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Abstract. We study the asymptotic behaviour in time of the solutions and the 
theory of scattering in the energy space for the non-linear wave equation 

[S]q~ + f(q~) = 0 

in ~", n->_ 3. We prove the existence of the wave operators, asymptotic 
completeness for small initial data and, for n >__ 4, asymptotic completeness for 
arbitrarily large data. The assumptions on f cover the case where f behaves 
slightly better than a single power p = 1 + 4 / ( n  - 2), both near zero and at infinity 
(see (1.5), (1.6) and (1.8)). 

1. Introduction 

A large amount of work has been devoted to the theory of scattering for the non- 
linear wave (NLW) equation (or non-linear massless Klein-Gordon equation) 

[7]~P = ~b -- Acp = -f(~p), (1.1) 

where ~p is a complex valued function defined in space time ~"+ 1, the upper dot 
denotes the time derivative, A is the Laplace operator in ~" and f is a non-linear 
complex valued function, a typical form of which is 

f(cp) = 2cp t ~p I p- 1 (1.2) 

with t ~ p < oo. We refer to a previous paper [12] for a more detailed introduction 
and a comprehensive bibliography. It is known [9,10] that the Cauchy problem for 
the equation (1.1) with initial data (~p(t0), ~b(to))= (~P0, ~b0) at time to in the space 

1 2 H 1 @ L 2 has a unique solution (~p, ~b)~g(R, H • L ) under assumptions on f which 
reduce to 2 > 0 and to 

{~(n- -2 )  if n__3 
O = < p - - l <  if n-=<2 (1.3) 
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in the special case (1.2). The theory of scattering for the equation (1.1) then gives rise 
to two main questions. The first one is to prove the existence of dispersive solutions, 
namely of solutions that behave as solutions of the free wave equation/-q~0 = 0 at 
+ oo or - oo in time, or equivalently to prove the existence of the wave operators. 
That result is generally proved by solving the Cauchy problem locally at infinity, 
namely with large (possibly infinite) initial time, by a contraction method in a space 
of functions exhibiting a suitable time decay, and then by extending those solutions 
to all times by a standard globalisation method using the available conservation 
laws, mainly the conservation of the energy. In order to implement the contraction 
argument at infinity, one has to assume that the interaction f satisfies a suitable 
condition of decay at infinity in space, which takes the form of a lower bound on p in 
the special case (1.2). That condition depends on the choice of the space of initial data 
for the Cauchy problem at infinity, namely of asymptotic states, and is all the more 
stringent as that space is larger. Using the available estimates for the free wave 
equation []~o = 0, it is easy to implement the previous method with a sufficiently 
small space of initial data under the condition p > p 1 (n), where Pl (n) is the larger root 
of the equation [19, 20] 

n(n - 1 ) p  2 - p(n 2 + 3n - 2) + 2 = 0, (1.4) 

a value which satisfies 

1 + 4In < pl(n) < 1 + 4In + 8/n 3. 

The second question which arises in the theory of scattering is to prove 
asymptotic completeness, namely the fact that all solutions of the equation (1.1) with 
initial data in a suitable space are actually dispersive at + oo and - ~ .  The only 
treatment of that question available st) far is based on the approximate invariance of 
the equation (1.1) under conformal transformations [24,15,12] and requires the use 
of a natural space 2~ of initial data (see especially (2.10)-(2.13) in [12]), strictly 
contained in the space H ~ t~)L 2. 

A question left open at this stage is whether a complete theory of scattering for 
the equation (1.1) can be constructed in a space of initial data as large as the energy 
space Xe. That space, which in the present case is slightly larger than H ~ @ L 2, will be 
defined in Sect. 2 below (see (2.1)). The solutions of interest, either for the 
equation (1.1) or for the free equation E3~0 = 0, are then the finite energy solutions, 
which we define as solutions ~0 such that (~0, (o)eL~c(1,Xe), where I is the time 
interval where q~ is defined. A complete theory of scattering for the equation (1.1) 
in the energy space has been constructed in [23], but it is restricted to small initial 
data and to space dimensions 3 < n < 5. On the other hand, the more difficult part 
of the problem, namely asymptotic completeness for arbitrarily large initial data 
in the energy space, has been successfully treated for other non-linear equations, 
namely the massive non-linear Klein Gordon (NLKG) equation [21, 5, 6,11], the 
non-linear Schrrdinger (NLS) equation [8, 11, 18], and the Hartree equation [14]. 
In all those cases asymptotic completeness is derived through a variant of the 
original proof of [21] based on the approximate invariance of the various equations 
under space time dilations. 

The purpose of the present paper is to extend that treatment to the N L W  
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equation (1.1) and to construct a complete theory of scattering for that equation in 
the energy space. The proof of existence of dispersive solutions is based on the usual 
contraction argument and follows [7, 8] for the general framework and [23] for 
some of the estimates. The proof of asymptotic completeness follows the latest 
version of the method of [21], given in [8] and [ 11] for the case of the NLS equation 
and of the N L K G  equation respectively. The resulting theory, however, differs from 
that of the N L K G  equation in several respects. The first main difference is that the 
energy does not contain the L 2 norm of q~, and that the latter is in general not 
bounded in time for finite energy solutions, even for the free equation Oq~ = 0. That 
fact is reflected in the definition (2.1) of the energy space X e. Correspondingly, in this 
paper we never assume the initial data to have finite L z norm. The second difference 
is that the time decay of the finite energy solutions of the free equation [--lq~ = 0 is 
rather weak. As a consequence, the lower bound required on p in order to implement 
the contraction argument at infinity turns out to be equal to the critical value 
p - 1 = 4 / ( n  - 2) namely to the upper bound in (1.3). That fact restricts the argument 
to space dimension n > 3. Furthermore, since the extension of the dispersive 
solutions to all times requires the strict upper bound in (1.3), the whole argument 
and in particular the construction of the wave operators does not cover the case 
of a single power interaction like (1.2). The relevant assumptions on f will be 
stated where needed in Sects. 2-4. They cover for instance the case where 

f(cp) = ~oO(l~P I) (1.5) 

and g is a smooth non-negative function that behaves as 

{g(s) = 2 1 s  p , - 1  for O < _ s < _ a  
(1.6) 

g(S) = ,~2 Sp2- 1 .for s >= 1 /a  

for some a, 0 < a < 1, with 

0 <= P2 - 1 < 4 / ( n  - 2) = Pl - 1. (1.7) 

The proof of asymptotic completeness, on the other hand, requires the existence of 
some norm that decays integrably at infinity in time for solutions of the free equation 
[S](p = 0. As a consequence, that proof applies only to the case of space dimension 
n >_ 4. It requires in addition a reinforcement of the assumption on f which takes 
the form 

0-<p2 - 1 < 4 / ( n - 2 ) < p l  - 1 (1.8) 

in the special case (1.5), (1.6). 
This paper is organised as follows. In Sect. 2 we collect and/or derive a number of 

properties and estimates that are needed in the rest of the paper, in particular space 
time decay properties of finite energy solutions of the free equation, basic estimates 
of the non-linear term in (1.1) (Lemma 2.3) and a number of relations between 
various decay properties of the solutions of the equations (1.1) and DO = 0 
(Propositions 2.1, 2.2 and 2.3). In Sect. 3 we solve the Cauchy problem for the 
equation (1.1) with large (possibly infinite) initial time and finite energy initial data. 
We first solve the local problem at infinity for the critical value ofp (Proposition 3.1) 
and we prove that the solutions thereby obtained are dispersive in a natural sense 
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and in particular have asymptotic states in the energy space (Proposition 3.2). As a 
by-product of those results, we derive global existence and uniqueness of solutions 
and we prove asymptotic completeness for small finite energy initial data 
(Proposition 3.3). We then solve the local Cauchy problem at finite times in the 
subcritical case (Proposition 3.4), we derive the conservation of the energy 
(Proposition 3.6), and we finally prove the existence of global solutions that are 
dispersive at + oo (or - o o )  and thereby the existence of the wave operators 
(Proposition 3.7). In Sect. 4 we first derive some uniform boundedness properties of 
finite energy solutions of the equation (1.1) (Proposition 4.1). We then prove the 
main result of this paper, namely the fact that for suitable (repulsive) interactions, all 
finite energy solutions of (1.1) exhibit the same time decay as those of the free 
equation Fq~p = 0 (Proposition 4.2), thereby proving asymptotic completeness. That 
section follows rather closely Sect. 5 or [8] and Sect. 4 of [11]. 

We conclude this introduction by giving the main notation used in this paper. 
For any r, 1 _< r < 0% we denote by II lit the norm in L r = Lr(~"). With each r it is 
convenient to associate the variables a(r), fl(r), 7(0 and 6(r) defined by 

a(r) = 2fl(r)/(n + 1) = 7(r)/(n - 1) = 6(r)/n = 1/2 - 1/r. 

Of special interest are the values 2* =2n/(n-2) and r~ = 2(n+ 1)/(n- 1). We shall 
use the notation ~s = 7(rs)= ( n -  1)/(n + 1) and similarly as, fls and 6s. Pairs of 
conjugate indices are written as r and f, where 1/r + 1/f = 1. For any integer k, we 
denote by H k - Hk(g~ ") the usual Sobolev spaces. We shall use the homogeneous 
Besov spaces and the homogeneous Sobolev spaces of arbitrary order and the 
associated Sobolev inequalities, for which we refer to [ 1, 3] and to the Appendix. We 
use the notation B, p - B~,2(R" ) and H~ =-/-/,P(R ") for those spaces. For any interval 
I c ~, we denote by l t h e  closure of I in ~ = ~ u { + oo, - oo}. For any interval I, for 
any Banach space B, we denote by W(I, B) the space of continuous functions from 1to 
B. For any q, 1 < q < oo we denote by Lq(I, B) (respectively) L~oc(1, B)) the space of 
measurable functions ~p from 1 to B such that [l~o(.);BflsLq(1) (respectively 
][ cp(.); B II eLbow(I)). We shall use extensively the following spaces [2]. For any t ~ ,  let 
7, be the unit interval with center t. For any m(1 < m < oo) and q(1 < q < oo), for any 
Banach space B and for any interval I = ~, we define E"(L q, 1, B) as the space of 
measurable functions from I to B for which 

[[~p;E"(Lq, l , B ) [ f = S u p I ~ (  ~dtt[q~(t);Bl[q)"/q} TM (1.9) 
set o tzeZ \(rs+z(]l) 

is finite, with obvious modifications if q and/or m is infinite. The spaces g"(L ~, I, B) 
are Banach spaces with the norm defined by (1.9). If B = C, we write fm(Lq, 1) for 
g"(L ~, 1, C). If I = ~, we shall omit I in the notation. 

We shall need the operators co = ( - A)  1/2, K(t) = co- 1 sin cot and/(( t )  = cos cot. 
The operators K(t) and/(( t)  are bounded and strongly continuous with respect to t 
in H k for any k. Finally, we shall use the notation p + = Max { _+ p, 0} for any p e E. 

2. Preliminary Estimates 

In this section we collect a number of definitions and estimates. They concern the 
finite energy solutions ofthe free equation [~p = 0, the finite energy solutions of the 
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N L W  equation (1.1) and the interaction term f in (1.1). The basic space for the initial 
data ((Po, ~ho) = (tp(to), ~(to)) for the equations (1.1) and Wltp = 0 is the energy space 

Xe = (L2* c~H~) E) L 2. (2.1) 

We refer to the Appendix for the meaning of that space as well as for the definition of 
time derivatives and time integrals. We first consider the equation Vlgo = 0. 

The solution of the Cauchy problem for []~o = 0 with initial data (q~o, ~ho) at time 
zero is given formally by 

q~(°)(t) =/((t)Cpo + K(t)~o. (2.2) 

We recall briefly some properties of the operators K(t), l((t) and exp (_+ iwt). The 
basic estimate for exp (_+ iwt) is 

t[ exp ( __. iwt)~p;/~- a(r)II < Cr [tt - ~(r)[I ~0;/i~(') II (2.3) 

for all t~R\{0}, 2 _< r < oc and cp~/~ ('). A proof of(2.3) can be found in [4] and [22]. 
From this estimate one can derive the following results. 

Lemma 2.1. Let L be any of the operators coK(t), I((t), exp ( _ iwt). Then, for any 
(r, q) and (r', q') with 0 < 2/q = 7(r) < 1 and 0 < 2/q' = y(r') < l , for any interval I c ~, 
for any seI,  the operator 

t 

u ~ ~ dzL(t -- z)u(r) 
$ 

is bounded from IJ(l, [~t,)) to L¢ (I, B~ ~tr')) with norm uniformly bounded with respect 
to I and s. 

Proof. See [13]. See also [17] and [25] for the analogous result for the SchrSdinger 
equation. 

Lemma 2.2. (1) Let r and q satisfy O<__2/q=7(r)< 1. Then, for any (p~L 2, 
exp (+  icot)q~ belongs to Lq(~, [~Jt*)) and satisfies the estimate 

[[ exp (_+ iwt)q); Lq(R,/~- P(~))[[ =< C H q~ tl 2- (2.4) 

(2) Let r and p satisfy 

! < 6(r) < n/2 

< p + 6(r) -- 1 = a < 1/2 (2.5) 

1 -- fl(r) 

1/q = a. Then, for any (q~o, ~ho)~Xe, ~P(°)(t) =/£(t)~Oo + and let q satisfy 
K(t)~b ° eLq(i~, By), (bto)(t) - /~ ( t )~  ° _ c o Z K ( t ) g O o  ~Lq(g~, [~v- 1 ) and the following esti- 
mates hold 

II ~(o); Lq(R, h~)II t 
t[ ~b(°); Lq(R, [~v- 1) fl ~ < C( II ¢OgOo II 2 + ][ ~o [I 2). (2.6) 

Proof. See Lemma 3.1 in [9]. 
The space-time integrability properties of the solutions of []~o = 0 are expressed 

in terms of a family of spaces depending on two parameters, for which one can take 
any two of the three parameters r, p and o connected by (2.5). The allowed region for 
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Fig. 1. Space time integrability properties of the solutions of the free wave equation. The case shown 
is n = 6  

those parameters is shown in Fig. 1 in the (p, a) plane. Of special importance is the 
parameter tr which characterizes the regularity in space and in time (in particular the 
Sobolev inequalities connect spaces with the same value of tr). 

We now define the following family of spaces, which embody the dispersive 
properties of the finite energy solutions of the free equation in the form of the space 
time integrability properties of Lemma 2.2. For any interval I c •, we define 

~( I )  = {(q~,~k):q~Lq(I,[J~)nL~(I,L 2.) and ~ L q ( I , B ~  -1) for all r,p,a,q 

satisfying (2.5) and 1/q = a}. (2.7) 

We also define the corresponding local spaces ~/~oo(I) with L q replaced by L~oc and 
L ~ by L17o. Note in particular that ~ ( I ) c  L~(I, Xe) and 0~1oc(I ) c L~¢(1, Xe) for 
all I c ~. Lemma 2.2 expresses in particular that all solutions of ff]q~ = 0 with initial 
data in X~ (equivalently all finite energy solutions) belong to ~(~). 

We next show that functions of space-time satisfying some of the properties of 
Lemma 2.2 possess additional regularity properties corresponding to negative 
values of a. That result wilt apply to solutions of ~q~ = 0 as well as to solutions of 
(1.1) in suitable circumstances. The next proposition, however, does not make 
reference to any equation, although the assumptions are inspired by Lemma 2.2. 

Proposition 2.1. Let I be an interval of ~, possibly unbounded. 
(1) Let k satisfy 2(n - 1)/(n - 2) < k < 2", let a = (n - 2)/2 - (n - l)/k, let p > O, 
p ' > O , p + p ' > l ,  let 2 < r , r ' < ~  with p + 6 ( r ) - l = p ' + 6 ( r ' ) - l = a  and let 
1/q = a. Let tp~Lq(I, [3~) and (o~Lq(l, [~o:-1). I f  q~, possibly redefined by continuity 
on a set of  measure zero in time, has a representative in Lk for some toeI, then ~p 
has a representative in oK(I, L k) (still denoted by qg). I f  k < 2*, then tl q~( t) II k is uniformly 
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H61der continuous in t with exponent k(1 -6(k)),  and ~o satisfies the estimate 

l[ q~(t)Ilk ~ C(1 + It[) 1 -a(k). (2.8) 

I f  k = 2* and I is unbounded, say I = [T, oo), then [l~o(t)[[2. has a finite limit as 
t - +  00. 

(2) Let k satisfy 2 <_ k <_ 2(n -- 1)/(n -- 2). Let q~eL~(I, L2*), (oeL~(I, L2). I f  q~, possibly 
redefined by continuity on a set of  measure zero in time, takes its value in Lk for some 
t o El, then ~o ~g(I ,  Lk). The quantity [[ cp(t)][ k l/t*- a<k)) is uniformly Lipschitz continuous 
in t, and ~o satisfies the estimate (2.8). 

Remark 2.1. The assumptions q~eLq(I, Y) and O~Lq(I,X) imply that ~o can be 
redefined on a set of measure zero in time so as to belong to cg(I, X). This is the 
redefinition of ~o quoted in the proposition. 

Pro@ (1) We use the regularization operator Rj defined in the Appendix. Let R be 
either Rj or Rj - R e for some j, f. Then R~o, R(oeLq(I, H")  for arbitrary m (we take m 
sufficiently large) and R0 is the weak time derivative of Rq~, so that R~o ~(g(I, Hm). By 
an elementary argument of regularization in time we obtain the identity 

t 

II R~o(t)Ilk k -  [lR~o(s)l[k=kRe~dw(R(o(z),Rq~(z)lR~o(z)[k-2). (2.9) 
5 

Assuming for definiteness that s < t, we estimate 

t 

ti[ Rq~(t)It~ - II Re(s)II~l < kSdz ]1Rck(z);/~,','-1 II II R~0(z)l Rq~(x)lk-2; B,b -0' [I 
s 

t 

< c S d~ II g¢(~);  B,~,' - '  II II Re(z);  B,' II k- ' 
s 

< C lt - s[ ~ -k~ [I R~k; L~((s, t),/~,' - ~)[[ [I R~0; Lq((s, t),/~) [] k- 1 (2.10) 

by duality, by Lemma 3.2 of [9] (an improved version of which is given in 
Lemma 2.3 Part(l) below) together with Sobolev's inequalities and by the H61der 
inequality in time, under the assumptions made on the various indices. In particular 
the use of Lemma 3.2 of [9] is made possible by the conditions p + p' > 1, p > 0, 
p' > 0 and by the relation between k and a, which simply expresses the homogeneity 
of the estimate. The use of the H61der inequality is possible under the condition 
ka < 1 which is equivalent to k < 2*. The lower limit on k is obtained for a = 0. 
Note also that 1 - ka = k(1 - 6(k)). 

We first use the estimate (2.10) with R = R i - R t and s = t 0. By the assumption 
on ~0(t0) and the properties of Ri, the second norm in the first member of(2.10) tends 
to zero when j, E-* Go. By the assumptions on ~o and ~b, the properties of Rj and the 
Lebesgue dominated convergence theorem, the two norms in the last member of 
(2.10), for q < ~ ,  or the integral in the last but one member of (2.10), for q = 0% tend 
to zero when j, E ~ or. Therefore R ~ ( t )  is a Cauchy sequence in L k, so that its limit is 
the canonical representative of ~0. We next use (2.10) with R = R ~ -  ~. The last 
member of (2.10) is estimated for any compact subinterval J c  ~ I , J  containing 
s = to, by 

... <-_ CtJI~-k~llR~(o -- (p;Lq(J,B~;-~)II IIR~o - ~o;L~(J,B~)I] k-~ (2.11) 
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uniformly for t~J  and converges to zero whenj  ~ oo by the same argument  as before, 
uniformly for t~J. Therefore  R/p  converges to q) in L ~ uniformly on the compact  
subintervals of I. Since R~fpecK(I,L k) this implies that  q~ecg(I, Lk). We finally use 
(2.10) with R = R~ and general s and t. Taking the limit j ~ ~ yields the announced  
H61der continuity proper ty  of II ~0(t)I1~ and the estimate (2.8) for k < 2*. I fk  = 2* and 
I is unbounded,  then the limiting estimate shows that  [I (p(t) tl z* satisfies the Cauchy 
condit ion and therefore has a limit as t ~ ~ .  
(2) In the same way as in Par t  (1) we obtain (2.9). Assuming for definiteness s < t we 
estimate 

Ill R(p(t) ilk _ l[ Rq~(s) [l~f 

t 

<kllg(o;Z ((s,t),ZZ)l tllR ;z ((s,t),z2*)il -I dvllR o( )tl -  (2.12) 
$ 

by the H61der inequality, with v given by homogeneity,  namely 

(v - 1)(1/2 - 1/n) + 1 - v/k = 1/2, 

or equivalently v ( 1 -  6(k))= 1, provided 1 _< v _< k, which is equivalent to the 
assumption made on  k. By an elementary computa t ion  (2.12) implies 

Ill Rq)(t) II ~ - IL R(p(s) II ~1 _-< v(t - s) II R(b; L °° ((s, t), L 2) ]l II Rq~; L°°((s, t), L 2.) 11~ - 1 
(2.13) 

In the same way as in Par t  (1) we use (2.12) and (2.13) first with R = Rj - R e and 
s = to, then with R = Rj - ~ and s = to and finally with R = R~ and general s and t, 
to prove the announced results. Q E D  

In the special case where k = 2* and where I is unbounded,  one can actually 
prove under  some mild assumptions that [[ ¢p(t)II 2. tends to zero when t tends to 
infinity. 

Proposition 2.2. Let k and s satisfy 0 < 6(k) < t < 6(s) and let v = ( 6 ( s ) -  1 ) - 1 +  
( 1 - 6 ( k ) )  -1. Let I be an interval o f  ~, possibly unbounded. Let ~peL~¢(I, Lk)c~ 
Lq(I, L ~) with q ( 6 ( s ) -  1) = 1. Assume in addition that 

II (0(t)Ilk ----< Co(1 + Itl)  tk). (2.14) 
Then q) satisfies the estimate 

~dt(1 + ttl) -~ II ¢p(t) tl ~, < Co TM -~(k~ II (o, Zq(l,U)]l q. (2.15) 

In particular if1 is unbounded and / f  11 (o(t) II 2* has a limit as t tends to infinity, that limit 
is zero. 

Proof. For  any a, beI ,  a < b, we estimate 

b b 

~dt(1 + l t l ) - I  II (o(t)I1~* < ~dt(1 + ltl)- 111 q~(t)11~/(1 -a(k~)tl q~(t)ll2/~- 1~ (2.16) 
a a 

by the H61der inequality. Then  (2.15) follows immediately from (2.16) and (2.14). 
The last statement of the proposi t ion follows from (2.15). Q E D  

In this paper, we shall use Proposi t ion 2.1 with k = 2* as a preliminary step in the 
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proof of energy conservation and with k = 2* - e, e > 0, so as to be able to apply 
Proposition 2.2. The result for lower values of k, extending down to k = 2, is given for 
completeness and would be useful in connection with the Cauchy problem at finite 
times. 

Remark 2.2. By Lemma 2.2, Propositions 2.1 and 2.2 apply in particular to 
solutions of the free equation l~q~ = 0 with initial data in (L k c~/t~) @ L 2. 

In addition to the estimates of Lemma 2.2 on the free equation Dip = 0, we shall 
need Besov space estimates for the interaction term of the equation (1.1). Those 
estimates are given in Lemma 2.3 below which extends Lemma 3.2 of [9]. The 
statement of that Lemma requires the choice of a representative for the Besov space 
elements involved. In order to simplify the exposition, that point is not mentioned 
below. For a treatment thereof, we refer to the Appendix, in particular to 
Lemma A.3 and to the subsequent discussion. 

Lemma 2.3. Let fecal(C,  C) with f(O) = O. 

(1) Let gle~(C,  R+), with gl(z) = gl(Izl)  for all z~C, gl non-decreasing in R +, and 
such that 

If ' (z) l -- M a x  { 19f /azl, I Of/O~l } < g 1 (z) 

for all zeC. Let 0 < 2 < 1 ,  let l ~ f , m ,  E i ~  ( i= 1,2), with n / f l - 2 > O  and 
1/~ = l/f1 + 1/~2. Then 

II f(tp); "x < c II ~; "z Be, ml [ = Btl,ml] [I gl(c.0)lle2 (2.17) 

for all q) such that the norms in the right-hand side are finite. The same conclusion holds 
for 2 =  1,1 < f < 2  and dl = m = 2 .  
(2) Suppose that there exists g2EC~(C, ~+), with g2(z)= g2(Izl) for all z~C,g 2 non- 
decreasing in ~+, and such that 

If '(zl) - f'(z2)l _-< Izl - z21Max {g2(zl),g2(z2)} (2.18) 

for all zl ,z2~C. Let 0 < 2 <  1, let 1 ~ ~,m, f i < oo (1 < i < 6 )  with n/f  1 -  2 > 0 and 
1//' = I/~1 + l/f2 .= 1/v¢3 + 1/ds + 1/L'6. Then 

II f ( tp l )  -- f(q~2); e,m II < c II ~01 - ~o2; nt , ,~ II { II gl((Pl)I1,~ + II gl(cP2)lie2} 

- lt~o, nt , .~l l  IIg2(%)It,~. (2.19) + C l l ~  ~o21tt~ Z.,.==1,2 . ' x  

where gl satisfies the assumptions of Part (1), for all q)l, (P2 such that all norms in the 
right-hand side are finite. 
(3) Suppose that for some v, 0 < v < 1, 

If '(zl) - f'(z2)l < C]zl - z2 [~. (2.20) 

tor all zl ,z2eC.  Let 0 < 2 < v ,  let 1 < f,  m, f i < ~ ,  (1 < i < 4 )  with n / f 1 -  2 > 0, 
1/E = 1/fx + 1/f 2 = 1/f a + I / f , ,  and f4v > 1, my > 1. Then 

I l f(qh)  " "~ "/~" 
t 

, . . ~ / ~  II, (2.21) 

for all ~%, q)2 such that all norms in the right-hand side are finite. 
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Remark 2.3. For  the function gl in Par t ( l ) ,  one can take gl(z) = Sup If'(z')l. This 
Iz ' l< lz l  

function depends only on Izl, is non-negative and non-decreasing, and is easily seen 
to be continuous.  

Proof of Lemma 2.3. 

(1) Par t ( l )  is an immediate extension of Lemma 3.1 of  [9]. 
(2) We start from the identity 

1 

f ( q h ) -  f(fP2) = j" d#{f'(#~ol + (1 - #)q~2)} (qh - q~2) -= ~O(qh - q2), 
0 

and estimate in the same way as in Lemma 3.1 of [9] 

II f (qh )  -- f(q°2); "4 ./}4 ne,,,ll _-<CIl~ox-q~2, g.m[I II011e2 
+ c 11 qh - ~o2 lit3 It ¢;  t,,m II (2.22) 

with 1/ :  = i / :~ + 1/:z = 1/:3 + 1/:4. We  estimate the first norm of ff in (2.22) by 

II ~ lie2 < II ~d#gl(#qh + (1 - #)q~2)lie2 
< II Max(gx(qh),gx(~o2))L~ < Ilgl(~ox)Lle2 + Ilgl(~Oe)L2. (2.23) 

We then estimate the second norm of O in (2.22) by using the integral form of the/} 
n o r l n  

I1~'; e,,,ll <C t- ld t  t -XSup l lO- ty011e ,}  (2.24) 
( 0 I .  lrl = t 

where ty denotes the translation by y e  N". N o w  

1 

[~ - ty~l < ~ d#l#(qh - t /P1) + (1 - #)(q~2 - tyq~2)[ Max Max {gz(qh),g2(tyqh)} 
0 i 

__< Max l qh - tyqh[ Max {gz(q~j), O2(trq~)}, 
i , j= 1,2 

so that  
11 ~' - ty~b lie, < 2 ~ l[ qh - "cr~ lies 1[ gz(q~i)1t:6 (2.25) 

i,j = 1,2 

with 1 / : ,  = 1/:5 + 1/:6. Substituting (2.25) into (2.24) yields 

I1¢, :,,roll <C= Y~ II~0,,Be~,mlllle2(%)lle6. (2.26) 
i , j= 1,2 

The result follows from (2.22), (2.23) and (2.26). 
(3) The proof  of  Par t  (3) is the same as that of Par t  (2) except for the treatment of the 
second norm of O in (2.22), which we now estimate differently. F rom (2.20) we obtain 

IV - tyO[ < C Max {Iqh - trY011 ~, I q)2 - tyq)21~}, 
so that 

tl¢'-t#lle,<c ~ II~o~-tyqhllffj, 
i = 1 , 2  

and therefore (cf. (2.24)) 
II 0; "x ~ , , .  fix/~ II~ (2.27) Be,,.,lI <= C II-~,~t ,  . . . .  ,, - 

Substituting (2.23) and (2.27) into (2.22) yields (2.21). Q E D  
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Lemma  2.3 has been tailored to  cover  the case of the interactions f that  we want  
to consider. In fact we shall assume that  f satisfies the following conditions. 

(A1) f e cg l (C ,  C), f (0)  = f ' (0)  = 0 and f satisfies the following estimates 

(a) I f ' ( z )  t = Max { (I (af/Oz) l, I (e3f/d~) I } =< C l z f -  1 

for some p > 1 and for all zeC.  

[ f , ( z l ) _ f , ( z 2 ) [ < ~ C l z l - z z l ( l z i l P - 2 + l z 2 l P - 2 ) .  if p__>2 (b) 
= ~ C I z l - - z 2 [  p-x if p ~ 2 .  

No te  that  (b) implies (a). We have nevertheless stated (a) and (b) separately because 
we shall need only (a) in some of  the applications. 

Remark 2.3'. The assumption (A1) is satisfied in part icular  by f ( z ) =  zP-qg q for 
fixed q e R and p - 2q~Z. This is obvious for Par t  (a) and for Par t  (b) in the case p > 2. 
Par t  (b) in the case p < 2 requires a separate argument  given in the next  lemma. 

Lemma 2.4. Let h(z) = Izl~-"z m, where 0 < v < 1, m~Z. Then 

}'lzi - z2t ~ if m = 0 
[h(z0 h(z2)l < (2.28) 

= ( 2 1 - ~ t m F l z l - z 2 F  if m # 0 .  
% 

Proof. If m = 0, (2.28) follows from 

I l z l F - I z 2 F I  < I lz l  I - t z 2 l l  ~ < Iz i  - zzF. 
Let  now m ¢ 0. By scaling it suffices to consider the case where z 1 = z = pe ~° and 
z2 = 1. We first consider the case m = 1 where it suffices to prove that  

Ip*e *° - II < 21-*lpe  i° - 1 [*, (2.29) 
or equivalently 

cosh va - cos 0 < 21 -~(cosh a - cos 0) ~ (2.30) 

with p = e ". Now the quant i ty  ( c o s h v a - c o s O ) ( c o s h a - c o s O )  -~ regarded as a 
function of cos 0 is easily seen to take its maximum for cos 0 = - 1. In that  case (2.29) 
reduces to 

p~ + 1 < 2 ~ -V(p + 1)~, 

which follows from the concavity of the function p ~ p~. This proves (2.29). The  case 
of general m ~ 0 follows from the case m = 1. In fact (2.29) with 0 replaced by mO 
becomes 

Ip~e i"° - l I < 21 -~tpe i"° - 11V. (2.3t) 

Then  

Ipe i"° - 112 = (p - 1) 2 + 4p sin 2 (mO/2) 

< m 2 { ( p - - 1 ) 2  + 4 p s i n 2 ( O / 2 ) } = m 2 l p e ~ ° -  l] 2, (2.32) 

since tml > 1 and Isinm0[ < Imsin0l for all 0 e E  and m~Z. Substituting (2.32) into 
(2.31) yields (2.28) in the special case considered and therefore in general. Q E D  

We shall study the Cauchy problem for the equat ion (1.1) in the form of  the 
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integral equation 

go = A(to, go(o); go), (2.33) 

where toUR, go (°) is a finite energy solution of the free equation [Nq~ = 0 and 

A(to ' q¢O); go) = 4o(0) + F(to; go) (2.34) 
with 

t 

F((t0; go)(t) = -- ~ d z K ( t  - z)/(go('v)). (2.35) 
to  

Under the assumption (Ala) and for suitable go, the integral (2.35) exists in a weak 
sense and the integral equation (2.33) is essentially equivalent to the differential 
equation (1.1) supplemented by the initial conditions (see the Appendix). 

In order to formulate the theory of scattering and in particular the existence of 
asymptotic states for the equation (1.1) it is essential to introduce the interaction 
representation in the first order formalism. For that purpose the generic solution of 
(2.33) will be represented as a two component vector 

where ~ will turn out to be ~ as a consequence of the equation. The initial condition 
for • is 

/~0(o)\ 

~(°) = t~b(o) ) , 

the free evolution operatore U(t) is defined by 

{ I ( ( t )  K ( t ) )  (2.36) 
v ( t )  = \ _ /((0]' 

and is a strongly continuous unitary group in X e, the interaction term becomes the 
two component vector 

00) fo(q~) = (q~)" 

The relevant integral equation is 

60(0 = q)(°)(t) -- ~ dz U (t - z)fo(~o(z)), (2.37) 
to  

the first component of which coincides with the previous one (2.33), while the second 
component is simply the time derivative of the first one. We introduce the interaction 
representation by defining 

~( t )  =- U ( -  t )~( t )  = {" (p(t)'~ (2.38) 

An elementary computation shows that the differential equation for ~ is 

q) (t) = U ( -  t)fo(go(t)), 



Scattering Theory of Non-Linear Wave Equations 547 

and the corresponding integral equation is 

t 

~(t) = ~(to) - ~ dz U ( -  z)fo(~0(z)). (2.39) 
~o 

The final result of this section expresses the following fact: if a finite energy 
solution of the integral equation (2.33) satisfies the space-time integrabitity 
properties of Lemma 2.2 for one pair of values of (p, a) in a suitable restricted set, 
either locally or globally in time, then it satisfies those properties for all values of p 
and 0- in the allowed region (2.5), namely it belongs either to ~¢1oc(1) or to ~¢(I) as 
defined by (2.7). Furthermore ~ has some continuity properties which in some cases 
imply the existence of asymptotic states. 

Proposition 2.3. (1) Let f satisfy (Ala) with 

2/(n - 2) < p - 1 = 2(2 - O/(n - 2) < 4/(n - 2), (2.40) 

or equivalently 0 < [ < 1. Let p, a, r and q satisfy (2.5), 1/q = a and 

0 ~ 1 - [ - pa = p(n - 1)/(n + 1) < 1/2. (2.41) 

Let I be an interval of  ~,, to~I, let q~O) be a finite energy solution of  [] ~o = 0 and let 
~p~L~oe(I, [~) be solution of  (2.33). Then q~ - (~p, 0)~¢#loc(I). Furthermore possibly 
after a redefinition of  • (and ~)  by continuity on a set of  measure zero in time, ¢~ has a 
representative, still denoted by ~, which belongs to cg~(I, Xe) uniformly in compact 
subintervals of  I. 
(2) Let  f satisfy (Ala) with p - 1 = 4/(n - 2). Let p, a, r and q satisfy (2.5), 1/q = a and 

0 ~ 1 - a(n + 2)/(n - 2) = p(n - 1)/(n + 1). (2.42) 

Let I be an interval of  ~, to~T,, let q~o) be a finite energy solution of  [] ~p = 0 and let 
q~Lq(I, Bo) be solution of(2.33). Then ~ - (~p, 0 ) ~ ( I ) .  Furthermore, possiblyafter a 
redefinition of  q~ (and ci9) by continuity on a set of  measure zero in time, • has a 
representative, still denoted by ~, which belongs to cg(i, Xe). In particular, if  I is 
unbounded, say I = [T, ~ ) ,  then ~(t)  has a strong limit in X~ when t ~ ~ .  

Proof.  The proof of both parts follows from a common set of estimates with 
0 < [ < 1 for Part (I) and ~ = 0 for Part (2). We first consider the space-time 
integrability properties of q~ and 0- It is sufficient to prove those properties in the 
case p' = 1 - fl(r'). The same properties for general values of p' and r' follow from 
the latter by the Sobolev inequalities. For that purpose we let 2 < r' < ~ ,  2/q' = 7(r') 
and 

0_<_ ~(~) < 1 
(2.43) 

2/m = 7(f) + 2[. 

From the integral equation (2.33) and from its analogue for ~h it follows that 

I[ tp; L¢ (I, [~,-P~")) II t 
II(9;Lq,(I,B;7¢~,))II ~ <=C{]tqg~°)(O);X~[[+[I[¢[[f(cp);L~(I,B~))[[}, (2.44) 

where the first norm on the right-hand side has been estimated by using Lemma 2.2, 
and the second one by using Lemma 2.1 followed by the H61der inequality in time. 
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Thus we are led to estimate the last norm in (2.44). By Lemma 2.3 Part (1) and by the 
assumption (Ala) we estimate 

r¢,,,¥ L ~ I  [~go~ = [IJ,~-,, , ,  t ,I1 <Cllq) ;Lq(1 ,B~)I f  (2.45) 

under the conditions 

{ 0 __< p =/~(~) < 1 
p(n/2 - 1 -- a) = n /2 - -  fl(g) (2.46) 

. p ~ = q .  

By an elementary computation one can find m and E satisfying (2.43) and (2.46) under 
the assumption (2.42) of the proposition for 0 < ~ < t. More precisely, i f (  and m are 
defined by the first and last lines of(2.46), then the middle line thereof and the last line 
of(2.43) both reduce to the equality in (2.42). This proves that to = ((p, ~b) belongs to 
Y¢1o~(I) under the assumptions of Part( l )  and to ~(I)  under the assumptions of 
Part (2). In particular, q) and therefore t~ have a representative, still denoted by the 
same symbol, which belongs to L ~ ( I ,  Xe)  or to L°°(I, Xe).  We now turn to the 
continuity properties of ~, which follow from the integral equation (see (2.39)) 

t 

~(t) - ~(s) = - S& U ( -  z)fo(q>(z)). (2.47) 
s 

Applying the regularizing operator Hj (see the Appendix) to (2.47) we obtain 

t 

H j(~)(t) - ~(s))  = - S dz U ( -  z ) H J o  (q~(z)). (2.48) 
$ 

Nowf( tp)eL~( i , / }] ( t ) )  by (2.45), and therefore Hjf(tp)eL~'(I ,  121 k) for any keT/, by the 
Sobolev inequalities and the definition of H~. In particular, the integral in (2.48) is a 
strong integral in Xe. Taking the norm in Xe of both members of (2.48) we obtain 

t 

II H j (~ ( t )  - ~(s)); Xe ]12 = ~dG dz ( HH(tp(a)) ,  I((~ - z)HJ(q>(r))  ) ,  (2.49) 
s 

after an elementary computation using the definition of U (2.36) and its unitarity in 
Xe. We estimate the last integral in (2.49) by (2.3) followed by the Hardy-  
Litt lewood-Sobolev inequality and the H61der inequality in time as 

• .. ~ C[t  - sl2~l]Hjf(q));L~([s,t]; B?'~e))[[ 2 

with the same m, f as in (2.44). Taking the limit j -> 0% using the fact that H i tends to 
strongly in/~](el and in X e and using the estimate (2.44) on f(q0) yields the announced 
continuity properties of tO. QED 

We next discuss briefly the conditions on p and cr in Proposition 2.3. 

Remark  2.4. For fixed p or equivalently for fixed (, 0 __< ( - 1, the assumptions (2A1), 
(2.42) constrain (p, e) to lie on aline segment in the (p, c0 plane starting from the point 
{p = 0, ~ = ((n - 2)p - n))/(2p)} and ending at the point {p = (n + 1)/(2(n - 1)), 
a = ((n - 2)p - (n + 1))/(2p)}. That segment intersects the region defined by (2.5) in 
all cases of interest. In particular, for p = (n + 2) / (n-  2), it intersects the line 
7 ( r ) = V s = ( n  - 1)/(n+ 1) within that region at the point { p = n 2 / ( 2 ( n 2 + 2 ) ) ,  
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a = ( n -  2)(n 2 + n + 2)/[-2(n + 1)(n 2 + 2)] }. That point is of special interest in 
connection with the Cauchy problem at infinity. 

For the purpose of scattering theory the more relevant part of Proposition 2.3 is 
Part (2) corresponding to p - 1 = 4 / ( n  - 2). The information relative to p - 1 < 
4 / ( n  - 2) namely Part (1) is relevant for the Cauchy problem at finite time. We have 
not considered the case p < n / ( n  - 2) since the argument would be slightly different 
(in fact simpler). 

3. The Cauehy Problem at Infinity 

In this section we construct finite energy dispersive solutions of the equation (1.1) by 
solving the Cauchy problem with large (possibly infinite) initial time and finite 
energy initial data (or asymptotic states) in the form of the integral equation (2.33). 
We proceed in two steps. The first step consists in solving the integral equation by a 
contraction method in a neighborhood of infinity in time (+ ~ for definiteness). For 
that purpose we define a Banach space of functions exhibiting some of the time decay 
available from Lemma 2 . 2  for finite energy solutions of the free equation [Z~p = 0 
and such that the operator A ( t o ,  (p{o); ~p) defined by (Z34), (2.35) maps a suitable 
subset of that space into itself and acts there as a contraction. That step can be 
implemented under the assumption (A1) for the critical value p - 1 = 4 / ( n  - 2 )  only. 
Actually the first property has already been obtained to a large extent in 
Proposition 2.3, which uses basically the estimates of Lemma 2.1. Those estimates 
however turn out not to be sufficient to yield the contraction property in a 
reasonable space for high space dimensions (namely n => 9). We drcumvent that 
difficulty by a direct use of the pointwise estimate (2.3). Since the reproduction 
property follows from similar, but simpler, estimates than the contraction property, 
we treat here both properties together, thereby giving a sdfcontained treatment not 
relying on Proposition 2.3. As an immediate by-product of the resolution of the local 
problem at infinity we obtain global existence and uniqueness of solutions and 
asymptotic completeness for small initial data in the energy space. 

The second step of the argument consists in extending the local solutions 
previously obtained to all times. This is done by solving the local Cauchy problem at 
finite times in successive intervals covering the real line, starting from values of t in 
the interval of existence of the solution one starts from. The possibility of doing so 
relies on a priori estimates obtained from the conservation of the energy and from 
estimates of the successive times of local resolution derived therefrom. Unfortu- 
natdy, no such estimate exists in the critical case p -  1 = 4 / (n-  2), thereby 
precluding the possibility of globalisation in that case. In order to overcome that 
difficulty, one needs to impose in addition that the assumption (A1) also holds for 
some subcritical p. Accordingly, we solve the local Cauchy problem at finite times 
under such an assumption. The treatment given in [-10] however cannot be applied 
directly, since we do not assume here the initial data to lie in L 2, which would be 
unnatural in the present context. The treatment given in this section is especially 
tailored for the present purpose, and uses a slight extension of the estimates needed 
to solve the local problem at infinity in the critical case. In particular, we take initial 
data in X e  only, but we make no effort to cover the case of low valucs of p. 
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We first derive an estimate for the integrand in the equation (2.33), 

Lemma 3.1. Let n >= 3. Let f satisfy (Alb) for some p > 1. Let p ,a , r  satisfy 1 + a = 
p + 6(r), and 0 < 2a < "/(r) __< 7s- Defne p' by 

(p - 1)(n/2 - p' -- 5(r)) = 1 + 7(r). (3.1) 

Then the folIowin 9 estimates hold: 

II K(t)f(~p); 1~ I[ <-_ Cltl-'(r)II ~P;/}~ tl II (P;/3~" II p- 1 (3.2) 

provided p' > O, for all ~p such that the right-hand side is fn i te ,  

[[g(t)(f(cPl)-f(w2));[3fl l  <Cltl-'tr)ll~Ol-~P2;/}ffl[ ~, II~0i;B~°'l[ p-1 (3.3) 
i=1 ,2  

for p ~ 2, provided p' ~ ~ + ~(r), for all ~Pl, ~P2 such that the right-hand side is finite, 

II K(t)(f(cPl) - f(cP2));/~ ]1 

<Cltl-~(r)[l~°1-q~2,/i~[I ~ I I  II~°~;/i~°'-+~ll(P-1)/2 (3,4) 
/ = 1 , 2  :~ 

for p < 2 and e > 0 sufficiently small, provided (p - 1)p' >- ~ + c~(r), for all ¢1, ~P2 such 
that the right-hand side is finite. 

Remark 3.1. The various restrictions on p' will be made more explicit in the special 
cases of interest in Proposit ion 3.1 and Proposit ion 3.4. 

Pro@ We first estimate by (2.3) 

l[K(t)f(q~);[3~[[ <= C[t[-'(')] I [~a f(~o); ~ t[, (3.5) 

I IK( t ) ( f (qh ) -  f(qh));]~ll  < Cl t [ -~( ' ) l l f (qh) -  f(q~2);B;;ll, (3.6) 

where 2 --- a + ct(r). Clearly, 0 < 2 < 1. We next estimate the norms in the right-hand 
sides of (3.5) and (3.6) by Lemma 2.3 with E = f and m = 2, gl(q~)= CIrpl p-1 and 
g2(rP) = Clq)F-2 for p > 2. In particular we estimate (3.5) by (2.17) and (3.6) by (2.19) 
or (2.21) depending on whether p > 2 or p < 2. We then estimate the/}~ norms and 
the L t3 norms in terms of the norms in /3~ by using the Sobolev inequalities. 
Similarly, we estimate all remaining norms in terms of norms in/}~' for suitable p', 
thereby continuing (3.5) and (3.6) as 

... < CI tl-~(~) I1 ¢;/i~ II II ¢;/i~' II r -  1 (3.7) 
and 

• "" < El tl-~(')11 qh - ¢2;/~, ° II ~ I[ ~0,;/)~',~ II p- l ,  (3.8) 

where now m = Min {2, 2(p - 1)}. The conditions for the applicability of the Sobolev 
inequalities reduce to the homogeneity conditions 

n/~ea - 2 = n/ve3 = n / r  - -  p ,  (3.9) 

n/((p -- 1):2) = n/:  5 -- 2 = n/((p - 2)/6) = n/((p -- 1)/,~) -- 2/(p -- 1) = n/r - p' 
(3.10) 

and to the conditions p > 2, p' > 0 for (3.7) and p' > 2 or (p - l)p' > 2 for (3.8) 
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depending on whether  p > 2 of p < 2. Under  the conditions (3.9) and (3.10), the 
homogenei ty  condit ions of Lemma  2.3 reduce to 

n/r - p + (I) - 1)(n/r - p') = n / ~ -  2, 

which becomes (3.1) by an elementary computat ion.  The condit ion p _>_ 2 reduces to 
~(r) + 6(r) < 1, or  equivalently r < rs. The  condit ions on p' coincide with those stated 
in the lemma. Finally, in the case when p < 2, we estimate the last norm in (3.8) as 

II ( p i ; / ~  II < IF] II ~0i;/~' ±~ I! 1/2 
± 

by Lemma A.1. Q E D  

We now turn to the local Cauchy problem at infinity. Let  0 < 20.1 < 20. 2 < 
V(/) < 1. Fo r  any interval I c ~ we define the space 

~ o ( I ) =  (~ Lq'(1,h$'). (3.11) 
i = 1 , 2  

Here and below we consider several values p~, 0.~, qi related by 

1/qi = 0.~ = p~ + 5(r) - 1. (3.12) 

Proposition 3.1. Let n >__ 3. Let  f satisfy (Alb) with p - 1 = 4/(n - 2). Let  r, 0.1 and 0.2 
satisfy 

(n - 2)In <= y(r) <= ?s, (3.13) 

0 < 0.1 ~ (1 - ?(r))(n - 2)/4 ~ 0- 2 < ?(r)/2 if n < 6, (3.14) 

0 < 31 < (1 - 6(r))(n + 2)/(n - 2) < (1 - ?(r))(n - 2)/4 < 0.2 < ~(r)/2 if n > 7. 
(3.15) 

Let (pro) be a finite energy solution of  the free equation D q ) =  O. Then 

(1) There exists T < oo such that, for any to~T,, where I = IT,  c~), the equation (2.33) 
has a unique solution in ~o(I).  
(2) For any interval I and for any toeT the equation (2.33) has at most one solution in 
9Co(I). 

Proof. Part (1) Let  I be an interval of ~ and let to~T. We first estimate the integral 
F(to; ~o) for (pESfo(I). Let  r satisfy (3.13) and let 

0 < 20. < ~,(r). (3.16) 

It  follows from Lemrna 3.1 and the H a r d y - L i t t l e w o o d - S o b o l e v  inequality ([16] 
p. 117) that  

Ilf(to;q~);La(I,B~)[I < Co(a)ll~o;La(I, f3~)ll II~o;La'(I,/~ff')ll p-1 (3.17) 
with p' defined by (3.1) and 1/q' = p' + 6(r) - 1. The  condit ions needed to apply that  
inequality are (1): the homogenei ty  condit ion 

( p -  I)0.' = 1 - ) , ( r )  (3.18) 
or  equivalently 

0.' = (1 - ?(r))(n - 2)/4 (3.19) 
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which coincides with (3.1) for the critical value of p, and implies a'  > 0 and therefore 
p' > 0, and (2): the condition 0 < a < 1, which follows from (3.16), and the condition 
0 < a + ( p - 1 ) d <  1, which follows from (3.16) and (3.18). Since q~(°)eSfo(l) by 
Lemma 2.2, part(2), it follows in particular from (3.16), (3.17) and (3.19) that  for 
r,0-1,a z satisfying (3.13) and (3.14), Y'0(I) is mapped into itself by the operator 
~o ~A(to,  ~o(°); ¢p) defined by (2.34). 

We next estimate the difference F(to; q~l)--F(to; ¢P2) for q~l, q~2eSfo(I). F rom 
Lemma 3.1 and the Hardy-Li t t l ewood-Sobolev  inequality again it follows that  

II F(to; ¢Pl ) -- F(to; ~°2); Lq( I,/~r p ) I[ -< C1 (a)II q~l - q~2; L~( I, [~)[t 

1-I I]~o,;L¢(I,[~'±911 (p-x)~2 (3.20) 
i = 1 , 2  ± 

with p' again defined by (3.1) or equivalently (3.19), e = 0 for n < 6, e > 0 for n > 7, 

p ' >  a + a(r) (3.21) 
for n < 6 and 

(p - 1)p' > a + a(r) (3.22) 

for n > 7. The conditions needed to apply the Hardy-Li t t l ewood-Sobolev  in- 
equality are the same as before. The condit ion (3.21) reduces to 

a < a' + 1 - (n + 1)~(r) = a a (3.23) 

and is satisfied in particular for a = a', while the condit ion (3.22) reduces to 

a < (1 - 6(r))(n + 2)/(n - 2) --- 0- 4 

(cf. the second inequality in (3.15)). An elementary computa t ion  shows that  0- 4 < a'  
for all n > 7 and all r satisfying (3.13). 

We can now prove the proposition. We choose R > 0 sufficiently small so that  

2 Sup Co(0-)(2R) p-1 < 1, (3.24) 

2 Sup C~(a)(2n) p-~ __< 1, (3.25) 

where a s = Min (a2, o'3, 0"4). We next choose T sufficiently large so that  

Max II ~0(°); Zq(I; [3~)II = Sup [I ~o(°); Lq(I; B~)II < R (3.26) 
t7 = tTl,~t2 trl  ~< # <: # 2  

(the first equality is obtained by interpolation) where I = [T, or). It follows now from 
(3.17) and (3.24) that  the operator  ~o ~ A(to, q~(0); ~0) maps the closed ball Bo(I, 2R) of 
radius 2R in 5Yo(I ) into itself. Furthermore,  in that  ball, that  operator is a 
contraction for the norm in the larger space 

X~ (I) = L q' ( I , /~ ' )  c~ L q5 (I,/~s). (3.27) 

By standard arguments (cf. Theorem 1 in [17] or Proposit ion 2.2 in [10]) those two 
facts imply the existence of a unique solution of the equation (2.33) in Lro(I ). 

Part (2) follows from Part  (1) by standard arguments. QED 

Under  a mild additional assumption on r and 0- 2 the solutions of the 
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equation (2.33) in So(I)  are dispersive in the sense of Proposition 2.3 part (2), and 
in particular belong to ~(I)  defined by (2.7). 

Proposition 3.2. Let n > 3. Let f satisfy (Ala) with p - 1 = 4/(n - 2). Let YCo(" ) be 
defined by (3.1t) with r, ~r I and cr 2 satisfying (3.I3), (3.14) and (3.15) and in addition the 
(compatible) condition 

(n - 2)(2 + n7(r)) < 2(n 2 + 2)o2. (3.28) 

Let I be an interval of  ~, t o ~ let q~CO) be a finite energy solution of [] ~o = 0 and let 
q~Xo(1) be solution of the equation (2.33). Then q~ satisfies all the conclusions of 
Proposition 2.3 part (2). 

Proof. In order to be able to apply Proposition 2.3 part (2), it suffices to show that 
one of t h e / ~  norms of ~0 available from the definition (3.11), (3.14) (3.15) of 5fo(') 
controls one of the/~ff norms with (p, o) satisfying (2.42) required in the assumptions 
of that proposition through the Sobolev inequalities, namely has the same o- and a 
larger p than the latter. For that purpose, it suffices to show that there exists 
aEEal ,a2]  such that 

0 < 1 - cr(n + 2 ) / ( n  - 2)  < p ( n  - 1)/(n + 1) 

or equivalently o < (n - 2)/(n + 2) and 

(n - 2)(2 + nT(r)) < 2(n 2 + 2)a. (3.29) 

Now it is easily seen that, because of (3.13) and (3.19), al < o' < (n - 2)/(n + 2), so 
that it suffices that the conditions (3.29) be satisfied for o = o2. That condition 
reduces to (3.28). The compatibility of (3.14) and (3.15) with (3.28) follows from the 
inequality 

(n -- 2)(2 + nT(r)) < (n 2 -}- 2)~,(r) 

or equivalently 7(r) > (n - 2)/(n + 1) which follows from (3.13). QED 

The previous results imply global existence and uniqueness of solutions of the 
Cauchy problem and asymptotic completeness for small initial data in the energy 
space. 

Proposition 3.3. Let n > 3. Let f satisfy (Alb) with p - 1 = 4/(n - 2). Let r, al and ~r 2 
satisfy (3.13), (3.j4), (3.15)and (3.28). Then there exists R o > 0 such that,for any t o ~  
and for any ~b o =(~o,~o)~Xe with 11~o; Sell <-Ro, the equation (2.33) with 

q~°)(t)=/£(t)~0 + K(t)~ o has a unique solution ~o in So(R) (defined by (3.11)). 
That solution satisfies the conclusions of Proposition 2.3 part (2). In particular the 
wave operators 12+_ (defined as the maps ~o ~ ¢~(0) with t o = 4" ~ )  and their inverses 
12+ 1 (defined as the maps ~o ~ ~(  +_ ~ )  with t o = O) are bijections of X~ locally in a 
neighborhood of zero. 

Proof. The result follows immediately from Proposition 2.2 part (2), Proposition 2.3 
part (2) and Propositions 3.1 and 3.2. In particular by (2.7), there exists Ro such 
that tl ~o; X,  II < Ro implies the condition (3.25) needed for Proposition 3.1, with 
I = ~. QED 
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We next turn to the local Cauchy problem at finite times for initial da ta  in X~ and 
subcritical p, as explained at the beginning of this section. 

Proposition 3.4. Let  n > 3. Let f satisfy (Alb) with 

2/(n - 2) < p - 1 -= 2(2 - ()/(n - 2) < 4/(n - 2) (3.30) 

or equivalently 0 < ~ < 1. Let ~;o(') be defined by (3.11) with r, a l ,a  2 satisfying 

2(1 - 0 < (P + 1)),(r) 
(3.31) 

7( r ) < y s ,  y ( r ) < l - (  

0 < a~ < (1 - 7(r) - 0/(P - 1) < 32 < ~(r)/2 /f p ~ 2, (3.32) 

{ O < a~ < ( 1 -  7(r)-  ( ) ~ - -  l) < a2 < y(r)/2 (3.33) 
tr~ < p(1 - 6(r)) - /f p < 2. 

Then 
(1) For any R > O, there exists T(R)> 0 such that for any (~po,¢o)EX~ with 
[I (~o, ~'o); X~ II < R, for any t o ~ ,  the equation (2.33) with ~p~°)(t)=/(( t-  to)~p o + 
K(t - to)~bo has a unique solution ~o in 9:o(I), where I = [t o - T(R), t o + T(R)]. 
(2) For any interval I, any toni and any finite energy solution q~O~ of  the free equation 
[] ~p = O, the equation (2.33) has at most one solution in Y~o(I). 

Proof. Let I be a bounded  interval and let to e l ,  let a, r satisfy (3.16) and (3.31). Using 
Lemma  3.1 and the Young inequality, we first estimate for q~Wo(I), 

[I V(to, q~); Lq(I, [~o) [1 < Co(a)l I 1; [I ~P; Lq( I , /~) [1 1[ q~; 13"( I, [~P,') [1 p-1 (3.34) 

with p' defined by (3.1) and 1/q' = a' = p' + 6(r) - 1, provided 

(p - 1)a' + ~ = 1 - y(r), (3.35) 

which coincides with (3.1) under  the condit ion (3.30). The  addit ional  conditions 
required to apply the Young inequality are 0 _< a < 1, 0 < ( < 1 and 0 < a + 
(p - 1)a' < 1 and follow from (3.16), (3.30) and (3.31). Similarly, we estimate for ~Pl, 

~O:~o(I ) ,  

II F(to, qJ1) - F(to, ~02); Lq( I, B~) II ~ C1(o-)111 ~ II ~ol - ~o2; Lq(I, B~) II 

I-I llq~,;Zq'~(I,B(+~)ll~P-1)/z (3.36) 
/ = 1 , 2  +_ 

with the same p' as before, satisfying the condit ion (3.21) i fp  __> 2 and (3.22) i fp  < 2, 
with e = 0 i fp  ~ 2 and e > 0 i fp  < 2, and 1/q'+ = o-' +_ 5. The condit ion (3.21) reduces 
to (3.23) and is satisfied for tr = o-' as before, while (3.22) now reduces to 

o- < p(1 - ~(r)) - ( - c%. (3.37) 

We can now prove the proposition. Let  R > 0. Then  for any (~o o, Oo)eXe with 
t1 (~0o, ~ko); X~ 11 < R, it follows from Lemma 2.2 par t  (2) that  

sup l[ ~o(°);L~(R,/~)[I N cR. (3.38) 
trl ~-< O'--< ~ 2 
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We choose T = T(R) sufficiently small so that 

2(2T) ~ sup Co(a)(2cR) p-1 < 1, (3.39) 
O'I _-~ 0- ---_~ 0-2 

2(2T) c sup CI(0.)(2cR) p-i_-< i, (3.40) 
0"1 ~ (t--~ 0-5 

where 0.s = Min (o-2,0.3,0.4) as before. It follows from (3.34), (3.36), (3.38), (3.39) and 
(3.40) that for any t o ~ ,  and for any (q~o,~bo)eXe with H(~0o,~o);Xell < g ,  the 
operator A(to, ~0t°); q~) defined by (2.34) maps the closed ball Bo(I, 2cR) of radius 2cR 
in Wo(I) into itself, where I = [to - T(R), to + T(R)]. Furthermore, in that ball, that 
operator is a contraction for the norm of the larger space ~ r  (I) defined by (3.27). The 
proposition follows from those facts by standard arguments. QED 

Remark 3.2. We discuss briefly the conditions (3.31), (3.32) and (3.33), which 
generalize the simpler conditions (3.13), (3.14) and (3.15) of Proposition 3.1. The 
condition (3.31), aside from v(r) < Vs, follows from (3.32) or (3.33) and ensures the 
existence of 0.i and 0.2 satisfying (3.32) and (up to a limiting case) the first condition in 
(3.33). The condition (3.33) implies 

pfi(r) < p - ~ (3.41) 

which in turn, under the condition (3.31), implies the existence of 0.1 satisfying (3.33). 
The conditions (3.31) and (3.41) are compatible provided 

2np(1 -- () < (n -- 1)(p + 1)(p -- 0 

which follows from the fact that ( < 1 < p, so that 0 < p(1 - 0 < P - (, and that 
p + 1 > 2(n - 1)/(n - 2) > 2n/(n - 1). The condition (3.41) may or may not iollow 
from (3.31), depending on the values of p and r. 

Under a mild additional assumption on r and 0.2, the solutions of the equation 
(2.33) in the previous spaces ~ro(- ) satisfy the space time integrability properties of 
Proposition 2.3 part (1). The following proposition is the analogue in the subcritical 
case of Proposition 3.2. 

Proposition 3.5. Let n >__ 3. Let f satisfy (Ala) and (3.30). Let 9:o(" ) be defined by (3.11) 
with r, 0.i, and 0" 2 satisfying (3.31), (3.32), (3.33) and in addition the (compatible) 
conditions 

(2 - (n + 1)( + n~(r)) < ((n + 1)p + n - 1)0. 2 (3.42) 

1/2 - ~ < P0.2- (3.43) 

Let I be an interval of R, toe/,  let ~o ~°) be a finite energy solution of [] ~o = 0 and let 
~Oe~o(I) be solution of the equation (2.33). Then ¢p satisfies all the conclusions of 
Proposition 2.3 part (i). 

Proof. In the same way as in the proof of Proposition 3.2, it suffices that there exists 
0.el0.1,0.2] such that (cf. (2.41)) 

0 < 1 - ~ - ptr < p(n - 1)/(n + 1), (3.44) 

1 - ~ - ptr < 1/2. (3.45) 
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The second inequality in (3.44) can be rewritten as 

(2 - (n + 1)~ + ny(r)) < ((n + 1)p + n - 1)a. (3.46) 

Now it follows from (3.31), (3.32), (3.33) that  

p(p - 1)a~ __< p(1 - ~ - 7(r)) 

= (17 - 1)(1 - O + 1 - ~ - pT(r) 

< (p - 1)(1 - ( - 7(r)/2) < (p - 1)(1 - 0 (3.47) 

so that  the first inequality in (3.44) is satisfied by o.1- It suffices therefore that  the 
second inequality in (3.44), or equivalently (3.46), and (3.45) be satisfied by o- 2. Those 
conditions reduce to (3.42), (3.43) respectively. The compatibility of(3.42) with (3.32), 
(3.33) is equivalent to the inequality 

2(2 - (n + 1)0 < (n + 1)(p - 1)7(r) 

which is easily seen to follow from (3.31) by an elementary computation.  The 
compatibility of (3.43) with (3.32), (3.33) is equivalent to the inequality 

2(1 - () < pv(r) + 1, 

and follows immediately from (3.31). Q E D  

So far we have studied finite energy solutions of the equation (2.33) without 
assuming the existence of a conserved energy. However energy conservation is an 
essential tool for the extension of the local solutions of Proposit ion 3.1 to all times. 
We now turn to the proof  of that  property. For  that  purpose we need the following 
assumption on f .  

(A2) There exists a function VE cg I (C, •) such that  V(0) = 0, V(z) = V(I z l) for all z ~ C 
and f(z) = dV/~ .  

We define the energy 

E(~, ¢) = I! ~ 1122 + II V~0 ll22 + fax  v(~) (3.48) 

for all (~0, ¢)eXe such that  V(q~)~L ~. We can now prove the conservation of the 
energy for solutions of (2.33) in the following form. 

Proposition 3.6. Let n > 3. Let f satisfy (Alb) with p satisfying (2.40) and (A2). Let I be 
an interval of ~, to~I, Let cp (°~ be a finite energy solution of D c p = 0  with 
qg(°~(to)~L p+x and let q~ be a solution of the equation (2.33) such that 

= (~o, ~b)EaJlo¢(I). Then the following identities hold for all s and t~l, 
t 

~ dx V(q~(t) ) - ~ dx V(q~(s) ) = 2 Re ~'dz ((o(z), f (q~(z) ) ), (3.49) 
s 

t 

ll~(t),Xell 2 -  II O(s);Xell2 = --2Re~dz((o(z),f(¢(z))), (3.50) 
$ 

where both terms in the left-hand sides of (3.49) and (3.50) are continuous functions of s 
and t and the integral in the right-hand sides is absolutely convergent. In particular 
energy conservation holds in the sense that for all s and t in I 

e(~( t ) ,  ~(t)) = ~(~o(s), ¢(s)). (3.51) 
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In addition, let p - 1 = 4/(n - 2), let I be unbounded, say I = [T, oo) and let qJ be a 
solution of  the equation (2.33) with • = (~o, (o)~J(I).  Let  however only to~L Then the 
same conclusions as above still hold. Furthermore, the kinetic part II ~(t); X e 112 and the 
potential part Sdx V(q~(t)) o f  the energy separately tend to well defined limits when 
t---too. 

Proof. The proof of (3.49) is similar to that of Proposition 2.1 part (1) with k = p + 1. 
By the same argument as in the proof of the latter, we obtain 

t 

Sdx V(Rj~o(t)) - ~dx V(Rjqg(s)) = 2 Re~dz (Rj(o(z), f (Rfi~(z))  ), (3.52) 

where Rj is the regularizing operator defined in the Appendix. We next take the limit 
j ~  in (3.52). By Proposition 2.1 part(l), ~p~cg(I, LP+l) so that V(q>)e~(I, L1). 
Using the identity 

1 

V(Rj~o) - V(~o) = 2 Re (Rfi5 - (o)~d#f(#gf i~  + (1 - #)q~), 
o 

we estimate pointwise in time 

11 v(gjqJ) -- V(~o) I11 < C I[ Rj~9 -- ¢p [Ip+ l II ¢P I1~+ 1, 

which proves the convergence of the left-hand side of (3.52) to that of (3.49). By the 
same estimates as in Proposition 2.1 part (1) (see especially (2.10)) and by Lemma 2.3 
part (1), the integrand in the right-hand side of (3.52) is bounded uniformly in j a n d  
integrably in time according to 

dr ( Rj(o(~), f ( R j e ( O )  ) < C{t - s t ~ tl (o; 12(1, B~-  ~)1t II q~; g~(I, Bf)It p (3.53) 

with 1/q = a = (1 - 0/(P + 1) and for instance p = 1/2 and ~(r) = a + 1/2, which 
satisfies (2.5). Furthermore, for fixed z, Rj(o(z) tends to ~(z) in/321/2 and f(Rjq~(z)) 
tends to f(q~(z)) in By 2 by the properties of Rj and Lemma 2.3 part (2), so that the 
integrand in the left-hand side of (3.52) tends to that in the left-hand side of (3.49). 
The result then follows from the Lebesgue dominated convergence theorem. 

In order to prove (3.50), we start from (2.48) (see also the subsequent comments). 
By an elementary argument of regularization in time, we obtain 

II Hj  ~ ( t ) ;  X e [I 2 - -  11Hj ~(s); X e II 2 __ 2 Re i d'c ( H i  ~(z), Hj ~(z))  
$ 

= -- 2Re~dz (n jq~(z ) ,nJo(qg(z ) )>e  
$ 

t 

= -- 2 Re~dz(Hj(9(z) ,  Hj f ( (p(z ) ) ) ,  (3.54) 

where ( . , . )~  denotes the scalar product in X e. We next take the limit j ~ oo in (3.54). 
The first member of(3.54) converges to that of (3.50) by the properties of H~, the fact 
that ~ ~cg(I, Xe) by Proposition 2.3 part (1), and the unitarity of U(') in X~. The last 
member of (3.54) tends to that of(3.50) by a similar (but simpler) argument as in the 
proof of (3.49). 
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Energy conservation follows by adding (3.49) and (3.50) together and using the 
definition of the norm in X~. 

The last statement follows from the fact that ( -- 0 and that the integral in the 
right-hand side of (3.49) and (3.50) is convergent at infinity in the case under 
consideration. QED 

Remark 3.3. In the situation of the second part of the proposition, i fI  is unbounded, 
say I = [T, ~) ,  if to is finite, and if@°)(t)~L k for some k < 2* and some tEI, it follows 
from Propositions 2.1 and 2.2 that ~dx V(~o(t)) tends to zero when t tends to infinity 
so that the conservation of the energy takes the familiar form 

E(~o(t), ~b(t)) = 11 tO+; X e II 2, (3.55) 

where tO+ = ~ ( +  oo). 
Proposition 3.4 and Remark 3.3 apply in particular to the local dispersive 

solutions constructed in Proposition 3.t and to the solutions with small initial data 
constructed in Proposition 3.3. 

We can now prove the existence of global dispersive solutions of the equation 
(2.33). For simplicity, we restrict our attention to the case of non-negative V, the only 
case anyway that we shall be able to treat in the next section. 

Proposition 3.7. Let n ~ 3. Let f satisfy (Alb) both for p - 1 = 4/(n - 2) and for some 
P2 with P 2 -  1 < 4 / ( n -  2), and (A2) with V>O. Let Y(o(') be defined by (3.11) with 
r, ~1, a2 satisfyin9 (3.13), (3.14), (3.15) and (3.28). Then 

(1) For any finite energy solution (p(o) of  the free equation [] q~ = O, for t o sufficiently 
large, dependin 9 on q)(o) and possibly infinite, for any ae ~, a < to, the equation (2.33) 
has a unique solution q~ in Y(o(I), with I = [a, oo). That solution satisfies all the 
conclusions of Proposition 2.3 part (2), for all such I. 
(2) The wave operators [ 2 + : t O + - ~ ( _ _ _ o o ) ~ ( 0 )  exist as injective bounded 
operators in Xe, and their inverses [2 ~ 1 are bounded. 

Sketch of  Proof. Part (1). By Proposition 3.1, there exists T > 0 depending on q¢O) 
such that all the conclusions of Part (1) hold for I = IT, oo) and toeI. In addition the 
solution q~ satisfies Proposition 3.4. We then extend those results to arbitrary 
intervals [a, 0o) by solving the equation (2.33) in successive intervals through the use 
of Proposition 3.4 applied with P2 - -  1 = 2(2 - O/(n - 2) for ( positive and small, 
starting from T. The conservation of the energy (Proposition 3.6) and the condition 
V > 0 ensure that 1[ tO(t); Xe II < E1/2 uniformly in t, where E is the energy of the 
solution, so that the successive time intervals can be taken of the same length. At 
each step, the solution comes out to lie in the space X0 (') used in Proposition 3.4 and 
satisfies the conclusions of Proposition 2.3 part (2), by Proposition 3.5. 

Part(2). The existence and injectivity ofthe wave operators [2+ follow from Part (1). 
Boundedness of the [2+ and [2 ;  1 follows from energy conservation in the form 

E ~ It tO(0);Xell 2 4- ~dx V((~(0)) -~- II tO+ ,Xe II 2 "~- lim ~dx V(cp(t)), (3.56) 
t---~ + cO 

where the last limit exists by Proposition 3.6. In addition 

0 < ~dx V(~0(0)) _<_ C 11 ~0(0)11 ~** < C II tO(0); X~ II 2., 
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so tha t  II ~ ±  ; Se 11 is e s t imated  in te rms of  II q~(0); Xe 11, while 

lim ~dx V(rp(t)) < C lira II ~(t); X e II 2* = C II ~_+; Xe II 2* 
t . ,-~ --t- clO t - ~  -t- oO 

by the continuity of ~ from/- to Xe, so that conversely II q~(0); Xe II is estimated in 
terms of II ' / '±, Xe II. QED 

4. Time Decay of Solutions and Asymptotic Completeness 

In this section we study the asymptotic behaviour in time of finite energy solutions of 
the equation (1.1), defined as solutions ~p of (1.1) such that ~ = (~p, ~b)~L~(R, Xe). It 
follows from Propositions 3.4, 3.5 and 3.6 and standard globalisation arguments 
that for f satisfying the assumptions of Proposition 3.7 and for any ~o = 
(~Po, ~/o)EXe, the equation (1.1) with initial data ~ ( to )=  ~o at some finite initial 
time toSi~ has a global solution which is unique in ~/~oc(~) and which is a finite 
energy solution. We shall see in Proposition 4.1 below that in fact any finite energy 
solution belongs to ~/lo~(~) and therefore can be recovered by solving the Cauchy 
problem with finite initial time in the way described above. We first prove that all 
finite energy solutions of the equation (1.1) satisfy some uniform boundedness 
properties in the sense that they belong to f~(Lq(/~)) for suitable values of r, p, q and 
suitable assumptions on the interaction f. The method of proof is a direct estimation 
and does not require the elaborate machinery of [8, 11, 21]. We next prove the main 
result of this paper, namely the fact that for a class of repulsive interactions, all finite 
energy solutions of the equation (1.1) are dispersive in the sense that they satisfy the 
space-time integrability properties previously found for the solutions of the free 
equation [] ~p = 0 (see Lemma 2.2). In the framework of Scattering theory, those 
properties imply asymptotic completeness in the energy space. The proof relies on 
the Morawetz-Strauss estimate [21] which is directly related to the approximate 
dilation invariance of the equation (see Lemma 4.3) and on the finiteness of the 
propagation speed for the equation (1.1) (see Lemma 42). Combining those two 
estimates one proves that suitable Besov norms of finite energy solutions of the 
equation (1.1) are arbitrarily small in arbitrarily large time intervals (see Lemma 4.5). 
That property is exploited through the integral equation (2.33) and for that purpose 
one needs some additional estimates on the integrand in that equation (see Lemma 
4.7). With those estimates available the proof foUows step by step the corresponding 
proof for the NLS equation, given in [8] and for the N L K G  equation, given in [11]. 
The final results are collected in Proposition 4.2. 

In this section we shall make repeated use of an additional estimate on the 
interaction term, which can be stated as Lemma 4.1 below. As a first approximation, 
the reader can take t 7 = 0 in that Lemma. The case ~7 ~ 0 is needed only in the proof of 
Lemma 4.5 below. 

Lemma 4.1. Let  n >_ 3. Let  f satisfy (Ata). Let 0 < )~ <= 1, p <= 2, p < 1, 1 < 7<_ 2 <_ r, 
v < 0% 0 < t /< Min {6(t~)/n, (p - 1)/v} and 0 < a ==- p + b(r) - 1 < 1. Then, for  all 

"I "0 (psH 2 c~B,, with q)eL ° if  t t > O, the Jbllowing inequality holds: 

Ii f(q~); B~II --< C II q~; ~0~ II p- ~-,v II ~0; B,~ ll~[I ~0 [l~ v (4.1) 
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provided 

(g- 1)(n/2-  1 - ~r/(1 + p _ ) ) < = b ( Y ) + b ( r ) ( 1 - 2 ) / ( 1  - p ) + t i v ( 6 ( v ) -  1 - a l ( a  + p _ ) )  

(4.2) 

and provided v > 0 satisfies 

(p - 1)(nt2 - 1) = 1 + 6( f )  - 2 + va + rlv(6(v) - 1). (4.3) 

Proof.  We estimate the left-hand side of (4.1) by Lemma 2.3 part  (1) as 

tl f(~o);/}}I1 --<_ C II q,; B~ II Ill~0 I'-1 ll~ (4.4) 
with 

nls = 6(d) + 6(k), (4.5) 

and we estimate the last norm in (4.4) by the H61der inequality as 

jl]q ~ ip-  1 IIs --< J[Iq~ I p -  1 - " tl. I1 rp tt ~" (4 .6)  
with 

1/s - 1/u = ti. (4.7) 

Since 0 < ti _<_ 6(g)/n, the conditions (4.5) and (4.7) determine u with 1 _< u _< oe for 
any k > 2 and v > 2. We next estimate the norms of p in /3k ~ and L ( ' -  t-~v), by 
interpolation between the norms of ~o in/2/2~ and in t}2 and by using the Sobolev 
inequalities if necessary. The interpolation is possible provided 

1 - 2 <= 6(k) <= 6(r) (1  - 2) / (1  - p)  (4 .8)  

and 

l < 6 ( ( p - l - t i v ) u ) < l + M i n { G ( ~ / ( 1 - p ) } = - l + ~ / ( l + p _ )  (4.9) 

or equivalently, after elimination of u through (4.5) and (4.7) 

(p - 1 - tiv)(n/2 - 1 - ~/(1 + p_))  < 6(k) + 6(g) - tin 

__< (p - 1 -- tiv)(n/2 - 1). (4.10) 

The conditions (4.8) and (4.10) constrain 6(k) to lie in the intersection of two 
intervals, both of which are non-empty under  the assumptiolis made (in particular 
p - 1 - t/v => 0). The interpolation is possible, namely the conditions (4.8) and (4.10) 
are compatible for k, under the conditions (4.2) and 

( p -  1) (n /2-  1)> 1 + 6 ( d ) -  2 + t i v (6 (v ) -  1). (4.11) 

When possible, the interpolation yields (4.1), where v is defined by the homogeneity 
condition 

h i 2 -  ;~ = (p - v - tiv)(n/2 - 1) + v(n/r - p) + tin (4.12) 

or equivalently (4.3), and satisfies 0 _< v _< p -  tiv. Finally, the lower interpolation 
condition (4.11) reduces to the condition v >-0. Q E D  

We are now in a position to prove the basic uniform boundedness result for the 
solutions of the equation (1.1). 

P r o p o s i t i o n  4.1. Le t  n > 3. Le t  f satisfy (Ala) with p satisfying (3.30). Le t  q~ be a 
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solution of the equation (1.1) such that • =-(¢p, (o)~L~(~,X~).  Then 

(1) • = (q,, ¢ ) e~ ,oo (~ ) .  
Let in addition n >= 4, let 

3/(n - 2) < p -- 1 < 4/(n - 2) (4.13) 

or equivalently (see (2.40)) 0 < ~ < t/2, and let q) be a finite energy solution. Then 
(2) For any r ,p ,a ,q  satisfying (2.5) and 1 /q=a<7(r ) /2 ,  (oet'°°(Lq(/}f)) and 
(b ~E°° (Lq(Bv°- 1 )). 

Proof. We concentrate on the properties of (0. Those of ~b are derived in a similar 
way. 

Part(l) .  The proof is similar to that of Lemma 3.3 of [9]. The additional lower 
bound on p as compared with that lemma comes from the fact that the L 2 norm of q) 
is not available in the present case. By interpolation with/:/~ and by the Sobolev 
inequalities, it suffices to prove the result for 7(r) = 1 - e and 0 < 2a _< 7(r), with ~ > 0 
and small. For  such a value of r, we prove it in each bounded interval I for values of a 
increasing from 0 to 7(r)/2 by successive steps of length e. At each step we estimate the 
norm of (p in L¢'(I, [3°~ ") with 1/q" = a" = a' + e = 1/q' + e by the use of the integral 
equation (2.33). We estimate the integrand by (2.3) and Lemma 4.1 with r /= 0 as 

~ CI t - ~1-~(~) II q~;/:/~ llP-~ 11 ~o;/~(IV (4.14) 

with f < r and 2 = a" + a(E) so that (4.3) becomes 

(p - 1)(n/2 - 1) = 1 + 7(f) + va' - a". (4.15) 

We then estimate 

[IF(to, Cp);gq"(I,[~")ll <=Ctll¢llqo;g°°(gC, I]~)llP-~llq~;Lq'(I,B~')ll ~ (4.16) 

by the Young inequality, provided 0 < ~ < 1, 0 < a", va' __< 1, and 

= 1 - 7(g) - va' + a", (4.17) 

which coincides with (4.15). One can take for instance 7(f) = 1 - ( + e with e =< (/2, 
and v = 1. The upper interpolation condition (4.2) needed to apply Lemma 4.1 has 
been shown to hold for that choice and the relevant values of a', a" in the proof of 
Lemma 3.3 of [9]. Substituting the estimate (4.16) into the integral equation (2.33), 
one obtains for the previous choice v = 1, 

11 g0;Lq"(I,/}f')ll < tlgo(°);Lq"(I, Bf")ll + CII(IIqJ;L~(R;I:I~)I[ "-~ 

" ll q~; L¢ ( I, 13P," ) II (4.18) 

from which the result follows in a finite number of steps. 

Part (2). The proof is similar to that of Proposition 3.1 of [11]. By interpolation and 
the Sobolev inequalities, it suffices to prove the result for 7(r) = 1 + ~ and a = 1/2 - e 
with e > 0 and small. For  such a choice o f t  and a, we estimate q~ again by the use of 
the integral equation (2.33). We estimate the integrand by (2.3) and Lemma 4.1 with 



562 J. Ginibre and G. Velo 

q = 0 a s  

I I K ( t - - ~ ) f ( ~ o ) ; B ~ l l  ~ C[ t - r I-r(t) II ~o;/'/~ II P- ~ I[ q~;/9~ II*' (4.19) 

with ~ ~ r and 2 = a + a([)  so that  (4.3) becomes 

(p -- 1)(n/2 -- 1) = 1 + ~(E) + (v -- 1)a, (4.20) 
or  equivalently 

= 1 - 7(~) - (v - a)a. (4.21) 

We use the estimate (4.19) with different values of  ~ and v according to whether  
I t - r [ - <  1 or I t - r [  >_- 1, with 

0 <- v <- I - -  ~/a < 1 (4.22) 

in both  cases. For  It - r l < 1, we take 0 < 7(f) - 7 -  < 1 - e, which is compatible  with 
(4.22) provided 2e < ~ < 1 + a = 3/2 - e, and therefore under (3.30) for e sufficiently 
small. Fo r  It - r l > 1, we take y(g) -- ;~ + = "/(r) = 1 + ~, which is compatible  with 
(4.22) provided 0 < ff < a - e = 1/2 - 28, and therefore under  (4.13) for e sufficiently 
small. We denote  by v+ the values of  v corresponding to the two cases. We now 
define 

ko( t )  = 11 q~(°)(t);/}~ II, (4.23) 

k(t)  - II ~0(t);/}o II. (4.24) 

We restrict our  at tent ion to positive times. Taking the norm in/}~ of both  members  
of the integral equat ion (2.33) and estimating the integrand by (4.19) we see that  
for t > O, k( t)  satisfies the integral inequality 

k < ko + # * ~ k  ~± (4.25) 
_+ 

with 

{ # ( t ) _ ~ C M i n l t ] - ~ ± ~ + ] l q ~ ; L ° ° ( ~ , I : l ~ ) ] [ P - ~ ±  for t > O ,  

#(t) = 0 - for t < 0. (4.26) 

In particular, # e L  1 (~ +). We now take a > 0, multiply both  members  of  (4.25) by the 
characteristic function X, of the interval [0 ,a] ,  and take the norm in f~°(Lq). 
Applying the Young inequality in the spaces ~*(L*) (see for instance Lemma 5.6 of 
[8])  and the inclusion f ~ ( L  q) c E~°(L ~q) for v < 1, we obtain 

I[ )~,k; ~'°°(Lq) 11 < ][ k o ; ~ ( L q )  l[ °c C M a x  [[ (0; L°°(0~, H2 ~) i[ p-v± If xak; E~(Lq) If v±. 
_+ 

The contr ibut ion of the free term is controlled by Lemma 2.2. Since v+ < 1, the left- 
hand side is bounded  uniformly with respect to a. This completes the proof. Q E D  

We now prove the finiteness of the propagat ion  speed for the equat ion (t. 1) in the 
form of local energy conservation.  The result given in Lemma 4.2 below, and its 
formal algebraic derivat ion are the same as that  for the N L K G  equat ion given in 
Lemma 4.2 of [11]. The actual p roof  however,  is somewhat  different because we use 
a different (more economical) regularization procedure.  Fo r  any open ball 
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12=B(x,L)  of center x and radius L in N", for any teN, we define 12_+(t)= 
B(x, L + t t l) with the convention that B(x, L) is empty if L < 0. For any measurable 
set $2 ~ N", for any (~0, O)~X~, we define 

E(q~, ~;.62) = ~ dx(l~k 12 + I V~o 12 + V(q>)). (4.27) 
a 

Lemma 4.2. Let n > 3. Let f satisfy (Alb) with p satisfyin9 (3.30) and (A2) with V > O. 
Let ~o be a finite energy solution of  the equation (1.1). Then for any open ball 12 ~ R", 
for any teR,  the following inequalities hold: 

E(~o(t), ~(t); O_ (t)) < E((0(0), ~b(0); ~2) 

and 
~(~(t), ~(t); C~+ (t)) __< E(~o(0), ~(0); Co), 

where C denotes the complement in ~". 

Proof. Without loss of generality, we can assume that 12 = B(0, L) and that t is 
positive. We choose a function meC~®(~,R +) with re(s)=0 for s < 0 ,  re(s)= 1 
for s > 1 and 0 < m'(s) ~ 2, and we define m~(s) = m(s/e). By a computation similar to 
those contained in the proofs of Proposition 3.6 and of Lemma 4.2 of [11] and an 
elementary argument of regularization in time, we obtain 

~ d x m , ( Z - t - I x l ) { l n a ~ l  2 + tnjV~ol 2 + V(Hfi~)}(t,x) 

< ~dxm~(L--lxl){Inj~t  2 + tnjv~ot 2 + v(nfi~)}(O,x) 
t 

+ ! dz~dxm~(L - z - J xl)2Re H/p(f(Hjq~) - HJ(~o))(z, x), (4.28) 

where H i is the regularizing operator defined in the Appendix. We next let j  tend to 
infinity and 8 tend to zero in that order. The left-hand side and the first term in the 
right-hand side of (4.28) tend to E(q~(t), ~b(t); J2_(t)) and E(q~(0), ~b(0); 12) respectively, 
by the same argument as in the proof of Proposition 3.6. Note however that the 
assumption that ~o(t)~L v+~ for some t ~  is not needed here, because the function 
m~(L - • -- [-[) has compact support. We next prove that the second term in the fight- 
hand side of (4.28) tends to zero when j ~ oo for fixed e, by proving that the 
contributions of f ( H p )  and Hjf(q>) both tend to their common formal limit. The 
argument is almost the same as in the proof of (3A9), (3.50) with an additional 
complication due to the function r h ( ~ , x ) - m ~ ( L - ~ - [ x l ) .  Instead of (3.53), we 
obtain the estimate 

l i  dz (Hj(°(z),t~f(Hi(°(z))> 

< C lJ ~b; Lq([0, t],/~,P- ~)I[ II r~f (Hjq~); L~([0, t],/3~ - P)II 

<- C t¢ lJ (o; L~([O, t ] , / ~ -  ~) I[ { II r~; L ~ ( [0, t], Z ~) II + II r~; Z °° ([0, t],/~) - ~) lJ ) 

"1t tp; Z~([0, t ] , /~)  I1 ~, (4.29) 

where n/Y = 1 - p ~ 1/2, the last inequality follows from a straightforward extension 
of Lemma 2.3 part (1), the first norm of r~ is 1 and the second one is finite since 
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~h~cg ~ and rh has compact support as a function of x. The same estimate holds for 
the contribution of H J(99) to (4.28). With that modification included, the proof 
proceeds as that of energy conservation in Proposition 3.6 through the use of the 
Lebesgue dominated convergence theorem in the time integral. QED 

We now recall the basic decay estimate [21]. The result given in Lemma 4.3 
below and its formal algebraic derivation are again the same as that for the N L K G  
equation given in Lemma 4.3 of [1 1], with a somewhat different proof. We define 

Wl(z)  --- ~ f ( z )  - V(z). (4.30) 

We also introduce the functions 9(x) = (1 + Ixl/) - 1/2 and 91 = V'(xg). One checks 
easily that (n - 1)9 < 91 < no and that A# 1 < 0 for n > 3. 

Lemma 4.3. Let n > 3. Let f satisfy (Alb) with p satisfying (3.30) and (A2). Let 99 be a 
finite energy solution of  the equation (I.1). Then for  any s and t in ~, s < t, 99 satisfies 
the inequality 

t 

dr ~ clxgl (x) Wl (99(~, x) ) 
$ 

< Re { (~b(s), (xg 'V  + V'xg)99(s)) - < ~(t), (xo 'V  + V'xg)99(t)>}. (4.31) 

Proof. By the same algebraic computation as in the proof of Lemma 4.3 of [1 1] and 
an elementary argument of regutarization in time, we obtain 

t 

$ 

= Re { (Hj~b(s), (x9" V + V.xg)Hj99(s) > - (nj(b(t) ,  (xg" V + V 'xg)H/p( t )  > } 
t 

+ ~ dr Re < njq~(z), [A, xg] "VHj99 (~) > 
8 

t 

+ I de Re (f(Hj99(z)) - Hjf(q)(r)),  (xg" V + V'xg)H~99(z) >. (4.32) 
s 

where H~ is the regularizing operator defined in the Appendix. The first integral in 
the right-hand side of (4.32) is negative (see the proof of Lemma 5.2 of [8]). We next 
letj tend to infinity. By the same argument as in the proof of Proposition 3.6, the left- 
hand side of (4.32) converges to that of (4.31). Note in particular that 

II glWd99) I11 < Cllg~ II~l199 IIN +1 (4.33) 

with 

(p - 1)(1/2 - l/n) = 2In - l / f ,  

or equivalently E = n/~ so that E > n and II gl lit < o0 for ~ < 1. In addition, the first 
two terms in the right-hand side of (4.32) converge to the right-hand side of(4.3 1). We 
next prove that the last integral in (4.32) tends to zero whenj  ~ oo by proving that 
the contributions of f(Hj99) and of H j f(99) both tend to their common formal limit. 
We use again the same argument as in the proof of (3.49), (3.50), now with an 
additional complication due to the function xg. In particular, instead of (3.53), we 
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estimate 

I! ( f (Hj to(z ) ) ,  (xg" + V'xg)Hjto(z)  dz V 

t 
<= C ~ dz { I[ f (H~¢(z)); /}~ - p II tI to(z);/~P II II xg  It oo 

s 

+ l[ f(Hfl~(z)); YB} -P-~ 1[ [1 q~(z);/}~P II II xg , / i~ -p  II 

+ [I f(Hjq~(z)); f~¢ -P l[ I[ to(z);/}~-~ l[ [I xg;/}• II } (4.34) 

by a straightforward extension of Lemma 2.3 part (1), and with e > 0, n/k = 1 - p - ~.;, 
n/g = p - e. Assuming for the moment  that  the last two norms of xg are finite, and 
taking p ____ 1/2, we estimate the last two norms of f as 

" l - p  
]lf(Hito(~));B~ I] <Ctlto(z);/3;ll p, 

[I f(Hjto(z));  B~ -P-~ H ~ C l] to;/}~ liP-11[ to;/}p-~ l[ 

by Lemma 2.3 part (1), with (p + ~(r) - 1 = )a = (1 - ~}/(p + 1). We then estimate the 
time integrals in (4.34) by the H61der inequality and (noting that  ilxgtI~ = 1) 
continue (4.34) as 

--" <= Cll t o ;Lq ( [ s , t ] ,B f f ) lF+l l t - s l  ~ 

+ C 1[ to; Zq( [s, t], BP~)]l p I I to; Lq'([s, t], B~-~)li l t  - s I ¢ +~ 

• { l lxg ,~}~-~l l  + I lxg ;B; l l  } (4.35) 

with 1/q = o" and 1/q '= ( , -  e. The same estimate as (4.34) (4.35) holds for the 
contribution of H.if(to) to the last term in (4.32). With those estimates available, the 
proof proceeds as that  of energy conservation in Proposit ion 3.6 through the use of 
the dominated convergence theorem in the time integral. 

It  remains to be proved that  the norms of xg that  occur in (4.35) are finite. We 
consider only the last one. By an elementary computation,  we obtain, for any 
X, X' ~ n, 

[xg(x) - x'g(x')l < Min {2, Ix - x'l(g(x) + g(x'))}. (4.36) 

Using the integral form of the Besov space norms (see (2.24)), we estimate 

Hxg;/~fll  < C t - ~ d t  t -OSup ][xg- zrxg[l t? . (4.37) 
lyl<t 

Using (4.36), we estimate the L t norm in two ways. For  [Yl =< 1, we obtain from the 
second term in the minimum in (4.36), 

l[ xg - "ryxg I[t< 2ly[ I1 g ll~. (4.38) 

For  ]y] > 1, we use the first term in the minimum for ] x + y/21 < 21y] and the second 
term for tx + y/21 > 2]yl and obtain 

II xg - vyxg 1t~ < Clyl  "/q (4.39) 
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Substituting the estimates (4.38) for [y[ ~ 1 and (4.39) for [y] ~ i into (4.37) and using 
the fact that n/E = p -  e shows that xg~[3~]. QED 

In the same way as in I'8] and 1'11], the estimate of Lemma 4.3 will be used 
through its following consequence. 

Lemma 4.4. Let n > 3. Let f and ¢p be as in Lemma 4.3 and assume in addition that 
W I > O. Then for any e > O, a o > 0 and [ o > O, there exists b o > O, depending only 
on e, ao, do and on the energy E of c#, and there exists c such that ao <<- c ~ b o - do 
and 

c + d  0 

dz S dxWl(go(z,x))<e. (4.40) 
c Ix l=2~  

One can take 

bo = (ao + ¢o + 1)exp {4E¢oe-l(n - 1)-1}. (4.41) 

Proof. The proof is the same as that of Lemma 4.4 of [11]. 
The next step in the argument consists in proving that an arbitrary finite energy 

solution of the equation (1.1) is arbitrarily small in arbitrarily large intervals of time 
provided those intervals are located sufficiently far. That result requires a repulsivity 
property of the interaction term f ,  which we state as follows 

(A3) There exists C > 0  and P,,Ps with 1 ~p4<=p5 < go such that for all p~R +, 

WI(p) ~ C Min (pP'+ 1, ppS+ 1). (4.42) 

We can now prove the following result, in close analogy with Lemma 4.5 of [11]. 

Lemma 4.5. Let n >= 4, let f satisfy (Atb) with p satisfying (4.13), (A2) with V > 0 and 
(A3). Let r, p, a and q satisfy (2.5) and 0 < a = 1/q. Let ~o be a finite energy solution of 
the equation (1.1). Then for any e > 0 and any ¢ > O, there exists a > 0 such that 

[I ¢P; Y°~( L~, [a, a + Y],/3~) 11 _-_ ~- (4.43) 

Proof. The proof is the same as that of Lemma 4.5 of i-11] with only one difference. 
Since now the energy does not contain the L z norm, the contribution of the region 
t - 02 -< z < t - 01,  I x l  > 2z has to be estimated by using the norm of ~0 in L 2., namely 
by taking v3 = 2*. The local energy estimate of Lemma 4.2 has then to be 
supplemented by a decay estimate for the norm of ¢p in L z* replacing (4.38) of [11]. 
That estimate is given in Lemma 4.6 below. With that estimate available, the proof 
proceeds as that of Lemma 4.5 of [11]. QED 

Lemma 4.6. Let n > 3. Let f satisfy (Alb) with p satisfying (3.30) and (A2) with V > O. 
Let 69 be a finite energy solution of the equation (1.1). Then 

2* lim ]l tp(t); L (CB(0, 2t))II = 0. (4.44) 

Proof. Let 1 < a < 2, let ~c6~°(R") satisfy Z(x)= 0 for Ixl _-< a, z(x)--  1 for Ix] > 2 
and 0 < X < 1, and let X,(x) = X(x/t). Then for all t > 0, 

2* II ¢p(t); L (CB(0, 2t))II _-< II Z, cp(t)II 2, < II (V:~,)tp(t)[I 2 + [I xtvcp(t)II 2 

_<_ t -  111 v z  II ® II q~(t); L2(B(0, 2t)\B(0, at))II 

+ II Z II ® II Vtp(t); CB(0, at))II. (4.45) 
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The first no rm of ¢p in the last member  of (4.45) is est imated by writing q~ as the 
integral of  ~b and estimating the local L 2 no rm of  the latter by  L e m m a  4.2, while the 
local L 2 norm of Vq) is est imated directly by the same lemma. We can then continue 
(4.45) as 

• "" < It V)~ II ~ {t-111 to(O); L2(B(0, 2t) \n(0,  at))I! 

+ E(0, B(0, 3t)\B(0, (a - 1)0) 1/2 } + E(0, ~B(0, (a - 1)0) 1/2 (4.46) 

The remaining no rm of  ~o(0) is est imated by the H61der inequality, so that  (4.46) can 
be cont inued as 

• -- <_- II v x  It ® 2co~/" II ~0(0);/_,2*(8(0, 2t)\n(0,  at))II 

+ (1 + tl v z  II ~)E(0,  on(o, (a -- 1)t)) x/z, (4.47) 

where con is the volume of the unit ball in R". The result follows from (4.47), from the 
fact that  q~(0)~L z* and from L e m m a  4.2. Q E D  

In order  to proceed further, we need to prove that  some norm of an arbi t rary  
finite energy solution of  the equat ion (1.1) satisfies a superlinear integral inequality 
in addit ion to the sublinear inequality used previously (see (4.25)). Fo r  that  purpose,  
we need the following estimate. 

Lemma  4.7. Let n > 4. Let  f satisfy (Ala) for two values Pl and P2 with 

P2 - 1 < 4/(n - 2) < p~ - 1. (4.48) 

Let  r and a satisfy 7(r) > 1, 7(r) sufficiently close to 1, and o- < 1/2, a sufficiently close to 
1/2. Then there exists 7~ and 72 satisfying 0 < 72 < 1 < 71 and there exists v satisfying 
v >  1, va<= 1 and ( v - 1 ) a <  1 - 7 2 ,  such that'for all ~BP, nI-:I~, and all t > O ,  the 
following estimate holds 

l] K(t)f(q));/i~ l{ ~ Min  (1 t l - r ' )M(  II q~;/t2 ~ ll)ll q'; liV IV. (4.49) 
/=1,2 

Proof. Without  loss of generality, we assume that  (191 - 1)(n/2 - 1) = 2(1 + e) and 
( P 2 -  1 ) ( n / 2 -  1 )=  2 -  e and we take 7(r )= 1 + e with e > 0, e suitably small. We 
obtain the two estimates of (4.49) by applying successively (2.3) (see also (3.5), (3.6)) 
and Lemma 4.1 with t /=  0 and 2 = a + a(d), once with p = Pl,  71 = 7(C1) = 1 + e, and 
once with p = P2, 72 = 7(f2) = 1 - 2e and with (v - 1)a = e, which fulfills the relation 
(4.3) or equivalently 

(p - 1)(n/2 - 1) = 1 + 7(f) + (v - 1)a (4.50) 

in both  cases. Fur thermore  (v - 1)a = ~ < 1 - 72 = 2e and va = a + e < 1. The upper  
interpolat ion condi t ion (4.2) is seen to be satisfied in bo th  cases for e sufficiently 
small and a sufficiently close to 1/2 by an explicit computa t ion  for which we refer to 
the p roof  of Lemma  3.3 in [9]. Q E D  

It follows immediately from Lemma  4.7 that  under  suitable assumptions on  
f and on p, r, q, any finite energy solution of the equat ion (1.1) satisfies the following 
properties. The norm k(t) defined by (4.24) belongs to f°°(Lq) by Proposi t ion  4.1, is 
small in large intervals by Lemma  4.5 and satisfies a superlinear inequali ty 

k ~ k o + # . k  ~, (4.51) 
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where v > 1 and 

# ( t ) = M i n [ t [ -  ~' for t>=0 
i=1,2 

# ( t ) = 0  for t=<0, 

by Lemma 4.7. From that information, the dispersive properties of such solutions 
follow by the same abstract arguments as in the case of the NLS equation [8]. We 
now state the final result. 

Proposition 4.2. Let n > 4. Let f satisfy (Alb) for two values P l and P2 satisfying (4.48), 
(A2) with V > 0 and (A3). Then 

(1) Any finite energy solution of the equation (1.1) belongs to'Y/(E). 
(2) The wave operators X2+ defined in Proposition 3.7 part(2) are surjeetive in X~. 

Indication of'Proof. It follows from Proposition 4.1, Lemmas 4.5, the integral 
inequality (4.51) and from Lemmas 5.10 and 5.11 of [8] that any finite energy 
solution ~0 of the equation (1.1) belongs to Lq(N,/}f) for the values of p,r,q that 
appear in Lemma 4.7. By interpolation with the boundedness of ~0 in/2/2 ~ and the 
Sobolev inequalities, this implies that q~eLq(/}~) for all p, r, o- and q satisfying (2.5) 
and 1/q = o-, except for the boundary values corresponding to 7(r) = 2a. Finally, the 
whole region (2.5) is recovered by applying Proposition 2.3. QED 

In the framework of Scattering theory, Proposition 4.2 part (2) means that the 
wave operators obtained in Proposition 3.7 are asymptotically complete in Xe. 

Appendix 
In this appendix, we collect the definition and some basic properties of the 
homogeneous Besov and Sobolev space of arbitrary order (see [1] for general 
information on those spaces). We discuss in particular the problem of the choice of 
representatives (see [3] for that question). We also discuss the meaning attached to 
the equation (1.1) and its equivalence with the integral equation (2.33). 

We denote by ~- the Fourier transform and we write ~ =  ~-v for any 
yeS: '  - 5:'(R"). We define the subspaces Lr - N'(E") and ~o of 5 ~ - 5:(R") by 

= {ueS::D'~(0) = 0 for any multiindex e} (A.1) 

and 

= • ( a . 2 )  

Clearly Lr is a closed subspace of 5:, so that ~ is reflexive, while N0 is easily seen to 
be dense in ~ .  The dual of the inclusion map ~e c 5: is a surjection rc from 5:' to ~ ' ,  
the kernel of which consists of the polynomials N, so that Lr' = 5: ' /N. 

Let ~oeCg~(~ ") with 0_-<~o<1, ~o(~)=1 for 141<=1 and ~o(~)=0 for 
I~1 > 2. For any j~7/define ~j(~)= ~o(2-s~) and ~b = ~j - ~s-1 so that 

Supp ~b~ ~ {~:2 j-1 < I~[ < 2J+1} 

and, for any ~ ~ 0, ~j(~) = ~ ~b:(~) with at most two non-vanishing terms in the sum. 
:< j  
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By homogeneity 11 ~j II 1 = II ~bo Itl and II cpj II 1 = II (Po fll for any jeZ.  
With any ueSe' we can associate the sequence of functions {(pj,u = uj}, jeZ.  

That sequence is actually defined for u e ~ '  since uj = 0 for ue~ .  For  any p e r  and 
any r and s with 1 < r, s < oo we define the homogeneous Besov spaces 

and the auxiliary spaces 

" *J*ulSJ ' I,-Ilu;;,'sll 

with obvious modifications if s = oo. The factor 2" in the sums mimicks a derivative 
of order p. Equipped with thenorm.given by (A.3) and (A.4) the spaces/),v s and/7~, are 
Banach spaces. They satisfy F~ c B~ if 1 < r < s < oe and B~ c F,°~ if 1 < s < r < oo. 

We next define the homogeneous Sobolev spaces. For any peR,  we define the 
operator co" by co'¢'u'(~) = [¢ I"a(¢) for any ueLr. Then cop is an homeomorphism of 
onto itself, and therefore induces an homeomorphism of ~ '  onto itself, still denoted 
by co v. For any p, for any r with 1 < r < 0% we define the homogeneous Sobolev 
spaces/1~ by 

Ha = co-"rc(Lm). 

Any uerc(L m) is the ima.ge of only one representative uReL m. Equipped with the norm 
I1 u; H," It - II (coPu)R tt .  H, p is a Banach space. The homogeneous Besov and Sobolev 
spaces can be compared by using the (non-tn.'vial) fact that /~z =/1~ for 1 < r < oe so 
that the previous embeddings imply B,Pz c H, ° c B,°m if2 < r < oo and/},P, c /~o  c 1},o 2 
if 1 < r < 2. The Sobolev embeddings for the Besov spaces take the form 

B, ~ he' (A.5) 
ms ~ r I s  

with n / r - p  = n / r ' - p ' ,  1 <_r<_r'<_ oo and l_s_<  oo. 
Another embedding of interest is contained in the following lemma. 

, <  Lemma A.1. Let 1 =< g, m, m' < 0o, m __ m, 2 e R and ~ > O. Then [~ ~,, ~ ~ Bt,;~" ~+~, and 
+_ 

the following estimate holds 

It u;/)~.~ tl __< c I1 u;/)~.~, tl _-< c l ]  II u.'fix+-~.,, It t/2. (A.6) 
_+ 

Proof. The result follows from the definition of Besov spaces through a dyadic 
decomposition by a simple use of the H61der inequality. QED 

For a number of arguments we need to approximate elements of ~ '  by smooth 
functions. For any j, ke7/+ we define the regularizing operators 

H j~u = (~' i -  ~_~)*u  

for any ue6 e' and H~ -=- Hjj. Clearly HjkUe(~ °° with at most polynomial increase. The 
operators Hjk are bounded uniformly with respect to j, k and converge strongly when 
j and (or) k ~ oo in a number of spaces. By the definition (A. 1) the operators Hjk are 

o uniformly bounded with respect to j  and k in all l)ms and converge strongly to ~ when 
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j, k ~ oo for s < oe. The operators Hjk converge strongly to ~ in ~o  since H~kU is 
independent of j, k for u e 9  o and j, k sufficiently large. In addition Hjk converges to 
Hook w h e n j ~  oo strongly in b a and therefore in 6 e', and Hjk converges to ~ when 
j, k ~ oo strongly in ~r and therefore in ~ ' .  Furthermore the operators Hjk are 
uniformly bounded with respect to j and k in L r since 

II njku II, --- II Cj - ¢ -k  II1 II u II, < 2 II ~ko II1 N u lit. 

Since ~o is dense in L" for 1 < r < oo, Hjk converges strongly to ~ in L r when j, k ~ oo. 
The locally regularized functions Hj~u, with u~re',  in general do not decay at 

infinity. In some applications it will be useful to introduce an additional cut off at 
infinity in space. For  that purpose we choose a function go with goego  ,go = 0, 
Supp0o c {~:1~1 < 1/2}, II 0o 11~ = 1 and, for any j eZ ,  we define 0~(~)= 2"J00(2J~) . 
The operators of multiplication by gj are uniformly bounded in norm with respect to 
j in all the L ", 1 < r < oe, and converge to ~ strongly in L r for 1 < r < oo whenj  --* oo. 
We define the operators Rj by R~u = gjHjju for any ueS~', so that R ~ u ~  o. Note also 
that 

Supp Rju ~ {4:2 -u+ 1) < I~1 -< 2J+ 1 + 2-u+ x)}. (A.7) 

Clearly the operators Rj are uniformly bounded in norm with respect to j in L ~, 
1 < r < o% and converge to ~ strongly in L', 1 < r < oe when j--* oo. We next study 
the behaviour of Rj in the Besov spaces. 

Lemma A.2. (1) The operators Rj are uniformly bounded with respect toj in B~, with 
peR,  1 < r <  oo, 1 < s <  oo. 
(2) The operators Ri converge to ~ when j ~ oo strongly in [ ~  with peE,  1 < r < o% 
l < s < o e .  

Proof. We prove only Part  (2) which is slightly more complicated than Part (1). By 

Rju -- u = (gl - 1)Hju + (H~u - u), 

and by the convergence properties of Hi, it is sufficient to prove that (gj - 1)Hju ~ 0 
in/},P~. For  that purpose we need an estimate in E ~ of the sequence v = {Yr,} defined by 

Vm=2Pmll~Om.((gs-1)nju)[l,< ~ 2Pm[lq),.((gj--1)(q)k.U))llr . (m.8) 
- j < k < j  

By the support properties of ~b k and g1 the norms in the right-hand side of (A.8) are 
different from zero only for [ k - m [  <2.  Using the Young inequality and the 
previous restriction on k we obtain 

IIv;;~ll < (  E 2Ptlllw;;~ll < 5.41~111w; ;~11, 
k1¢]<2 / 

where w = {Wk} is the sequence 

wk = 2Pk tl (g~-  1)(q~k*U)L tl q~o IIx. 

Since ue/},P~ the sequence w is bounded uniformly in j  by a sequence in g' and each 
term tends to zero when j--* o% so that w ~ 0 in ~ when j ~ oo. QED 

The elements of homogeneous Besov spaces are equivalence classes of distri- 
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butions modulo polynomials. However we are interested in solving the 
equation (1.1) in a genuine distributional sense. Therefore we repeatedly face the 
problem of choosing distributional representatives of elements of B~, spaces, and 
making sure that those choices are consistent with the various operations to be 
performed. This is all the more necessary as some of the statements and estimates, 
such as those of Lemma 2.3, explicitly require the use of representatives. 

The problem of the choice of representatives has been studied in [3], from which 
we extract Lemma A.3 below. In order to state it, we define the space 5e~ of tempered 
distributions tending to zero at infinity as 

6e' o = {uES:': d~u-oO in ~ '  when 2~0},  

where dz is the dilation operator defined by (dau)(x) = u(x/2). 

Lemma A.3. Let  1 < r, s ~ ~), n / :  = n/r - p > O..Then 

(1) Any  u~[~s has a unique representative u R in 6:'0 . The map u ~ u R is continuous 
f rom B~ to 5a'o and u R is the limit o f  H ~u in 6:' when j ~ ~ .  
In addition 
(2) I f  p > 0, then uR¢L : +~ + L :-~ (for some e > 0). The map u -o u R is continuous f rom 
[3~s to Le+~ + L :-~ and uR is the limit o f  Hju and o f  Rju in Le+" + L :-~ when j ~ o o .  
(3) I f  p > O, s < 2 and : > 2, then ua~L:. The map u -o uR is continuous f rom B~s to I f  
and u R is the limit o f  Hju and o f  Rju in L ~ when j ~ ~ .  

P r o o f  We refer to [3] for Parts (1) and (2). Part (3) follows from the embedding (A.5) 
and the properties of Hj and Rj. QED 

In all the applications made in this paper the assumptions of Lemma A.3 Part (1) 
are satisfied. Whenever a choice of a representative is needed we select the 
representative described in that lemma, which we sometimes call the canonical 
representative. In order to simplify the notation we use the same symbol for the 
Besov space element and for its canonical representative. That occurs in particular 
in the following three cases: 

(1) In the definition (2.1) of the energy space X~ it is understood that the first 
component is the canonical representative (which is in L 2.) of an element o f / ~  = / ~ ,  
according to Lemma A.3 part (3). 
(2) The interaction term f in (1.1), generally satisfying the assumption (Ala), is 
always to be applied in the ordinary sense to the canonical representative of its 
argument. Subsequent estimates such as the estimates (2.17), (2.19) and (2.21) off (o)  
in Lemma 2.3 are then performed on the class of f(~o) in a suitable Besov space. 
Clearly the functions g~ and g2 in the same estimates are also applied to the 
canonical representative of <p. Finally, by Lemma A.3 Part (2) and since f(0) = 0, 
f(~0) is the canonical representative of its class. 
(3) The operators K,/~, K .... obviously commute with the regularisation operator 
H~. It follows therefore from Lemma A.3 that they preserve the choice of the 
canonical representative whenever it exists. This remark applies in particular to the 
transition from q~ to ~ defined by (2.38). 

We now discuss the meaning of the integral equation (2.33) and its relation with the 



572 J. Ginibre and G. Velo 

differential equation (1.1). We shall always work in situations where f(q~)eL~o¢(l, f3xe) 
for some interval I of N with : ,  m > 1, 2 > 0, n/: - 2 > 0. The integral which occurs in 
(2.35) is defined as a weak integral in ~ '  by 

~, d z K ( t -  z)f(q~(z)) = d ~ ( K ( t -  z)( , f ( tp(z)))  (A.9) 
to 

for all to, t d  and for all ( ~ .  With the choice of the canonical representative of q~ 
and therefore of f(~0), the integral is also defined weakly in 6e'. It follows from the 
available estimates and from Lemma A.3 and the subsequent discussion that the 
weak 5: '  integral is the canonical representative of the weak ~ '  integral. 

We next define the weak time derivative in ~ '  (a similar definition holds in 5:'). 
Let I be an open interval of N and let q~eL~o¢(I, X), (geL~o¢(I, Y), q > 1, where X and Y 
are two Banach spaces continuously embedded in ~ '  (or 5:'). We say that ~b is the 
time derivative of tp if the following equality holds in 9'(1) 

d(~,  (p)/dt = (~, (b) (A.10) 

for all ~eY' (or ~eS:). 
The differential equation (1.1) and the integral equation (2.33) are equivalent in 

the following sense. 

Proposition A.1. Let I be an open interval of ~ and let (peLq(I,]3~) be such that 
f(go)eLm(1,)~), with r , : , q ,m  ~ 1. 

(t) Let go satisfy the equation(1.1) in the previous weak sense. Then 
q)ecgl(Y, X), (oecg(P, X) where U is the closure of I in ~, X = 1~ + [3~ - 2 and, for all 
s, teP,  (p satisfies the equation 

q)(t) = A(s, q~O); ~0)(t) (A.11) 
with 

q¢°)(t) = K(t  -- s)q~(s) + K(t  - s)(o(s). 

(2) Conversely let qo(°)eLq(I,/}~) (this is not essential) be solution of the equation 
V]q~ ~°) = 0 and let q~ satisfy the equation (A.11) for some seY.  Then q~ satisfies the 
equation (1.1) in the previous weak sense. 

The proof of Proposition A.1 proceeds by a direct computation and duality 
arguments. 
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