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This paper is a natural outgrowth of [9], where the problem of studying the 
boundedness properties of complete minimal surfaces in 1R" was approached 
via the consideration of a certain gradient flow. After the completion of [9] it 
was soon realized that the basic technique (Lemma 3 below) could be success- 
fully employed to study boundedness of arbitrary complete submanifolds. In 
this regard, the method can be used to prove the following three theorems. 

Theorem 1. Let M be a complete Riemannian manifold whose scalar curvature is 
bounded from below and let B R be a closed normal ball of radius R in a 
Riemannian manifold M. Set K for the supremum of the sectional curvatures of 
3~ in B R. Let I: M ~ B R c M  be an isometric immersion with bounded mean 
curvature vector H (say, IHI <Ho). Then the following holds 

a) R > ~  arctan if K<__82 (8>0) and R < 2 ~ ,  

b) R_> 1 -Ho' if K 0, 

c) R_->~ arctanh H~ ~ if K<__-82<0. 

Theorem 1 was proved in [1] for M=sur face  and 2~=IR n. For  arbitrary M 
and ~ r= lR  n, see [4] and [5]. In [3] the case M = S "  is discussed. Recently, a 
different proof of Theorem 1 was offered by Koutroufiotis and the first named 
author in [8], where other related problems are also considered. Except for 
[1], all these proofs rely, in one way or another, on a rather technical theorem 
of Omori [11]. The present authors feel that the present approach is more 
conceptual and lends itself better for generalizations. For  instance, the proofs 
of the following two seemingly unrelated theorems on minimal submanifolds 
have much in common with Theorem 1. 

Theorem 2. Let M be a complete Riemannian manifold with bounded scalar 
curvature and I: M - ~ I R " - { 0 }  be a minimal immersion. I t  is not possible to find 
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/ I(x) \ 
a unit vector ~ and a > 0  such that > > a  for all tother ise 

\ ' III(x)lt/= 
said, I(M) does not lie inside of a non-degenerate cone of IRN). 

When M is a surface and n = 3 a stronger statement can be made: 

Theorem 3. Let M 2 be a complete surface with bounded Gaussian curvature and 
let f :  IR~IR  + be a proper function. It  is not possible to find a minimal 
immersion of M into 

A~ = {(x, y, ~) ~ ~ ~ >f(y)} .  

Theorems 2 and 3 seem to be innacessible to techniques using the theorem 
of Omori quoted above. They are very much in the spirit of [9] where, as 
pointed out at the beginning, the main enterprise was to find out the extrinsic 
boundedness properties of minimal surfaces in IR". This type of question was 
raised by Calabi and Chern [-2]. The reader may also want to look at [7] and 
~10] where examples are constructed of complete minimal surfaces entirely 
contained in balls of IR ~ and slabs of IR 3, respectively. Theorem 3 above should 
be compared with be result of [10]. It is also to be mentionned that, by letting 
H o =0  in Theorem 1, several results scattered throughout the aforementionned 
papers can be recovered. 

In order to stress the conceptual simplicity of the methods the authors have 
refrained from proving a few other minor results that spring naturally from the 
given ones. 

The authors would like to thank Koutroufiotis for his critical reading of 
the first draft of this paper. 

Preliminary Results 

Lemma 1. Let M be a complete Riemannian manifold and f:  M-~ IR + a smooth 
function satisfying 

Hess f ( p ) ( X , X ) > c ] X [  2 (c>0) 

for all p ~ M ~ = f  1([0, el), and for all X~Tp(M).  77wn each connected com- 
ponent of M~ is compact. 

Proof. Let M~ be a connected component of M~ and cg be the set of critical 
points of f in ~ r .  The above condition on the Hessian of f implies that cg 
contains only non-degenerate points of minimum. Let x~M~ and consider 
q~x: (T(~,0]--,2~, the maximal semi-orbit of d f~  ending at x (i.e., (p~(0)=x). 
Suppose, by way of contradiction, that q~x has infinite length, get then 
fi: [0, oo)~M~ be its reparametrization by arc-length. A straightforward com- 
putation gives (fofi)'(s)=ldf(fi(s))l 2 and ( fo i l ) ( s )=c .  It follows from this 
inequality that f o p  is unbounded, thus contradicting the fact that f i (s)eJ~.  
Therefore qo x has bounded length. In particular, lira (px(T) exists and belongs 
to cg. Let r~ T~ 

(gy = {X ~ M, lirn ~o~(T) = y}. 
T ~  T(~c) 
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It is easy to see that each (gy is open (cg contains only points of strict 
minimum). Since M~= U (gy is connected, cg consists of a single point say Yo. 

y E g  

Suppose now that ~ r  is noncompact. Since M is complete there are points 
p , ~ r  with d(p,, yo)~Oo. Consider q0p,: [Tff.), 0 1 ~ r ~  (notation as above) and 
let ft," [0, s,,] be its reparametrization by arc-length. It follows from the re- 
lations given above for (fo tiff and (fo tiff' that 

CS 2 C 

f (fl, (G)) >=-~ + f (Yo) = ~ d(p,, yo) 2 + f (Yo). 

Hence f(fi,(s,))--* oo as n--* oo, contradicting the boundedness of f on M E. 

The proof of next lemma uses standard comparison theorems and may be 
found in [8] and [-13]. 

Lemma 2. Let N be an m-dimensional Riemannian manifold with sectional curva- 
ture K, x o and x points of N so that x does not lie in the cut locus of x o. Let 
7: [0, {] be the minimizing geodesic segment connecting x o with x, parametrized 
by arc-length. Take a positive number 6. For any unit vector X ~ TxN, perpendic- 
ular to 7'(d), the Hessian of the function f(x)=�89 2 satisfies 
Hess f ( X ,  X) >= #(#), where 

/ fl 6 cotan ({ 6) 

(e) # / 
/ #6 cotanh (f6) 

7~ 
/f m a x K = 6  2 and d < -  

6 

/f m a x K = 0  
y 

if m a x K = - 6  2. 
7 

Lemma 3. Let M be complete and I: M ~ M an isometric immersion with bound- 
ed second fundamental form. Then, for each p~M there exists a closed ball 
B(p) such that all connected components of 1-1 (B(p)) are compact. 

1 d Proof. It is well-known that the function g:/~r--,1R, g(q)=2 (p, q)2 is strictly 
convex on a sufficiently small neighborhood of p, say Hessg(q) (X, X)>=c[X[ 2 
(c >0) for q ~ B(p). Let then f =g[~. A straightforward computation yields 

Hess f (q)(X, X) = Hess g(q)(X, X) + ( Vg(q), a(q)(X, X) ), 

where c~ represents the second fundamental form. On the other hand 

I(Vg(q), ~(q)(X, X))[-< f Vg(q)l I~(q)] IXl 2 <d(p, q)I~(q)l Ig l  2 

(I 
and this in turn can be made less t h a n  ~ ] X I  2 by taking d(p, q) small enough 
(i.e., by shrinking B(p)). In particular, .L 

C 
Hess f (q) (X,  X ) > ~  IX] 2. 

The result now follows from Lemma 1. 
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Proofs of the Theorems 

Proof of Theorem I. Suppose that I: MoBR(Po) and that Pe~BR(Po) is an 
accumulation point of I(M). By Lemma3 the set M~=t-I(B~(P)) has only 
compact components, provided e>0  is small enough. Let 7 be the radius 
joining P and Po, extended somewhat. Take a sequence {Pj} c 7 converging to 
Po and such that P0 lies between P~ and P. For xeS~=BR(Po)c~B~(P ) one has 

d(Pj, x) < d(Pj, Po) + d(Po, x) < d(P~, Po) + R = d(Pj, P). 

Since broken geodesis do not realize distance the first inequality is strict. In 
particular, Rj=maxd(Pj, x)<d(Pj, P). Let f/m--*lR be given by fj(x) 

x~S~ 

=�89 I(x)) 2. Since P is an accumulation point of I(M) and I(c~M~)cS~ there 
exists points x in M~ for which R~ <f j (x)< d(Pj, P). In particular, the maximum 
of f~ at each (compact) component of M~ is attained at some interior point, say 
xj.. The formula given in the proof of Lemma 3 together with the estimate of 
Lemma 2 yields 

O>Afj(x~)=trHessfj(xj)>(n-1)(t~(Tj)-HoTj), where Ti= d(Pj, P). 

The result now follows from #(Tj)< H o T~ by leting j ~  oQ. 

Proof of Theorem 2. There is no loss of generality in supposing that v 
= (0, 0...  1) and I (M) ~ 0 C = ~, where 

x < 8 .  

Let PoeI(M)c~intC. It is possible to choose a sphere SRo(Tov ) in IR" which is 
tangent to the cone and so that Po is between the hyperplanes (v, x ) =  To and 
(v, x ) = 0 ,  with P0 e SRo(To v). In particular the set Seo(Tov)\5 C has exactly two 
components. Let S' be the one that contains Po. Set 

T ' = s u p  {T: (S'-Tv)~I(M)~=~}, S=S ' -T ' v .  

Let PeI(M)c~S. Suppose that T ' > 0  (if T'=O, set P=Po in the sequel), so that 
S c ~ 0 C = g  (recall that SRo(T or) is tangent to C). In particular, 

P~intSc~I(M). By Lemma3 it is possible to chose e>0  sufficiently small so 
that the components of I-I(B~(P)) are compact submanifolds with boundary 
(it follows from the equation of Gauss and the minimality of I(M) that 
boundedness of the second fundamental form is equivalent to boundedness of 
the scalar curvature). Let Mo be such a component and let n be the hyperplane 
containing Sc~0~B(P). Observe that al(Mo)cOB~(P ) and that OI(Mo) lies 
above S, in the obvious sense (actually, I(M) lies above S). In particular ~?t(Mo) 
lies above n. It is well-known that compact minimal submanifolds of IR" are 
contained in the convex hull of their boundaries. It follows from this that 
I(Mo) lies above n. Since d(P, ~z)> 0 this implies that P q~ I(M), a contradiction. 



Exterior Diameter and Mean Curvature of Bounded Immersions 81 

ToY" / BC 

Proof  o f  Theorem 3. Suppose that I: M ~ A  I is minimal. By passing to the 
universal covering it may be assumed, in view of the uniformization theorem 
for Riemann surfaces, that M is conformally the unit disc D or I1~. Since the 
coordinate functions of a minimal immersion are harmonic and I 3 > 0  (I 
=(I1, I2, I3)) the first alternative must prevail. Therefore, it may be supposed 
that (see [9] for details) 

I : (D,  2ldzlZ)-- 'Ai ,  2 = ( i ~  '(plI2 ) , =  

3 

where the ~o~'s are holomorphic functions satisfying ~ (p2 = 0. The immersion 
i = 1  z 

can be recovered by the formulas Ik(z)=Re~cpk(~)dr for a suitable choice of 
a 

a c D  (see [12] for general facts on minimal surfaces). For the completion of the 
proof it is necessary to use several classical results on the boundary behavior 
of holomorphic functions on the unit disc, associated to the names of Fatou, 
Herglotz, Lusin, Privalov, Marcinkiewiez and Zygmund. Since their proofs 
(and in some cases their statements) are fairly elaborate, it seems wise just to 
quote them. An excellent source is the treatise [14]; for those who want to get 
acquainted with some of the techniques involved, a convenient reference is [6]. 
Coming back to the proof, denote by T o c D an open equilateral triangle of side 
�88 with a vertex at e ~~ Since 13>0, Herglotz's theorem ([6], p. 38) implies that 

lim T3(z ) exists for almost all e~~ 1. Pick e ~~ for which this limit exists. 
z ~ To,  z ~ d  io 

Since O < f ( I 2 ( z ) ) < I 3 ( z  ) for all z e  T o and f is proper, the set {I2(z) lz~ To} is 
bounded. Theorem 1.1 of [14], p. 199, implies that lim I2(z ) exists almost 

z ~ T o , z ~ e  io 

everywhere. By the remark ii) following Theorem 1.10 of [14], p. 204, the limits 
z 

of ~cp~(~)d~ in TO as z ~ e  i~ exist almost everywhere (k=2, 3). By Theorem 2.2i 
a 

of [14], p. 207, ~ [q~212+ ~ [(p312<oo for almost all ei~  1. In view of the 
3 To To 

relation ~ cp2=0 this implies that ~ I(p112<~ almost everywhere. The con- 
i =  1 To 

verse of Theorem 2.2ii above can then be applied to show that 



82 L. Jorge and F. Xavier 

z 

lim ~ cP1(3)d~ exists almost everywhere. In particular, lira 11 (z) exists 
z e T o ,  z ~ e i ~  a z 6 r o , z ~ e  i~ 

almost everywhere. Let then e i ~ e S  1 be such that the limits of I k (k=1,2,  3) 
over T~ as z ~ e  ~ exist. Denote them by al,  a 2 and a3, respectively. Consider 

3 

the function f :  D---,IR, f ( z ) =  ~ ( I k ( z ) - a g )  2. As before, for e > 0  small enough, 
k = l  

the set f - l ( 0 ,  e) has only compact connected components. In particular it has 
a component C containing a segment of the form {re i~, b < r < l } .  Since this 
path is divergent, C must be non-compact, a contradiction. 

References 

1. Aminov, Ju.: The exterior diameter of an immersed Riemannian manifold. Mat. Sb. 92 (134), 
456-460 (1973) [Russian]. Engl. Transl.: Math. USSR-Sb. 21, 449-454 (1973) 

2. Chern, S.: The geometry of G-structures, Bull. Amer. Math. Soc. 72 (1966) 
3. Hasanis, Th.: Isometric immersions into spheres. J. Math. Soc. Japan (to appear) 
4. Hasanis, Th., Koutroubiotis, D.: Immersions of bounded mean curvature. Arch. Math. (Basel) 

33, 170-171 (1979) and "Addendum" (to appear) 
5. Hasanis, Th., Koutroubiotis, D.: Addendum to [4] 
6. Hoffman, K.: Banach spaces of Analytic functions. Englewood Cliffs, New Jersey: Prentice-Hall 

1962 
7. Jones, P.: A complete bounded complex submanifold of 1123. Proc. Amer. Math. Soc. 76, 305- 

306 (1979) 
8. Jorge, L., Koutroubiotis, D.: An estimate for the curvature of bounded submanifolds. Preprint 
9. Jorge, L., Xavier, F.: On the existence of complete bounded minimal surfaces. Bol. Soc. Brasil. 

Mat. 10, No 2 (1979) 
10. Jorge, L., Xavier, F.: A complete minimal surface in IR 3 between two paralel planes�9 Ann. of 

Math. (to appear) 
11. Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan 19, 205-214 

(1967) 
12. Ossermann, R.: A survey of minimal surfaces. New York-Toronto-London: Van Nostrand 

Reinhold 1969 
13. Wu, H.: On a problem concerning the intrinsic characterization of 02". Math. Ann. 246, 15-22 

(1979) 
14. Zygmund, A.: Trigonometric series (vol. II). Cambridge: At the University Press 1968 

Received January 12, 1981 


