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Abstract. This article is a study of the mapping from a potential g(x) on R3
to the backscattering amplitude associated with the Hamiltonian — A + g(x).
The backscattering amplitude is the restriction of the scattering amplitude
a6, o, k), (0,0, k)eS* x S2 x R,, to a(f, —6,k). We show that in suitable
(complex) Banach spaces the map from g(x) to a(x/|x], — x/|x|,|x|) is usually
a local difftomorphism. Hence in contrast to the overdetermined problem of
recovering g from the full scattering amplitude the inverse backscattering
problem is well posed.

This article is a study of the mapping from a potential on R? to its quantum
mechanical scattering amplitude. The scattering amplitude associated with a
potential g(x) can be described as foliows. One assumes that for each k>0 and
each weS?,

(—A+g—Kk)u=0

has a unique solution of the form exp (ikw-x) + v(x, @, k) such that v =lim v,, where
£l0
v, is the square-integrable solution of

— Av, + qu, — (k + ie)*v, = — e g, (L1

Much work has been devoted to showing that, under general hypotheses on
q,v(x, o, k) exists and is unique (see Agmon [1], and the references given there).
When geCZ (R?) and hence Av + k*veCZ (R?), it is an elementary consequence of
(L.1) that

v(x) = — 1 e (A+ k) o(y)dy, and hence

4r g3 [x —y|

eiklxl -
U(X)=(4n|xl)(a(x/lxl,w,k)+0(|x| ) 12)

as [x|— oco0. The function a(#,w,k) on $? x §% x R, is known as the scattering
amplitude. If we replace functions in (1.2) by their Fourier transforms, we have
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. gl
I
#*tg(E,0,k)

=G g iop

where g is the Fourier transform of — (4 + k?)v. Evaluating (1.3) in spherical
coordinates and using stationary phase in the angular integration to derive
asymptotics as |x|— co, we find that

a8, w, k) = g(kb, w, k). (L4)

Given geCg(R3), taking the Fourier transform of (I.1) and the limit |0,
one arrives at

dé, (L3)

~3 ¢ 4€—mg(n, o,k
A A T
In this article we will take (I1.4) and (I.5) as the definition of the scattering amplitude,
ie., when the integral equation (I.5) has a unique solution g for (w,k)eS* x R.,
the scattering amplitude is defined by (1.4).

Since we are dealing with a singular integral equation involving the Fourier
transform of the potential g, we will assume ¢ belongs to one of the weighted
Holder spaces H, y with 0 <a <1 and N > 1. Spaces of this type have been used
in scattering theory by L. D. Faddeev in 3] and K. O. Friedrichs in [5]. The norm
in Hyy is ||/ llon= 11 +1E1?)"%f |, where

IS lle= |il|1<p1(lf(é)l T4 f €+ A — FO,
55;3

and H, y is defined as the closure of C§(R?) in this norm. We do not assume that
q1s real-valued, though our main interest is in potentials with small imaginary parts.

As our title implies we are interested in the inverse problem of determining the
potential given the scattering amplitude. This problem is quite overdetermined
and there has been considerable work devoted to characterizing which scat-
tering amplitudes actually arise for given classes of potentials, beginning with
L. D. Faddeev [4] and more recently Newton [11], Beals—Coifman [2], Nachman—
Ablowitz [9], Melin [7] and Novikov—Khenkin [6]. We are concerned here with
the inverse backscattering problem, ie. determining g from a(w, —w,k). In
dimensions r > 1 the only work that we know of is the numerical study of Bayliss,
Lin and Morawetz [8] using wave equation methods, and the formal solution of
the three-dimensional problem for small potentials by Prosser [13].

For technical reasons we will replace (1.5) by

e 195
oo LR

where now (£, (, k) ranges over R® x R®* x R, i.e. k=0 is now included. Thus (1.4)
becomes

dn = — 4(& — ko). (L5)

dn=—4(& -0, (L6)

a(8, », k) = h(k8, ke, k). (L7)
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Let H} y denote the (real) subspace of H, y consisting of Fourier transforms of
real-valued potentials, i.e. the set of §eH, y such that §(¢) =g(— &). The back-
scattering map is well behaved on H, y and we have the following result which is
proven in Corollary 3.5 and Remark 4 after Theorem 3.1 in the text:

Theorem A. The backscattering map

S:4—h(E, — & IED)

is a continuously Frechet differentiable function from an open, dense set O in H, y
into H, y. Moreover, O nH}, y is dense in Hj y.

Since continuously differentiable functions on complex Banach spaces are
analytic, S is analytic. The set ¢ is the set of 4 such that I + A(4, k) is injective on
H, y for k=0, where

—3 ¢ A€ —mf(n)dy
A(g, k =Q2n) 3 | ———.

The proof that K&, — £,|£|) belongs to precisely the same space H, y as §(£) for
4e0, ie. the proof of Theorem A, is quite technical and takes up about half of this
paper.

Next we prove that the Frechet derivative of S is a Fredholm operator of index
zero for §e 0 (Theorem 4.3) and that O n HY,  is contained in a connected component
@, of O (Proposition 5.3). This leads to the following theorem (Theorem 5.4):

Theorem B. The Frechlet derivative of S at 4 is an isomorphism of H, y for § in an
open, dense subset O, of 0. Moreover, 0, H, y is an open, dense subset of H, y.
The implicit function theorem then implies:

Corollary C. S is a local analytic homeomorphism in a neighbourhood of each e 0,.

This is the main result of this paper. Corollary C implies that (locally) recovering
4 from backscattering data is a well-posed problem, since small changes in
h(&, —¢&,1¢]) will lead to small changes in §(£) in H, y norm. Note also that the
results in Theorem B and Corollary C do not depend on the number of negative
eigenvalues of — A + g. This follows from the fact that @, is a subset of the connected
set 0.

Even the backscattering problem is overdetermined when we restrict the domain
of our mapping to real-valued potentials. Therefore in the final section we consider
a restricted backscattering problem for the case of real-valued potentials. Let S,
denote the mapping

§.g e~ GIED+HA(— GG ICD)
21’ nd
2

Note that # 18, is the real part of % ~'S. This map is well-behaved on H, y: S,
is real-analytic with a Frechet derivative which is Fredholm and index zero for
geH), yn 0, (Theorem 6.1). However, we only know that its Frechet derivative is
an isomorphism on an open dense set ¢, of the component ¢ of H, yn0O
containing the zero potential (Theorem 6.2). The component ¢ does contain all
¢ such that geCP(R>®) and — A + q has no bound states with energies E <0 or
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half-bound states at E =0 (Proposition 6.3). We plan to study other approaches
to the formulation of the restricted backscattering problem in the future.

Section 1. Preliminaries

We will use the weight function A(£) = (1 + |[£}?)'/? and the Lipschitz norms

LS +A)~f(é)l>
|14l ’

where 0 <« <1 and the supremum is taken over {¢é€R3 AeR>*:0 <|4]| < 1}. The
Banach space of all functions f on R® with || f ||, < co will be denoted by C*(R?).
We also use || f]l, to denote the supremum of |f(£)| over R*. The principal
Banach spaces in this paper are H, y,0 <a <1, N > 1, the closures of C3 (R?) in
the norms

Ilfllu=sup<|f(€)l+

1f lan = 1A Il

While H, y does not contain all functions f on R* with || f ||, y < o, one does have
the following.

Lemma 1.1. H, y contains all functions f on R* such that || f |, < 00 for some
o >0 and N> N.

Proof. Let j, be the standard mollifier and choose peCZ(R?) with ¢(&)=1 for
|&| < 1. Then for R=1

(1= @(-/RN S onw < CRY™N| flan
and for fixed R, setting g(&) = ¢(¢/R) f(&),

g —J:*gllan

< c<sup|g(f+n)—g(z)|+sup'g(“”“‘)‘g(5“‘)‘g(“””g(f)'),

|4

where the suprema are taken over {£,7, 4:|y| <e,|A| < 1}. Thus

) » azx’—u
IIg—Je*glia,N§C<8 glle + sup < p Ilg('+A)—g(')||m'—a)>-
ta=1\ 14|
Hence, since [A4]7*||g(- + 4) —g() oo = 31912
”g_js*g”a,Né Cea'—tx”g“a,. n

We will also deal with functions defined on R® x R3 x R.,.. For functions on
R, we define

Ilflla=sup(|f(k)l+w>,

Aa
where the supremum is taken over {kel_L,O < A £1}. Note that, since we take

the supremum in k and 4, | f||, < o does imply feC*[0, ). For 0 <a <1, we
define a C*norm on functions on R® x R®* x R, by
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1S 1y =sup (1S CER o+ 1(E SR o+ 11168 ) ) (L.1)

with the supremum taken over (¢, {, k)eR3> x R® xR,
Translations of functions will often be denoted by subscripts, i.e. f,(£) = f(¢ — ().
In particular we will often use A,(£) for A( — ).

Section 2. Estimates of the Operator 4(4, k)
We define for §eH, y and feCg (R?),

R —3 ¢ A€ —n)fn)dy
A4, k =02n)7 3|
[A@R1O=007 | L st
Theorem 2.1. The operator A(§, k) satisfies the following estimate for {eR>® and k > 0,

C
N A —N Ad < A
IAS AGRAT A 1 < g a1 o

where 0<a<l, N>1, 0Se<a, 0<d<min{l,N—1}, and y<min{l—3,
N —1—08}. The constant C is independent of k,(,§ and f.

Theorem 2.1 is the principal estimate in this article. To prove it we need to
know the asymptotic behavior of integrals of the weight functions.

Lemma 2.2. Define for k> 0,N > 0 and (&,{)eR®,

A+
|w|j=1 (1 + & — ko Y2 (1 + [k — {2)YV? e

Ik, £,0) =

Then
I(k,&,0) < Cymax {(1 + k)" ?log(l +k),(1 + k=M.

Proof of Lemma 2.2.
ISCy | [U+1E—ko) V2 +(1+]ko — (7)™ ]do
leo|=1
<2Cysup | (1+]E—kol) " do.
¢ lol=1
Introducing spherical coordinates with the z-axis in direction &,

ki3

| A +1¢—ko*)™M?dw=2m [ (1 +|£|* —2|&|kcos B + k*) ™"/ sin 0df

lo|=1 0
1
=21 | (1+]&)> = 2|¢lkt + k?) NP4,
1

Letting u = |£|? — 2| €|kt + k2, we have

| e ko) do = = 4w veay
lof=1 [tk eZn2
(121 + k2 +1 .
r m(m) if N=2

T 2.1

20+ G (D) i N2
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If ||| — k| > Lk, we have
_f (1+|&—kol?) M2dw < 4n(l + 3k%)~ N2

leo|=1

and, if | |£] — k| <1k, formula (2.1) shows

2 if N>2
N-2
2 25k? .
[ (41— ko) M do<r ln<1+ > ) it N=2
fo|=1 k 4
2 25k2\ M2
— if N<2.
7 N(l + 4 ) i
Thus we have the desired estimate (note that for 0 < k < 1 the estimate is trivial).

[ |
An immediate corollary of Lemma 2.2 is the following.

Lemma 2.3. For 0 < <min{l,N —1} let

(1418 — C2P2(1 + n |2 ,
i1 (L [E= PP — kDA + =Py

Then for N>1+dandy <min{N —1—-8,1— 6} we have J(k,E,0) S C, v s(L + k)77

J(k, &)=

Proof of Lemma 2.3. By applying Lemma 2.2 with || playing the role of k and
o =mn/|nl, we see

(L4522 nPdly]
L=z 02— K2+ PP

where f=2if N>2,and =N —¢, £>0, for N < 2. Substituting kn’ = 1, we have
1 2.,/ 12Y(6—B)/2 rzd ’
J<Ck (+k|77!?2 \n'1%d|n’|
Il- 11>k [17'|*— 1]
For k> 1/2 we have

J=C

2.2)

/|2+5—ﬂ

JECkkP [ din'|

=115 1k [T = 1(7' T+ 1)
and, hence for § —J > 1, we have
J S CEM 781 + Ink). (2.3)

For k < 1/2, we have immediately from (2.2)

e}

JSC I+ P24y, 24
1

From (2.3) and (2.4) we conclude
J=C+k™
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foranyy < f — 0 — 1 when § — d > 1, which is the desired result for N > 2. Choosing
£ so that N —e¢> 1+ 3§, when N £ 2, completes the proof. M

Proof of Theorem 2.1. We begin by reducing the theorem to the case e =0. For
this let A(x) denote the operator (A(u) /)(&) = f(€ + p) — f(&). Then A(w)A(4, k) f =
A(AW) 4, k) f, and assuming Theorem 2.1 in the case ¢ =0, we have

_ R _ C — R
|ul ™ AF AW AG, k) A A, Nflla—aémlul 1A e e, 1S o
For peR the mean value theorem implies
[A(W AP ()] = ul [0.AP(E)],

where |& — &| < |pul. Since [0.A(£)] <1, and hence A(E)/A(¢) and A(E)/A(E) are
bounded for |& — £| £ 1, we have for || £ 1,

| AW AR < Clul AR (). (2.5)
As in the proof of Lemma 1.1, we have
Sup 1l T AW Nl a—en £ 3192 n-
Moreover, it is also true (see Proposition 8, Sect. 4, Chap. V in Stein [14]) that
(If e +sup |l ™A@ f NI} Z 1/CIl f g+ - Thus, using (2.5) we have,
1ATAQ YA ALY [l < CUI AT AG R A AN f |-
+ sup |ul I AT AW AQG KA ALY fllo-).

el

Thus we only need to consider Theorem 2.1 in the case ¢ =0.
To prove Theorem 2.1, we begin by defining h(£, n) = A (1)4(¢ — ) f (). Then,
using (2.5) we conclude

FACm e+ 1R = Cligllanll £

uniformly for (,7)eR®.
Next we decompose (2n)* AY A(g, k) A7 ¥ A’f into three terms:

AT A () h(En)
it k1> 1 AT () AT () |91 — K2

AL [Aé(n)h(g, m _ A(kw)h(S, ko) J dn
tn=ki<1 [0 = k2L AT WA () A7 (ko) A (ko)

L AF(E)A° (ko) h(E, ko)
il k<1 (1712 = (k + 10)2) AY (kew) AY (ko)

EIl +12+I3,

where w = /|| in I, and I. In I, we introduce polar coordinates and compute

L= | AL (@I, ko) oo (1 + K220 d|n]
P8 AV ko)A (ko) T -k niaizo P —(k+i0)
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Moreover
1n]?
lim ——d|7]
20 {Inl=k Za >0 11> — (k + ig)? I
k 2k+a . .
2a — (1 <2k— ) m> if k>a 26
a+k—k<ln<l+%>—ni> if k£a
2 a
Hence
k
, KL 0@) as ko
Inl )2
din|=

TR s 08
[l =kl = tnt >0 1#7]* — (k +i0) 140k as k—O.

Applying Lemma 2.2 and (2.5) we have |I;| < (1 + kY #~*sup|h(, )| and for
(&m
lul 1, 1ul " AW I;] £ (1 + k)Y~ #* sup | h(, 1) | ,» where as in the proof of Lemma

23 p=2for N>2 and f=N—¢z¢ ; 0, for N £ 2. Taking ¢ small enough that
N—-1—-36—¢g>vy,if N <2, this shows that I satisfies the estimate of the theorem.
Hence we need omnly consider I, and 1,.

The estimates of I, follow immediately from Lemma 2.3 and (2.5). We have

= C(1L+ k)" ’fur;lh(f,n)l and for |yl < 1,]ul" AW, | S C( + k)~ ysup IR C,m s
()
which again is the estimate of the theorem.

The estimate of |I,| is also easy. Once again (2.5) implies for ||n|— k| <1,

Al k ¢

Amh(En) <|m><’;|> r

A AT AN<k )AN< S [5Gl R g P TG
“\ ] nl

Hence by Lemma 2.2

(L+In)0 P2 P
hisC T Mlam(wpw@mm)

where f is as before. This gives

(Ll S CA+RPTP g lln l f Il

as desired.

It is the estimate of |A(u)I,| that presents some problems. For this we need
first to split the domain of integration in the integral into {| || — k| < 2| 1]}, getting
Jy,and {2|u| <] |n|— k| <1}, getting J,. To estimate A(w)J; = J (& + ) — J (&),
we use |[AQ)J | 2 |J (& + w|+|J (). Since the procedure used to estimate |I,],
shows that for |u| <1,

WLE+mI+1@I=C [ dnl =k gl + 8P Gl [ f e

[lal—kl <2|ul
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and
§ il =kl7Fedigl = Clul
il — kel < 2132
we have the estimate required for |A(u)J .
To estimate A(u)J, we must use the special form of h(f,n), ie. i n)=

AY(4(& —n) f(n). We have

AT, = AWATO)| AWhCE +pn)  Ako)h(E+pw ko) ],
ATMAL ) AL (k)AL (ko)

2put<iim-r<1 7> —k?

A7 (©) [A‘s(n) L Aeo) » :‘ ;
+2|u|<||§1|—k|<1|77|2"k2 AFe? 4Wetu—n) AN (ko> A @) \f{m)dn

A7) [A"(n) A’ (ko) = ]
si<t <1 1P — k2| A¥an)? 4C—m— AY(k )‘?(5 ) |fm)dn

A A’(kw)
2ui<l i —ki<1 1712 — k2 A (ko)

=K, +K,—K;+K,.

(G(€+ p—kaw)— 4 — kw))(f (1) — S (kew))dry

+

We can estimate |K| exactly as |I,| was estimated and, using Lemma 2.2 and
(2.5), one can easily verify that for |u| <1

IKal S ClulP A+ 07 " Qllan 1 f e § il —k|7  2d]n].

[l —kl<1

Hence K, also satisfies the required estimate.
In estimating K, — K5 we need to make the cancellation between ¢(¢ + y —¥)
and 4(£ —#) as good as possible. For this we replace # in K, by # + p. This gives

A7) [A"(n + 1
kz

Af+ _ _
I+ pl*— Aé"(n+ﬂ)q( 1= H)

Kz“Kazj()H —x-)
A% (k)

AV (k)
_[A"(nﬂt)

Al (n+ p)

A7 ©)
2l <lfnl-k<1 |7+ pl* =Kk

g +u— kr?))}f(n + wdn +

A(kd)

G —m— V) q

(E+u— kfﬁ)](f(n +u)— f(n))dn

1 1
b frbe ]
2|ul<l|£l—kl<1 £ in+u?—k |n*—k?

[ Aat+w Ae)
[m GE+u—n—p " AV kB) Gé+p ka))]f(n)dn

A7 (©) [A‘*(n+#)_/\"(n)
2 <ifm-k<1 1n> =k | A+ ) Al ()

ALQ)
RN (] 4 k2)92
2|u|<IInI*kl<1(|”I|2—k2)( )

+ }é(é —n)f(n)dn

+
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T4 — ko) (& +p— k)
AF (ka) A (kad)

=L, +L,+L;+L,+Ls.

]f (mdn

Here & =(n+ u)/|n+ul and y, is the characteristic function of {f:2|u|<
|ln+ pl—kl<1and||n|—k|>1or||n|—k|<2|ul} and y_ is the characteristic
function of {n:2|u| <||n|—kl <1 and ||n +p|—k|>1or ||n+pl — k| <2|ul}.

The first two terms in the expansion of K, — K; are like terms we have already
considered. The integral L, can be estimated as J, was, and L, is another term
like K,. The remaining three terms require further explanation. Since

ln+ul£ki>3llnl k| when |ln[—k|>2|ul,

we have

lullnl+ 1)n)?

|Ls| = C ———
: 2lul<im-ki<1 (| +k)?

il = kP~ 2dlnl (L + 514 lun S o

d
SCO+R P all o (O

SCA+R TP w1 ol f 1o

By (2.5) we have
Al +p) A | _ cpu 20
Afm+p AT T AFm)

Thus, we can estimate L, by

inl?

2lul<|ni-kl<1 | [n]* —k?|
S Clul( Mo ful |+ DA+ K251 416 51 f 1o

Since o < 1, this is stronger than the estimate we need.
The term Ls; must be decomposed again (but this is the last decomposition
we will use):

IL = Clel(+ R 211¢llo.n 1 S 1o dln|

_ 21512 AN (j(f—kw)_(j(f-i—,u—kcb):':l
=4k Ag(é)[zlulﬂlgl—klﬂ[ A (kaw) A} (k)

~<f(”)—f(kw)>dr,+ [4(5—kw)_4(f+ﬂ—kﬁ)] S (ko) i
ln|> —k* 2l <t —<1 | Af (ko) AF (k) |inl* —k?

n [@(f+u~kﬁ)_@(5+u—k@)J S kw) .
2l <iini-ki<1 | AL (KB) Af (k@) |0 —k?
=M, +M,+M,.
Here
_ko+p
ko +pl

p

Bl g =
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The point of this decomposition is that the mean of the integrand in M, over
spheres [#] = ¢ is independent of [#], and hence we can estimate the integral in |#|
accurately. On the other hand @& — f§ is so small that we can control M.

We claim that

k(@ — B = Clullinl = ki(n] +|uD ™t + CluP(+ 12D + (0l +1u)™") @27

for all #,k and p. One can arrive at this estimate in the following way. If k < 2[u|,
we have
12]u)?

k+|pl

|k(@— B £ 2k < 4[p| <

Similarly, if {#| < 2|u|, we have

2 _
P 12|pl* 6lulllnl — k|
In| +ul In| +|ul

When |] > 2|u] and k > 2}z, we use Taylor series in p. Thus

[k(@ — )| < 2k < 2{n| + 2| |n]

2 . 2\ —1/2
o Tt =n+u< N MZJF%)
n+ul  Inl > Inl
. 2
—wp W w)w+0<|f|—2>, (2.8)
(7] nl fnl
and, since f = @/}, =g,
_ ok (oo s
B=w+i —" +0(k2. (2.9)
Thus
3 k—|77|> (Inl—k> (Iul2 lul“)
O—f= +(po)o +O0l—5+—35 )
b “( kil )T # TP
and,

o 2tk —nl] 2<1 1 llnl—k|>
K@= B ST I ClaP{ b b )

Thus, since 2|p| <k and 2|u| <|y|, wee see that (2.7) holds. However, since
[P+ 1))t < plPUnl +1eD) ™+l il — k|10 +u) ™", we actually have

|l Inl— k|| + |pl?

k(f—a) <C 2.10
k(B — )| = PIFaT (2.10)
From (2.8) we have for |n]| > 2|u|
3 o (oo |ul2>
—o=t of =)
TS W (W
Thus for || > 2|u|,
(& — )] < Ck—H 2.11)

lnl+|pl’
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and this estimate also holds (with C = 6) for |y| <2|u|. Finally, from (2.9) we see
for k> 2|p|,

2
ko~ pl <2l + A< cpu 1)

and again this estimate also holds (with C =4) for k <2|u|. We will use (2.11) to
estimate M, (2.12) to estimate M, and (2.10) to estimate M,. We have by
Lemma 2.2 and (2.11),

- . k* [nl*dln|
< C(L+ kYAl
|M1|SC(1+ ) |lu| “q”az,N”f”azlMl_jkI < (|’1|+|ﬂ|)a>(|’1|+k)||ﬂ| |1—a

SCA+ 2 ul*14]lanl fa
as desired.
The integral M, is given by
2
My=(+RPPRpe) | — g
20ul<)nl -kl <1 7] —k

where

j(E —k —k
P=AQ | ( qu (ka:;’) - ‘“i&t‘k 5 ﬁ)) flkw)deo,

Lemma 2.2 and (2.12) show

[PIZSC+ky 21l allonll fllo- (2.13)
We have
In|? II—— dlnl 2Anl+k 4
U511l 2> 21l 1P =2 2 1512k 2 =K 1511 T 2 2007 +K)

The second integral is bounded by 2, and

din] 0, k>1,
TN~ _k 2Jul<k<1
1> ]Il ~k> 20l 1] — K —In2lul, k<2ly|

Since & Ink is bounded for &k < 1, we conclude from (2.13),
IM,| < CA+ kP2 1ul*1 41wl fllo,

which suffices.
By Lemma 2.2 and (2.10) we have

IM3| < CA+E’ P14 lnl fllo

12 |l®) 1| — k|* + | u]?*
2 2 2 dln|
20ul < ni -k <1 |[7]* —k*] (nl+1ul)
SCA+RPTPH Gllon S NoCul® + 1ul?*(1 + [In|p]]))
which suffices. W
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In addition to the estimate in Theorem 2.1 we also need control of Lipschitz
norms in the variable k. This is provided by the following theorem.

Theorem 2.2. Let A(s),0 <s < 1 denote operator (A(s) f)(k) = f(k +s5) — f(k). Then

one has the estimate
1
o0 4 g )

Ty oup 1A OAZOAT O fCEL R,

sup
44

Cs*
- (1 + k) ¢
with C independent of k for a,N,d and y in the set given in Theorem 2.1.

Proof of Theorem 2.2. Here we will write
N 1

a0 [ on(40(xt )
[ 1l —ki>

+A£V(€)I §< A(S)((f(n) f(kw))(l 7 k2>>d’1

N 1
+ AC (é) il —Ik|<1 A(s)(f(kw)<|r’|2 . (k + 10)2 >>d’1

=l +1,+1;,

where f()= f(n,¢, (k) and A(s) f (ko) = f((k + s), &, (k) — f(kw, &, k).
By Lemma 2.2 for some > 144, setting h= A_"(n)Ag’ (11)/12’ mfm, &L k),
we have

(ks +s2)(1 4 [n])~F*+°
I,|1SCsuph
L= g |||n|—k|>1Ilnlz—kzlllnlz—(k+8)2!

1 —pf+é

<Csuplhitk+1s | X7
& al-ki>12 ] — k]

(1+n))=#*e
yz2<imi-ki<kz 10| —k[?

A+~

dn
din|

§Cs;1§)|h|(k+l)s[ din|

d < Csup |hlk + 1)s
inl—ki >max(/2.k2y | 10] —K}? Ml]_ g,cpl te+1)

+
((1+k el =k digl+ 1+ k)72 | (1+|f1|)"’+”d|ﬂl>

| |nl —k[>1/2 {nl>0

< C<sup |h|>s(1 + k) ArotL
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The last term I is also easy to estimate,

Iy= A?(é)((A(S)g) sz [k +s)w)do + g | A(S)(f(kw))dw>=
where (see (2.6))

2—§<ln<§z—+i>—ni) i k>1
glk) =

k
k=2 (n@k+ ) —m) if k<l.

Since ¢ has Lipschitz constant bounded on R,

4

C
3] = W%SE? 1A ATOAFOSCEL R,

The term I, here we decompose to

L=A© | 0+ 90) s

N _ _dn
— A7 (9 ”nl_qu (@) f(kw))wz e

1 1
YO (f(n)—f(kw))(m'z_(kH)Z—|,7|2_k2>dn

2s<||ni—k|<1
1
+ A} ko) — f((k+s)w <v——~>d
(O, S o) =Sl o)) s Jdn
=J,+J,+J5+J,.
Here |J;| and |J,| can be estimated in the same way that |A(u)J, | was estimated
in the proof of Theorem 2.1 with s in place of |u|. Likewise |[J;| can be estimated

as L, was estimated. Finally J, is like M, in the proof of Theorem 2.1. Carrying
out the integration in |#|, we have

Ja= <A§V(€) [ (flko) — f((k + S)w))dw>P(k, 8),

SZ
where
In]?
Pk, s)= I
(k.3) 2s<||7§—k1<1"§| —(k+5)? ad

:k+s d|n| 2I1nl+k+s
2 oecimi—n<1 M =k+8)  as<im-w<1 2(Inl + k+5)

As in the proof of Theorem 2.1, this suffices. W

dlnl.
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Section 3. Existence and Regularity of A(&, { k)
The function h(&,£, k) on R x R® x R, is defined to be the solution of

—3 ¢ Y —nh(n, LK)

h ky+Qr) 3 | = ——r 2

(é)C) )+( n) liL ]1’]|2—(k—|—10)2

We will assume that Jefi, y for some « and N. We will not assume that ¢ is the

Fourier transform of a real-valued function. In this situation one has the following
existence theorem, considering { and k as parameters.

Theorem 3.1. Given (o, N), 0<a <1, N>1, for all {(eR® and k=0, (3.1) has a
unique solution h(£,(, k) such that A} ()h(,{, k)eC*(R>), when ¢ belongs to an open

set O in H, y. Moreover, the intersection of O with H), y = {§eH, y:d(— &} = (j—(f_)}
is dense in Hj y.

dn=—4(&—1). (3.1

Remark 1. Note that H),  is simply the subspace of H, y (considered as vector
space with real scalars) consisting of Fourier transforms of real-valued functions.
The set ¢ in this theorem is actually dense in H, y (see Remark 4 following the
proof), but it is the stated density of O " H,  in H}, y that is important for our
main results here.

Remark 2. One does not have existence for all real-valued geCg(R?), as the
following family of examples shows. Let u(x) be any positive function in
C*(R?) such that u(x)=|x|"! for |x|> R, and define q= Au/ucC¥(R?). Then
—Au+qu=0. Since |D*u(x)| < C,(1+|x)"17%, for all «,|a(&)]| < ClE7* for
|€]>1 for all k. Moreover, since u=|x|"'+g,g supported in |x| < R,4(¢)=
—4n|¢|7% + ¢, and ¢ is entire. We have

Inl*a() + 2m) ™2 | 4n — OHa(&)dE =0. (3.2)

Assuming that (3.1) has a solution A(¢,0,0)eH, y for {=0,k=0 and taking the
inner product with 4(£) we conclude from (3.2) (note §(£ —n) =4y — &)

0= { 4(&)¢()de.
R3
However, by Plancherel’s theorem

@m3 [ #(&)48)dé = | u(x)q(x)dx = | Audx= —4n. W
R? R? R?

Throughout this section we will work with the modified operators and functions,
A4, 8, k)= AY A(@, k) A; N R(E, L k) = AT (OR(E, L k),
GO =A"94©) and GO =A7 (04D

We will also frequently suppress some or all of the variables ¢,&,{, k in A and k.
In this notation (3.1) becomes

R(E KO + [A@G LRAC, LR = — (8 (3.3)

or, more compactly o
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Proof of Theorem 3.1. Theorem 2.1 implies that for deH,y, O<a' = and
0<d<min{l,N—1},

IAA o S ClSf N

Thus, since for o <a and 6>0 {g:]/g|,<1} has compact closure in C*’=
{g:11A7%g |, < 00}, we see that A is a compact operator on C*(R3). Hence, since
gy is in C“(R3) by hypothesis, (3.3) is a Fredholm equation in C*(R?) for 7. We
will prove the first part of Theorem 3.1 by showing that the set O of § such that
I+ A(4,{, k) has trivial kernel in C*(R?) for all ({,k)eR® x R, is open. For 4e0
(3.3) has a unique solution % in C*R3). Since C({)™! <ANA N < C(¢), one sees
that A; V% is the unique solution to (3.1) with A¥heC*(R?).

Theorem 2.1 implies that given d,eH,y the operator norm on C“(R3)
144, , k)1, will be less than 1, for k> k and |4 — ol y < 1. Thus I + A(4,4, k)
is injective for k>ky and |4 —dol,n<1._Since (C(0) ' =AY AN S C(), if
I+ A(4,0,k) is injective on C#(R?), then I + A(4,{, k) is injective on Cﬂ(R3) for all
{eR?3. Applying Theorem 2.2, we have

|A(s) A) A(8, 0, k) f1 = Cs™ | A e 11 S Nl

where A(s) and A(y) are the difference operators in k and £, respectively. Hence
arguing as in the initial reduction in the proof of Theorem 2.1, we see for &’ = «/2,

1 AG) A, 0,00 £ llaj2 £ C* 114 L)/ oo (34)

uniformly for k> 0. Thus, as an operator acting on C**(R?), 4(4,0,k) is norm
continuous in (4, k) with the topology of H, y x R .

Now suppose I + A(do,, k) has no nullspace in C*(R?) for ({,k)eR> x R,. If
f+ A(go, 0, k) f =0 for some feC¥*(R?), then Theorem 2.1, implies feC*R?).
Hence I + A(g,,,, k) has no nullspace in C**(R?) for ({,k)eR® x R, . Thus by the
remarks in the preceding paragraph I + A(4, ¢, k) is injective on C*2(R3) for k = k,
when || § — do |l v < 1 and injective on C¥*(R*) for 0 < k < ko when [|g — g ll,.v <
for some ¢ > 0. Thus, the set of 4 for which I + A(4,(, k) is injective on C"‘(R3) is
open in H, y.

To verify the density assertion in Theorem 3.1 we consider real-valued
qeC¥(R®). The Fourier transforms of these ¢ are easily seen to be dense in H},
If for k>0, / + A(4, k) f = 0 has a nontrivial solution with AVfeC*(R?), we set for
£=0,

I e™4f(8)dE
B €2 — (k+ig)*

Note u,c?(R%) for ¢>0, and, taking the inverse Fourier transform of
f+A@G k) f =0, — Aug + quy = k*u, which implies quy,eC¥ (R?). We also have
(— A —(k +ie)*)u, + quy = 0, which implies

-1 1(k+la)|x ¥

U (x) = An RL W q(y)uo(y)dy,
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and hence

etk|x yl

)= | a0y

Jx —
Now standard arguments show uoeLz(R3) and hence uy,=0. Thus I + A(4,k) is
injective for k > 0, and I + A(4,0,k) is invertible on C*(R?) for k > 0.
Suppose I+ A(4,0,0) has nontrivial nullspace for §eS = {I1d—dollon<d}n
x- Let m = dim Null {I + 4(4,,0,0)} be minimal for geS. Then dim Null {I +
q,O 0)} =m, for all ¢ with |4 — 4, ||,y <?', for some & > 0. This follows from
the continuity of the projection

P@zla&Hﬂ@MW%z (3.5
z—1|=¢

in ¢ on a neighborhood of ¢, for ¢ sufficiently small. Moreover, for all feC*R?),
U+ A4(30,0)P@)f =0
for |4 —q;llx <" Let §(t)=4q, +t4,deH, y. For t sufficiently small, one sees

by substituting the power series for (zI + A(q,,0,0) + t4(4,0,0))™! into (3.5) that
P(4(t)) is analytic in t. Differentiating

(I + A@d(2),0,0P(4(1) f =0
with respect to t at t =0, we have
(I + A(41,0,0)V = — 4(4,0,0)V,

where V =d/dtP(4(1))f ;=0 and V = P(ql) f. As in Remark 2, taking the inner
product with V()IE|72 AN (&) =w(¢)¢]7?

G(& —mwin) w(g)
Inl* &P

where h is the inverse Fourier transform of w(¢)|£|2. Since we can choose f SO
that w s 0 and ¢ is arbitrary, this is a contradiction.

Finally we note that, since the Fourier transform R of the set R of real-valued
geCy (R?)isdensein HY, ,if I + A(4,0,0) has a nontrivial nullspace for all Qeﬁ NS
it must have a nontrivial nullspace for all §eS. This follows from the compactness
of A(4,0,0) for jeH, v and its continuity in 4. Thus the preceding contradiction
shows that given ¢, eR thereis no d such that I + A(4,0,0) has a nontrivial nullspace
for geRn{||g — 4, l,.x < 6}. Thus we conclude I + A(4,{, k) is injective for 4 in a
dense subset of R. M

0:

R3

w

dzdn=(2n)* | q()|h|dx,
R3

R

Remark 3. The computations followirlg (3.5) are much more transparent in x-space.
In x-space the equation (I + A(4,0))f = 0, becomes

(I+qEo)f =0,

where Ej is the operator

Ig@)d

[Eogl) =4 ] 7
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Setting q == g(z) and f = f(t) and differentiating in ¢, we bave
(I +qEo)f = — GEo f.

Since q is real,
{ Bof(I+qEo)gdx= | (f +qEof) (Eog)dx =0
R R

for all g. Thus
0= [ GlEof|*dx.
R3

We work in &-space in the proof of Theorem 3.1 and elsewhere because we have
no simple characterization of the inverse Fourier transform of H, 4.

Remark 4. Though our interest here is primarily in potentials with small imaginary
parts, it is not at all difficult to extend the arguments used to prove Theorem 3.1
to show that the set of complex potentials ¢ in CT(R?) such that 4e0 is large
enough that ¢~ H, y is a dense, open subset of H, . A sketch of one way to do
this follows.

Given geC@(|x| < R), if feH, y and f + A(4,k)f =0, then feC¥ (/x| < R) and
k < ko(|14l,n) (by Theorem 2.1). Thus, taking s large enough that 4|,y = Cliq|
where | ||, is the norm on the Sobolev space H (x| < R), to show the injectivity
of I + A(4,k) on H, y when k = 0 for a dense set of § in H, y, it will suffice to show
that for any R, + gE, is injective on L*(|x| < R) for z> 0 for a dense set of g in
Eols(lxl < R), where

1 iz|x~y|

Ezf:—_ j.

47 |x<r | X — Y]

f(y)dy.

Given g,eC¥(|x| < R), since g, E, is both compact and entire in z as an operator
on I*(Jx| < R) and I + q,E, is injective for z>»0, (I + goE,)”* is meromorphic
with only a finite number of poles k,,...,k; on k = 0. Using contour integrals to
define projections on the nullspaces of I qoEy, as in the proof of Theorem 3.1,
one can get ¢ > 0 and functions 4;(¢, z) analyticon D; = {||§ — g s <& |z — k;| < e},
j=1,...,M,such that, for g — g, |, <eand |z — kjl <¢g, I+ gE, fails to be 1nJectlve
if and only if 1,(¢,z) =0

For each j an argument similar to the one given in the proof of Theorem 3.1
shows 4,(q, k;) # 0. Thus one can choose he C§ (| x| < R) such that for j=1,..., M,

d;(w,z) = 24(qo + wh, 2)
is an analytic function on {|w| < ¢&,|z —k;| < &'} such that (6?d;/0w”)(0, k;) = 0 for
p<N;and

Nid,
0k) £0

for some N;> 0. By the Weierstrass preparation theorem, for each j

d;(w,2) = (W + a, ()W + - + ay,(2))r(w, 2),
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where (0, k;} # 0. Thus the zero set of d; in {|w| <& <e¢,[z—k;| <& <&} {realz}
is the union of a finite set of curves (w,(k) k) where either w, =0 or

wi(k) = a;(k — k;Y' + o((k — k)"

with a; % 0 and r, rational. Thus we can choose w,— 0 such that d;(w,, k) # 0 for
lk—k;|<¢,j=1,...,M for all n. Since I + g, E, is injective for k # k; and w,—0,
we see that I + (g, + w,h)E, is injective for all k =0 for n>n,. MW

Our estimates on the regularity and growth of h(¢,{, k) are primarily directed
toward showing that the backscattering amplitude A(¢, — &,|£|) belongs to H,
when ¢ is in the set O c H, y of Theorem 3.1. However, the expression we use for
the Frechet derivative of the backscattering map §(&)—h(&, — &, |£]) involves
(&, L, |L)), and it is actually easier to treat £,{, k as independent variables. Thus
our estimate takes the following form.

Theorem 3.2. Let O be the open subset of H, y in Theorem 3.1, ie. let O be the set
of jeH, y such that I + A(4, ¢, k) in injective on C*(R?) for all ({,k)eR® x R, . Then,
for §e0, W&, k) satisfies

I A?h [, < 0.
Here | ||, is the norm on functions on R® x R® x R, introduced in (1.1).

Proof. From Theorem 3.1 we know that (I +A7(Q, ¢, k)1, and hence % exist for
¢e®. However, here we want to show that sup | 4(-, {, k)|, < o0. For this we will
Lk

show that
sup [|(I + A™%24(4,{, k) AY?) "1, < 0. (3.6)
Lk

Note that Theorem 2.1 implies that if f+A"%2AA%2f=0 and feC*?(R?),
then A%2feC*R3). Hence I+ A~%24AA%? is injective on C%*(R%) for 4e0.
Moreover, A~¥2AA%? is compact on C¥*(R3) by the argument used in the
proof of Theorem 3.1. Thus I+ A~%24(4,{,k)A%? is invertible on C*?*(R3) for
(¢, k)eR® x R, for §e. Using Theorems 2.1 and 2.2 as in the proof of (3.4), one
has uniformly for ({,k)eR3> xR,

I A™92(A(4,  k + ) — A4, {, k) A%? | < Cs™2. 3.7
Moreover, simply by using (2.5) we can extend (3.7) to
IAT92(A@G, L+ pk+5) — A4, §, k) AY? | 4yp < C(s2 + 1), (3.8)

where C is independent of { and k.

Since Theorem 2.1 implies that || A~%2 4(4, ¢, k) A¥? ||, < 1/2 for k > k(g) for all
¢eR3, we can use the Neumann series representation of (I + A~%2A4(g, {, k) A%?)~*
to conclude that

I+ A2 4G, LAY, SC (3.9)
for {eR3 k = k(). Since for any invertible operators I + B and I + B,
(I+B) '—(I+By) *=I+B) " *(B—By)I+By)
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the estimate (3.8) implies
I+ AP AC R AT g S 20T + AT AlLo, ko) A) ™ g2
for [k —ko| + L — (o] < &y. Thus, for any R < co,
I+ AP A, 5 ) AT) |y < Cr (3.10)

for 0k <k(d), IC|<R.

To bound || (I + A™Y?A(¢,{, k) A%*) ™! ||, as |{] - oo, we will begin by showing

that
I AT#2(A(, ¢, k) — A(g, k) A** [, >0 (.11)
as |{|— oo, uniformly in k and § on bounded sets of §.

Given @eCZ(R?) with o(£)=1 for || £ 1, one sees easily that the operator
norm of multiplication by (1 — @(&/R))A~%*(£) on C**(R?) tends to zero as R — co.
Sinf:c Theorem 2.1 implies | A(d,{, k) A%ll,2 £ Cll 4, for ({,k)eR? x R, we see,
letting @g(£) = @(¢/R),

11— 9R) A~ 4G, L, ) AP [0
and ~
” A_éle(‘ja Ca k)A5/2(1 - (pR) ”a/Z -0

as R — oo uniformly in ({, k) on bounded sets of 4.
To obtain the estimate || A(4, k) A° |, < C || 4,5, we must repeat the derivation
of the bounds on |1,|,11,| and |I,] without the weight factor A7 (£)/A7 (). We have
(A+ipy?
1> 1 (L+1E =122 0] — k2|

and as in the proof of (2.2), this 1mphes

|111§C|ifl|olléllozv f

, Uslypye o
I1sC —3 33
] = ||f”o”61”0,N””I_fkp1 H’le |

with > 1+ 6. Hence |I;| S C| flloldllon- For I, we have

A+nPyPA+1E=n*)~""?
L|gC
l 2[5 ”f”a/Z”q“a/Z,NI]nl*fklgl (ln‘+k)!ln‘_k|1—a/2

so that |I,| < Cll flla2 1 |laj2.n- Likewise,
II31= Cll fllolldllo,n-
Thus we conclude sup |[A(4,k)A%fUE|I S Cllflly2 114142, Then, since A(y)
(4(0.0)) = AL, we have
1A A a2  Cldlanh f a2s
uniformly in k as desired. Thus

I(1 — pr) AT A(G, k) A”2 ]|, >0

[n)2d|n|

and
IA™%2 A(4, k) A*P (1 — @) [0y =0
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as R — oo uniformly in k on bounded sets of 4.
Next we consider

PrA™ (A4, 5, 5) — A4, 1) A” o

We view this as a modification of the operator A(g, {, k) in which the weight factor
w(&,n,0) = AY(E)A; " (n) has been replaced by

wr(&,n,8) = er() AT — AY ) AL () A () pr(m (&, . 0).

Since for any M, A{(n)A; ¥(&)—1 uniformly on {|¢| < M,|y| <M} as |{|— oo,
given g, we have wgx(&, 1, ) £ ew(é,n, ) for |{] > C(R). Likewise, letting A(u) denote
the difference operator in & or n,(1/|ul) A()(AY (A7 N(€))—0 uniformly on
{I&l<M,|n| <M} as |{|—>o0, and we have |A(wwg(é,n, )l <elplo,n,{) for
|| > C(R). In the proof of Theorem 2.1 we only used

(& n,0) SATEA V()

and

| A (&, 7,0 < Clul AT A Y1),
Thus for |{| > C(R)

lorA™"2(A(@, (k) — A NAT? @rllyz S ellqllon- (3.12)

Combining (3.12), with the previous estimates on terms with factors of (1 — @)
yields (3.11).

From (3.11) we conclude that A~%2A(g,k)A%? is a compact operator-valued
function on C**(R3®) which is norm continuous in (k,4). Thus to conclude
that ||(I + A~%24(4,(,k)A¥?)"1],,, is uniformly bounded for 0 <k < k(4) and
|| > R,R sufficiently large, we only need to show that I+ A~%2A(4,k)A%* is
injective on C*2(R®) for 0 < k < k(g). Note that f + A~ A(4,k) A% f = 0 implies
f+A7%24(4,0,k)A%*f =0, where f = A"f. Hence, since 4e0), to complete the
proof of (3.6) we only need the following.

Lemma 3.3. Assume f+ A™%2A(4,k}A%2f =0, feCY*(R®) and GeH,y. Then
ANTI2f s in C2(R3). Here 0 < 6 <min {1, N — 1} as before.

Proof of Lemma 3.3. We only need consider f(£) when |£| >k + 1. Then we have
| £(©)] = A""XO[AG A 1)

- ATEAE — A (n).f () R
- |'1l<jk+1 ’11|2—(k+i0)2 di’] +C”q”0,N

[ A= &P+ )7 RA+ L) f ()l dn

k+1<lg<e

EII +12.

We have |I,| < C(1 +|&|2)~ V2794 gince || A¥§ ||, < 00, and the proof will proceed
by repeated application of the inequality

@IS I+ CA+]E7)~ Mo, (3.13)



190 G. Eskin and J. Ralston

Assume that we have shown | f(&)| < C(1 +{&{*)"/? for some r = 0. Then
I,=C | (14— ER)NV2(L + g2 =712 11 + [E2) ¥4y

k+i<l|gl<ow

We divide the region of integration into
k+1<inl<3l¢l and 3E[<inl<oo,
getting J,, and J,. We have
< {C(l +IEP) TV T2 ], r<146/2,

C(L+|EP)~ N2, r>1+6/2.
Since
Clnl=2, N>2,
f(1+llnlco £ M do < { Cln|"*In|y|, N=2,
Clnl™%, 1<N<2,

(see proof Lemma 2.2), and 0 < <min {1, N — 1}, we have

LS (L+|gpeemn,
where f is defined as in the proof of Lemma 2.3. Thus repeated use (3.13) gives

IS S CU+[EP)N27-,

To show that
|AW) O] < Clul*(L +[E2) N2,
one merely notes that
1404 — I = Clul*l @l v +1E —n?) =2
and uses the preceding estimates with r=N + /2. &
Continuation of the Proof of Theorem 3.2. Since from (3.3) one has
A= —(I+ A'a’ZZA“/Z)_lA"’/qu,
(3.6) implies
HAT2CVRC, 8 R a2  CIA™2 ) 0 £ Cll G las

where C is independent of (¢, k)eR® x R, . Now, writing h = — §, — AAY2 A~ %2},
and using Theorem 2.1, we have

Sup 1A LR L= Clg = Clldlan- (3.14)

Since i = AFh, sup | h(-, ¢, k)|, is the first of the three norms in (1.1) whose sum is
tk
AR | ,- Note that, if we replace §; by an arbitrary element of C*(R3), (3.14) shows

sup | + A(4, (k) |, <o, for 4e0. (3.14)
@k

Since Theorem 2.1 fails for a =0, we cannot obtain estimates on || h(¢,-, k)],
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and ||R(£,¢,)|l, by applying difference operators to (3.3). Instead we use the
following procedure. Since § can be approximated in || ||,y by §,,eC&(R?), we have

h+ A4y, G R+ Ao, LR = — G, (3.15)

with |4, ||5,N<t»;0,.e0 to be chosen small enough that the Neumann series for
(I + A(4,,¢, k)~ " converges. Then we set

Go+h+ A4, L=,
so that (3.15) becomes
G+ Ao, LU + A(4,,0,0) G — d) =0. (3.16)

The extra regularity of §., and the explicit representation of (I + A(q,,{,k)) ™!
Neumann series will permit us to get regularity results for § by applying difference
operators to (3.16), and then pass to h via

h=+A(,06R) 7 G- ) (3.17)
The Neumann series expansion of (I + A(g,k))™'f is given by

1+ 4G =S + 3, (=17 A,
where

) _’12)‘2(’7n—1_’7n)f(’7n)

i
T (i -+ 07

(il = | dny - d,

Expanding A(s) A"f = [A"f (&, k + s) — [A"f](&, k) by Leibnitz’ formula, we have

L 1
where for p > 1,

A€ —n1)--q(p—1 — 1)

Qp(€>np)= d”’l:-'-sdnp—la
R3p-1) l—I |11] k+S+lO)2)
and for p<n
| - )A n—1" fin n
R,(1,) ~ (j )q(n,, Ty 1 4QWa—1 —1,) S (1 )dn,,ﬂ---dn,,
Ry IT Unl> =k +i0)%)

j=pt1

with @, =4(¢ —#»,) and R, = f(y,). Applying Theorem 2.2 with § =0 and then
Theorem 2.1 with § =0, we have

JSup |AY Qs ™2 A Af| = C Z 1AYQ, I IAYR, |, < C(CM | AN G2 AY f 1,
(3.19)
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where C is the constant from Theorem 2.1. Combining (3.19) with the direct estimate
from Theorem 2.1,

IAFOTA IO S C I AYGUETAY f s

we conclude that, given geC*(R?), the Neumann series expansion of

AYT+AGR) T A g =T+ 4@, LK) g

converges in C*(R’) to a function which is C* in k when |4,y < -
Now, given geH,y, we choose §.,eCg(R?) so that ¢, =4 — 4, satisfies

141 oy <. Thus we have Eq. (3.16) for §="h+ A(4,,(, k)h+§,. Our next
objective is to show that

Sup 1G04+ v, k+95) = G(, LR S C(IvI*+ 57)

for [v|<1,0<s< 1.
Since

(I + A, R + A1, KD = T+ 4@, LRI + 4@ LR,
it follows from the uniform boundedness of (I + A4(4,¢,k))~ ! and Theorem 2.1
applied to A(§,,{, k) that

sup 1T+ 4@, I + A(G1, 8,k 7, < 0.

Thus (3.16) shows that sup | §(,{, k)|, < 0. Applying the difference operator in
k, A(s), to (3.16) we have o
A + Ao, &R + A(d1, G K) ()G
= — [AS) A, LRI + AG1, LR) @G LR+ 9 = G) =16 Lk,s). (3.20)

Viewing (3.20) as a linear equation for A(s)§, we need to show that the
inhomogeneous term in this equation, r(¢), is bounded in C*(R?) by a multiple
of s* uniformly in {{,k). To do this we will substitute the Neumann series for
(I + A(4y,¢ k)~ into (3.20) and consider 0%r. The terms in the resulting expansion
for dfr are precisely those in (3.18) with 4(¢—#,) in each Q, replaced by
OUAL ()G (€ —ny)), all other §’s in Q, and R, replaced by 4,’s and f(17,) = A7 V()
(G, &k + 0 — g(,)). Thus (3.19) implies

sup [98r(,{ k, )] < Cs* (3.21)
(&.4.k)

Hence, using sup (Ir(é)l + ) |6f§r(6)|> to bound | #(-, {, k, 5)||,, we conclude
4 18T=1

Sup 15C. 0k +5)—§(. LR, = Cs”

for0<s<1.
To get the analogous result in { we let A(v}f = f({ +v)— f({) for functions
depending on {. The analogue of (3.20) is
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AW)g + 71(1200,5, (I + A4, 4 k) AW
= - EA(V)(A(QW , kl(l + A3, 6R) " HI@GE v k) — )
— Ao, LT + A4, 5 R) ™ HAWG) =1y + 73 (322
Since
Ao, &N + A(41, 6 R) 1 =AY Ad o, )T + A4y, K) ALY,
it follows directly from (2.5) and our bound on | g(-,{, k)|, that
5211? “rl('aak’v)“a é CiVI

To estimate r, we again substitute the Neumann series for (I + A(4,,,k))"!
and consider #4r,. The n'* term in the resulting series for 94r, is

L& Lkv)= | AY©)
R3n

AT (Do —11))41 (11 —12) Q1 (- 1 — 1)(AL Y (1)(AT () A0) (1))
@m* [T (In* — (k +10)%)

i=1

diy -,
We have
A M) (AW m,)) = 4(r, — £ —v) — 4 = {)
+ A N(’?n)(A§+v('?n) - Aév(nn))é(nn - C - V).

If we think of { as the variable for which we expect functions to be C* and £ as a
parameter (note that A,(£) = A,({)), Theorem 2.1 and (2.5) imply

(& GRS CVECT | AN N AV 12 2T AY VAT N EAF (O (€ — ) s
Thus
sup |08r,(&, (kv S Cly[* (3.23)
&Lk

and, using this to bound ||r,(,{, k,v) ||, as before, we conclude
S;uzP 1GC.C+v. k)~ g6, LR, = Clv*

for v|< 1L .
Now we are ready to go back to h via the relation
h=(+A@:.00) g~ U+ AWy, LK) ge=hy ~h,.

That the C*normin (&, k), || h2 [ is finite follows by substitution of the Neumann
series exactly as in the derivation of (3.21) and (3.23). That || &, |, < oo also follows
by substitution of the Neumann series but first we separate terms:

A + A g=(Ap)I + A~ NG+ I + A) ' Alp)g, (3.24)

where p=5 or v and § is § with p added to the appropriate variable. The first
term on the right of (3.24) is estimated by (3.19) with f =g when p=ys and is
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estimated trivially when p = v. The second term can be estimated directly by (3.14")
since [ A(p)GC. LR, =Clpl*. W

From the proof of Theorem 3.2 one can see that the mapping
¥4 —h
is analytic from ¢ to C*R® x R® x R.). To do this, given §,€0, we consider for
“(?“a,N é 1 and |Z| é 5:
h(E,Ck2) = — (I + Ado + 24,8, K)o + 2.
Writing
(I + A(Go + 24,8, k)Mo + 2d);
= (I +2(I + A(§o, k) A(G, §, k) M + Aldo, LK) ™ (do + 28);

Theorem 2.1 and (3.14') imply that for § sufficiently small we can expand the first
factor on the right of (3.25) in a Neumann series which converges in C*R?) for
all ({,k)eR® x R, . Thus for some ¢ independent of (¢, {, k) we have for ||§|, v =1
and |z| < 0,

- 1 7
WGk =—— § de,
20l uj=s Wz
and hence for all k=0,
ap]; = p' E(éa C, k, W)dw
5,0 &LE0) _Tmle_pr_.

Since ¥(go + 24) = h(&, {, k, 2), to conclude that ¥(g, 4 z4) can be expanded for
|z| <6 in a power series in z convergent in C*R® x R x R, ) uniformly on
4.5 =1, we only need to show that

IRC, W), £ C

for |w| = . However, this is just the statement that the estimate in Theorem 3.2
is locally uniform in 4. This uniformity is clear from the proof. Thus we have shown
that W satisfies one of the definitions of analyticity (see Pdschel-Trubowitz [12],
Appendix A, or Nachbin [11]) and have

Corollary 3.4. The mapping ¥:G— h considered as a function from O to C*(R> x
R3 x R,) is analytic in §.

Analyticity in the sense above is equivalent to the fact that ¥ has a continuous
Frechet derivative with respect to § (see references above), as one can easily verify.
In what follows we will often make use of the continuous differentiability of ¥. If
we restrict to the backscattering map on @

S:q—h(& —&1E) = AZFORE, —£1€),

Theorem 3.2 implies || S(4) |,y < c0. Moreover, choosing 4,60 Cg (R?) con-
verging to 4 in | |,, it follows from the analyticity and hence continuity of ¥
that || ¥(4,) — #(@)ll,~0. Thus [5(d,) — S(@)ll.x—0. Since | S(g,)ll,n < oo for



Inverse Backscattering Problem in Three Dimensions 195

all N' > 1,0 <o’ < 1, it follows by Lemma 1.1 that S(4,)e H, y and hence S(§)eH,, y.
This gives:

Corollary 3.5. The backscattering map S:§—h(&, — &,1E|) is an analytic function
from O to H, y.

Section 4. The Derivative of the Backscattering Map

Since by Corollary 3.4 ¥:4—7 is a continuously Frechet differentiable function
on @, we may compute its derivative. To do this we will differentiate Eq. (3.3)
with respect to 4. Note that Theorem 2.1 implies Z((j)ﬁ((j) is the composition of a
bounded operator valued function hinear in 4§ with a continuously differentiable
function, and is hence continuously differentiable. We have for ve H*Y, §e0,

dh(v) + A(9)dh(v) = — 5, — A()h,
and hence
dh(v) = (I + A(@))"*(— 5, — A(v)h). (4.1)

Lemma 4.1. The operator (I + A(4)) ™1, 4€0, has the following form:

AL QRE 1 DA ) f @) |
)2~ (k + i0)?

Proof. Let f + Df denote the right-hand side of (4.2). Then we have from (3.3)
I+ A@)I +D)f=f+A@) f+Df +A@Df =f+A@f +Df —Df - Al f = .

Thus I +~ﬁ is a right inverse for I+ A(4). Since I + 1:1((2) is invertible, it follows
that I+ D=+ A(@) . W

Substituting (4.2) into (4.1) we have

L ANOME R Ry
o= == 0m L e 0y
e L LRANOE
R A e
AR, £ k)o(t — o, & Rydnde
& S =G+ 07 (2 — e+ 10)

Changing variables so as to get integrals of v() in all integrals in (4.3) and
cancelling A} (¢) in all terms, one arrives at

(S Lk
e LR = — ol =0 — a7 [ LSO

- h(é - ’77 C: k)v('i)
B Arp e

) HE L RYA(E — 1, K)ol
—en* | (Ja(|r|2—(k+i0)2)(|r—n|2—<k+i0>2

[I+ 4@ 5R) 1O = 1) +2n) >3]

4.2)

—(@2m)~°

(4.3)

)>dt. (4.4)
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Since I + D is the left inverse of I + A(4), we have

A Ly ¢ hEn R0 -0
0=4(t—0)+ + 3
L R R R R e

Sending ¢ - —{,{ > — ¢ and n— —#, we have

O hr OV £ L dE (= — k)
GC=0+h(={ — & k) +(2m) RL i — (k + 10)°
Comparing (4.5) and (3.1) one sees that for §e0,
h(—{, — & k)=h(, (k) (4.6)

for (6,4, k)eR?® x R3 x R, . Hence, setting (&, {,k) = (¢, — &,1€)) in (4.4), sending
n— 2n and using (4.6), we have

4.5)

e, = 1)0) = —e20) 207> [ TET S )

_ h(&, 1, 18N — 20, — &, [{)v(2n)dy
2 3 6
J (Rj;' (1t12 = (&l +i0))(12n — 1> = (1€] + i0)2)>dt'

RS
4.7)
From (4.7) one sees that the Frechet derivative of the backscattering map
S is given by
aS=(I+B+NT,

h(€—2n, — &1¢1) ()

[Tf1&) = — f2),[Bf1(&)=2n"3 f 1 2n7 — (12| 107

and

W, 11D =20, = & €S G)dn )m
(17— (&l + 102120 — 1 (€] +10))

Since S is an analytic function, dS is continuous on ¢ as a function with values
in #(H,y), the space of bounded linear operators from H, y to itself. Since we
need to know that B and F are individually continuous functions from €O to
#(H,y), we prove the following.

[Ff1@ =27 ‘6j"<j

Lemma 4.2. B(§) is an analytic function from O to £ (H, y).

Proof. As in the proof of Corollary 3.4, the analyticity will follow from the local
boundedness of the operator norm |} |B(4)| I,~ on 0.
From (3.17) we have the representation

h(& =20, —&1ED = LU + A, 1ED) " HAZEO)C, — & 1D — 40 + E)I(E—2n).

As in the proof of Theorem 3.2 we will substitute the Neumann series for
(I+ A(g4,1€))" ! in h and hence in B(4). This gives

B@O=2 5 (s | 10
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where

L9 =

R3(n+ 1)

S04 =214 g —12) - 41 (-1 = 1) AZF ()9 (1, = &,1€)) — 41+ D))
(1€ =21 = (|¢] +i0)%) ]__[1 (In:)? = (1€ +i0)?)

“dndp, ---dn,,.
Setting n, = £ — 2n, we have

Wo=g |
"
f(i—_zﬂ))él(no—m)él(m—nz)-'-él(nn—1—m)(Aiz”(m)g(nm & 1E)— 41, +)
ilj)(lnl-12—(|é|+i0)2>
P

These are precisely the terms which arose at the end of the proof of Theorem 3.2
with one factor of §, replaced by f,{ = —¢ and k=|¢|. Hence, the argument
given there shows that

IAYB@) f . = Cll f Ny (4.8)

for feH, y, where C is locally uniform in ¢ on 0.
To prove analyticity we proceed as follows. Defining h(#, {, k, z) as in the proof
of Corollary 3.4, we have
E—
f(T”)h(n, ~¢&1¢2)
[B(do +29) f1(¢)=2n"3 - dn,
Qo sDNO =27 L e viop
and we know that AY .(n)h(n, — &,1¢],2) is an analytic function from |z| £J to
C*(R?) for each ¢eR? and ¢ with | ¢}, y < 1. Thus Theorem 2.1 implies that for
each ¢eR? and feH, y we can represent [B(g, + z4) f1(¢) as a Cauchy integral
over |z| = 6/2 with J independent of ¢ and ¢, when | 4|, < 1. Now analyticity
follows from (4.8) just as in the proof of Corollary 3.4.
To see that the range of B(4) on H, y is contained in H, y, we approximate §
by 4,eCT(R?) as in the proof of Corollary 3.5. W

The main result of this section is that, for e @, the operator dS(¢) is Fredholm
of index zero on H, . To prove this we will show that B> and F are compact on
H, 5. To see that this is sufficient, note that for 0<¢<1,

T '(1—eBY{I+eB+F)T=I1+K,,
(I+eB+F)T 'Y(I—-¢B)=1+K,,
where K, and K, are compact if B? and F are. Hence, (I + ¢B + F)T is Fredholm
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for 0=£¢e=1, and for ¢ =0 it is a compact perturbation of an invertible operator,
and hence of index zero. Thus, to conclude that dS(4) is a Fredholm operator of
index zero on H, y for 4e®, we only need the following:

Theorem 4.3. The operators B*(4) and F(§) are compact on H, y for 4€0.
To prove Theorem 4.3 we will first take advantage of the fact that operator
norm limits of compact operators are compact to replace B? and F by the operators:

g1 (57 , t)f(t)

T, £1(6) =
A N R F L TR (e

dydt  (4.9)

and

j‘ gZ(éa #, t)f(t)
ge 112 = (1€ +10))(1n — 217 — (1] + i0)?)

respectively, where g,,i = 1,2, satisfies

[T>f1() =

dndt,

(i) g;eC™(R®) and all of its partial derivatives are bounded,
i) g,(&n,t)="0for |€] +n|+1{t] < & for some § >0, and
(i) g,(&n,0)=0,if |€—nl>M or |p—t| > M for some M < co.

Then the proof proceeds by analysis of the singularities of the kernels ¢, (&, 1)
and t,(&,t) of T, and T,. For this we will use estimates modelled on the following
simple lemma.

Lemma 4.4. Assume that g(&,n) is supported in |n —n(&)] < M and that | g|, < oo
Sor some e(0, 1). Assume that k() satisfies |h(E + p) — h(E)] £ Clu| for |pn] £ 1, R
Let

_ g(&,m)
5(8) = 1if" H’h —h@) 10 dn. 4.10)
Then
Islly < CM, gl [ B1H1,2) 4.11)

for any o' < a.

Proof. Changing variables we have

WA
0= g(é,zlJr_ i(g)el)

Letting f(¢,n) = g(&,n + h(£)é,), we see [ satisfies the same hypotheses g did.
Expanding (4.10) we have, letting n=M",1),

f&n) )—f(f,O,n’) f(0,7)
= dn - f —Edy=I+1,+1
5@ lmlj>1 M +|m|§<1 My |m|<1 n,—i0 b

dn.

Carrying out the integration in #, in I3,
Iy=mi [ f(&0.)d.
R

Since | f(1) — fC0,7) 0 <311 * %I f |, the &’-norm of I, is easily estimated,
and (4.11) follows directly from the representation of s({)as I, + I, +1;. M
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The problem of obtaining (4.11) for singular integrals with more general
denominators can be reduced to Lemma 4.4 by change of variables as long as the
gradient in # of the denominator is bounded away from zero near the surface
where the denominator vanishes. In what follows we will leave such reductions to
the reader and simply refer to Lemma 4.4.

Proof of Theorem 4.3. Lemma 4.2 shows that B(4) is analytic in 4, and hence, since
dS(9) is analytic, F(4) is also an analytic function of 4. Thus, making a change of
arbitrarily small norm in B*(4) and F(4), we may assume §eCZ (R3) @, and hence
by Theorem 3.2

| AY bl < o0 (4.12)

for all N'>1 and o' < 1.
The operators B?(4) and F(g) are given by

h(€ — 2y, — & 1) h(n — 2t, —n, 0]} f(W)dtdn
(1€ =21 — (|€] +10)*)(|1n — 2¢> — (|| +10)*)

[B*f1(§)=4n""° f
and

~3576 | —&IEDhn — 2t — & IEN S
e ( |11|2 Iél+10)2)(|11—2tl2—(!é‘l+i0)2)

By the argument used in the proof of Lemma 1.1, (4.12) implies that, given
a0 <oy <1, we can choose h,(£,{)eC®(R®) such that h,(£ () =0 for |+ (]
sufficiently large, 0 h, is bounded for all § and

tends to zero in C*(R®). Replacing the i’s in B? and F by h,’s with the appropriate
arguments, we get B? and F,. We claim that || |BZ — B?|| |,y and || |F,— F | |,~ g0
to zero as n— oo. Expanding B? — B> = B,(B, — B) + (B, — B)B and making the
analogous expansion of F,— F, one sees by the estimates on |I,|,|I,]| and |I;| in
the proof Theorem 2.1, that ||BZ— B?| |,y and | |F,— F||ox~ go to zero. To
estimate A(u)(AY(B% — B2)) and A(u)(AY(F,— F)) we first change variables in »
and ¢ so that when £ appears in the denominator of an integrand it is in a factor
of the form (|#|* —(|¢| +i0)*) or (j¢[> — (|&[ +i0)*). Then [A(u)(AY(B* — B])f1(¢)
and [A(u)(AV(F — F,) f1(¢) can be expanded into sums of terms where the difference
operator acts on (| 81> — (/€] + i0y*) ", B = 5 or t, which we estimate by Theorem 2.2;
terms where the operator acts on f(I(£,#,1)),! a linear function, which we estimate
by Theorem 2.1 with f playing the role of ¢, and terms where the operator acts
on A¥, h,h, or h—h,, which we again expand as I, + I, + I; and then estimate
|1,1,|1,| and [I;] as the proof of Theorem 2.1. It is estimating terms of the last
type that we use oy >a and this makes all estimates substantially easier. Thus,
making a change of arbitrarily small operator norm, we can replace B* and F by
operators T; and T, as in (4.9) with g, and g, satisfying (i} and (iii).

To see that we can make the integrands in B2 and F, vanish for | £ +|5| + |¢] < J,
so that g, and g, will satisfy (ii) in (4.9), we proceed as follows. Given any
peC(|x|<1)and é >0, let

LES10)
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(6 — 21,6892 (g) (1 —26,1)¢? (g) o
(R3O = b, (52 =20 = (681-+ 0P In — 20— (] + 0))

=5 ha(8& — 201, 8E)@*(n)h, (1 - 25¢, 51m)9*(2).f (6¢)
ge (1€ =217 — (1€]+10)(|1n — 2t1* — (10| +i0)*)

Thus, by Theorems 2.1 and 2.2,

TR, fIE) oy < CO* | (1) f (3 |-

Thus, since ||g(&)ll, <67 *Ilg(6d)ll, for <1, we sec that || [@({/O)R, ] |.y = C6.
Thus, making an arbitrarily small norm change in B2, we can assume that its
integrand vanishes for |&] + || + |t| < §, for some &, > 0. This argument applies
to F, as well. Thus we may replace B2 and F, by the operators T; and T, in (4.9)
with g, and g, satisfying (i), (ii) and (iii).

We will now study T;. The analysis of T, is very similar and somewhat easier,
and we will sketch it at the end of the proof.

In terms of # the integral defining T, is singular on the sphere (if £ #0)

Y ={n:1& =2y =¢|}

tdn

and the plane (if ¢ # 0)

[1={n:lef>—nt=0}.
We will see that the kernel ¢, (&, 1) of T, is most singular at points (, ¢) for which
Y and [ ] are tangent. This happens when

t
{n:ﬂ=§i%‘|m}“{’71’1't— 12 =0} # ¢,
ie. when &-t+|E||t]—2|t]>=0. With these facts in mind we will break up
the integration in x by summing over a partition of unity generated by p, =
p(1€ —2n| —|&]) and p, = p(jt] — (n-1)|t] ™), where peCF (R) satisfies p(s) =1 for
|s| <&, and p(s) =0 for |s| > 2¢,. Since g, =0 for |£| + |y| + |t| <, choosing &,
sufficiently small, we can assume that |£| > 3/4 on the support of p, p,g;.
We will also need cutoffs in ¢ near the most singular set,

ﬁ1=ﬁ(2|t|~(é-|t)él|tl‘ —|5|) and ﬂzzﬁ(thl—(é'lt)élltl“ +|él>’

where BeCZ (R) satisfies B(s) = 1 for |s| < ¢, and f(s) = 0 for |s| > 2¢,. The constants
¢, and &, are chosen small enough that on the support of p;p,Big;,i= 1,2, the
component of £ —2n orthogonal to ¢ has length less than 1/2{£]. Note that on

support py p;Big1,1E—2n| <[&] + 2¢4,

t
Z(E=2
m (& —2n)

Now we replace g, in the definition of T, by (1 —p,)g, to define S,, by

> €| —2¢,|¢| —4ey, and || >6/4
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(1 —p2)pyg; to define Sy, by5p1p2(1 — By — B2)g, to define S; and by p,p, 5,9,
to define Sy,,;. Thus T, f = )’ S, f.
i=1
Letting s, (¢, £) denote the kernel of S;, we have

_ 1 mEny
s160 = 41§3n-t—|t|2+i0 ’

where h;=(1—p;)g,(|E—24> —|&|*)~ 1. Applying Lemma 4.4, we conclude
[t] |s:C, 0, is bounded in ¢ for all o' < 1. Since we also have s,(&¢) =0 for
|t — &] > 2M, we conclude

AN, Sl < Cy A llo-

Thus S, is a compact operator on H, y.
Letting s,(&,t) denote the kernel of S,, we have

. hz(é,ﬂ:t)
5,(&, )= Js [&— 212 —(|&] +10)2 H,

where h, =(1 — p,)p,g,(—4n-t + 4|t|*)” L. Hence, changing variables

hz(é,f’;—é,z>
260= L e —gerviop

Since [t h, (&, (4 + £)/2,1) is bounded, vanishes for |£ —#| > 2M, and has Lipschitz
constant in (£,#) uniformly bounded in ¢, it follows that |t| || s,(-,£) |, is uniformly
bounded in ¢ for some o > «. To verify this one can write

m(a-’@—é, r) ol) hz(é,¥, t)(l ~ o)
K T RO S T

where e C§ (R?) satisfying ¢(y) = 1 for [n] < L. Then ||s, (-, #) ||, can be estimated
using Theorem 2.2 and the early steps in the proof of Theorem 2.1 and s, ,(, 1) |,
can be estimated directly by Lemma 4.4, Since s, (&, ¢) = 0 for | € — t] > 2M, it follows
that S, like §; is compact on H, y.

Letting s5(&,t) denote the kernel of S,, we have

[ 1L/ S
R 1€ =212 = (I€] + i0)?)(n-t — |t + i0)
where hy=p,p,(1 — B, —fB,)g,. Since {&|> /4 on support h,, by taking ¢,
sufficiently small we can assume that |£ — 25| does not vanish on the support of
hs. Thus all partial derivatives of h; with respect to ¢ and # are bounded on R®.
We want to use the coordinates p; = |n — &/2| and p, = (y — &/2)-t/|t| on n-space
to study s;, since the singularities of the integrand are on level surfaces of 1; and
U,. To see that these coordinates are independent on support h; and estimate
derivatives with respect to u; and p,, it is convenient to introduce cylindrical
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&t

t
~ 2 — |

> ¢&,|&| — 3¢,

p=/ui—p; and z=p,.
el - lﬁl
2ItI

coordinates (p, 8, z) with origin &/2 and axis in the direction of ¢. Then we have
The factor p,p,{1 — f, — B,) in h; insures that
Ic'f | S
_ - 9
| 2] ‘(In 21— T
on support hy. Thus, choosing ¢, sufficiently small once ¢, has been fixed, we have
—|ual Z €31l

on support 45. Setting

<€ £+z—+pcos 0é,(t) + p sin 6é,(t), t)
-1 EETILEE “

m3(p5 Z, é}t

where (t/|t],é,(),é,(t)) is an orthonormal frame, we see that |£|m; is bounded
together with its derivatives in p,z and £ We have

[ my pdpdz
4itl RxR &t
*(2./p% — (1€ +10)) z+§ﬁ—]t|+10

and, since 0wy, u2)/0(p, z) = p/ps,
1 j pamzdp, du,
A4t

R (2u1—(|€|+i0))<uz %—ltmO)

<2sl},

we have u?— puk>e;|&|py > e3(2u; —2¢,)u; on support my. Thus all partial
derivatives of p with respect to u, and u, are bounded on support m;, and pmy
and its derivatives in u and ¢ are bounded. Thus, applying Lemma 4.4 twice, one
sees that |t|]s;(,1)], is bounded on R? for & <1, and, since s5(£,t)=0 for
|& —t]>2M, it follows that S; is compact on H, .

The kernels s, and s5 of S, and S5 require a more detailed analysis. We have
fori=4,5,

$3(C, 1) =

$3(¢,0)=

Since my is supported in

°t
m—m

{|2ﬂ1_|‘f||<251}m{

| h(&n,1)
ge (1€ =212 — (1€] +i0)(In — 2t!2—(lf1|+10)2)
where h; = p, p,f:9,- Thus, as for h;, h, has bounded derivatives with respect to

(¢,n) of all orders. Moreover, writing ¢ in spherical coordinates, one sees that
h;,i= 4,5, as bounded derivatives of all orders as a function on R* x R* x R, x §2.

(&, 1) =
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We let u; be the t-component of 2y — ¢, ie. p; = (2 — O1)|¢|™ L, and u, be the
projection of 2 — £ on the plane orthogonal to t, i.e.

en—grt,

My =2n—&— e

By our choices of & and s&,,|pu,| <1/2{¢] on support h;, and, since h;=0 if
|E—#n|>M or |t —n|> M, we also have |u,| <2M on support h;.
We set ul(f, £) =2|t| — (£ 9)[t| ", expand 5,(¢, 1) as

h h rm 11(&,1) du.d
s = j(ul+1u2|2—(|5|+10)2)(2|t|>(u1(5,t)—ul) Hydm
1 hi rﬂl =p1(é.1) du. d
2 S TR E+ 0P 21N G ) 7o)
=851+ 52,

where dm is Lebesgue measure on ¢t-#=0. We consider s;; as a function
of the form (4.10) with

_ 1 (&m0 — R Ly =pien
4 (Il +1EDw (&) — 1)
Although g is not supported in a bounded set, it has bounded support in u, and
the expansion used in Lemma 4.4 shows that (4.11) holds for s = [t|s; ;. Thus, since
8;1(& t)=0for |& —t| > 2M, s, ; is the kernel of a compact integral operator on H, y.
We evaluate s; , by computing the integral in u, by residues (there is a simple

pole in Im u, >0 at y;, = \/(|£| +i0)* — | u,|?). This gives

s5a(6) = e dus,
=Tl (2015 - S =Tl - 0)

where
k=5 hilyi= -

On the support of hs,2[t| —(&-0)|¢] ™ < — || +2¢,|€],|E] > 6/4 and |u,|<min {|¢]/2,
2M}. Thus the integrand defining ss , is smooth in ¢ with bounded support in y,.
Since one has |t||0%ss (£, )] bounded for all B and ss ,(¢,t)=0 for |& —¢| > 2M,
the integral operator corresponding to ss , is compact.

To simplify the study of s, , we use polar coordinates in the plane 5t =0 and

2z
set my(1p,1% & 0) = [ k4(lpalcos 6, p,y)sin 6, &, ¢)d6. It is important that m, is a
1]

smooth function of |u,|> on R,-note that only homogeneous functions of
(cos 8,sin 6) of even degree survive the integration. Thus m,(s, &, t) is smooth in
(s,€) on R, x R® and its partial derivatives with respect to s and ¢ are bounded
on R, x R? x R3. It also remains true that, if we write ¢ in spherical coordinates,
m, is smooth on R, x R3 x R, x §2.



204 G. Eskin and J. Ralston

We now have

8

84,28 l)—hm— my(s, &, 1)

el0 2|t| 0 /l€|2_s<2lt‘ |ét| /|é|2_s_i8>

and integrating by parts gives

ds

my(0,¢, t)ln(2|t|—f~l &l — )

syl )= — ]

0

Note that the integration in v, 5 is over 0 <s < (2M)? and |2]t] — (E-1)/1t] — €] <
2¢,|¢| on support m,. The kernel v, , is superposition of the kernels

¢ t)ZM(a,é,t)anitl — &9l —J1€P —a —i0)

|t

Wa(

for 0 < a < a,, where m(a, £, ro) is smooth on R, x R® x R, x §2 with bounded
derivatives in ¢ and r and m =0 for |¢ —¢| > 2M and for |¢|? < max {4a, 5%/16}.
The kernel v, ; is wo (&, 7) with m(0, &, £) = — m,(0, &, t). Thus to complete the proof
that T, is compact it will suffice to show for W, with kernel w,,

| AN IW, £l £ C | AV |, (4.13)
for all & > 0 with C* uniform on 0 < a < q,.
We have
|AN“(5)Waf(€)I§C| lf n @2t — (€ )t| ™" = /&> —a—i0)|de | AVf |
E~t|<2M

and, since the integral is bounded uniformly for (g, &)[0,a,] x R?, this gives

sup [ AN HOW, F(O)] = CI A |lo. (4.14)

To estimate the Lipschitz norm of AV (&) W, f(&), we use ¢(s)e C* (R), satisfying
o(s)=1for |s| <1 and @(s) =0 for |s| > 2, to write

W.f(&)= f @(lt)wa(E, 1) f(2) dt+§ A —o(thw&. ) f@)de =1, + I,.
In I, we will use spherical coordinates, ¢t =rw. Since m(a, £, rw) is smooth in r

uniformly in (a, ¢, w), extending rm(a, &, rw) to be zero for r <0 gives a Lipschitz
function of r uniformly in w, which we denote by ri(a, &, 7, ). Thus

jdwj"(p(r)mln@r—(é ) — /|¢)? — a—i0) f(r, w)dr,

where for r 2 0 f(+ r,w) = f(rw). Expanding I, as in the proof of Lemma 4.4, one
sees that for feC* o> 0,1, is differentiable in ¢ with
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‘;I : Sf do j (p(r)—ln @r — (@)~ /IEP — a—i0) f (r, )dr
2 _ 12 -
+£dw£—“”;fﬂ§L%? M;ﬁzﬁﬁgwghEJ1+Jr
One has
J@OI=Clfllo
by the reasoning that gave (4.14) and
= Cl Sl

for any o’ >0 by Lemma 4.4 applied to the integral over R. Since | €| is bounded
on support ¢(|t])m, we have

AYTHOLE D =CI f (4.15)

for any o’ > 0.
Since all functions are smooth in ¢ for |¢| = 1, the expansion used in the proof
of Lemma 4.4 can be used to show that I, is differentiable in ¢ with

6& L (e i (L. (VLG
B QU= = /1€ —a—i0) ¢

and, since ¢ and ¢ have comparable magnitudes on support (1 — ¢([t])m),
Lemma 4.4 shows

sup SCIAY . (4.16)

N+1
A (5) é

i

for any o > 0. Combining (4.14)-(4.16) gives (4.13), and completes the proof that
T, is compact on H, y.
In terms of # the integrand defining T, is singular on the spheres (for £ # Q)

= {n:|n| =1¢1}
and
I, = {n:{n — 2t] = ]}

At t = 0 these spheres coincide but the most singular part of the kernel ¢,(¢, t) of
T, is the set corresponding to tangency of I1, and IT,, i.e.

[t =1&].

As in the proof of the compactness of T,, we introduce a partition of unity adapted
to these sets generated by

pr=p(ni—1&) and p,=p(ln—2t] |,

where p(s) =1 for |s| <&, and peC¥(|s| < 2¢,). Again for ¢, sufficiently small one
has |&|>6/4 on the support of p,p,9,, and p,p,g, is smooth. The cutoffs
corresponding to the more singular parts are
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_ (1 _ o (ld=1¢l
ﬁl—ﬁ<m) and f, ﬂ< 5 )

where f(s)=1 for |s| < ¢, and feC¥ (]s| < 2¢,). Note that for &, sufficiently small
f, and B, are smooth on support p;p,9,.

Next we define S,,..., S5 precisely as in the proof for T;. Thus the integrand
of S, vanishes on a neighborhood of I7;, the integrand of S, vanishes on a
neighborhood of IT,, and on the support of the integrand of S; we can introduce
coordinates for which IT, and IT, are level sets. These three terms are treated
exactly as before: in place of | ¢| the weight factor in the denominator is | — 2¢t| + [£].

For S, we introduce spherical coordinates in #,7 = rw,|w| = 1,7 > 0. Then

=2t — &> =r* —dror-t + 4t — [¢]?
=(r—2t0— /I + 4t 0)* —4|t]?)
(r—2t-w+ /1617 +4(t-0)* — 4]t]?),

and for &, sufficiently small |£|*> — 8]|¢|* > 1/2|£|* on support h,. Thus, the kernel
3,(&,t) of S, given by

w k& r ot
s4 (& I)ZSj;dCO g r—|¢] _io)(r_zt.wi(f/Iﬂz-)l—4(l"a))2—4|t|2 —i0) o
where
rth, 3 2 7y -1
=g 2o+ IEF A oP —4ie)

is a smooth function on R3 x R, x §2 x R3,
Expanding in the usual manner, we have (with 4 = |£|? + 4(t-w)* — 4[t|*)

2 ky(Gr,0,0) — ky(S, €], 1)
. = d d
() sz w(j)(r—IEI)(r—Zt-w—\/Z—iO) r
+ dCO oj? k4(£s t ila @, t) dr

0 (r— & —i0)r — 2t-0 — /A —i0)
= 54,18 1) +54,2(8,0)-
The main point here is that, since the integral in s, , is the limit as ¢ |0 of the same
integral with i0 replaced by is, we can deform the integration on [0, c0) to a contour

in the upper half plane—for instance z = (1 + i). Since |£| > 6/4 and |& —t| <2M
on support kg, this shows s, ,(&,1)eCg (R®). Since

k4(fa ¥, @, t) - k4(£9 Ié')wr t)
r—I&|

is a smooth function supported on
(1€1> 0o/4} A {1 —t| <2MY A {|t] <26} A {Ir — €] < 2¢,),

it follows that s, (£, t) also has compact support, and it has enough regularity in
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¢ that the corresponding integral operator is compact on H, y. Thus S, is compact.

For S5 we introduce the t-component of y i, =#-t/|t|, and set u, =9 —(n-t/| ] *)t.
Since |t —#n| <M on support hs, we have |u,| <M on support hs. Moreover,
since we also have

WEI = 1el i <2e08) Timl— 1811 <28y, [ln—2e)—{&]f <28,

and |£| > d4/4 on support hs, it also follows that, choosing ¢, and e, sufficiently
small we can make |u,] < 1/2|¢| on support hs. The kernel of S5 is given by

— hS(éan’t)dyl
(60 = RL (13 + | o |2 = 11> —i0) (g — 21£1)? + | o] — | €] —i0)
= j kS(fs ", t)di’]
® ity — 18P~ s — 10y — 211 + /1EP — [t +i0)

where
hs

(N1+ [E1* —ual?) (ﬂ1_2|t|“‘\/|€|2 INz'z)

Note that, since for ¢; and &, sufficiently small one has |z, —[t]| < 1/4]&] and
[t| > 3/4|| on support hs, ks is a smooth function satisfying (1 + |£1)*|64, ks| < C
for all .

Expanding s5(&,t), we have

j (ks(&mt) —ks) Ty = 1g2 =l dn
— G =)y — 20t + /IE1> — | | +i0)
ks P =vigiz—1war
+(d d
Rjz MZI{(M — VP —lua > — i)y — 2t] + \/IE1* = uz [* 4 i0) .
=55,1(5 1) + 55,58, ).

From the restrictions on the support of 5 one sees that s , is a smooth function
supported in |& — t| < 2M, satisfying sup (1 +|&])| 0455 , (&, 1)| < o0, for all f. Thus
the integral operator corresponding to ss ; is compact on H, .

Calculating the integral in p, in s5 , by residues, we have

5026 ) =i | — s w82l

du
& JIEP— P —|t]+i0

Multiplying numerator and denominator by . /|&|? — |u,|* + |£], which is smooth
on support hs, we have

s5(C,1) =

Is(&t, py)

—~du,,
— 2=t +i0 7

35’2 = 7Zi
L

2n
where Is = (/|1 — |pa[* + [¢D)ks Ty = /1¢1° — [ *. Note that ms = mi/2 | 15d6
0

is a smooth function of (&7, 1) supported in {|t — &| < 2M}n{r < M}, satisfying
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sup(l + [£])|94, ;ms| < co. Thus

m5(£9r t) __T m5(£5 S, t)
— [t + 0" os—|6|2+|t|2—zo

$5,2(8,0) = 2§ S
=ms(¢,0, t)ln(|t|2—lilz—10)+j (5 s,0)In(s +[¢* —|¢]* — i0)ds

=ms(&,0,8)In(|¢| — | & —

— & —i0)ds

+mel& 0,0 il +1¢)+ | %"Ts(é,s, (s +111) +1¢1)ds

=0+ 0y 03+ 0y,

The kernels v; and v, are supported in | £ — t| < 2M and they satisfy | A*()v,(-, 1) || ; <
C,teR? i=3,4, for s+ 1. Thus the corresponding integral operators, V5 and V,
are compact on H, y.

The remaining terms in T, f, V, f and V, f, are super positions of the operators

[Vaf1&) = | ms(& @ ln((a+e*)"* —[&] —i0) f()dt

for0as M.
Since t and & are bounded away from zero on the support of ms, the expansion
used in the proof of Lemma 4.4 again shows that V, f is differentiable and

3Vaf_ j oms GIEITf() >dt.

06w 0 @t 1t |€|—i0

Thus, since ¢ and ¢ have comparable magnitude on the support of ms, V, satisfies
the estimate (4.13), i.e.

In((a+]¢]%)"2 —[£]—i0) f(9)dt + | m5< -
R3

[AYT OV < Cll AV |l
for any o >0. Thus V, is compact on H, . W
As we showed earlier, Theorem 4.3 has the following corollary.

Corollary 4.5. The Frechet derivative of the backscattering map, dS(§), is a Fredholm
operator on H, y of index zero for je0.

Section 5. Local Invertibility of the Backscattering Map

In this section we present the consequences of the results of Sects. 3 and 4 for the
inverse backscattering problem. The extent of the connected component of ¢
containing the zero potential is of interest here. We can show that the intersection
of O with H’, y is contained in a connected component of ¢. The proof of that fact
requires the following pair of lemmas.

Lemma 5.1. For some o' ,a <o <1, let §(t) be a curve in H, y continuous in the
topology of H, y, such that q(t) is a real-valued function in C§ (R®) for all t. Assume
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that I + A(4(0),0) has a one-dimensional nullspace, and that I + A(§(?), 0) is invertible
fort #0. Then, given 6 > 0, there is a curve q, (t) in CT (R>) continuous in the topology
of H, y, such that

(i) q,(t) = q(t) for |t >4, and
(i) I+ A{g,(t), k) is invertible for all t and k=0, i.e. §,(t)e0® for all t.

Proof. Let f (4, k) #£ 0 be an element of the range of the projection:
1
PG R =-— | (4K~ o) 'do. (5.1)

27 o +1]=c
Since o’ > o, for § in H, y, A(4, k) is continuous in (4, k) in operator norm on H, y
and compact on H, y by Theorems 2.1 and 2.2 (see 3.4). Thus it follows that for
¢ sufficiently small P has 1-dimensional range and is continuous in (4,k) on
{1d— 4Oy n<c;,0<k<c,} for ¢, sufficiently small. Moreover, P(4,k) is
differentiable in ¢ and dP/d¢ is also continuous in (4, k).
We have .
(I + A(4, k) (g, k) = 2@ k) (g, k), 5.2)

where A(4, k)eC and / has the regularity of P. Evaluating (5.2) at (4, k) = (z4(0),0),
differentiating Xvith respect to z, evaluating at z=1, and taking the inner
product with [ £(4(0),0)](£)[¢] 2, we have (see Remark after Theorem 3.1)

04(24(0), 0)

0z =1

z=1

We split H,, y into the direct sum of span 4(0) and

r-fo -

where f, = f(4(0),0).

Let A(4', 2, k) = ¢ -+ z4(0), k). We consider A as a function on H' x {|z— 1} < 6} x
{0<k<6}. By the implicit function theorem there is an ¢>0 such that for
4 | n <&0= k< ¢ the unique solution to A(§’,z,k) =0 in |1 —z| <e is given by
z=1z(¢,k) and z(§,k) is continuous in (4’,k). Note that A(§’,z,k)=0 means
Null (I + A(z4(0) + ¢', k)) # {0}.

Now suppose §(t;) = §; + z;4(0), i = 1,2, with t; <0, ¢, >0, || 4], v <& <eand
|z; — 1] < &'. By hypothesis this will hold for |¢;}| <6, ¢ sufficiently small. Also by
hypothesis z;eR and z(g;,0) # z,. Since ¢(¢) is real valued, ¢} and ¢} are real, and
hence z((1 — s)d; + sg,, k) does not intersect the real-axis for (s, k)e[0, 1] x (0, ¢].
Thus we may choose z(t) with z(t;) =z, and z(t,) =2z, with z(t) for te(t,,t,)
lying in the half-plane, {Imz>0} or {Imz<0}, which does not intersect
{z((1 — 9)4 + 585, k):(s,k)e[0,1] x [0,&] }. Then we define

t—t " t— A,
él(t)=<1“t ;)%4‘ 2 5>+ 2(£)4(0
2=k

t, —
for te[t,,t,]. Finally, we note that we may construct 4, (¢) so that

141(5) = 4Ol w = 2+ 14 O) o, ¥)e’
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for [t,,t,]. Thus, taking ¢ sufficiently small, we will have I + A(g,(t), k) invertible
for k= e, telt,t,]. For t¢[t,,t,] we set g;(£)=¢q(t). M

Lemma 5.2. Suppose that 1+ A({y,0) has a kernel of dimension m >0, for some
GoeH, y. Then for some ¢>0, the set of ¢ in HyyO{Ild—doll,ny <&} such that
I+ A(4,0) has a kernel of dimension m is contained in a smooth surface of codimension
m in HY, y. For all § on this surface (I + A(4,0)) has a kernel of dimension = 1.
Proof. Let P(§)=1/2ni _f (4(4,0)— wl)"*dw, as in (5.1). Here P has an
w+1l|=c

m-dimensional range for |c suf}iciently small, and is differentiable for |§ — g l.n <¢;
for ¢, sufficiently small. Since A(4,0) leaves H, y invariant when deHY, y, as one
sees taking inverse Fourier transforms, P(4) inherits this property. By construction
1+ A4, 0) has an m-dimensional null space if and only if (I + 4(4,0))P(d) =0. Let
Fi1s.-.s i be a basis for range P(4,). Note that, since §oeH’, n.n», we may choose
fieH;’ ~- Let

51©)
145

= [ [Eof11(ILU + gEo)g; 1 (x)dx

dy(@) = (2m)” j L2 [( + A(G,0) P9 f:1(6)de

by Plancherel’s theorem, where g, is the inverse Fourier transform of P(g)f;, see
Remark 3 after Theorem 3.1. The set of § for which I + A(4, 0) has an m-dimensional
nullspace intersected with [[§ — 4, [, v <c; is contained in

Y ={9:d;(g)=0,i=1,...,m}
and d, is real-valued on H} y. Taking Frechet derivatives at § = ¢,

di(go)f = L (Eo fANE fi)rdx,

since g;(do) = f;- Since — AE, f; + qo Eo f; = 0, unique continuation implies no E, f;
can vanish on an open set. The linear independence of {f;}7=, implies the linear
independence of {E,f;}i~;. Thus we conclude {(Eof WEf)}i, is hnearly
independent as well. Thus we may choose real-valued ¢,eCF(R?),j=1,...,msuch
that

=
lgz(Eofl)(Eofl)w,dx—{ "

Now we restrict d,,...,d, to H,y and let H be a closed complementary
subspace to span {@;}]-, in H}, y. By the implicit function theorem the system of
equations

di<4'+ y squj>=o i=i,...,m,
i

where de H and s = (s4,.. ., 5,,)€R™ can be solved for s(4’) when §' + Z is near

4o- Now we are ready to prove,
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Proposition 5.3. The set ONH,  is contained in a connected component of 0.

Proof. Since O nH} y is an open dense set in Hj, y by Theorem 3.1 and the density
of C§ in H, y implies the density of Fourier transforms of real-valued C§ in Hj y,
it will suffice to show that we can connect any pair of functions ¢, and g, in O,
when ¢, and g, are real-valued functions in Cg (R?). Given two such functions, let
q(t) =tq, + (1 —t)q,,t<[0, 1]. Since A(4(t),0) is real-analytic as an operator-valued
function of t on H, y, and I+ A(4(0),0) is injective, I + A(4(z),0) has a nontrivial
nullspace for at most a finite set S of ¢ in [0,1].
Suppose that t,eS and

dim Null (I + A(4(t,), 0)) = m

is maximal for te[0,1]. If m>1, we choose &, small enough that
dim Null (I + 4(4(),0)) < m for 0 < |t — t,| < &,. Taking ¢, smaller if necessary, we
may assume || 4(t) — §(t,) || .y < &1, where by Lemma 5.2 the set of in || § — §(to) [l o,y <

¢, such that dim Null(I + A(g,0)) = mis contained in the set of ' + Y s 1(d)¢; with
=1

¢'eH', a closed complement of span {¢;}7-, in Hj y. Then, 4(t) =4'®) + Y. r;(1)9;
=1
for |t — ty| < &4, where §'(¢) and r(t) are affine linear in t. Since m > 1, the setin R"* 1,
Zs.={(,)eR™ 1tls —s(@ (b)) < 0, |u — to| S5 # (' (w))}

is connected for all § and ¢. For ¢ sufficiently smail

{4’ + Zl 5518 — s(§(to))| <6 and [ §" — §'(to)llo,w < 81/2}
=

is contained in |4 — §(to)|| <e&,. Likewise for & sufficiently small (t,#(z))e). for
d,e

|t — t5| = &. Hence, we can replace (¢, #{(t)) by a piecewise linear function (a(tj, Z03)]
for |t — o] < esuch that 7ty + &) =r(ty + &), alt, + &) =ty £ ¢ and (alt), 7r))e) .. Now
d.¢

we set
. jt) for |t—to|>e
ql(t)={q() It=to|
cj’(a(t))+.§lfj(t)cf>j for |t—tp|=Ze.
=

The function 4,(t) is piecewise linear, and, since O~ H, y is dense in I}, y, we may
assume its corners are in 0.

Continuing in this way, we arrive at a piecewise linear function §y(f) with
corners in @ such that dim Null (I + A(G(2), 0))<mfor te[0, 1], §u(0)= 4., dx(1)=4,,
and gy(1)eCP(R?) for te[0,1]. Since the set of ¢ in [0, 1] such that dim Null (I +
A(gx(2),0)) > 0 is again finite, we can repeat the preceding argument until we have
a piecewise linear §,,(f) with corners in @ such that §,,(0)=4,,dy(1) = G5, q,()
is a real-valued function in C¥(R?) for te[0, 1], and dim Null (I + A(g,,(t),0)) <2
for te[0, 1]. Since (I + A(§,,(t),0)) can have a nontrivial nullspace for only a finite
number of ¢ in [0,1], and I + A(gy(2), k) does not have a nullspace for k>0, we
complete the proof with a finite number of applications of Lemma 5.1. W
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We are now ready to prove the main result of this work. Let ¢/, be the connected
component of @ containing @ N H, 5. Recall that @ nHY is dense in H] y.

Theorem 5.4. The Frechet derivative of the backscattering map at § is an isomorphism
of H, y when § belongs to an open, dense subset O, of 0. Moreover, O,H, y is
dense in Hy, y. By the implicit function theorem the backscattering map is an analytic
homeomorphism on a neighborhood in H, y of any §e0,.

Proof. The zero potential belongs to @,. Moreover, the Frechet derivative of the
backscattering map at the zero potential is [Tf (&)= — f(2&) which is an
isomorphism. Thus, letting @, be the subset of @, for which dS(§) is an isomorphism,
@, is nonempty. Since dS(g) is analytic in § and Fredholm, @, is open. If ¢, is not
dense in @, then, since (7, is open and connected, the boundary of the interior
of 5N @, must be nonempty. Choose ¢, in this set. Then any ball B,=
{114 — do ||,y < &} must contain points in the interior of 5O, and in @,. Choose
gsmall enough that B, = 0, and pick ¢, €0, n B, and 4, e(interior 05N 0} B,. Let

4ty =14;+ (1 —14, te[0,1].

Since dS(4) is analytic in ¢ on @ and Fredholm of index 0,dS(4(t)) can fail to be
an isomorphism for only a finite number of ¢ in [0, 1]. This contradicts §, € interior
050, and hence ¢, is dense in 0.

Now suppose that we have §oeH, yn @, such that dS(4) has a nontrivial
kernel for §eH,, y with |4 — o, < 0, for some ¢ > 0. Introducing a finite rank
operator K such that dS(4,)+ K is invertible and taking the determinant of
(dS(q) + K)~ dS(@)) = I — (dS(§) + K) 'K, we get a C-valued analytic function A(4)
on H, y such that for || § — 4, ||, v < ¢’ < ,dS(d) has a nontrivial kernel if and only
if A(g)=0. As the Fourier transform of a space of real-valued functions, Hf, y is a
real subspace of H,y, ie. given feH,y, f=f1 +if,, fi and foeH, 5. It is a
standard result that an analytic function vanishing on an open subset of a real
subspace vanishes identically. One can see this by checking that complex Frechet
derivatives of all orders must vanish on such a subset—as in the proof of this
result for functions of one complex variable. Thus we conclude that dS(4) has a
nontrivial kernel for § in a neighborhood of 4, is H, y. This contradicts the density
of O,in0;. W

Section 6. Real Potential and the Restricted Backscattering Map

When we restrict the backscattering map to Hj, yn (), we cannot expect its range
lie in HY, 5. Since H, y is the Fourier transform of a space of real-valued functions,
one natural way to proceed is to take the projection of backscattering which is
the Fourier transform of taking the real part. Thus, we define the “restricted
backscattering map™

h(E =& 1E) +h(—¢, & 1€))
5 :

S,:4—

Thus S, maps all of H, yn O into H}, y. When we restrict S, to H, yn0, it is a
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real-analytic function with Frechet derivative given by (see (4.7)),

u28) + H(—2%)
2
_3j[h(€ 2n, —&,[Eo(2n) 71(—5—2'7,5,f€l)17(2f7)]
[E=2 —(1E[+i0)°  [&+20]* —(I¢] — i0)?
5-a "Gj" f[ h(&, 7,1 Dz — 20, — &, 1€ v(2n)
(> = (1€ + 10)) (127 — I = (1€] + i0)*)

[dS(9)1(v) = —

N h(— &, 7| <D Az — 21, &, 1€1)5(2n) i|d’7dt
(I7]* = (1€1 = 10)*)(1 21 — 7|* = (|¢] — i0))? ‘
If we make use of the identity o(— &) = o(€) and change variables in the appropriate
integrals, this becomes

[dS(@](v) = —v(29)

B _3j~[ e —2m, =& 1C) W(—&+2m,81¢)
1€ =2n17 = (1€] +i0)° * [&~2n[* —([¢] —i0)

-4 —Gj' j‘[ h(fﬂ,lﬂ)h(f—z’?,—f,\ﬂ)
(172 = (1€1+i0P)(12n — 7|* — (1€] +10)%)

h(—& 1,1 EDR( + 20, &, 1))
(I = (€1 — 10017+ 2n1* — (1] -

Thus dS,=(I+B+ B+ C+ C)T. The proof of Theorem 4.3 can be repeated
without change to show that B B?, C and C are compact on H, . The proof
applies to BB as well after one notes that changing +i0 to —i0 in one factor of
the denominator of T; (see (4.9)) does not invalidate the proof: it merely
interchanges the arguments for S, and S. Thus we conclude:

}7(2'7)6111

+

io)z):|v(211)d11 dt.

Theorem 6.1. S, is a real-analytic mapping of H, N0 into H, y and its differential
is a Fredholm operator of index zero.

Analogue of Theorem 5.4 here is the following theorem. Its proof coincides
with the first paragraph of the proof of Theorem 5.4.

Theorem 6.2. Let (', denote the component of H}, y N O containing the zero potential.
Then the set 0% of e such that dS,(§) is an isomorphism of H', y is open and
dense in O",. Hence, the implicit function theorem implies that S, is a real analytic
homeomorphism on a neighborhood of each e,

The set ¢ is certainly not dense in HY, . However, one does have the following.

Proposition 6.3. The set O, contains all § such that I + A(4,0) injective, ge CF(R?)
and — A + q has no negative eigenvalues as an operator on I*(R3).

Proof. 1t will suffice to show there is a curve g(t) of real-valued functions in Cg (R?)
with g(0) = g and q(¢,) = 0 such that I + 4(4(2),0) is injective for te[0, ¢, ].
Let Eof =(4m)~" | |x—y|™f(v)dy. If ¢ is a real-valued function in C§(R?)
RS
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and — A + ¢ has no negative eigenvalues, we claim
{ (Bof)(f +qEo f)dx 20 6.1
R

for all feCF(R?). Let @ be a smooth function satisfying ¢(x) =1 for |x| < 1 and
o(x)=0 for |x|>2. Let @g(x)=0(x/R). Given feCT(R?>), let u=E,f and
ug = @ru. By assumption

| dg(— Aug + qug)dx = 0.

R3

Since |u] =0(|x| ") and |Vu| = 0(|x|2) for | x| large, one checks easily that

lim j' ig(— Aug + qug)dx = j i(— Au + qu)dx,

R—x R? Rr?

which implies (6.1).
If we now assume that I + A(4,0) is injective on H, y, it follows that I + gE,
is injective on CZ(R?). Since (6.1) implies that

- 2 _ S
§E +aBof)dx| 5 [ Eod)g+aBog)dx [ (Eof)(f +4Eof)ix

for all f,geC3(R?), if I(Eof)(f+quf)dx 0, then I(Eog)(f+quf)dx 0

for all ge CY (R?). Hence f + gE, f =0, which contradlcts the injectivity of I + ¢E,,
if f#0. Thus

[ BN + 4Eo f)dx >0 62)
R

for all nonzero feCg (R?).
Let yeCZ(R?) be a nonnegative function which is identically 1 on the support
of g. We define

(t)_{qﬂx, te0,¢,]
T+ 1=0(g+ ), telty,t +1]

where ¢, is chosen large enough that g + ¢, ¥ is nonnegative. Now
[ Eof)(f +4(OEo f)dx >0 63)
R
for all nonzero feCg (R?). For te[0, t, ] (6.3) follows from (6.2) and for te[ ¢, ¢, + 1]
it follows from the strict positivity of j SfEq fdx. If I + A(4(t),0) had a null vector

feH(,N for some te[0,¢; + 1], then one would have 6ﬂfeH‘,N for all N’ and
B by Lemma 3.3. Thus f +q(t)E,f =0 and EofeC‘”(R3) Hence feCg(R?)
contradicting (6.3). W
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