(t), 0)) > 0 is again finite, we can repeat the preceding argument  until we have 
a piecewise linear Og(t) with corners in (9 such that  gl~(O)=~ll,Cl~(1)=OE,qM(t) 
is a real-valued function in C;°(R ~) for te [0 ;  1], and dim Null  (1 + A(OM(t), 0))< 2 
for te [0 ,  1]. Since (I + A(O~(t), 0)) can have a nontrivial  nullspace for only a finite 
number  of t in [0, 1], and I + A(~lg(t), k) does not  have a nullspace for k > 0, we 
complete the proof  with a finite number  of applications of Lemma 5.1. • 
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We are now ready to prove the main result of this work. Let (9~ be the connected 
component of (9 containing (9 c~ H~, N. Recall that (9 c~ H} is dense in H~,N. 

Theorem 5.4. The Frechet derivative of the backscattering map at gl is an isomorphism 
of H~,N when (I belongs to an open, dense subset (92 of (gl. Moreover, (gzc~H;,~ is 
dense in H~, N. By the implicit function theorem the backscattering map is an analytic 
homeomorphism on a neighborhood in H~,N of any g1~(92. 

Proof. The zero potential belongs to (91- Moreover, the Frechet derivative of the 
backscattering map at the zero potential is [ T f ] ( ~ ) = - f ( 2 ~ )  which is an 
isomorphism. Thus, letting (92 be the subset of(91 for which dS(O) is an isomorphism, 
(92 is nonempty. Since dS((l) is analytic in 0 and Fredholm, (92 is open. If (92 is not 
dense in (9~, then, since (9~ is open and connected, the boundary of the interior 
of (9~c~(9~ must be nonempty. Choose qo in this set. Then any ball B~= 
{ 110 - 4o []~,N < ~} must contain points in the interior of (9~ c~ (91 and in (92. Choose 

small enough that B~ c (91, and pick 01 ~ (92 c~ B~ and qz E (interior (9~ c~ (91) c~ B~. Let 

O(t) = tO, + (1 - t)O~ t~[0,1]. 
Since dS(O) is analytic in ~ on (9 and Fredholm of index 0, dS(O(t)) can fail to be 
an isomorphism for only a finite number of t in [0, 1]. This contradicts O2e interior 
(9~ c~ (9~, and hence (92 is dense in (91. 

Now suppose that we have OoeH~,Nc~(91 such that dS(O) has a nontrivial 
kernel for OeHk~ with II ~ - qo It~,~ < 6, for some 6 > 0. Introducing a finite rank 
operator K such that dS(Oo)+ K is invertible and taking the determinant of 
(dS(~) + K)-  ~(dS(O)) = I - (dS(O) + K)-  ~ K, we get a C-valued analytic function 2(0) 
on H~,~ such that for I[ 0 - qo ]I~,N < 6' < 6, dS(O) has a nontrivial kernel if and only 
if 2(c)) = 0. As the Fourier transform of a space of real-valued functions, H~, N is a 
real subspace of Ha,N, i.e. given feH~,~, f = f ~  + if2, f~ and f~eH~,~. It is a 
standard result that an analytic function vanishing on an open subset of a real 
subspace vanishes identically. One can see this by checking that complex Frechet 
derivatives of all orders must vanish on such a subset as in the proof of this 
result for functions of one complex variable. Thus we conclude that dS(gl) has a 
nontrivial kernel for 0 in a neighborhood of 0o is H~,~. This contradicts the density 
of(9~ in (9~. • 

Section 6. Real Potential and the Restricted Backscattering Map 

When we restrict the backscattering map to HkN c~ (9, we cannot expect its range 
lie in HrN. Since H~, N is the Fourier transform of a space of real-valued functions, 
one natural way to proceed is to take the projection of backscattering which is 
the Fourier transform of taking the real part. Thus, we define the "restricted 
backscattering map": 

h(~, - 4 ,  I~l) + h( -~ ,  4, I~l) 
S r : 4 ~  

2 

Thus Sr maps all of H~,Nm (9 into H~,N. When we restrict Sr to H~,Nc~ (9, it is a 
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real-analytic function with Frechet derivative given by (see (4.7)), 

v(2~) + ~( -  2{) 
[d&(q)3  (v) = 

2 

-3 e [-h(~- 2n, 4,[~I)v(2n) h(-~-2t/,~,J41)zs(2q)Tdt / 

J 
f [ -  h(~,r, I ~l)h(r - 2 t / , -  4, I~l)v(2n) 

- 2-4rc-6 Y ~31_(Irl2 C ~ - I  + ~ - ~ 7 7 ( ~ + i 0 )  2) 
R 3 

h ( -  ¢,-c,I ~ I)h(z - 2tl, ~, I ~ I)ff(2t/) -1 , 
+ (izl2 --(7~ ~ - ~ ~  Z iO))zJ @at" 

If we make use of the identity v ( -  ~) = v(~) and change variables in the appropriate 
integrals, this becomes 

[dS~(O)] (v) = - v(2~) 

_ ~ z - a y [  h ( ~ - 2 q , - ¢ , l g l ) h ( - 4 + 2 t / , ~ , ' ~ ' )  lv(2t/)dt/ 
u ~ 1~_2r/12_([~ I +i0) 2 -t ig_2r/[2 -(1~1--i0) 2 

_ 2- , r~-6 d3 d~ [ h(~"c' I {I)h(v - 2t/' - {' ] { I) 
(I r2 - (] 41 + i0)2)(I 2t/-- rl 2 - (141 + i0) 2) 

h ( -  ~, ~, [ { I)h(r + 2t/, {, 141) ] v(2r/)dt/dz. 
+ (I ~1 ~ _ ~ 7 ~ + ~ - _  (I 4 1 -  io) ~) 

Thus dS, = (I + B + B_ + C + C_)T, The proof of Theorem 4.3 can be repeated 
without change to show that B 2, _B 2, C and _C are compact on H~, N. The proof 
applies to B_B as well after one notes that changing + i0 to - i 0  in one factor of 
the denominator of T 1 (see (4.9)) does not invalidate the proof: it merely 
interchanges the arguments for S 4 and S 5. Thus we conclude: 

Theorem 6.1. S, is a real-analytic mapping of H~, N c~ (9 into H~,N and its differential 
is a Fredholm operator of index zero. 

Analogue of Theorem 5.4 here is the following theorem. Its proof coincides 
with the first paragraph of the proof of Theorem 5.4. 

Theorem 6.2. Let (9] denote the component of H'~,u c~ (9 containing the zero potential. 
Then the set (9~ of q~(9] such that dS~(gl) is an isomorphism of H~,~ is open and 
dense in (9]. Hence, the implicit function theorem implies that S~ is a real analytic 
homeomorphism on a neighborhood of each gl~(9~. 

The set (9] is certainly not dense in H~,~. However, one does have the following. 

Proposition 6.3. The set (9] contains all ~ such that I + A(~I, O) injective, q~C~(R 3) 
and - A + q has no negative eigenvalues as an operator on LZ(R3). 

Proof. It will suffice to show there is a curve q(t) of real-valued functions in C~ (R 3) 
with q(0)= q and q(to)= 0 such that I + A(O(t),O) is injective for t~[0, to]. 

Let E o f  = (4~)-~ [ [x - Y I-*f(y)dy. If q is a real-valued function in C; ° (R 3) 
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and - A + q has no negative eigenvalues, we claim 

~3 (Eof)(f + qEof)dx > 0 (6.1) 

for all f~C~(R3).  Let q~ be a smooth function satisfying ~o(x) = 1 for Ixl < 1 and 
q~(x)=0 for Ix[>2.  Let q~R(x)=~o(x/R). Given f~C~°(R3), let u = E o f  and 
UR = q~RU. By assumption 

312R( -- AUR + quR)dx > O. 

Since ]u] = 0(]x] -1) and ]Vu] = 0(]x[-:) for ]x] large, one checks easily that 

, i m  + = + 

which implies (6.1). 
If we now assume that 1 + A(~, 0) is injective on H,,u, it follows that 1 + qEo 

is injective on C~(R3). Since (6.1) implies that 

~3(E°g)(f +qE°f)dx <= (E°0)(g +qE°g)dx (Eof)( f  +qEof)dx 

for all f ,  geC~°(Ra), if ~ (Eof)( f  + qEof)dx = 0, then S~ (Eog)( f + qEof)dx = 0 
11-  1 1  

for all g • C~ (R a ). Hence f + qE o f = 0, which contradicts the injectivity of I + qE o, 
if f ¢ 0. Thus 

~3 (E° f ) ( f  + qE°f)dx > 0 (6.2) 

for all nonzero feC~°(R3). 
Let )~eC~(R 3) be a nonnegative function which is identically 1 on the support 

of q. We define 

te[tl,  1] 
q(t)= ~t+l+)~; t~ [0 ' t l ]  

- -  t ) ( q  + t l X ) ,  t 1 + 

where t~ is chosen large enough that q + t I Z is nonnegative. Now 

J3 (E° f ) ( f  + q(t)E°f)dx > 0 (6.3) 

for all nonzero f ~  C~ (R3). For t~[0, t 1 ] (6.3) follows from (6.2) and for t~[t 1, t 1 + 1] 
it follows from the strict positivity of S, fEofdx.  If I + A(~(t), 0) had a null vector 

R ~ f H.,N for some t~[O,t~ + 1], then one would have o~f6H,. N, for all N' and 
fl by Lemma 3.3. Thus f + q(t)Eof= 0 and Eof~C~°(R3). Hence f ~ C ~ ( R  3) 
contradicting (6.3). • 
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