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Abstract. A convergence theorem of the fractional step Lax-Friedrichs scheme 
and Godunov scheme for an inhomogeneous system of isentropic gas dynamics 
(1 < ~, =< 5/3) is established by using the framework of compensated compactness. 
Meanwhile, a corresponding existence theorem of global solutions with large 
data containing the vacuum is obtained. 

1. Introduction 

We are concerned with the following Cauchy problem (1.1)-(1.2) for an inhomo- 
geneous system of isentropic gas dynamics: 

{p~ + (pu)x = U(p, u, x, t), 
(1.1) 

(pu), + (pu 2 + p(p))x V(p, u, x, t), 

(p, u)t~= o = (po(x), Uo(X)). (1.2) 
Or  

vt + f(v)x = H(v, x, t), 
vlt=o = vo(x , t), (1.1', 1.2') 

where v = (p, m) r, f (v )  = (m, m2/p + p(p))T, H(v, x, t) = (U(p, re~p, x, t), V(p, m/p, x, t)) r 
and m = pU, Uo(X) and po(x) > 0 (~  0) are bounded measurable functions. For  
polytropic gas, p(p) = k2p ~, where k is a constant and 7 > 1 is the adiabatic exponent 
(for usually gases 1 < ~ < 5/3). 

System (1.1) is a model of gas dynamics of nonconservative form with source. 
For  instance, H(v, x, t )=  (0, c~(x, t)p) T, where ~(x, t) represents body force, usually 
gravity, acting on all the fluid in any volume. An essential feature of the system is 
a nonstrictly hyperbolicity, that is, a pair of wave speeds coalesce on the vacuum 
p = 0 .  
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The homogeneous system corresponding to system (1.1) is 

{ p, + (pu)~ = o, 
(1.3) 

(pu), + (pu 2 + p(p))x 0. 

For the Cauchy problem of system of isentropic gas dynamics, many existence 
theorems of global solutions have been obtained (e.g. [t-10]).  The first large data 
existence theorem was established by Nishida [2] for ? = 1 by using Glimm method 
[11]. DiPerna [7] established a large data existence theorem for ~ = 1 + 2f12m + 1), 
m > 2 integers, by using the viscosity method and the theory of compensated 
compactness [12-18]. These results are both obtained provided that the initial 
density po(x) is away from the vacuum for some technical reasons. A convergence 
theorem of the Lax-Friedrichs scheme and corresponding existence theorem of 
global solutions for general case 1 < ? _-< 5/3 and large data containing the vacuum 
have been obtained [8-10] with the aid of an analysis of weak entropy and a study 
of regularity of the family of probability measures which is corresponding to the 
Lax-Friedrichs approximations on the basis of work of DiPerna [7]. 

For the general inhomogeneous cases, the term H(v, x, t) does not have a preferred 
form, especially does not decay as t goes to infinity. Thus the Duhamel principle 
and the energy method do not seem to be applicable here and the solution may 
not exist for all time. 

Nevertheless, in this paper we shall use two difference schemes the fractional 
step Lax-Friedrichs scheme and Godunov scheme which are generalizations of 
those of Lax-Friedrichs [19] and Godunov [201--to construct approximate 
solutions. If the inhomogeneous terms satisfy the condition C1 ° -  C3 ° (Sect. 4) 
which especially contains cases of (0, ~(x, t) p), (0, ~(x, t) pu), (~(x, t) p, ~(x, t) pu), and 
(O,a(x,t)puIn(Iul+ 1)), o~(x,t)sC(R x R+), we shall prove that the approximate 
solutions satisfy the following framework. 

Theorem 1. Suppose that the inhoraogeneous terms (U, V) satisfy the conditions 
CI ° -  C2 ° (Sect. 4) and the initial data (po(X), Uo(X)) satisfy 

lUo(X)l<M, O<=po(x)NN , po(x)~O, (1.4) 

and, for some constant state (fi, gO, 

~[½Po(X)(Uo(X)_~)2 ~ 1  "2 _ 1 1 1 ~ ' ) - y ~ ' -  (po(X)-D dx < oo. _~ + y t ~ - .  (p°(x) ~ -  
(1.5) 

Then, for any 1 < 7 < 2, the difference approximate solutions (pZ(x, t), rat(x, t) ) in the 
region Hr  = {(x, t): - oo < x < o%0 < t < T} satisfy 

(i) There is a constant C(T)> O, such that 

ml(x, t) 
0 < pZ(x, t) < C, pt(x, t) <= C. (1.6) 

(ii) The measure set 
t/(vt)t + q(d)~ (1.7) 
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lies in a compact subset o f  H~o~ (~)  for all weak entropy pairs (tl, q), where f2 c H r  
is any bounded and open set. 

From this theorem, we can obtain the following theorem by applying the results 
of the paper [9] and Sect. 5 of this paper. 

Theorem 2. Assume that the condition C3 ° is satisfied besides the conditions in 
Theorem I. Then, for 1 < ?~ _< 5/3, there is a convergent subsequence in the 
approximations (pZ(x, t), rot(x, t) ) such that 

(pIk(x, t), mZk(x, t)) ~ (p(x, t), re(x, t)), a.e.. (1.8) 

Define u(x, t) = m(x, t)/p(x, t), a.e.. Then the pair of functions (p(x, t), u(x, t)) is 
a generalized solution of the Cauchy problem in region//T satisfies 

0 < p(x, t) < C, ju(x, t)l < C. (1.9) 

A crucial idea used in the limiting process in the paper [8-9] is to show that 
the family of Young measures which is corresponding to the approximations is a 
family of Dirac measures. This idea was also used by Tartar [12] and DiPerna 
[6, 21] for hyperbolic conservation laws. It is related to the theory of compensated 
compactness established by Murat and Tartar [10-16]. For scalar conservation 
law, Oleinik [24], Conway and Smoller [25], Kruzkov [26] and others proved 
that the approximations derived from the Lax-Friedrichs scheme or the viscosity 
method etc. satisfy the Helly compactness principle and obtained their convergence. 
For a system of hyperbolic conservation laws, however, it runs up against serious 
difficulties to prove that approximations, especially the Lax-Friedrichs difference 
approximations, satisfy this framework. This motivates people to find a new 
compactness framework which is satisfied by approximations (e.g. viscosity method, 
Lax-Friedrichs scheme and Godunov scheme, etc.) and still ensure the existence 
of a subsequence converging pointwise a.e.. Tartar [12] first found such a 
compactness framework for a scalar conservation law with the aid of the 
idea of compensated compactness. DiPerna [6, 21] made a detailed analysis and 
established many framework theorems for hyperbolic conservation laws by using 
the theory of compensated compactness. In particular, DiPerna [6] obtained such 
a compactness framework for the viscosity method to the system of isentropic gas 
dynamics for 7 = 1 + 2/(2m + 1), m > 2 integers. In connection with the work of 
DiPerna [6], such a compactness framework has also been established [8-10] 
for the approximate solutions, especially Lax-Friedrichs approximations, to the 
system of isentropic gas dynamics for the general case 1 < 7 < 5/3. Theorem 2 
above is obtained with the aid of the compactness framework of compensated 
compactness [9]. Regarding work on the framework of compensated compactness 
for conservation laws, we also refer the reader to Morawetz [27], Serre [28], Rascle 
[29], Roytburd and Slemrod [30], and Dafermos [31]. 

We recall that, for hyperbolic systems of conservation laws, the L ~ uniformly 
estimate of the approximations plays an important role in order to establish a 
convergence theorem in the method of artificial viscosity. As a general rule, one 
can only use the principle of invariant region or (weak) maximal principle to get 
the L °~ estimate. For the Cauchy problem (1.1)-(1.2) and (U, V)= (0, apu), ~ < O, 
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there exist bounded invariant regions [36]. For general inhomogenous terms 
(e.g. (U, V)= (0, ccpu),e > 0), however, there are no bounded invariant regions in 
general. The difficulty can be overcome by virtue of an analysis of the solution of 
the nonlinear ordinary differential equation for the fractional step Lax-Friedrichs 
scheme and Godunov scheme. 

For the study of existence of the discontinuous solutions to hyperbolic systems 
with inhomogeneous terms, the results which have been found are the works 
[32-35]. Ying Lung-an and Wang Ching-hua [33] established a global existence 
theorem of the Cauchy problem for an inhomogeneous system of isentropic gas 
dynamics (y = 1) by using the generalized Glimm scheme. The system in the paper 
[33] and system (1.1) in this paper have quite different classes of inhomogeneous 
terms. 

2. Preliminaries 

We first introduce some basic facts before further discussion. We begin with the 
following facts: 

A. The Homogeneous System of Gas Dynamics. Consider the system of gas 
dynamics 

{ p~ + (pu)~ = O, p~ 
(pu), + (pu 2 + P(P))x = O, p(p) = 7 '  (2.1) 

o r  

vt + f(v)x = O. (2.1') 

The eigenvalues of the system are 

~ J ' l  = U - -  C, 
C =- ~ p~/~(p), 

(22 = u + c. 
(2.2) 

Riemann invariants are 

{~ pO m pO 

pO m po 0 - 7 - 2 1 ,  (2.3) 

U--O ~-p 0 

I. The Elementary Wave Curves. There are two distinct types of rarefaction waves 
and shock waves which are denoted by 1-Rw or 2-Rw and 1-shock or 2-shock 
respectively. If a state (Po, too) or (Po, u0) is given, the possible states (p, m) or (p, u) 
which can be connected to (Po, m0) on the right by a Rw or shock are respectively 
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/ P P(P) -- P(Po) 
S z ( O ) : m - m o = m ° ( P - - P o ) + _ l  - -  (P-Po) ,  P<Po,  

po X/po p po 

or (2.7) 

~/  1 p(p)-- p(po) 
U -  Uo = (P - Po), P < Po. 

PPo P - Po 

2. The Formulae of the Centered Rarefaction Wave. Along the centered rarefaction 
wave with central point  (Xo, to) and left state (Po, too), 

I (x p(x ,  t) = p = + - -  T j , 
Po 

|m(,,t) = m(X -Xo ) = Fmo + @ T ' /~, , m ,  -~o S'?q, t ~  - Xo'~ (:2.8) 
 t-to/ Lpo 

where _+ correspond to the rarefact ion waves of the first and second kinds 
respectively. These show that, for fixed t, p(x, t) is a m o n o t o n e  function of x along 
the rarefaction waves. 

3. Entropy. A pair  of mappings  tl:R2--* R, q:R2---~ R is called an e n t r o p y - e n t r o p y  
flux pair  if it satisfies an identity 

Vq = Vt/Vf. 

Fur thermore ,  if t/(p, u) satisfies t/(0, u) = 0, then t / is  called a weak entropy.  
For  example,  the mechanical  energy ~/. = ½pu2+ P~/7(Y- 1), 1 < 7 < 2, is a 

strictly convex weak entropy. 
One  can prove that, for 0 < p < C, I u] < C, 

I V~/I _-< const, 

and 

IV 2 t/(r, r)[ < const V 2 t/, (r, r), 

where r is any vector  and the constant  is independent  of r. 

4. The Properties of the Riemann Solution. We have the following results: 

L e m m a  1. Suppose that (p(x, t), re(x, t)) is a Riemann solution of system (2.1). Then 
the jump strength of re(x, t) across an elementary wave can be dominated by that of  
p(x, t) across the same elementary wave, that is, 

across a shock wave: Imr - mzl < Kip ,  - oil, 

on a rarefaction wave: I m -- mll < K i p  - Pz[ < K[pr - Pzl, (P, m)eRw, 

where K only depends on the upper bound of p(x, t) and Ira(x, t)/p(x, t)l, (Pt, ml) and 
(Pr, mr) denote the left and right states respectively. 
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F rom Lemma 1, we can immediately obtain the next result. 

Lemma 2. Suppose that v(x, t )=  (p(x, t), m(x, t)) is a Riemann solution with central 
point (0, O) on the rectangle: - l < x < l, 0 < t < h. Then 

l l 

Iv(x, t) - v(x, h - 0)12dx < C S [p(x, t) - p(x, h - 0)12dx < ClY'  le(p(x, h - 0))[ 2, 
- 1  - l  

where e ( p ( x , h -  0)) denotes the jump strength of  p(x, h -  O) across the elementary 
wave on t = h, C only depends on the upper bound of  p(x, t) and I m(x, t)/p(x, t)l, the 
summation is taken over all jump strengths in p(x, h -  O) across elementary waves. 

Lemma 3. I f  (p(x, t), m(x, t)) is a solution of  Riemann problem (1 < ~ < 3): 

I (2.1), O < t < h ,  - l < x < l ,  

, ,, f ( p l , m l ) ,  - l < x < O ,  
tP 'm]h=°=~(p2,m2) ,  O < x < l .  

and consists of  two shocks and constant states (Pl, ml), (Po, too) and (Po, m2) which 
satisfy 

a2 (Vo, v2) - a 1 (v 1 , Vo) _-< d, 
then we have 

I t  follows that 
max(pa, P2) < [po(d)2] 1/~. 

I P2 - Po[ ~ I Pl - Po[ + 2(po(d)2) 1/~, 

where a~(vl, vr) (i = 1, 2) denote the propagating speeds of  the first and second kinds 
of  shock waves with left state v t and right state v r respectively, the mesh length I and 
h satisfy max sup [2i(p,m)l < I/2h < K. 

i = 1 , 2  

Lemma 4. I f  g(x) is a piecewise continuous function defined on some interval [a, b] 
consisting of  constant state intervals, at most two of  discontinuity points and monotone 
continuous intervals, then 

b 

S ]g(x) - OlZdx > ~od3(b - a ) ~  [e(g(x))] 2, 
a 

where 
1 b 

9 = ~ - a  ! g(x) dx, 

e(g(x)) denotes a jump strength of  g(x) across a discontinuity point or monotone 
continuous interval, d o is the infimum of ratios of  the lengths of  constant state intervals 
and b - a, and s o > 0 only depends on do and b - a. 

It is easy to prove the fact by the analysis of various possible cases and positive 
definite quadrat ic  forms. 

Lemma S. The regions ~ = {(p, m):w < w o, z > Zo, w - z > O} are invariant regions 
about Riemann problem. More precisely, if  the Riemann data belong to ~ ,  the solutions 
of  the Riemann problem belong to ~, too. 
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L e m m a  6. I f  {(p(x),m(x)):a < x < b} c ~ ,  then 

1 b 1 b \ 

L e m m a  7. The rate of entropy production for an arbitrary weak entropy r I is 
dominated by the associated rate of entropy production for tt, in the sense that 

la[t /]o -- [q]ol--< const {a[t/.]o - [ q , ] o } .  

The proof of this fact may be found in Ref. [8]. 

B. An Embeddin9 Theorem 

Theorem 3. Let ~ c R" be a bounded and open set. Then 

(compact set of W-1,q(~))c~ (bounded set of W-1"(g2)) 

c (compact set of WI~'2(-Q)), 

where q and r are constants, 1 < q < 2 < r < ~ .  
This theorem is a result of Ref. [-83. 

C. Generalized Solution 

Definition. A pair of bounded measurable functions (p(x,t), u(x, t)) is called a 
generalized solution of the Cauchy problem (1.1)-(1.2) in the region FIT, if it satisfies 
the following conditions: 

IS (p~, + pu~x + U(p, u, x, t)~dxdt + S po(x)~(x, O)dx = O, 
O < t < T  - ~  

(put ,  + (pu 2 + p(p)) x + v(p, u,x, t)Cdxdt + po(X)Uo(X) (x,O)dx = O, 
O < _ t < T  - o o  

where ~b(x, t) is any smooth function which has compact support in the region Hr. 

3. Fractional Step Lax  Friedrichs Scheme and Godunov Schem~ 

In this section we shall introduce two difference schemes--the fractional step 
Lax--Friedrichs scheme and Godunov scheme. Meanwhile, we shall use these 
schemes to construct the approximate solutions vl= (pZ, m ~) = (pl, pZu~) by means 
of mesh lengths l and h which satisfy the inequality max(sup]2i(pZ, mZ)])< 

f = l , 2  

I/2h < Co/2 for any given T > 0 and prove that p~(x, t) ~ O, so that it is possible to 
construct (p~, m z). 

A. Fractional Step Lax-Friedrichs Scheme. For integers n >= 1, we set 

J, = { j : j  integers, n + j = even}. 

For  0 _< t <__ h, ( j  - 1)/< x < (j  + 1)/, j odd, we define 
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vl(x, t) = rio(X, t) + H(Vlo(X, t), x, t)t, 

where Vlo(X, t ) =  (plo(X, t), mlo(X, t)) are the solutions of (2.1) with initial da ta  

vZo(x) = fVto((j  - 1)l), x < jl, 
(Vto((j  + 1)/), x > jl, 

where I [11] 
1 x ~  - -  

do(X) = Vo(X)z~(x), z~(~) = T ' 7  

O, otherwhere. 

F r o m  this, we define 

(3.1) 

( j +  1)t 

1 1 I v ' (x ,h-  0)dx. (3.2) 
V j  = ~ ( j - i ) t  

Suppose that  vZ(x, t) have been defined for t < nh, then define 

vt(x, t) = rio(X, t) + H ( v l  (x, t), x, t)(t -- nh), (3.3) 

for nh ~ t < (n + 1)h, ( j  - 1)l < x < ( j  + I)l, where j e J ,  and Jo(X, t) are solutions of 
(2.1) with initial data (vy_l ,v]+l)  with respect to j l  at t = nh. Therefore, we can 
define the fractional step Lax-Fr iedr ichs  scheme: 

1 u +  ~)z 
vy + ~ = -  ~ v g ( x , ( n + l ) h - O ) d x .  (3.4) 

2l u - ~)* 

In this way, for nh < t < (n + 1)h, n > 0 integers, we have 

w'(x,  t) = Wlo(X, t) + X (wto(X, t), zto(x, t), x, t, t - nh)(t  - nh), 
zl(x, t) = zto(x, t) + Y(wto(x, t), Zto(X, t), x, t, t - nh)(t - nh), (3.5) 

k p + v t p ,  u, x, Os 

+ S (P + r U(p,  u, x, t)s) ° -  1 dvU(p ,  u, x, t) p=(o(w_z)/2),!o 
0 _11 u = ((w + z)/2) 

g(w,  z, x, t, s) = ~ V(p, u, x, t) - uU(p,  u, x, t) 
L p + U(p, u, x, t)s 

- i (p + ~ v(p ,  . .  x,t)s) °-~ a~ v (p .  u. ~, t) ] .=(o(w z,j2,,,o 
0 -I  I ~ = ((w+z)/2) " 

(3.6) 

where 

B. Fract ional  Step Godunov Scheme. Similarly, for nh <= t < (n + 1)h, j t  < x < 
( j  + 1)l, j and n > 0 integers, we define 

vt(x, t) = vZo(x, t) + H(vlo(x, t), x, t)(t -- nh), (3.7) 
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where Vto(X, t) are the solutions of (2.1) with initial da ta  (v~, v~+ 1) with respect  to 
j + ½  at  t=nh.  

F r o m  this we define the fractional step G o d u n o v  scheme: 

n + l  ] (j+l/2)l 
vj = ~ ~ vt(x, nh - O)dx. (3.8) 

(d -  1/2)/ 

In  the same way, we can get the equalities which are similar to (3.5)-(3.6). 

4. Compactness Framework of the Approximate Solutions 

We assume that  the functions U and V satisfy the following conditions: 
C1 °. Both  U and V are cont inuous functions, 

and  

)/ U p, ,x , t  p <CK, 

Cr is a constant.  
C2 °. There  exists a cont inuous  differentiable function F(w, z) and constants  

h o > O, mo~(mo, ~), where m o = max(sup  Wo(X), - infz0(x)), 
X 

(a) X(w, z, x, t, s) < F(w, z), Y(w, z, x, t, s) > - F(w, z), for w - z > 0, 0 < t < ho, 

3 F > 0 ,  for w - z > O ,  and F(r, - r ) > O ,  for r >  0. 
(b )  0 w  = = 

u o  dr 
(c) mo ~ f ( r ,  -- r) > T. 

C3 °. I H(v2, x, t) - H(v t ,  x, t) l ~ Crlv2 - vl I ~, 0 < ff ~ 1, if vl,/)2 ~SK" 

Remark 1. F o r  (U, V)=(O, Tp),(O, apu), (O,~puln(lui + l)) and (~p,~pu), where 
la(x,t)l < ao < 0% it is easy to check tha t  they satisfy the condit ions C 1 ° - C 3  °. 

Theorem 4. Assume that the conditions C 1 ° - C 2  ° hold and the initial data satisfy 

lUo(X)l <: M, O < po(x) ~ N. 

Then  there exists a constant  ha > 0  such that,  when h < h l ,  the difference 
approx imate  solutions derived by either the fractional step Lax-Fr i ed r i chs  scheme 
or G o d u n o v  scheme are uniformly bounded  in the reg ion / - / r ,  that  is, there exists 
a constant  C(T) > 0 such tha t  

lu'(x, t)l <= C, 0 <- p1(x, t) <= C, (x, t)~Hr. (4.1) 
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Proof. First of all, we assume that the estimate (4.1) is true such that the 
corresponding Riemann invariant sequences satisfy 

wl(x, t) < Mo, zZ(x, t) >= -- Mo, wl(x, t) -- zZ(x, t) >= O. 

Then we shall prove that there exists a constant hi > 0 indeed such that, when 
h < h 1, the estimates with the same bound can be obtained. For  concreteness, we 
shall only prove the result for the fractional step Lax-Friedrichs approximations 
provided that the conditions C1°-C2 ° hold. The other case can be proved in the 
same way. 

First, we shall prove that there exists a constant hi > 0, when h < hi, such that 

pl(x,t)>O, for - o o < x < o %  0 < t < T .  (4.2) 

For  0 < t < h, we obtain 

rn~ (x, t) "~ 
pl(x, t) = pro(X, t) + U plo(X , t), ~ - - ,  x, t i t  

po(X, t) J 

V( 
= p~o(X, t) ~ do (X ,  t) • 

Observe that the condition C1 ° and Lemma 5, we obtain that there exists a 
constant h2(Mo(mo(M, N))) > 0, such that, when t =< h2, 

pZ(x, t) > o. 

Suppose that the above inequality holds for t < nh. Then for nh < t < (n + 1)h, 
we similarly have 

pt(x,t)=pto(x,t) [1 + 

for h < h 2. 

pg (x, t) 

Using mathematical induction, we derive that the inequality (4.2) holds. 
Moreover, for nh < t < (n + 1)h, n > 0 integers, we use the condition C2 ° to get, 

for h < ho, 

wZ(x, t) <--<_ Wto(X, t) + F(wto(X, t), Zlo(X, t) )(t - nh) 

<=sup wlo(x, nh 0)+ F ( s u p  wZo(x, nh + O),infzlo(x, nh O) ) ( t -  nh), 

z z (x, t) >= Jo (x, t) - F(wlo (x, t), Jo (x,,t))(t -- nh) 

> infzl°(x'nh + O) -  F ( s u p  wZ°(x'nh + O)'i~zt°(x'nh + O) ) ( t -  

In particular, we obtain 

wl(x, (n + 1)h - 0) < sup WZo(X, nh + O) 
x 
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+ F(supw~o(x, n h +  O),infflo(x, O))h, 

fl(x, (n + 1)h - O) > infz~(x, nh + O) 
X 

Set M ,  = m a x ( s u p  wlo(x, n h + O ) , - i n f f l o ( x ,  n h + O ) ) . x  Then we have 

Max ( sup  wl(x, (n 

It follows that  

that is, 

+ 1)h - 0), - inffl(x,(n~, + 1)h - 0))  < M .  + F(M.,  - M.)h. 

M.+ 1 < M .  + F(M. ,  - M.)h,  

M.+ I - M .  < F(M. ,  -- M.).  
h 

Consider the corresponding ordinary differential equation. 

It follows that 

dr 
= F ( r ,  - r ) ,  

r(0) = m0-= m a x ( s u p  Wo( / ) , -  inf Zo(X)) 

m) dr 
I r(r,_r~) - t "  

mo 

(4.3) 

(4.4) 

(4.7) 

d2r(0 
dt 2 = (Fw(r(t), - r(t)) - F~(r(t), - r(t)))F(r(t), - r(O ) > O. 

This shows that  the integral curve r = r(t) is convex. 
It follows from (4.2)-(4.5) that  

M ,  < r(nh) < Mo. 

We derive from (4.2) and (4.7) that 

wt(x, t) < Mo,  - zZ(x, t) < Mo and wZ(x, t) - fl(x, t) > O, 

that  is, for h < h 1 = min(ho, h2), there is a constant C(T) such that 

Id(x, t)l = mL(x' t) pL(x, t) < C, 0 < p~(x, t) < C. 

(4.6) 

Meanwhile 
m o < r ( t ) < M o ,  for 0 < t < T .  (4.5) 

Then, from the condition C2°(c), there exists a constant M o ( T  ) < ~ such that 
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The proof of the other case can be similarly obtained. 

Theorem 5. Assume that the conditions in Theorem 4 and (1.5) are satisfied. Then, 
for 1 < ? < 2, the measure set 

rl(v'), + q(vl)x 

lies in a compact subset of H~o~(Q) for all weak pair (r h q), where 1"2 = H r is any 
bounded and open set. 

Proof. For simplicity in printing we shall drop the index of the approximate 
solutions vt(x, t) and do(X, t) in the process of the proof and only prove the result 
for the fractional step Lax-Ffiedfichs approximations. 

Step 1. The entropy equality can be written in the form 

where 

~S 
O<=t<T=mh 

(q(v)c~, + q(v)¢x)dxdt = M(~b) + N(~b) + L(~b) + ~,(¢), (4.8) 

M(¢) = ~ ¢(x, T)tl(Vo(X, T))dx -- ~ ¢(x, O)rl(Vo(X, O))dx, 

N(¢) = J'I [( t /(v)-  t/(Vo) ) ¢, + (q(v)-  q(Vo))¢x] dxdt, 
( j+  1)/ 

L(¢)=  E j" 
j ,n ( j - -  1)/ 

[ ( . ( v g _ )  - t/(v~j)] ¢(x, nh)dx - L 1 (q~) + L2(¢) + L3 (~b), 

U + 1)/ 
L~ (4) = Y, CY I (,1(e'_) - ,7(v~jl)dx, 

j ,n  ( j -  1)1 

(j+ 1)z 
L2(q} ) = ~ ~ (t/(v~_) - t/(v"_ ))¢(x, nh)dx, 

J,n (j--  1)l 

( j+  1)l 

La(¢) = 2 I (t/(v"_) - t/(v~i))(¢ - Oy)dx, 
j ,n  (j-- 1)/ 

T 

S ( ¢ )  = I Y~{~En]o - [q]o} ¢(x(t), t)dt, 
0 

where vL = v(x, nh - 0), ~ = ¢(jl, nh), the summation is taken over all shock waves 
in v at a fixed time t, a is the propagating speed of the shock wave. 

Let S = (x(t), t) denote a shock wave in vo(x, t), [q]o and [q]o denote the jump 
of tl(Vo(X, t)) and q(vo(x, t)) across S from left to right respectively, namely, 

{ [ , G  = ,I{,~o (~(t) + o, t)} - ,t{~o(~(t) - o, t)}, 
[q]o=q{vo(x(t)+O,t)} q{vo(x(t) 0, t)}. 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Step 2. Without loss of generality we suppose 

tl,(po(x), Uo(X))dx < ~ ,  
- o o  

otherwise one need only introduce a normalized entropy pair 
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*7. = ~ . (v)  - ~ . (~)  - v , . ( e ) ( v  - ~). 

gl, = q,(v)-- q,@) Vt/,(g)(f(v)-  f(Q), 

and then repeating the argument below. 
Observe that (p, u) have compact support in the region FIr and (U, V)IporO = (0, 0), 

we may substitute 

1 1 
t l=t l ,=lpu2+7(~__l )p ' ,  q = q , = ½ p u 3 +  p'u 

7--1 

in the equality (4.7). Thus 

while 

and q5 = 1 

T 
~ [t/*]odx + ~ Z {a[t/,]o - [q,]o} dt <-- C, 

n=l  0 

I [ ? / , ] 0 d x =  2 n  .(j+l)/i 
n = l  j,n U - l ) /  

But 

D, (v~_) - n . ( v ~ ) ]  dx 

(j+ 1)/ 1 
= E I I (1 - -  O ) V 2 t l , ( V ~ j  + O(v n_ - -  Vnoj))dO(v n_ - v ~ j ) 2 d x  

j,n (j--1)/ 0 

(j+ 1)t 1 

-~ ~ ~Vtl,(v~- +O(v"--V"o-))dO(v"--V"o-)dx. 
j,n ( j -1)1 0 

(j+ 1)1 1 
=< ~ ~ ~ ]Vt/,(V"o_ + O(v"_ - v~_))ldO[H(v~, x, t) ldx'h <= C. 

j,n ( j -  1)l 0 

Notice that the entropy inequality a[ t / , ]  o - [q , ]o  >-- 0 is satisfied [10] across 
the shock waves and ~/, is a convex entropy. We have from (4.15) 

T 
I ~ {a[t/,]o - [q,]o} dt <-<- C, (4.16) 
0 

~. f (1-O)VErl,(v~j+O(v"_-V"oj)dO (v"_-v~j)2dx<=C. (4.17) 
j,n ( j -  l)l 

In particular, since V2r/,(r,r)> co(r, r),c o > 0 constant, we get 

U+ 1)1 
2 ~ I < - v ~ j l  2 d x ~ c .  
j,n U -  t )l 

It follows that 

U+ 1)l 
~', I Iv~- - V~ojlEdx < C(L). (4.18) 
j,n ( j -  1)l 

IJll <= L 

Step 3. For any bounded set ~2 c H T and weak entropy pair (~, q), we derive from 



Convergence of Lax-Friedrichs and Godunov  Schemes for Gas Dynamics 77 

(4.8), (4.12)-(4.13), (4.15), (4.16)-(4.17) and Lemma 7 that 

]M(4)[ < C ]l 4 Ilco(o), 
T 

I~,(4)I = c II 4 Ii Cota) ~ ~(aUt / , ]  - [q,])dx < C II 4 Ilco<a), 
0 

< Z 4 7  u+., -,7(vb))dx IZx(4)l I (r/(vt) 
j,n ( j -  1)l 

(j+ 1)t 1 
< II ¢ IlCo<~)E .f Y (1 - O)IV 2t/(r~o~ + O(vL - v~j))(v5 - v~j)ZldOdx 

j,n (j--i  )/ 0 

(j+ 1)/ 1 
__< c II 4 Ilco.~)X I I ( 1 -  0 ) v ~ , ( v ~ j  + 0(v"_ - v b ) ) ( <  - V"o/dOdx 

j,n ( j -1)/  O 

< Cti ¢ Ilco<~), 

(j+ i)t nh)dx IL2(4)1 = ~ [~(V~o-)-q(vt)]¢( x, 
(j -1) /  

(j+ 1)/ 
<Cl~ ~ IH(vo(x, nh-O),x, OIl4(x, nh)ldx 

j,n ( j -  1)t 

< C I14 I[co~a), 

where the constant  C only depends on the support  of 4. Hence 

that is 

Therefore 

I(M + Li  + L z  + D ( 4 ) I  ~ Cll 4 llco, 

I I M + L 1  + L2 + ~[Ic~ < C. 

M + L i + Lz + ~ is compact  in W -  1,ql (D), 

where 1 < qi < n/(n - 1). 
Furthermore,  for any 4eCPo(D),½ < fi < 1, we have 

(j + i)t 
IL3(4)1 ~ Z  ~ 14(x, nh) -47I  Itl(vL)-q(v~oj)Idx 

j,n (j-- 1)l 

(j+ 1)l t l ] 2  

/ ( j+ l ) t  v ~ j l Z d x ) l / 2  =<l~-i/2llV~/llc=ll4Ilcg{~ ~ Iv 'L-  
kJ,n U -  1)l 

< 2Cl p- 1/z II 4 II cg,~)" 

Using the Sobolev theorem: Wg'P(D) ~ Cg(O), 0 < fl < 1 - n/p, we have 

n 
IL3(4)I < El ~-i/2 l] 4 Nwo~,,<~), P > 1-~fl '  

(4.19) 
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n 
I[L3i[w-~,~=(O)<Cla-I/2--+O, (1--+0), l < q z < - -  (4.20) 

= n - l + f l "  

It follows from (4.19)-(4.20) that 

M + L + ~ is compact in W-1,~o(~), (4.21) 

where 1 < qo = rain(q1, q2) < n/(n - 1 + fl). 
Observe that 0 < p < C and l ul < C. We have 

tl(v)~ + q(v)x - N is a bounded set of W- ~'~(~?)(r > 1), 
that is 

M + L + ~ is a bounded set of W-  l#(~)(r > 1). (4.22) 

We derive from (4.21)-(4.22) and Theorem 3 that 

m + L + ~ is compact in H ~  (~). (4.23) 

Furthermore, for any ~b¢C;°(~), we have 

I N(4~)I < Cl j'j" (t 4~,1 + I 4~ I)dx dt < Cl II 4~ II @av 
supp 

Notice that C~(.O) is dense in H~(O), it follows that 

IINl[u;Oca~< C l i O ,  (l~O), 
that is 

N is compact in H~J (£2). (4.24) 

So far, we have obtained from (4.8), (4.23)-(4.24) 

tl(Vl)t + q(vl)~ is compact in H~J(O). 

This completes the proof of the theorem. 
From the results of Theorem 4 and Theorem 5, we can obtain Theorem 2 

(Sect. 1), namely, the compactness framework theorem, of the difference appro- 
ximate solutions. 

5. Existence Problem 

In this section we shall discuss the existence problem about the generalized solution 
of the Cauchy problem (1.1)-(1.2). We have the following theorem. 

Theorem 6. Assume that the inhomogeneous terms satisfy the condition C3 °, and the 
approximate solutions v~(x, t)= (p~(x, t), ml(x, t)) derived by either the fractional step 
Lax-Friedrichs scheme or Godunov scheme satisfy: 

O) There is a constant CI(T)> 0 and C2(L ) > 0 such that 

O<=pl(x,t)<=C1, ]uZ(x,t)lNC1, (x,t)~Hr. 
O+l) /  

2 i tV o"--v ;2dx<=C2, 
j,n U - l ) /  

]ill < L 
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where 
Vto "- = Jo (x, nh - 0). 

(ii) There is a convergent subsequence (still denoted by vt(x, t) = (pl(x, t), ml(x, t))) 
such that 

(pl(x, t), rot(x, t)) - ,  (p(x, t), re(x, t)), a.e..  

Define u(x, t)= m(x, t)/p(x, O, a.e.. Then the pair of functions (p(x, t),u(x, t)) is a 
generalized solution of the Cauchy problem (1.1)-(1.2) in the region FI r and satisfies 

O<p(x , t )<C,  lu(x,t)l<C, a.e.. 

Proof. For  any function 49(x, t)EC~(FIr), we have 

~ (d?tvZ(x, t) + ¢xf(v'(x, t)) + ~H(vt(x, t), x, t))dxdt + ~ Cvl(x, O)dx 
FIT 

= S~ (cptvlo( x, t) + d)~f(vlo(X, t)) + 4)U(vto(X, t), x, t))dxdt + ~ CVlo(X, t)dx 
II?p 

f '  (v~o + + ~ ~ c~t+¢~" O(vl-Vto))dO H(vZo,x,t)(t-nh) 
n=O nh<t<(n+l)h 

x, t) - H(J o, x, t))]dxdt - I~ + 12. (5.1) + 

Remark  that  IJ - VZo [ <= H(vlo, x, t)h <__ C1 and uniformed bounded  of v t. We have 

¢, 1 - V ' o ) ) d O  1121 <= hS~ + ¢x~f'(vzo + O(v I ]U(vto, x,t)ldxdt 
0 

+ 511¢1 I H(v*, x, t) - H(vlo, x, t)l dxdt 

< C I + C  ~ lU(vl, x,t)--H(v~o,X,t)ldxdt~O, (l-~O). (5.2) 
supp~b 

Fur thermore ,  

I 1 = 

where 

m-1 
Sc/)(x, nh)[v~on]dx+~¢H(vto,X,t)dxdt-I~l -t-112 , (5.3) 

tl=l 

j,~n (j+ 1)I 
]1111 = ~ (~)--~)7)(vlon---Vl~j) dX 

(j- 1)1 
{ (j+Dt }1/2 

<Cll/211~)]lcA ~. S Ido"--v~jl 2dx 
j,n ( j -  1)l 

Ij, II<=L 

<=C11/2~0, (1~0), 

11121= .~ ¢] (J+ l)t V z 1 (~+A)z I L o(x, nh-°)-i/,jj1), v1°(x'nh-O)dx 
2,n ( j -  1)l 

(j+ 1)z 1 t)dxdt h f H(vto(x, nh-O),x ,  nh--O) dx dx+IS¢H(v~o, x, 
2I (j- 1)1 

(5.4) 
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(j+ 1)t 
= -- h ~ ~7 S H(Jo(x, nh - 0), x, nh - O)dx + ~S ~H(vto( x, t), x, t)dxdt 

j,n (j-- 1)l 

nh ( j+  1)/ 

= ~ d t ~  [~(x,t)H(vZo(X,t),x,t) 
(n - 1)h ( j -  1)/ 

-- ~(jl, nh)H(vto(x, nh - 0), x, nh - 0)] dx < J~ + J2, 

,h (j + 1)t 
J l =  ~ dt ~ [ ~ ( x , t ) - ~ ( j I ,  nh)]H(vlo(X,t),x, t) dx 

(n -- 1)h ( j -  1)l 

(5.5) 

< CILt~Hcl~O, ( l~O) (5.6) 

From Lemma 2 (Sect. 2), we have 

(J + 1)/ 

j~,n (o(jl, nh)[ H (vlo (x, t), x, t) -- n (vZo (x, nh - 0), x, nh - O)] J2= l I dx 
( n -  1)h ( j -  1)t 

( nh U+l)t ) 
__< C ~ ~ dt ~ [4~(jl, nh)llvto(X,t)-VZo(x, n h - O ) l ' d x + o ( 1 )  

j,n (n-- 1)h ( j -  1)l 

< C dt IVto(X, t) - Vto(X, nh - O)[2dx + o(1) 
( n -  1)h - L  

< C ~ dt Ip~o(X,t)- pto(x, nh-O) lZdx  +o(1)  
( n -  1)h - L  

< C(A~/z + o(1)). (5.7) 

Suppose that v~= (pZ, m ~) = ( j ,  ptuZ ) are Riemann solutions of the initial data 

= ~(p i ,m l )  x < jl, (5.8) 
(P,m)l~=(,-1)h ((p2,m2) x > j l ,  

on the rectangle {(n -- 1)h < t < nh,(j  - 1)1 < x < (j  + 1)/}, and the intermediate 
constant state (provided that  it exists) is (Po, m0). 

(i) If vl(x, t) consist of either constant  states, 1-shock and 2-shock, and the 
ratios of lengths of the interval of intermediate constant state and 1 are 
smaller than 6; or constant  states, 1-Rw and 2-shock, and the intermediate 
constant state Po < 6i/°, then 

( j+  1)/ 
IpZo(X,t)-p~o(x, nh-O) tedx<C(Sl ,  ( n - 1 ) h < t < n h .  (5.9) 

u-i)t 

(ii) In other situations, we define/Sl(x, t) as follows: 

a. For  2-Rw of vt(x, t) with the left state v_, we define 

fi(x, t) = { f i -"  x -- j l  < 2~(fi_, fi_ ul(x, t))(t -- nh), (5.10) 
pt(x, t), x - jl > 2i( fi_, fi_ ul(x, t))(t - nh). 

b. For  1-Rw and/ - shock  (i = 1, 2) of vl(x, t), we define 
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f ' (x ,  t) = p'(x,  t), 

where f+_ = max(p+_,61~°), for sufficiently small  8 > 0 .  Then,  for this case 
(ii), the ratios of  lengths of  the interval o f  intermediate constant  state Po > 8a/° 
(provided that it exists) and l o f  fZ(x, t) are all bigger than 6 and 

(j+ i)t 
~. ( f i t (x ,  t) - -  p ' ( x ,  0[  2 + [fi~j - -  P"@2) d x  

V -  1)l 

<= C6(~ + 3)/(~- 1)1, (n -- 1)h = t < nh. (5.11) 

Us ing  L e m m a  4, we have  

(j+ i)l 
l f~ -  -- f~@2 dx > %aat le ( f{~(x ,  nh - 0))t 2. (5.12) 

( j -  i)t 

N o w  we divide A t into two  parts: 

, nh U+ 1)/ j" j" 
l,n (n-- l)h ( j -  1)/ 

[jII<L 
*~ nh 

+ 2 f  

lpZ(x, t) - pt(x, nh - O)[Z dx 

(j 4. 1)t 
"dt ~ I p t ( x , t ) -  p l ( x ,  n h - O ) l Z d x ,  

lJ~t _-<L 

j,n (nAb ( j -  1)/ 
Ijll < L 

where the summat ions  ~ and ~ are respectively take over the rectangles where 
the case (i) and case (ii) occur. 

Therefore, we obtain for (5.7), (5.11)-(5.12), 

** nh (j+ 1)1 
A t < 3  ~ S dt ~ ([fZo(X,t)-fZo(x, nh-O)12 

j,n (n - 1)h ( j -  1)1 
Ifl[ < Z 

+ [pl(x, t) - fit(x, t)[ 2 + I f~(x, nh - O) - p~(x, nh - O)lZ)dx + C8 

(** ) <C 12 ~ 18(f~o(x, nh -O) ) l e+a  
j,n 

IJtl <-_L 

O + i)t \ 

) (j-- I)/ 

( j+ l ) t  ) 
< C  6-3I ~ S IpnO--P~J [ 2 d X - k 6 2 ( 3 - r ) / ( ~ - l ) A - 8  

j.n ( j -  1)/ 
IjII~L 

C ( 6 -  3I + 82(3 - T)/(r- 1) _~ 8). 

This shows  that for sufficiently small  and arbitrary constant  8 > 0, 

lira A z < C(6 2(3- r)l(~- l) + 8). 
l--+ 0 

(5.13) 

It fo l lows that 
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J2~O, ( l - ,  0), 
that is, 

I1 +12--.0, (l~0).  (5.14) 
Observe that 

(pt, ml)~(p,m), a.e.. (5.15) 
We obtain 

0__<'p < C, tul =--=lml < C, a.e.. (5.16) 
P 

Using the control convergence theorem we derive from (5.1) that 

m(x,t) t ) ] d x d t  
1~ r 

+ ~ 4(x,O)po(x)dx = O, 
- o o  

re(x, t) 

.T 

+ S 4(x,O)mo(x)dx=O. 
- - 0 0  

Define u(x, t) = re(x, t)/p(x, t), a.e. Then we obtain 

I.[ [4,p(x ,  t) + 4x'(pu)(x, t) + 4" U(p(x, t), u(x, t), x, t)] dxdt 
F I T  

+ ~ 4(x,O)po(x) dx=O, 
- o o  

~ [4t'(pu)(x, t) + 4~'(pu 2 + p)(x, t) + 4" V(p(x, t), u(x, t), x, t)]dxdt 
177" 

+ ~ 4(x,O)Po(X)Uo(X)dx = O. 
- o o  

This completes the proof of the theorem. 
From Theorem 5, Theorem 6 and the results of [9], we immediately obtain 

Theorem 2 (Sect. 1). 

A c k n o w l e d g e m e n t s .  The authors are grateful to Professors P. D. Lax and J. Glimm for their mathusiastic 
encouragement. They are indebted to Professor R. J. DiPerna for valuable remarks. 
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