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Abstract. Motivated by the problem of the moduli space of superconformal 
theories, we classify all the (normal) homogeneous Kfihler spaces which are 
allowed in the coupling of vector multiplets to N -= 2 SUGRA. Such homo- 
geneous spaces are in one-to-one correspondence with the homogeneous 
quaternionic spaces ( ~  HH") found by Alekseevskii. There are two infinite 
families of homogeneous non-symmetric spaces, each labelled by two integers. 
We construct explicitly the corresponding supergravity models. They are 
described by a cubic function F, as in flat-potential models. They are Kfihler- 
Einstein if and only if they are symmetric. We describe in detail the geometry of 
the relevant manifolds. They are Siegel (bounded) domains of the first type. We 
discuss the physical relevance of this class of bounded domains for string theory 
and the moduli geometry. Finally, we introduce the T-algebraic formalism of 
Vinberg to describe in an efficient way the geometry of these manifolds. The 
homogeneous spaces allowed in N = 2 SUGRA are associated to rank 3 T- 
algebras in exactly the same way as the symmetric spaces are related to Jordan 
algebras. We characterize the T-algebras allowed in N = 2 supergravity. They 
are those for which the ungraded determinant is a polynomial in the matrix 
entries. The K/ihler potential is simply minus the logarithm of this "naive" 
determinant. 

1. Introduction 

One promising approach [1] to the geometry of the moduli space for an abstract 2d 
superconformal field theory is the study of the low-energy supergravity correspond- 
ing to the superstring model defined by this theory. Probably, the most interesting 
case is that of (2, 2) superconformal systems, which according to a well-motivated 
conjecture by Gepner [2] should correspond to a o--model on a Calabi-Yau 
manifold. Many results on the moduli spaces for (2, 2) systems were obtained using 
this method in refs. [3, 4]. Indeed, it turns out that many problems in the moduli 
theory were already worked out in the context of supergravity, and hence many 
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issues can be spelled out just by looking in the fight place in the SUGRA literature. 
For instance, the moduli space of the (4, 4) c = 6 superconformal theories is 
completely determined by the (unique) geometry of the scalars' a-models consistent 
with N = 4 4D supergravity [5]. The result [1] is consistent with Gepner's 
conjecture [-2] and the moduli space for the K~ihler-Einstein metrics on the K3 
surface, as computed in the mathematical literature [6]. 

However, although the method is in principle very powerful, its implementation 
requires to work out the details of some exercises in supergravity which are not 
already available in the published literature. As emphasized in Refs. [1, 3, 4] the 
supergravity theory which is relevant for the moduli problem (of the (2, 2) c = 9 
system) is N = 2, so the open questions are problems in the coupling of N = 2 
SUGRA to matter. 

It is the purpose of the present paper to give full details on one such technical 
problem, namely to classify and construct explicitly all the couplings of vector 
multiplets to N = 2 SUGRA such that the corresponding scalar manifold is a 
homogeneous K/ihler manifold. The simpler case of a symmetric K~ihler manifold was 
solved some time ago by Cremmer and Van Proeyen [7]. 

This problem is so deeply related to the geometry of string theory, that in order 
to solve it, we shall use ideas coming from the analysis of the string case [3] and we 
shall see below how the string language gives a geometrical interpretation to the 
matter couplings of N = 2 SUGRA. 

The main idea from string theory is the c-map [3]. Its physical origin is the 
following. The low-energy theories resulting from the compactification of type IIA 
and IIB superstrings on the same (2, 2) superconformal system, are related by the 
interchange of the vector multiplets with the hypermultiplets [-1, 3]. The c-map is the 
operation which transforms one such effective Lagrangian into the other one. Since 
the hypermultiplets parametrize a quaternionic manifold [-8] and the vector- 
multiplet scalars a K~ihler manifold (of a restricted type [-9, 3]), the c-map is an 
operation which transforms a (restricted) K/~hler manifold into a quaternionic 
manifold (with reduced curvature [-10] v = - 2), and vice versa. The details of this 
map and its relationships with string theory are discussed in Ref. [3]. Since 
quaternionic and hyperK~ihler 1 manifolds are rather interesting geometrical 
objects, the e-map has surprising mathematical properties. Some of these properties 
were sketched in ref. [3]: there it was found that the c-map is closely related to the 
theory of Jordan algebras [12, 13]. We shall see that this connection extends to the 
more general T-algebras [-14]. 

More generally, it was found [3] that the c-map is connected to the classification 
by D. V. Alekseevskii [-15] of normal homogeneous quaternionic manifolds, i.e. 
quaternionic manifolds having a solvable transitive group of isometries. It is 
conjectured [15] that these are the only non-compact homogeneous quaternionic 
manifolds. 

The classification of the relevant homogeneous K/ihler manifolds is constructed 
as follows. Take one such manifold and construct the corresponding supergravity 
model. Using the methods of ref. [-3] we can construct its c-map, i.e. a SUGRA model 

1 HyperKS.hler manifolds are relevant for the global case (ref. I-8, 11]) 
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coupled to n + 1 hypermultiplets taking value on some quaternionic space which is 
also homogeneous. Then it is a Alekseevskii space. Therefore, all the homogeneous 
K/ihler spaces allowed in N = 2 SUGRA are inverse c-images of Alekseevskii spaces, 
and conversely any Alekseevskii space--other than HHn--is  the c-image of a 
homogeneous K~ihler space allowed in N = 2 SUGRA. Thus, the classification of 
such homogeneous spaces is reconducted to the known classification of the normal 
homogeneous quaternionic spaces [15]. 

As it is well known [9], the coupling of n vector-multiplets to N = 2 SUGRA is 
specified by a holomorphic function of n + 1 complex variables F(X °, X 1 . . . . .  Xn), 
with F homogeneous of degree 2. In ref. [3] it was shown that in the case ofa 4D type 
IIA superstring the function F should have the general form (neglectin9 non- 
perturbative corrections) 

F i X  ° XAI = i dABcXAXBXC (1.1) 
', , / s O  

where daBc are real constants. The topological meaning of these coefficients was 
discussed in ref. [4] (see also Sect. 4.C. 1 below). The formula in Eq. (1.1) follows from 
the Peccei-Quinn symmetry of ref. [ 16]. Of course, Eq. (1.1) holds only for a specific 
parametrization of the fields. This parametrization is convenient for two reasons: i) 
these fields are simply related to the string vertices [3] and to the geometry [4] of the 
"internal" Calabi-Yau space; ii) models of the form (1.1) were extensively studied in 
the context of the so-called flat-potential models [17, 12]. 

We shall show below that all the homogeneous K/ihler spaces allowed in N = 2 
SUGRA--except  CHn--are of the form in Eq. (1.1). 

For all the allowed homogeneous Kfihler manifolds we shall give the explicit 
form of the function F. 

There are two infinite families of homogeneous (but non-symmetric) K~ihler 
manifolds allowed in N = 2 SUGRA: K(p, q), (p, q integers 0 < p < q), and H(p, q), 
(p, q > 1 integers). All these spaces have rank 3. There are some exceptional elements 
of these families which are symmetric spaces. These are the manifolds given by the 
magical square [12, 18]. The c-map sends the spaces K(p,q) and H(p,q) into the 
Alekseevskii quaternionic spaces W(p, q) and V(p, q) respectively. 

The classification of the (normal) homogeneous quaternionic spaces [15] is 
based on the corresponding classification for the K/ihlerian case due to Pjateckii- 
Sapiro [19] and Gindikin, Pjateckii-Sapiro and Vinberg [20,21]. The strict 
connection with their work allows us to go more in depth in the study of the 
geometrical properties of our spaces K(p, q) and H(p, q). 

All our spaces are bounded domains in C "2. From the classification theory for 
such domains [20, 21], we learn (Sect. 4) that all our homogeneous spaces are Siegel 
domains of the first kind. 

However, not all such Siegel domains can be coupled to N = 2 SUGRA. Then, 
we have to characterize further the geometry of our spaces. Moreover, for a Siegel 
domain there may be more than one metric such that the complex automorphisms 

2 By a theorem of Borel (ref. [22]) they cannot be written as G/H with G simple (or unimodular) unless 
they are the symmetric spaces 



26 s. Cecotti 

act by isometrics. We have to characterize geometrically the unique metric 
compatible with N -- 2 supersymmetry. 

This is done using the T-algebras [14] (see Sect. 4.C.1). This theory allows us to 
reformulate the above results in a nice way, similar to the one encountered in the 
symmetric case [12, 7]. In that case, the result was that a symmetric K~ihler manifold 
is allowed in N = 2 SUGRA if and only if it is either a hyperbolic space or it is 
associated to a rank 3 Jordan algebra. This statement remains true if we replace 
symmetric with homogeneous and Jordan algebras with T-algebras, always of rank 3. 
However, only the rank 3 T-algebras whose isometric map is special or degenerate 
can be coupled to N = 2 SUGRA. 

On a bounded domain there is a preferred metric, the Bergmann one, which is 
invariant under all complex automorphisms [23]. At first, one would expect this to 
be the metric chosen by N = 2 SUGRA (within a positive factor). However, it is 
not so. The Bergmann metric of a homogeneous domain is Einstein [23], whereas 
SUSY requires the (homogeneous) K/ihler metric not to be Einstein, unless the 
space is symmetric. Anyhow, the SUGRA metric is related in a simple way to the 
Bergmann one, see Sect. 4.C.2. 

The present paper is organized as follows. In Sect. 2 we shall present some 
preliminary material. In Subsect. 2.A we discuss duality invariance. In Subsect. 2.B 
we give the basics of the Alekseevskii classification of normal homogeneous 
quaternionic spaces. In Sect. 3 the actual construction of the couplings to N = 2 
supergravity is performed. In Subset. 3.A we compute the function F for all the 
homogeneous spaces. In Subsect. 3.B we show that all the models can be put in the 
form of Eq. (1.1). In Subsect. 3.C we show that these spaces are K/ihler-Einstein if 
and only if they are symmetric. In Sect. 4 we study the geometry of the relevant 
homogeneous spaces. Subsection 4.A is concerned with the physical implications of 
the geometry from the string and the supergravity points of view. In Subsect. 4.B we 
prove that all our spaces are Siegel domains of the first kind. In Subsect. 4.C, we 
introduce the T-algebras and use them to give a simpler characterization of the 
homogeneous spaces allowed in N = 2 SUGRA and their K/ihler metrics. 

2. Homogeneous K/ihler Spaces in N = 2 SUGRA: Preliminaries 

In this section we review some results we need in order to construct explicitly the 
coupling of n vector multiplets to N = 2 supergravity such that the resulting o-- 
models are homogeneous. 

First of all we have to explain the idea underlying the construction of these 
homogeneous couplings to N = 2 SUGRA. We have to find for each Alekseevskii 
space (except the quaternionic hyperbolic ones) a holomorphic function F 
describing the corresponding coupling to N = 2 supergravity. The function F is 
found using the theorem of Sect. 2.A of ref. [3] (see also ref. [-24]): if in a supergravity 
theory we have a group of symmetries which acts transitively on the scalars' 
manifold and acts on the vectors by duality transformations, then all the couplings 
are uniquely determined by the group itself and the representation to which the field- 
strengths belong. In our case all the isometrics of the vector-multiplet scalar 
manifold act by duality transformations. Therefore, in the case of a homogeneous 
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K~ihler manifold, the function F is fully determined by its algebra and by its 
realization on the field-strengths. As we shall see, the classification of the 
homogeneous quaternionic spaces also specifies this realization. 

Given the crucial importance of duality transformations, we begin this section by 
reviewing their geometry (in the N = 2 case). Then we introduce the relevant results 
by Alekseevskii and we show how from them we can get the realization of the 
isometry group on the field-strengths. 

2.A. Duality in N = 2 Supergravity. As it is well known [9] the coupling of n vector 
multiplets to N = 2  supergravity is specified by a holomorphic function 
F ( X ° , X 1 , . . . ,  X")  homogeneous of degree 2. However, it is more convenient to 
consider the function S(X  z) = iF(Xt)/2.  In ref. [3] it was shown that S(X)  can be 
interpreted as the generating function for a canonical (holomorphic) transform- 
ation. The momenta are P~ = ~tS(X). In the complex phase space there are three 
different symplectic structures. The transformation defined by S leaves invariant two 
of them. The equation Pt = ~ S ( X )  defines a complex submanifold ~-IS] embedded 
in the phase space. 

The real physical fields are the "Cartesian" coordinates z A = x a / x  ° 
(A = 1 . . . . .  n). The corresponding physical Kfihler potential is [9] 

G -- - In [zIN1s(z, i)~J]. (2.1) 

For more details see the Appendix of ref. [3], as well as the standard reference on 
the N = 2 tensor calculus, ref. [9]. 

A duality transformation is defined [3] to be a transformation of the phase space 
which leaves invariant the symplectic structures and the submanifold f f  IS]. These 
maps are linear transformations belonging to the group Sp(2n + 2, R), so the duality 
group must be a subgroup of the real symplectic group [24]. Let 22 

Z = _ B  T (2.2) 

be a generator of the duality group, acting on the (complex) phase space as 

6 X  I = B I s X  s + DIJPj,  

6PI = - BSIp j  + CIJ XJ.  (2.3) 

The corresponding transformation on the vector-field strengths F¢u,. 
(I = 0, . . . ,  n; F°uv is the graviphoton field strength) is 

I 1 d IJ (~Fuv = B j F u v  + O Gjuv,  

5G~u~ = -- BSIGju~ + CuF~v,  (2.4) 

where 

~L 
Giu, - OFI.~ • (2.5) 

The requirement that 2; leaves invariant o~ IS] gives [9, 3] 

C H X  s - BJ~ss = S u ( B S r X  K + DJKsK). (2.6) 
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It is elementary to check that this transformation is an isometry of the K~ihler 
metric in Eq. (2.2) (see also ref. [9]). 

In principle, to determine the function S we have to solve Eq. (2.6), which is a 
rather complicated equation. However, the interpretation of 22 as the generator of a 
canonical transformation allows for a simplification of the analysis. 

Lemma. I f  S is homogeneous of degree 2, Eq. (2.6) is equivalent to first order scalar 
equation 

i OS D I j O S  OS BI j 1 t J 
2 0 X '  OX s + ~ 7  j X  - ~ C u X  X = 0. (2.7) 

Proof. That Eq. (2.6)=~Eq. (2.7) follows by multiplying Eq. (2.6) by X I and using 
the homogeneity condition $I = SI jX  s. Instead, that Eq. (2.7)=~ Eq. (2.6) is seen by 
derivation of Eq. (2.8) with respect X I. 

Equation (2.7) is much easier to analyze than Eq. (2.6). Equation (2.7) is easily 
seen to be the analytic continuation to complex values of the stationary Hamilton- 
Jacobi equation for the "Hamiltonian" He  

H~ = ½P,D'JPs + P, BIsX + -- ½CHXIX y. (2.8) 

In fact HE(p, q) is the generator of the canonical (symplectic) transformation in 
Eq. (2.3), 

6P~ = [Hx, PI], 6X I = [Hr, XX]. (2.9) 

Our models have a solvable algebra of duality transformations with generators 
2~ ~ (a = 1 .... ,2n) 

[224, Nb] = f,bc22c" (2.10) 

Let H"x(p,q) be the corresponding Hamilton functions. The condition of 
invariance for o~ [S] under the corresponding duality transformation reads 

Hax(~l S, X') = 0. ( 2 . 1 1 )  

The Poisson bracket of two Hamilton functions reproduces the original duality 
algebra 

a b [He, He]  = f"bcH). (2.12) 

This equation is the integrability condition of Eq. (2.11); it is just the closure 
condition for the Lie algebra of duality transformations [25]. 

2B. Basics of  Normal Kiihler and Quaternionic Algebras. In this subsection we shall 
briefly review the results of Alekseevskii [15] which are relevant for our construc- 
tion. In particular, we shall need the classification of quaternionic solvable (metric) 
Lie algebras and the corresponding results for the K/ihlerian algebras [19, 20]. 

We begin by recalling some definitions [15]. A metric Lie algebra is simply a Lie 
algebra endowed with a Euclidean metric ( , ) .  To every metric Lie algebra G there 
corresponds a homogeneous Riemannian space f¢ = exp G, i.e. the corresponding 
group space equipped with the metric ( , )  o n  Te~ ~ G. If the metric algebra G is 
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completely solvable, G is called a normal algebra and the corresponding Riemannian 
space is a normal homogeneous space. 

Let (V, ( , ) )  be a metric Lie algebra with V the underlying algebra. For each 
x e V we have a skew-symmetric endomorphism of V called the Nomizu operator Lx 
defined by 

2(Lxy, z)  = ([x ,y] , z )  -- (x, [y, z ] )  -- (y, [x, z]). (2.13) 

In terms of these operators the curvature endomorphisms are (x, ye  V) 

Riem (x, y) = [L,, Lr] - Lt~,y ], (2.14) 

ric (x, y) = - ~ (Riem (x, ei)y, el), (2.15) 
i 

where e~ is an orthonormal basis for K 
The holonomy algebra is defined as the linear Lie algebra F generated by the 

curvature operators Riem (x, y) and their commutators with the Nomizu operators 
[Lw,. •., [Lz, Riem (x, y)].. .].  

A complex structure of V is a skew-symmetric endomorphism J, with j2 = _ 1. 
Its centralizer in the Lie algebra A2(V) is denoted by C(J). C(J) is isomorphic to the 
Lie algebra of U(n). 

A quaternionic structure of V is a linear Lie algebra Q generated by two 
anticommuting complex structures. In a natural basis J1, J2, J3 for Q, we have 

j 2 =  _ 1 J~J~=J~  (~,fl,~ cyclic permutation of 1,2,3). (2.16) 

The centralizer and the normalizer of Q in A z(V) are denoted by C(Q) and N(Q); 
we have N(Q) = Q + C(Q). Obviously, Q and C(Q) are the Lie algebras of Sp(1) and 
Sp(n), respectively. 

A normal metric Lie algebra is called Kiihlerian if on V there is a complex 
structure J whose centralizer C(J) contains the holonomy algebra F;  it is called 
quaternionic if there is a quaternionic structure Q such that N(Q) contains F, and the 
endomorphisms from Q map the curvature Riem to zero (this second condition is 
automatically satisfied in a dimension larger than four [10]). 

There is a natural one-to-one correspondence between K/ihlerian (respectively 
quaternionic) normal Lie algebras and Kghler (respectively quaternionic) simply 
connected normal homogeneous spaces [15, 19-21]. So the classification of the 
corresponding spaces is equivalent to the algebraic problem of the classification of 
the relevant normal Lie algebras. 

Exploiting the solvability, it is easy to see E15] that any (normal) quaternionic 
algebra should contain a one-dimensionaP quaternionic subalgebra E--called the 
canonical quaternionic subalgebra. This subalgebra is totally geodesic (i.e. LeE c E). 
There are only two one-dimensional quaternionic algebras [15], namely All and 
Cll. The corresponding four dimensional quaternionic spaces are symmetric 

A~: SU(2,1)/[Stf(2)® t7(1)], 

C~: Sp(1, 1)/[Sp(1)QSp(1)]. (2.17) 

3 In the quaternionic sense (i.e. one quarter of the real dimension) 
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For a given dimension, there is a unique quaternionic algebra whose canonical 
subalgebra is isomorphic to Cii  . The associated quaternionic spaces are the 
hyperbolic spaces HH". All the other normal quaternionic algebras have a canonical 
subalgebra isomorphic to All .  

In the string context [3] this canonical subalgebra has the physical interpre- 
tation of the universal sector, i.e. that sector of the massless theory whose vertices do 
not contain the fields of the internal superconformal theory. This sector is the same 
for all type II superstring compactified on any (2,2) superconformal theory. 
Physically, the four generators of the A1 ~ subalgebra are: the dilatation correspond- 
ing to a rescaling of the dilaton field ~b, the Peccei-Quinn symmetry associated to the 
"axion" Bu, and two Peccei-Quinn symmetries corresponding to the two R-R  
scalars whose vertices are bilinear in the two space-time SUSY generators. It follows 
from the analysis of ref. [3] that only the second class of quaternionic spaces is 
relevant for our purposes. 

In this last case one can show [15] that V=  U + U', where U and U' are 
isomorphic, as vector spaces. One can choose the basis for Q such that the 
isomorphism is simply J2. Then J i  U = U and [15] 

[U,U]=C,  [U,U']cU, ,  [U',U']={e~}. (2.18) 

It is easily checked that U is a totally geodesic subalgebra of V. Hence, U is a 
K/ihlerian algebra with respect to the (integrable) complex structure J~. U is called 
the principal KiJhlerian subalgebra of the quaternionic algebra V. Let F o be the 
intersection of U with the canonical subalgebra E. In an orthonormal basis for 
Fo, {Co, el} (with ea = Jleo), the Lie algebra Fo reads [Co, e l i  = el. Of course, 
E = Fo + F'o , where F'o is the image of Fo under the isomorphism J2. It turns out 
that the principal subalgebra U is always a direct sum Fo + W, with W some normal 
K/ihler algebra. Consequently, the corresponding homogeneous K/ihler manifold is 
always a direct product 

SU(1, 
U(1)I)® ~ ,  ~C = exp W. (2.19) q / =  

Comparing the above results with the analysis of ref. [3], we get the explicit 
expression for the c-map of the homogeneous K~ihler spaces ~/C 

c: ~2 = exp W ~  ~ = exp V, (2.20) 

It is easy to check that this map has all the physical and mathematical properties 
of the c-map, as defined in ref. [3]. 

Since the spaces of the form ~ exhaust all the relevant homogeneous 
quaternionic spaces, from the discussion in the introduction we conclude that all the 
homogeneous Kiihler.manifolds allowed in N = 2 SUGRA arise in this way, namely as 
the non-trivial factor space ~K of the principal K iihlerian 9eodesic submanifold ql of a 
homogeneous quaternionic manifold. 

Therefore, the classification of the relevant K/ihler spaces is reduced to the 
algebraic problem of finding what K~ihler algebras W lead to homogeneous 
quaternionic spaces. This is the problem solved for us by Alekseevskii [15]. 

From Eq. (2.18) we see that there is a representation u ~ T, of the K/ihler algebra 
U in U' induced by the adjoint representation of V, Tuu' = [u, u'] e U'. In order for the 
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algebra V to be quaternionic this representation T should have a number of 
properties (Q1 . . . . .  Q8 of Lemma 5.5 of ref. [15]) which fully characterize the 
quaternionic algebra V. Such a representation is called a Q-representation. Then the 
homogeneous K/ihler manifolds allowed in N = 2 supergravity are in one-to-one 
correspondence with Q-representations of K/ihlerian normal algebras of the form 
Fo + W. For lack of space we shall not comment upon the properties defining a Q- 
representation. However, the condition Q7 is physically so crucial that we should 
mention it. On U' there is a complex structure J (related to J1) and hence a skew- 
Hermitian form ( J . . . ,  ... ). The representation T of W (but not of all U) is sympleetic 
with respect this form. If W has complex dimension n, U and U' have (real) 
dimension 2n + 2. Therefore, on U' the group ~ acts as a (totally solvable) subgroup 
of Sp(2n + 2, R). This is not a surprise, since ~4/" is a duality group and hence it should 
be a subgroup ofSp(2n + 2, N). In fact, we have more: the representation T is nothing 
else than the realization of the duality algebra W on the vector fields, Eq. (2.4). 

In other words, the matrices Z a of Subsect. 2.A are just the linear transform- 
ations Tw written in a canonical basis for the symplectic structure of U'. The 
couplings of the vector multiplets are determined once we know the representation 
T. But T is induced by the adjoint rep. of V, and so it is known from the classification 
of the quaternionic normal algebras. 

The physical picture emerging from the work of Alekseevskii is quite appealing. 
The elements of the K/ihlerian Lie algebra W are identified with the physical scalar 
fields of the vector-multiplets. Then the isomorphism J2 is nothing else than the 
supersymmetry transformation mapping the scalars into the vector fields of the 
corresponding multiplet, F' 0 being related to the graviphoton field strengths. Thus, 
the condition that the relevant isometrics have a Q-representation is, essentially, the 
same as the request that these symmetries commute with local supersymmetry. 

It remains to describe the classification of the possible transitive duality algebras 
W and their representations. To do this we need some more definitions [15]. We 
agree that all the Lie algebras below are written in an orthonormal basis. 

A key algebra is a two-dimensional K/ihler algebra F = {h,g}, g = 3h, with 
[h, 9] = #g. The positive number # is the root of the key algebra. An elementary 
K/ihler algebra is an algebra of the form F + X, where F is a key subalgebra with 
root #, X is the orthogonal complement to F and we have adh[X = #/2, adg{X = 0 
and Ix, y] = (Jx,  y)g,  for x, yeX.  The basic result in the classification of the 
K/ihlerian algebras [19] is that every normal non-degenerate K~ihlerian algebra 
is the semidirect sum of elementary algebras, U = ~ Ui, with Ui = Fi + Xi. The 

explicit structure of this semidirect sum is described in Proposition 6.2 of ref. [15]. 
The number k of elementary algebras in U is called the rank of the algebra U. 

The normal Kfihlerian algebras having Q-representations are classified accord- 
ing to their rank and type. (The type is the largest value of (#~)-z.) One shows [15] 
that the relevant algebras W have rank k < 3, and the allowed values for the roots are 

1, l /x /2  and lw/3 , so that we can have type 1, 2 and 3. All the algebras W with rank 
strictly less than 3 lead to symmetric K/ihler (and quaternionic) spaces. It is 
elementary to see that the function F can be put in the stringy (cubic) form if 
m = ~ (/~i)- 2 = 3. 

7- 
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There is a unique K~ihler algebra of type 3 which admits a Q-representation 

[15]. It has the form U = F o + F, where F is a key algebra with root l/x/3. The 
associated quaternionic space is the symmetric coset G2( + 2)/[SU(2)@ S U(2)]. The 
symmetric K/ihler space associated to a key K/ihler algebra is the coset 
SU(1, 1)/U(1), with the metric normalized as 

R~ = -- 2/~29~. (2.21) 

For this type 3 algebra, the representation T is the one induced under the 
embedding F --+ SU(1, 1) by the representation 4 of SU(1,1). From this fact, we infer 
that this is the model described by the function F = i(x1)a/x °. The associated 
quaternionic manifold G2t+i)/[SU(2)®SU(2)] is what we got as the c-image of 
SU(1, 1)/U(1) in ref. [3] by more elementary means. 

There is also a unique Kghler algebra of type 2 which admits a Q-representation 
[15]. It has the form U = Fo + W with W = F + F' the direct sum of two K/ihler 

algebras with roots 1/,,//2 and 1. Hence the corresponding K~hler space is reducible 
in the product of two eosets SU(1, 1)/U(1) with curvature - 1 and - 2 respectively. 
Since M = 3 it has the cubic form and it corresponds to the function F = 
iXI(X2)2/X °. This is easily checked since T is induced by the representation (3, 2) 
of SU(1, 1)® SU(1, 1). Here we find the connection of ref. [3] between curvatures 
(quantization of the Newton constant) and the quantum numbers of the field- 
strengths under the SU(1, 1) group. The associated quaternionic space (i.e. its c-map) 
is S0(3, 4)/[S0(3) ® SO(4)3. 

There remains to discuss the algebras W of type 1. It can be shown [15] that in 
this case W has rank 1 or 3. By our previous remarks, the first case leads to 
symmetric K/ihler manifolds and the second one has the stringy (cubic) form. The 
type 1, rank 1 case corresponds to the complex hyperbolic spaces CH"= 
SU(1, n)/[S(U(1)® U(n))] (the so-called minimal coupling [9]). This can be easily 
checked from Proposition 9.1 of ref. [15]. The corresponding quaternionic space is 
SU(2,n)/[S(U(2)® U(n))] in agreement with the more elementary arguments of 
ref. [3]. Again, in the case n = 1 we get the coset SU(1, I)/U(1) but this time with 
curvature - 2. 

The last case, type 1 rank 3 K/ihler algebras, is the really interesting one. W has 
the form W=(F~ +X1)+(F2 + X J + F 3  (F~ are key algebras with root 1, and 
Fi +X~ are elementary K/ihler algebras). It is convenient to set X = X2 and 
X1 = Y + Z, where [F2, Y] = 0 and [F2, Z ]  = Z. We decompose the vector spaces 
X, Y into the eigenspaces (eigenvalues + 1/2) of the adjoint action of h a and for 
the space Z of h2. The corresponding eigenspaces are denoted as X+ and 
X_ = JX+, etc. 

With these notations the 9eneral type 1 rank 3 normal K/ihler algebra W, such 
that F o + W possesses a Q-representation has the form [15] (we do not rewrite the 
commutation relations which define the elementary K/ihler algebras) 

[Fi, Fj] = 0 i # j, (2.22a) 

[h 3, Y+] = _ ½Y+, (2.22b) 

[h3, X+]  = _+ ½X+, (2.22c) 
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[h2, Z±]  = _+½Z+, 

[g3, Y+] = [92, Z+]  = [93, X+]  = 0, 

[ga, Y-]= Y+ [g2,Z-]=Z+ [ga, X - ] = X + ,  

[e l ,  X] = [F 2, Y] = [ ra ,  Z] = 0, 

[Y,Z] = IX, Z+]  = IX_,  Y_] = [X+, Y+] = 0, 

IX_,  Y+] = Z+,  

[x_,z_] =~2 0(x_,z_), 
1 

([x_,y + ],z+ ) = - - - ~ (  Jy +, ~ll(x_,Jz+ ) ), 

[Jx, z_]=J[x,z_],  [x+,Jy+]=-[Jx+,y+], 

(x_eX_,xeX,  z_eZ_,x+eX+ and y+eY+), 
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(2.22d) 

(2.22e) 

(2.22t") 

(2.22g) 

(2.22h) 

(2.22i) 

(2.22j) 

(2.22k) 

(2.221) 

(2.22m) 

where i f :X_ ® Z _  ~ Y _  is an isometric mapping, i.e. a map linear in its two 
arguments such that 

( ~(X_,Z), ~(X_,Z_ ) ) = ( X_ ,X_  ) ( Z_,Z_ ). (2.23) 

Given three vector spaces X _, Z_ and Y_ and an isometric map ~,, we satisfy all 
the conditions defining a Q-representation Tw except the closure of the algebra, 

ETa,, T~,] = T t .... ,~. (2.24) 

This last condition gives us two classes of solutions [15], 

i) X = 0, or 
ii) X, Y, Z ~ 0 and dim Y_ = dim Z_.  Such isometric maps are called special. 

The theory of special isometric mappings is equivalent to those of the Clifford 
modules [15, 26], i.e. to that of the Dirac matrices. 

Finally, we give the explicit form of the matrices representing the algebra W, 
Eqs. (2.22), on U'. These correspond to the duality generators of Eq. (2.3). We denote 
by a ,-~ the element of U' obtained by a given element of U under the isomorphism 

Jz- 
The three h generators are represented by 

Tnl ½Po®Po+l  1 1 -i -" = ~Pl®Pl - -~P2®P2 --½P3®P3 + - ~ X +  ®X~+ 
1 1 --~qo®qo --~q~ ®qi +½q2 ®q2 + ½q3 ®q3 -- ½~)7~ ® ~  (2.25a) 

~po ® po - ~p~ @ p~ + ½p: ® p~ - ½p3 ® p3 + ~Y,y + @ Y'+ Th2 "~" 1 1 1 ~i 

1 1 1 -i -' (2.25b) -- ~qo ® qo + ~ql ® ql - -  ½q2 ® q2 q- ½qa ® q3 -- ~ Y -  ® yk ,  

Th3 =l~po ® Po --~pll ® Pl --~PE®P21 +½P3 ®P3 +!~i2/,+ ®Z/+ 
1 1 1 ® --~qo®qo+~ql®ql+½q2®q2 ~q3 q3-½Y, e'_®e'_, (2.25c) 



34 S. Cecotti 

where Po, qo, P~ and q~ are the orthonormal elements of U' 

Po = ½(ho + h~ + h2 + h3), (2.26a) 

qo = ½(go - 01 - g2 - 03), (2.26b) 

P~ = ½(- ho - h, + he + hr), (2.26c) 

q~ = ½(- go + g~ - 0a - 0~) ~, fl, 7 permutations of 1, 2, 3. (2.26d) 

The three g generators are given by 

To, = el ® qo + Po ® q~ + qa ®P2 + q2 ® Pa '}- E-~/+ ® -~/-, (2.27a) 

To2 = P2 ® qo + Po ® q2 q- q3 ® Pl q- q~ ® P3 + EY/+ ® Y/-, (2.27b) 

T0~ = Ps ® qo + Po ® q3 + q~ ® P2 + q2 ® Pl + Y,~+ ® ~-. (2.27c) 

In order to describe the remaining generators belonging to the vector spaces X, Y 
and Z we introduce, following Alekseevskii, a new product operation mapping two 
of the spaces X, Y, Z into the third 

(u, v) ~ u * v -- 2Luv. (2.28a) 

Using Eqs. (2.13, 22) and the fact that ~ is special one proves the two identities 

( X _  , Z _ , X _  * Z_  ) = ½( X _ , X _  ) ( Z _ , Z _  ), (2.28b) 

( X _  • Y _ , X _  • Y_ ) -= ½ ( X _ , X _  ) (  Y_, Y_ ). (2.28c) 

Then the remaining generators read (always in an orthonormal basis for U) 

Tx, = po®X+ - 2 +  ®Pl + dlx  + ® q o -  ql ® J l x  + 

+ Zx+'~*y ~_ @37L + Ex+' j zL  ®~L, (2.29a) 

Ty+ = Po ®.Y+ - Y+ @P2 + JlY+ @ qo - q2 ® JlY+ 

+ ~ y + , x _ ®  + ~ y + , z _  ®~L,  (2.29b) 

T~+ =po®~+  - ~ +  @P3 +Jlz+ ® q o -  q s Q J l z +  

+ ~ z +  , x _  ®2L + ~ z " ~ y L  ®yL,  (2.29c) 

T~_ = -p2®~c_ - 2 _  ® P s -  J lX -  ® q 2 - q s ® J 1  x -  

- Y'x_"~yL ® ~L + ~x_'~*z'+ ® P+, (2.29d) 

Ty_ = - Pl @.~- - . ~ -  ® P3 - JxY- @ql - qs ® J  lY - 

- ~ y _  • x_ ® ~L + ~ y _  • z + @ P+, (2.29e) 

Tz_ = - P l  ® Z -  - ~-  ® p z -  J1 z -  ® q t - q z ® J 1  z -  

-- Zz_  , x k  ®2L + Z z _ , y +  ®y'+. (2.29f) 

This completes the algebraic structure of the normal quaternionic algebras, alias 
Q-representations of normal K~ihler algebras. 

The homogeneous spaces with X = 0 will be denoted by K(p, q) where the two 
integers p and q are equal to 
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p = dim Y_, q = dim Z_.  (2.30) 

Since K(p,q)=K(q,p) we can assume p<q. These spaces have complex 
dimension equal to 3 + p + q. The special cases K(0, q) are symmetric manifolds, 

K(0, q) = {SU(1, 1)/U(1)} ® {SO(q + 2, 2)/[SO(q + 2)® S0(2)] }. (2.31) 

The associated homogeneous quaternionic manifolds are the Alekseevskii 
spaces W(p, q) of dimension 4(4 + p + q). Again p = 0 gives symmetric spaces, 
namely, SO(q + 4, 4)/[SO(q + 4) ® S0(4)]. 

The other class of solutions is in one-to-one correspondence with Clifford 
modules. These are again characterized by two integers p, q > 0. The corresponding 
spaces are denoted by H(p, q), and have (complex) dimension 3 + p + 2qN(p), where 
N(q) is the dimension of the irreducible Clifford module in q dimensions, 

N ( 1 ) = I  N ( 2 ) = 2  N ( 3 ) = N ( 4 ) = 4 ,  

N(5) = N(6) = N(7) = N(8) = 8, 
N(8s + t) = (16)'N(t) for s __> 1, 1 < t < 8. (2.32) 

Again some special case leads to symmetric spaces. These are exactly the magic 
ones related to the Jordan algebras [12], 

H(1, 1) = Sp(6, ~)/U(3), (2.33a) 

H(1, 2) = U(3, 3)/{U(3) ® U(3)}, (2.33b) 

H(1, 4) = S0"(12)/U(6), (2.33c) 

H(1, 8) = ET(_26)/{E 6 ® SO(2)}. (2.33d) 

Under the c-map the spaces H(p, q) give the Alekseevskii spaces V(p, q). This, in 
particular, gives us back the results of refs. [12, 3] for the magic cases 

V(I, 1) = F4~ + ~,)/[ USp(6) ® S U (2) ], (2. 34a) 

V(1, 2) = E6~+ 2)/[SU(6)® SU(2)], (2.34b) 

V(1, 4) = ETa_ 5)/[SO(12) ® SU(2)], (2.34c) 

V(1, 8) = Es~_ 24)/[E7 ® SU(2)]. (2.34d) 

3. Construction of the Coupling to N =  2 Supergravity 

In this section we shall compute the functions F (or, equivalently S) associated to the 
previous homogeneous K/ihler spaces, firstly in the canonical parametrization and 
then in the stringy one. Since all algebras W with rank less than three lead to well- 
known symmetric spaces [7], here we shall limit ourselves to the rank 3 case. The 
functions F are completely determined by duality invariance. 

3.A. Duality Invariance. To write more compact formulas we shall adopt the 
following notation. The elements of the orthonormal basis of the three vector spaces 
X_,  Y_ and Z_ will be denoted by XUl_, xm2_ and XM3_, (ff = 1 . . . . .  dim X_ ,  
m = 1,.. . ,  dim Y_ and M = 1 . . . . .  dim Z_)  and the same notation will be used for 
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the isomorphic spaces X+, Y+ and Z+. As a shorthand notation, we write _M for 
(1, #), (2, m) or (3, M) and _m for #, m or M. We define the coefficients d vN-e by the 
formula 

X~f  .~N dMNPyN ~ * ~ :  =_- - -_ .~ .  (3.1) 

Using the properties of the rank 4 quaternionic algebras is it easy to show that: i) 
the coefficients d M-u-e are totally symmetric; ii) the only non-vanishing coefficients are 

d O,#)(2,m)(3,M) ~ dU,,M, (3.2) 

as well as those obtained from them by permutations of _M, N and _P. From the 
properties of the Nomizu operators, it is easy to show that 

1 durum u M m - ( t P ( X , _ , X 3 _ ) , X 2 _ ) .  (3.3) 

As we have seen in Sect. 2.B, if X_ ~ 0, the isometric map ~ should be special, i.e. 
dim Y_ = dim Z_.  Then, in this case we replace the index M by rh, and we shall write 

(7,)m~ for x//2d ~ma. Then the condition that ~ is a special isometric map is 

where 

F " F  ~ + F ~ F  ~ = 26u ~, (3.4) 

that is F u are Dirac matrices in q = dim X_ dimensions and Y _ , Z _  are (not 
necessarily irreducible) "chiral" spinor spaces. Such Clifford modules are fully 
specified by q and the "number of flavours" (i.e. the number of times the basic 
irreducible representation is repeated) p. 

For an algebra W of complex dimension n, we have 2n + 1 equations for the 
function S, 2n from the duality invariance and one from the homogeneity condition. 
These are all first order differential equations, at most quadratic in the derivative of S 
(i.e. at worst H J  equations for harmonic oscillators). However, we have still to 
choose a canonical basis in phase-space, i.e. we have to decide what elements of U' 
we consider "coordinates" and "momenta" (what elements are associated to F and G 
field-strength, respectively). The only constraint for this choice is that the symplectic 
form d should be trivial in "configuration space." This choice corresponds to 
choosing an explicit parametrization of the function S in terms of the super- 
conformal fields X ~ (since two allowed parametrizations are related by an 
Sp(2n +2,  R) transformation, there is a one-to-one correspondence between 
canonical basis and field parametrizations). 

The most convenient choice is the one which makes linear the largest number of 
differential equations. Choosing as "configuration-space" (F-field strengths) the 
space spanned by the orthonormal vectors 

q ~ ~ ~ ~ ~  ~ ' ~  Y ' ~  (3.5) 0 ,  t / l ,  t/2~ i t 3 ,  ~x l - , x , .  2 - , ~ *  3 -  

w e  have n + 1 linear equations, i.e. those corresponding to the homogeneity 
condition and to the invariance under the n transformations h~, X¥+.  These n + 1 
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linear equations have a simultaneous solution of the form So + const. S', where S o is 
a particular solution and S' is the solution of the corresponding homogeneous 
system, which is unique up to a constant factor. Therefore, the linear subsystem 
already determines S up to a constant (only the phase of this constant is physically 
relevant). Requiring invariance under anyone of the remaining n duality transform- 
ations fixes the constant. Then the remaining n -  1 equations should hold 
automatically as a consequence of the first n + 2, and in fact they do. This is a non- 
trivial check of the correctness of our identifications and of the whole philosophy 
underlying our classification of the homogeneous manifolds allowed in N = 2 
SUGRA. 

From Eqs. (2.29, 2.33a, b, c) of Sect. 2.B we see that the linear n + 1 equations are 
(we denote the various fields X I with qo, q l , q2 ,q3 ,X~ ' l ,X"2  and XM3, for 
consistency with the notations of ref. [15]) 

OS t?S OS 8S , OS 
h l : q O ~ q o + q t ~ q l - q 2 ~ q 2  - q3 ~q3 + Xt --=0,OX~ (3.6a) 

8S 8S OS 8S X m 8S h2:qO~qo-ql~qlq-q2~q2-q3~q3+ 2 ~ = 0 ,  (3.6b) 

~S OS OS 8S XM ~S _ 
h a : q O ~ q o - q l ~ q l - q 2 ~ q 2 + q a ~ q 3  + 3 OX--~-3 - 0 ,  (3.6c) 

3 ~S 3 OS 
homogeneity: ~ q, ff~q1+ a~= X~4q-~-~ = 2S, (3.6d) 

I=o OX;4 

OS OS 1 t uv"~v,,v~ 
X ~ + : q o ~ v ~ - X ~ q - - -  ~_t7  J ~2~3,  (3.6e) 

o A  1 oq~ , /z  

8S X "  OS 1 , u,m~,-U "~ 
X~'+:qoo- ~ -  2 0q-~=V/~tT J etz,,'t 3, (3.6f) 

t3S _ x~ OS _ 1 
X~+ :qo 0~3 30q3 - - ~  (Tu)'n~X~XT" (3"68) 

The first four of the Eq. (3.6) can be rewritten as 

OS XU OS _ S (3.7a) 
2 q l ~ q  + l OX~ - , 

8S X "  8S 
2q28q~- + 2 8X~' = S, (3.7b) 

OS X~ OS _ 
2q3 ~q3 + 30-~3 -- S, (3.7c) 

8S 3 OS 
qO ~qo = a~=l qA ~qa -- S. (3.7d) 

Solving Eqs. (3.6e, f, g) for X~_X~-a(OS/t3X~-a) and inserting the result in Eqs. (3.7) 
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we get the equations 

2 8S [2qoqa+(Xa)  ]~a = q o S - ( X ~ , X 2 , X 3 )  (A=1,2 ,3) ,  (3.8) 

where 
1 m~ m (X~, X2, X3) -- ~ (7") X~X2 X3. (3.9) 

The general solution to Eqs. (3.8) is 

S - ( x l '  x 2 ,  X3) 3 
+ h(qo, X 1 , X 2 , X s )  ~I [2qoqA + (XA)Z] 1/2" (3.10) 

qo a=l 

Using Eq. (3.7d), we get for the function h 

h(q o, X~, X2, Xa) = 1 H ( X ~ ,  X2, X3). (3.11) 

This solution for S, Eqs. (3.10, 11) can be substituted back in Eqs. (3.6e, f, g). All 
these equations are solved simultaneously if and only if H = C = const., 

S _ ( x l ' x 2 ' x 3 )  C L + 11 [2qoqa + (Xa)2] 1/2" (3.12) 
qo qo a = 

The value of the constant C is fixed by requiring invariance with respect to the 
remaining n generators g~, X M, which imply the following six equations (compare 

e, f) of Sect. 2.B). 

OS OS 1 2 
Oq~ Oq~ = qoql + ~ (X1) , (3.13a) 

8S 8S 1 2 
g2: ~3q~ aq3 = qoq2 + ~(X2) ,  (3.13b) 

aS aS 1 2 
ga: aq~ t~q2 = qoq3 + ~ ( X 3 ) ,  (3.13c) 

aS aS 1 ~S • _ _ _  z #xm~gr a 
X~_ Oq 3 8X~ N/202f 3~- ' "d~7 ) 2 -- q 2 X ~  = 0, (3.13d) 

8S 0S 1 OS m . _ [,.Iz~mhx~ 
X 2 - "  Dqa 3X'~ . . . .  ~ w J 1 x~ 2a-a3 - ql XT = 0, (3.13e) 

as  ds 1 ~s 
X ~ • ~'~qr"~XU - qlX~ = 0. (3.13f) 

with Eqs. (2.31, 2.33d, 

gl: 

Of course (since the integrability conditions of Sect. 2.A are fulfilled) we get the 

same value for all the equations, namely C = + l/v/2. The sign ambiguity is 
physically irrelevant, since it can be absorbed by a field redefinition. 

It should be stressed that S is a solution to Eqs. (3.13) if and only if: i) X_ = 0, or 
ii) the Dirac algebra, Eq. (3.4), holds. This is not surprising at all, since these are 
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precisely the solutions to the integrability conditions of Sect. 2.A, as it follows from 
the discussion after Eq. (9.11) of ref. 1-15]. 

Therefore, in the canonical parametrization, the function S for the homogeneous 
spaces K(p, q) reads (m = 1 . . . .  , p; M = 1,. . . ,  q) 

S = (ql [2qoq2 + (Xz) 2] [2qoqa + (X3)2]/qo } 1/2 (3.14) 

and for the spaces H(p, q)(~t = 1 . . . .  , q, dim X 2_ = dim X a _ = pN(q)), 

S -- (XI '  X2, X3) 1 a 
+ ~ q o  a~I__ 1 [2qoqa AI-(XA)2] 1/2. (3.15) 

q0 

This completes the proof that there exists a homogeneous holomorphic function 
F(X ~) = - 2iS(X ~) such that the corresponding K~ihler metric, Eq. (2.2) describes 
the homogeneous K/ihler manifolds associated to the rank 4 Alekseevskii spaces. 

The full N = 2 supergravity Lagrangian can be obtained by inserting this 
function F(X ~) into the general N = 2 supergravity Lagrangian of ref. [9]. 

From the above expressions it is very easy to see that in the four magical cases, 
Eqs. (2.37), we have actually an isometry algebra larger than W. In fact, in these cases 
all the three vector spaces X 1 _, X2-  and X3-  are isomorphic (as vector spaces) to 
one of the four division algebras/~. The corresponding isometric mapping ~ is 
simply the product A ® A ~ A, which is an isometric map for the metric on A given 
by the norm. In this case the function S is completely symmetric in the three spaces 
X1 - ,  X2-  and X 3 _. Therefore, the theory will be invariant not only with respect to 
the 2n symmetries above, but also with respect to those whose generators are 
obtained from the above ones by arbitrary permutations of the three spaces 
X I - , X 2 -  and X3- .  A similar permutation argument shows the enhanced 
symmetry for the spaces K(0, q) which are symmetric (and reducible), Eq. (2.35). 

3.B. F(X I) in the Stringy (=- Cubic) Parametrization. In ref. [3] (see also ref. [4]) it 
was shown that in type IIA superstrings we can always find a field parametrization 
such that the function F(X ~) takes the form in Eq. (1.2). Couplings of this form have 
many interesting properties, for instance, in gauged N = 2 supergravity they lead to 
identically vanishing scalar potential [17]. 

In the introduction we claimed that all the homogeneous K/ihler manifolds 
allowed in N = 2 SUGRA (other than hyperbolic spaces) have this property. Here 
we want to show this and also give the explicit form of the coefficients daBc for each 
homogeneous manifold. 

From our previous discussion, we know that changing the parametrization of 
the function F amounts to changing the canonical basis in phase-space. The 
canonical transformation putting Eq. (3.15) into the cubic form is just the 
replacement of the "Lagrange coordinates" qi,q2,q3, by the corresponding 
"conjugate momenta" Pl,P2,P3, which -on ~ [ S ] -  equal 

dS 
PA-~qqa (A=  1,2,3). (3.16) 

The new S can be found exploiting the canonical transformation qi ~ Pi, (recall 
that S is not invariant under canonical transformations, but it can be determined by 
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requiring that the new "momenta" are the gradient of the new S with respect the new 
coordinates). The result is 

S --- (XI '  X2 '  X3)  1 2plPzP3 -- , (3.17) 
qo 2qo 

where in the case of the K(p, q) spaces, we understand X1 - 0. The function F is 

F = - -  2 p l P z P 3 -  P a ( X ~ ) Z - 2 ( X 1 , X 2 , X 3 ) .  (3.18) 
qO A = I  

It is manifest that Eq. (3.18) correctly reproduces the known results for the 
factorizable symmetric models of Eqs. (2.35) as well as for the maoical symmetric 
models, Eqs. (2.37). We close this subsection by recalling some useful formulae 
which hold for any model with a cubic F [17]. 

3 C N a s  = ~dancY , Y = ¼dancyayny c, (3.19a) 

(Nz)a = ¼idancyny c, (3.19b) 

ya _ i(z A _ ~A). (3.19C) 

These formulae will simplify the computations of the next subsection. 

3.C. Homogeneous Kiihler-Einstein Spaces. There is another problem in the 
classification of the homogeneous K/ihler spaces allowed in N = 2 supergravity that 
we want to discuss, namely, we ask ourselves what spaces in the above list are also 
K~ihler-Einstein manifolds. This question may be relevant for string theory too. It 
can be shown [20, 21] that all the homogeneous K/ihler manifolds allowed in N = 2 
SUGRA are holomorphically equivalent to a bounded domain in C" (in fact, they 
are equivalent to Siegel domains of type I). As is well known [23], all homogeneous 
bounded domains admit at least one K/ihler-Einstein metric, i.e. the Bergmann 
metric. In all the exceptional spaces which are symmetric, our metric above is the 
Bergmann one (within a positive factor). So, at first sight, one could hope that the 
above homogeneous spaces are K/ihler-Einstein. But it is not so. 

It turns out that a normal homogeneous Kiihler space allowed in N = 2 SUGRA 
is Kfihler-Einstein if and only if it is symmetric. Therefore only the spaces which were 
already in the Cremmer-Van Proeyen list are both homogeneous and K/ihler- 
Einstein. 

It should be stressed that strictly speaking this conclusion is only proved for 
normal homogeneous K/ihler spaces. However, as we mentioned in the introduction, 
there is a conjecture by Alekseevskii stating that all homogeneous quaternionic 
manifolds with negative definite Ricci curvature are normal. If this conjecture holds 
true, then the Alekseevskii spaces exhaust all such homogeneous quaternionic 
manifolds, and hence -by the c-map isomorphism- our list of the homogeneous 
Kghler spaces allowed in N = 2 SUGRA is also complete and we can omit the word 
normal in the above statement. 

We prove this assertion just by computing the Ricci tensor. Obviously, the 
K/ihler metric in Eq. (2.2) is Einstein if and only if 

DET {G~} = Ihl2y z, (3.20) 

where h is some holomorphic function. 
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The computation of the determinant of the metric can be simplified by exploiting 
the fact that all models (with the exception of the minimal coupling case) have a cubic 
function F. Let, as always, G = - In Y be the K/ihler potential. Since all the gauged 
supergravity models corresponding to cubic F have an identically vanishing scalar 
potential, 

V =- e-°(G~G, Gg - 3) - 0, (3.21) 

we should have 

On the other hand, 

G=~G~,G~ = 3. (3.22) 

G=a= - y-1 y~+ y-2y~y~. (3.23) 

Equations (3.22, 23) imply 

DET { - Y-1 y~} = _ 2 DET {G=~}. (3.24) 

Then, a space described by a cubic F is Einstein if and only if Det { - YAh} is 
proportional to some power of the function Y. Notice that in the cubic case both Y 
and Det { - YaB} are polynomials in the variables ya = _ 2 Im (zA), and then the 
holomorphic function h should be a constant. 

Consider the spaces K(p, q). A simple computation (using Eq. (3.19c)) gives 

DET { - ] g A B }  = - -  2[2 Im (pz)]'[2 Im(p3)] ~ Y. (3.25) 

Equation (3.25) implies that the spaces K(p,q) are not K/ihler-Einstein. 
Consider the special case p = 0 which corresponds to the symmetric manifolds of 
Eq. (2.35). In this case the space is the direct product of two K~ihler manifolds, 
and also Y is factorized Y = Im (p3) Y', where Y' = {Im (p 1) Im (P2) - (Ira X3)2 } 
and P3 is the complex coordinate on the coset SU(1, 1)/U(1). Then Det [G] = 
(Im Pa)- 2{ y,} -(2 + q), and the Kiihler manifold is the product of two Einstein spaces 
but with different "cosmological constants" - 2 and - (2 + q) = (n - 1) {compare 
with ref. [7] and Appendix A of ref. [12] }. For a generic space K(p, q), with p, q # 0, 
this factorization does not hold and the metric is not Einstein. 

For the spaces H(p, q) the direct computation of Det { - YAh} is more involved. 
However, for our purposes the full computation is not needed. Let us assume 
(absurd) that Det { -  YA~} is indeed proportional to some power of Y. Since at 
X ; = 0  ( i= 1,2,3) Y reduces to Imp1 Impz Impa, we should have that 
Det { -  YAB} [Xi=O is a symmetric function of Im Pi. An explicit computation gives 

D E T { -  YAlJ}lx=o= Z[-- 2Im(p3)]dimXl[4 Im(p2)Im(P3)] dimx2. (3.26) 

Therefore, a H(p, q) space can be Einstein only if dim X1 = dim X2. Looking at 
the dimensionality of the Clifford modules we see that there are only four solutions 
to this condition, i.e. both spaces Xx and X2 should be isomorphic to one of the four 
division algebras, R, C, H or O. The corresponding spaces are the symmetric magical 
spaces of Eq. (2.37). These magical manifolds are known to be Kiihler-Einstein. By 
the above argument, no other H(p, q) spaces can be Einstein. 

These results will be recovered in Sect. 4 using more sophisticated techniques (T- 
algebras). There we shall explain the relation between the W-invariant K~ihler 
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metric of Eq. (2.2) and Bergmann's one, as well as other geometrical properties of the 
spaces K(p, q) and H(p, q). 

4. Geometry of the K(p, q) & H(p, q) 
Spaces, Type I Siegel Domains and T-Algebras 

In this section we study in detail the geometry of the homogeneous K[ihler spaces 
K(p, q) and H(p, q). The main result of this section is that all the above manifolds 
allowed in N = 2 SUGRA (except -of course- CH") are (homogeneous) Siegel 
domains of rank 3 [20, 21]. More precisely, the spaces K(p, q) and H(p, q) are exactly 
those rank 3 Siegel domains whose associated isometric mapping is special (or 
degenerate). 

This geometrical characterization is so important that we give three proofs of it. 
The last two are completely rigorous mathematical proofs based on the characteriz- 
ation of the (homogeneous) Siegel domains of the first type in terms of j-algebras and 
T-algebras, respectively. 

The first argument is based on physical considerations. We present it in order to 
explain the physical meaning of this geometrical property. 

In the physical literature one usually considers homogeneous manifolds of the 
form G/K, where G = H ®  U(1)" with H semisimple. The generic homogeneous 
space, however, is not of this form. In particular, the homogeneous spaces we have 
found in Sect. 3 are not of this form. Indeed, it is easy to show that all the 
homogeneous K/ihler manifolds allowed in N =2 SUGRA should be biholomorphi- 
cally equivalent to bounded domains. A theorem by Borel [22] states that if a 
bounded domain has a semisimple group of automorphisms, the domain is 
symmetric. This is not the case for the spaces K(p, q) and H(p, q). 

4.A. Stringy Considerations. To make a long story short, let us assume that the 
Gepner conjecture [2] holds true. Then, roughly speaking, the moduli of the (2, 2) 
c = 9 superconformal theory should correspond to the Calabi data [28], 

{K, J, [o~], [r] } (4.1) 

for a Calabi-Yau [29] 3-fold. Here K is a complex 3-fold with complex structure J 
such that the canonical bundle is trivial, [c0] ~H 1,1 (K) ([o)] real) is the K~ihler class 
and [r]~HZ(K) is the "torsion" class. 

Obviously, for a generic class, [co] ~H 1,1 (K), there is no representative which is 
the K/ihler form of a positive-definite K~ihler metric. Let VEH 1, ~ (K) be the subspace 
of the classes [e)] which are the Kghler class of some regular K/ihler-metric on K 
(with respect the specified complex structure 3). We call V the Kfihler cone. 
V has a number of properties: 

o) V is open in ~" (n = h~,l; hence forth HI'I(K)~HZ(K, ~) is identified with ~"). 
i) V i s a  cone: if y s V  then ,~yeV for all 2 > 0 .  
ii) V is convex: ify~, y2e V then Yl + Y2e V (in fact yt + Y2 is the K/ihler class of the 
sum of the two metrics). 
iii) If y~ V then ~ya > 0 (positivity of the volume). 
iv) V does not contain any complete line (not necessarily passing through the 
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origin). This is essentially the "archimedean" property of Sect. 18 of ref. [30]). 
Indeed, assume (absurd) that Yt =- (ty 1 + Y 2)e V for all t ~ N. Letting t ~ + c~ =~ y 1 e V. 
Then SYl 3 > 0. Therefore A(t) - Sy3 is a cubic polynomial in t with a non-vanishing 
coefficient of t 3. But then A(t) should be negative for some real values of t. Therefore 
using iii) we get the absurd. 
v) (Riemann-Hodge quadratic relations). For a given y e l l  1"1, define the effective (or 
primitive) cohomology classes w, eH ~'~ by the property 

I y A y A W A = O .  
K 

Then, if ye  V the quadratic form 

QaB = ~ Y/x wa ^ wB (4.2) 
K 

is a non-degenerate negative definite symmetric matrix [31]. 
Consider the complex (1, 1) class z = x + iy, where y is identified with the K~ihler 

class and x is the type (1, 1) part of the torsion class [z]. By the above considerations, 
in order for the corresponding Calabi data to correspond to some regular K/ihler- 
Einstein metric, we should have 

zeN" + iV. (4.3) 

In particular, V in Eq. (4.3) has the properties o) . . . .  , v). 
The (in general, non-homogeneous) Siegel domains of the first type are defined to 

be domains in C" ofthe form (4.3) where Ve~" is a cone such that the properties o), i), 
ii) and iv) above are fulfilled. A Siegel domain of type I is homogeneous if and only if 
the cone V is homogeneous (with respect a group of affine automorphisms). 

Let us expand the (complex) class z in a (real) basis co a of H~'I(K)c~H2(K, ~), 

Z ~ zA(.OA • 

If we compactify the heterotic string on the Calabi-Yau space specified by the 
above Calabi data, the z A are promoted to chiral multiplets of the effective low- 
energy N = 1 4D supergravity. These chiral multiplets should parametrize some 
K~ihler space (in fact, a Hodge manifold [32]). The complex manifold underlying 
this Kfihlerian o--model should be the space of the allowed values for z a, that is 
~" + iV. 

Thus the K~ihler (geodesic) submanifold of the heterotic low-energy effective 
theory, which is parametrized by the moduli corresponding to the deformations of 
the Calabi data [co] and [z], is a Siegel domain of the first kind. 

The same is true for a type IIA superstring, since the moduli space (and metric) is 
independent of the particular string one compactifies. 

Therefore, a necessary condition for a N = 2 supergravity model to be a 
candidate for being the low-energy limit of a type IIA string is that the 
corresponding K~ihler space is a Siegel domain of the first kind. 

Then, saying that the models we constructed in Sect. 3 are (homogeneous) Siegel 
domains (of the first type) is just the same as saying that they may be relevant to string 
theory. 

4.B. Complex Homogeneous Bounded Domains and j-Algebras. Inthissubsectionwe 
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consider the geometry of the spaces K(p, q) and H(p, q) from the point of view of the 
classification theory for the homogeneous bounded domains developed by Gin- 
dikin, Pjateckii-Sapiro and Vinberg [20, 21]. Again, the aim is to prove that these 
spaces are biholomorphically equivalent to Siegel domains of type I (alias radiated 
tube domains). The merit of this approach is that it makes manifest the connection 
between duality invariance and the geometry of bounded domains. 

First of all, it is quite obvious that the spaces K(p,q) and H(p,q) are 
biholomorphically equivalent to some bounded domain of C". To check this, it is 
sufficient to use the criterion of boundeness given in ref. [21]. Four our spaces, 
the j-algebra is just the (normal) K/ihler algebra W. This algebra, being totally 
solvable, does not contain any compact semisimple j-subalgebra. Therefore the 
spaces K(p, q) and H(p, q) are bounded domains. 

(However, it is convenient to use non-bounded models for these bounded 
domains. These non-bounded models are just the Siegel spaces in their usual form 
~"+iv). 

The general theorem of refs. [20, 21] states that the Kiihler manifold generated 
by exponentiating a j-algebra is either a Siegel domain of type 2 or of type 1 (which 
is, in fact, a special instance of the type 2 case). 

More precisely, their result can be stated as follows. ~##=expW is 
biholomorphic to a Siegel domain of the second kind if and only if in W there exists 
an element H such that 

i) Ad H is semisimple; 
ii) The spectrum of Ad ,  consists of 2 = 1, 0, 1/2. 

iii) [H,x] = 2x~[H, Jx] = (1 - 2)x for all xcW. 

Moreover, ~ is a Siegel domain of the first kind if and only if the value 1/2 is not 
present in the spectrum of Ad, .  

The element He  W can be constructed from the j-algebra W by the following 
procedure. Consider the skew-symmetric form on W(J . . . . . . .  ). It is just the K~ihler 
form on T~# r. Then it should be cohomologous to zero on W. Therefore, there is a 
one-form on W, ~o(...), such that 

(Jx, y)  = do)(x,y) = - a)([x,y]) Vx, y~W. (4.4) 

So, the non-degenerate inner product ( . . . .  . . . )  has the form 

(x ,y )  =c~([Jx, y]) Vx, y~W. (4.5) 

Any one-form on W can be expressed as ( u , . . . )  for a unique u ~ W. Then there exists 
a unique ueW such that 

c~(x)= (u,x)  VxeW. (4.6) 

It can be shown [19, 20, 21] that the element u so defined has the properties i), ii) 
and iii) above and so it can be identified with H. (By the way, this shows that all 
homogeneous bounded domains are Siegel domains.) 

In the case of the normal K/ihler algebras we discussed in Sect. 2 (for rank 3 and 
type 1), we have 

H = h 1 + h 2 + h a. (4.7) 
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Using Eq. (2.26) and the relations defining an elementary K~ihler algebra it is 
easy to see that 

[H, h~] = 0, (4.8a) 

[H, g~] = g, a = 1, 2, 3, (4.8b) 

[H, x~+] -- x"a+, (4.8c) 

[H,x~_] = 0  A = 1,2,3. (4.8d) 

Given that Jh~ = g~, JXm-A + ---- Xm-A-, we see that H satisfies the conditions i), ii) 
and iii). Moreover, from Eq. (4.8) it is manifest that 1/2 is not present in the 
spectrum of Ad~. 

This completes the proof that the spaces K(p, q) and H(p, q) are homogeneous 
Siegel domains of type 1. 

The above identification for H, Eq. (4.7) can also be obtained from the form co. In 
each algebra W of Sect. 2, there is a canonical linear form co with the property (see 
Corollary 6.2 of ref. [15]) 

co(g,) = - 1, (4.9a) 

co(u)=0 if u ¢ g ,  a = 1 , 2 , 3 ,  (4.9b) 

which, together with Eq. (2.22) implies Eq. (4.7). 
Let us take a closer look at the structure of the K/~hler algebra W. In agreement 

with the general theorems of refs. [20, 21], it should be of the form 

W = JR  + R (4.10) 

with R a commutative ideal of W. In fact from Eqs. (2.26) we see that R is generated by 
gi and X~-A +. 

The automorphisms of the Siegel space ~" + iV are of the following two forms: 

(A) x + i y ~ ( x + a ) + i y  (a~n),  

(B) x + iy---} Ax + lay, 

where A is an (affine) automorphism of V. The automorphisms of the type (A) are 
exactly the "Peccei-Quinn" symmetries of ref. [3]. From the algebra W we see that 
these Peccei-Quinn symmetries are just generated by the commutative ideal R. (Notice 
that the existence of this ideal R - - t h e  PQ symmetry-- is  enough to deduce that the 
spaces /f homogeneous should be Siegel type I. This is the argument we used in 
ref. [3]). 

The automorphisms of the convex cone V can be described as follows in terms of 
the j-algebra W. Let y be a point in R. We define an infinitesimal affine 
transformation of R by 

Chy = [h,y] heJR. (4.11) 

Using the axioms of a (normal) j-algebra it is easy to check that the 
transformations Ch, h~JR, form an affine Lie algebra L. Consider the orbit of the 
point y under the corresponding Lie group. It is a convex cone (not containing lines) 
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which is canonically identified with V [20, 21]. L is obviously the Lie algebra of the 
automorphisms of V. 

The j-algebra of a Siegel domain of the first type has a natural normal 
decomposition (the semidirect sum decomposition of Sect. 2.B). We discuss it here 
since we shall need it in Sect. 4.C to construct the corresponding T-algebras. 

The general theorem [21] states that there exist elements ri~R (i = 1 , . . . ,  m) such 
that the ideal R can be decomposed into a direct sum of spaces 

R = Z R~j (4.12) 
i<=3 

such that the following formulae hold [21]: 

R u = (ri), (4.13a) 

x 6Rj ,  ~ [Jri, x] = ½(6ij + C~ik)X , (4.13b) 

xE Rjk ~ [Jri, Jx-] = ½ ( 6 i j  - -  6ik)JX , (4.13C) 

n = J ~ r i. (4.13d) 
i 

Comparing these equations with Eq. (2.22, 4.8) we get in the case of our algebras 
W, that r i = - g i  (i = 1, 2, 3), and 

R12 = X a +, (4.11a) 

R13 = X 2 +, (4.14b) 

R23 = X 1 +. (4.14c) 

4.C. T-Algebras and the Geometry o f  the Spaces K(p, q) & H(p, q). In the previous 
subsection we proved that the homogeneous spaces we coupled to N = 2 SUGRA in 
Sect. 3 are (homogeneous) Siegel domains of the first kind. However, not all such 
Siegel domains can be coupled to N = 2 supergravity. Then, the natural problem is 
to give a geometrical characterization of the Siegel domains that can be coupled 
to N = 2 sugra. 

In order to solve this problem we have to introduce the formalism of the T- 
algebras [14], which is also very convenient for the practical computations and will 
give us some extra bonus. In a certain sense, the T-algebras are a generalization of 
the Jordan algebras. The homogeneous models of Sect. 3 are related to the T- 
algebras in exactly the same way as the symmetric models are related to the Jordan 
algebras [12]. In this sense, this section is close in spirit to the work of Gunaydin, 
Sierra and Townsend [12] on the applications of the Jordan algebras to N = 2 
SUGRA. Our construction below reduces to theirs in the particular case in which 
the domain is symmetric. 

The T-algebras give an efficient way to describe the Bergmann metric on a 
homogeneous bounded domain. By "distorting" the T-algebra we can get the other 
homogeneous K~ihler metric on the Siegel domain by the same token we used to 
construct the Bergmann one. In particular we get a simple and elegant interpretation 
of the K/~hler metric relevant for N = 2 supergravity, Eq. (2.2). 

4.C.1. T-Algebras and N-Algebras. From the considerations of Sect. 4.A.2 it is easy 
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to compute the cones V for the s y m m e t r i c  case (see also ref. [,12]). For the magical 
models, V is the cone of pos i t ive-de f in i te  Hermitian 3 x 3 matrices whose entries 
belong to one of the four division algebras ~, C, H or G. The "factorizable" models, 
Eq. (2.31), instead correspond to the spherical cones 4 

X 0 > N / ( x l )  2 "~- "'" ~- (xn)  2.  (4.15) 

Here we want to show that this interpretation of the cone V can be extended also 
to the homogeneous case. The (convex) cone V, defined by the homogeneous spaces 
we have found above, is the space of the, in some sense positive, 3 x 3 Hermitian 
matrices whose entries belong (quite roughly) to the Clifford modules of Sect. 2.A. 
Such matrix algebras are examples of a more general concept introduced by E. B. 
Vinberg [,14]: that of T-algebras. 

We begin by recalling some definitions. (The convention on the sum over 
repeated indices is NOT used in this and the following section). A m a t r i x  a loebra  of 
rank m is an algebra 92, bigraded by subspaces 9.I v ( i , j  = 1 . . . .  , m) such that 

9~ijggljk C 9.Iik, (4.16a) 

92ii~92~k = 0 for j ¢ 1. (4.16b) 

An element a ~ I  can be represented as a matrix (a~j), where ai~ is the projection of a 
into 9.Iij. Then the algebra product is written as the usual product for matrices. An 
involution * of 9.I is a linear mapping 9.I ~ ~I such that 

a** = a (ab)* = b'a*, (4.17a) 

9.1*ij c 9~i. (4.17b) 

In the matrix notation this is the "Hermitian conjugate." We denote by ~ the 
subalgebra of 9.1 consisting of upper triangular matrices, and by 3£ the subspace of 
"Hermitian" matrices 

3E = {xE~lx* = x}. (4.18) 

A matrix algebra ~ with an involution * is called a T-algebra if 

1. all the subalgebras 9.1, are isomorphic to R (the corresponding unit element is 
denoted as e~); 
2. for any ai]~9~ij: e~a~i = a~je i = aij; 
3. There is an operation (trace) Tr: 9.1 ~ R such that 
3.a Yr([a, b]) = 0; 
3.b Tr ([a, b, el) = 0; 
3.c T r ( a a * ) > 0  if a # 0 ;  
4. For any t, u, weE, [t, u, w] = 0; 
5. For any t , u ~ ,  [ , t ,u ,u*]  =0.  

Here I-a, b, c] is the associator, [,a, b, e] = a(bc) - (ab)c. In the matrix notation, the 

4 Notice that the symmetric K/ihler spaces allowed in N = 2 SUGRA just correspond to the classical 
cones, (i.e. the homogeneous convex cones known before the 1960's), see ref. [14] 
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trace is defined as 

S. Cecotti 

we have 

Tr 1 = dim ~I, (4.21) 

and we call 9.1 a natural T-algebra. This trace will be called the graded trace and 
denoted by Tr G. If Eq. (4.20a) does not hold, we shall speak of a distorted T-algebra. 
This process of distorting the T-algebra is analogous to defining a different metric on 
a coset by rescaling the generators. 

Let a = (ai:)~9,I. Then we define 

1 
dt = ~ a l i  + ~ ai.i, (4.22a) 

i<j 

1 
a = ~ Z a u  + Z aiJ" (4.22b) 

i>j 

is an upper triangular matrix, a is lower triangular, and a = fi + a. In 9.I one defines 
a product • 

a • b = ~b + ba. (4.23) 

Under the • -p roduc t  the space X is closed. 
Consider now the space Y(9.1) 

5"(9.1) = { t ~ l  tu > 0 (i = 1,. . . ,  m)}. (4.24) 

5-(9~) is obviously a connected Lie group. Its Lie algebra T(9.I) is just the subalgebra 
of 9.I. Let us consider the map 5-(9.I) ~ 3; given by 

t ~ tt* e3Z. (4.25) 

The Hermitian matrices of the form tt* are, in some sense, positive definite. Let 

V(91) = { tt* l t e J  ( 9.1) } (4.26) 

be the cone in 3; of such "positive definite" Hermitian matrices. Each element of V(9/) 
can be written in a unique way in the form tt* with t sJ (2[) .  Therefore, V(~I) is a one- 
to-one image of the Lie group Y-(N). This group acts on the cone V(9.I) by 

~(co): uu* ~ (cou)(u*co*). (4.27) 

In fact, z(co) is just a left translation on the group Y(N). Then Y-(N) acts transitively 
on the cone V(9/), which can be shown to have all the properties of the cone V for a 
Siegel domain of the first kind. Equation (4.27) implies the following action of T(gI) 

Tra  = ~ niau, (4.19) 
i = 1  

where the n~ are positive numbers, If 

n~=l  + ~ i  ni~, (4.20a) 

n~j = dim ~Iij (4.20b) 
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on 

L~: y ~ x II, y, (4.28) 

which is easily identified with the action of the affine algebra Ch of Eq. (4.11). 
This shows that the cone V(9.I) is equal to the cone V of a homogeneous Siegel 

domain. Conversely any homogeneous Siegel cone is of the form V(9.1) for a unique 
(natural) T-algebra 9.I [14]. 

We want to define the "determinant" of an element of ~. In order to do this, we 
associate to each Hermitian matrix Xeg.I (rank m) a sequence of matrices X (k) of 
rank k = 1 . . . .  , m 

X (") = X, (4.29a) 

k - 1  
x ( k -  i )  ~ ( x ( k ) x ( k )  y ( k ) v ( k ) ' ~  (4.29b) 

= ~, kK ij  - -  "J" ik ,~x k j  I, 
i , j  = 1 

and put pk(X) = x ( k ) k k  , k = 1 , . . . ,  m .  

The matrix X~X can be written in the form tt* (i.e. it is "positive-definite") if and 
only if [14] 

pk(X)>O for k =  1 . . . . .  m. (4.30) 

If Eq. (4.30) holds, the unique te~-(92) such that X = tt* is given by 

X(k) 
ik (4.31) t~k ~>=k p~(X) 

The determinant of a matrix XE3E is then defined by the formula 
i - 1  

DET(X)--- [p,(X)] ~=~ , (4.32) 
i = 1  

where n~ are the same numbers as in the definition of the trace, Eq. (4.21). (In the case 
x = tt* we have DET (x) = {DET (0} 2. DET (t) = exp Tr In (t) is elementary since t is 
triangular and the diagonal elements are just real numbers). 

Let 92[ be a T-algebra. Consider the corresponding (homogeneous) Siegel domain 
of the first type 

~(9.I) = •" + iV(9.1). (4.33) 

It is convenient to write a point in N(9/) as a matrix ] in g[ ® C such that 

~e3i. + iV(9.I). (4.34) 

The natural K/ihler metric on such a domain is of course the Bergmann one. 
Exploiting the homogeneity of V(9.1) and the explicit form of its automorphism 
algebra, Eqs. (4.30), it is easy to see that the Kghler potential for the Bergmann 
metric is (within a positive factor) 

B = - In {DET~ [2 Im 3] }, (4.35) 
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where DET~ is the "graded" determinant, i.e. in Eq. (4.32) the n~ are given by 
Eq. (4.20). 

Our next problem is to classify what T-algebras 9/ correspond to homogeneous 
K/ihler spaces which can be coupled to N = 2 SUSY. It turns out that the most 
efficient way to construct a T-algebra is by starting from its nilpotent part, which is 
an N-algebra. 

An associative algebra 9l, graded by subspaces 91~j (i <j ,  i,j = 1, . . . ,  m), and 
equipped with a Euclidean metric ( . . . , . . . ) ,  is called an N-algebra (of rank m) if: 

I) 91ij91~ c 91i~, 
II) 91ij911k ~- 0 for j • I, 

III) (91~j, 91kt) = 0 if i g= k or j 4= l, 
IV) For any aije91~j, bjkE91jk: 

1 
(aijbjk, aljbjk) = ~ (aij, a~j)(bjk, bjk), 

V) If aike91ik, bjke91jk (i <j)  and (a~k, 91bjk) = 0 

:::>(91aik, 91bjk ) = O. 

To construct a T-algebra out of a given N-algebra, we write 

9.I = 9l* + ~ + 91, (4.36) 

where 9l* is a vector space isomorphic to 91, the involution * being the isomorphism. 
is the space of the diagonal matrices, which is just a direct sum of copies of E. We 

have to extend the product from the space of strictly upper triangular matrices 91 to 
the full T-algebra 9.I. The product in 91" is given by the rule a'b* = (ba)* (a, b~91). 
The scalar product is extended in 9.I in such a way that Eq. (4.36) is an orthogonal 
decomposition. In l) we put (ei, ei)= n~ in agreement with Eq. (4.19). The scalar 
product is extended to 91" by (a*, b*) = (a, b). The product of an element of b with 
any element of 9/is given by point 2 in the definition of a T-algebra. The product of 
an element of 91" for an element of 91 (and vice versa) can be defined by 

i,j u i  

(aij, bij) 
a * b  = ~ ei + Y. (be ~, a)c ~* + ~. (ae ~, b)c ~, (4.37b) 

where c = (~ = 1,. . . ,  dim 91) is an orthonormal basis of 9l. One shows that 9/ so 
constructed satisfies all the axioms of a T-algebra. 

4.C.2. The T-Algebras of the Ki~hler Spaces K(p, q) & H(p, q). Having set the stage 
in the previous sections, the construction of the T-algebras associated to our 
supergravity models, K(p, q) & H(p, q) is quite simple. 

Consider the commutative ideal R W (Sect. 4.B). We saw that the cone V is the 
orbit of the affine group exp Ch (he JR). In this sense we can use the elements JR  as 
affine coordinates for V. 

Thus, the coordinates z a are identified with the generators h, and XA-, which is 
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just what we did in Sect. 3.B to write the function F in the cubic form. (Recall that the 
cubic form is--by definition--the canonical affine parametrization of the Siegel 
domains of the first kind. See Sect. 4.A.). 

A natural grading for JR is induced by the grading of R given by the normal 
decomposition, Eq. (4.12) (see also Sect. 2.B). 

As in Sect. 4.C.1, we construct the T-algebra out of its N-algebra. 
The T-algebras of the models K(p, q) and H(p, q) are cooked using the following 

recipe: 

a) The subspaces ~l~j are identified with the subspaces JR~j of the normal 
decomposition, Eqs. (4.12, 4.14). Therefore, all the relevant T-algebras have rank 3, 

9~ = J ~ R,j. (4.38) 
i< j  

b) We define the inner product ( . . . , . . . )  in 91 by the formula 

ni 
(xii, Yij) = ~ (xii, Yi~) xij, yi~JRij. (4.39) 

c) The product Tt~j ® 91jR--* gt~k is defined as 

{0i~.y~k for i < j < k  (4.40) 
xqy~k = otherwise ' 

where * is the product whose multiplication table is given by the coefficients d ""~t. 
We have still to check that these rules define an algebra 9l satisfying the axiom 

I),.. . ,  V) of Sect. 4.C.I. The only one which deserves consideration is IV). 
Equation (4.16) gives the following explicit identifications for the spaces 91~j: 

9112 = X3- ,  (4.41a) 

9ll 3 = X2- ,  (4.41b) 

9123 = X1 -.  (4.41c) 

Making the same identifications for the elements of each vector space, we have 

n 1 (xl~Y23,x12y23)--'~-(x3-*xl-,x3-*xl-) 
n 1 =¥(xl-,xl- 5(x3-,x3- 5 

1 
= (xlz, x l 2) n2 (Yz3, Y23)- (4.42) 

Then, since ~O (see Eq. (2.25)) is an isometric map, axiom IV is fulfilled. 
This proves that our spaces K(p, q) and H(p, q) are associated to T-algebras of 

rank 3 (of course, this was already obvious from the results of Sect. 4.B). 
By analogy with the notations of Sect. 3, we shall denote an element X of the 

T-algebra as 
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Pl --X3 X2) 
X =  - x *  P2 xl - (4.43) 

k p3 
(Each variable in this matrix should be identified with the imaginary part of the 
complex field denoted in Sect. 3 by the same symbol.) 

From the definition of pk(X), Eq. (4.29), we get for rank 3 T-algebras 

P3(X) = P3, (4.44) 

P2(X) = P3P2 -- ½(Xl )2, (4.45) 

1 
Pl (X) = ~ p3 { 2plP2P3 -- 21PA(X~I)2 -- 2(Xl, X2, X3) } 

+ ½{½(x ~)Z(x;) 2 - ( x l  *x2, x~ *x 2 )}. (4.46) 

Notice that the functions pk(X) do not depend on the numbers n~. Then, the cone 
of the "positive Hermitian matrices," V(95D = {Xe~:pk(X) > 0}, does not depend on 
the numbers ni > 0. Therefore, changing these numbers will modify only the metric, 
not the bounded domain itself. This elementary observation is crucial for our 
arguments below. 

The Bergmann K~ihler potential B is given by 

e -B = DET G {i(g - 3)}, (4.47) 

where DETa denotes the graded determinant, defined by Eq. (4.32) with n~ as in 
Eq. (4.20). 

Here we want to show that a totally analogous formula is valid for the K~ihler 
potential G of N = 2 SUGRA. 

Theorem 
i) The Kgthler potential G, Eq. (2.1) is given by Eq. (4.47), where 
determinant is replaced by the naive determinant 

e -a  = 2Y[i(~ -- 3)] = DETN{i(~ - ~)}, 

where the "naive" determinant DET N is defined in terms of the "naive" trace 

the graded 

(4.48) 

Tr N a = ~ a u, (4.49) 

i.e. by Eq. (4.32) with ni = 1. 
ii) A Siegel domain of the first kind can be coupled to N = 2 SUGRA if and only if the 
"naive" determinant of the corresponding rank 3 T-matrix X is a polynomial in its 
components. 
iii) The "domain of positivity" is {Im z~ V(9.1)}. 

Indeed, from Eqs. (4.32, 46, 49) we get 

_Pl[i(~-3)] 1~ 
P3[i(g 3)] - ~ [ 2 p x p 2 p 3 -  A = I  ~ Pa(Xa)2--2(XI'X2'X3) DETn 3)} 

J 
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1 1 1 2 2 
"1"~3-3 {~(X1) (X21 --  (Xl*X2, XlCSX25} 

1 11  
Y[i(~--a)] + ~ { { ( x a l 2 ( x 2 )  2 -  (xl*x2,xa*x2>}, (4.50/ 

where Y[2Im3] is the function Y computed from the function F(X° ,X  A) in 
Eq. (3.181. The spurious term in Eq. (4.51)--which is not a polynomial--vanishes if 
and only if 

( X  1 *X2, X 1 *X 2 ) ~--- l(x1)Z(x2)2. (4.51) 

But this is exactly the integrability condition for the HJ equations of Sect. 3 (or 
the closure condition for the Q-representations of Sect. 2.B). We know its solutions 

a) X1 - 0 = ~ t h e  K(p,q) spaces; 
b) dim X2 = dim X3 and ~ a special isometric map. 

~ t h e  H (p, q) spaces. 

So ii) is proved. Then i) follows from Eq. (2.1) and Eq. (4.50). iii) follows from the 
characterization of the "domain of positivity" in Sect. 4.A.2 and the definition of 
V(9.I) as the cone of the positive elements of 3~. 

Notice that in the four magical cases all the n, are equal to dim &. Then, in these 
four cases we get 

Yr G (...) = (1 + dim &) Tr s (...), (4.52) 

and therefore the SUGRA metric is proportional to the Bergmann one. In all the 
other cases the SUGRA metric is not proportional to the Bergmann one, and 
therefore cannot be Einstein (since it is homogeneous). See also Sect. 3.C. 

Just as a further check, let us show that Eq. (4.48) implies that the K~ihler metric 
G=~ is invariant under the full automorphism group of the cone. More generally, we 
show that the "K/ihler metric" K=p defined by the "K/ihler potential" K 

e -~:(x)=DET~.I,.2,.3~[X ] XeK (4.53) 

(where ni are arbitrary numbers) is homogeneous. By Eq. (4.32) 

e- K(X) = [p3(X) ]n3-(n2+n,)[pz( X) ]n2 -nl [pi (X) ]n~. (4.54) 

The automorphisms of the cone V(gX), coeJ(~l )  act on xeK as follows: 

re(co): X ~ coXco*. (4.55) 

Or, writting x = tt*, by t~cot, where co, t are upper triangular. Then it is easy to 
prove the identity 

DETt,,3 IX] ~ DETt,~ [X] x {DET~,,I [co] }2 

DET~,,I [co] = 1~ (cokk) "~" (4.56) 
k=l  

Therefore, 

K(X) ~ K(X) - 2 In DET{,,} [co] = K(X) + eonst. (4.57) 
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