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Abstract. We consider families of maps of the circle of degree 1 which are 
homeomorphisms but not diffeomorphisms, that is maps like 

c 
x ~ x + t + ~ sin (2~x) (mod 1) 

with c = 1. We prove that the set of parameter values corresponding to 
irrational rotation numbers has Lebesgue measure 0. In other words, the 
intervals on which frequency-locking occurs fill up the set of full measure. 

1. Introduction and Formulation of the Theorem 

We study one-parameter families of maps of the circle of degree 1, which are 
differentiable homeomorphisms, but not diffeomorphisms. The subject of our 
investigation is dependence of rotation number on the parameter. The problem 
interested both mathematicians and physicists. The families like x ~ x  

c 
+ ~ s i n ( 2 r c x ) + t  were studied for various constants c. For  c<  1 the maps are 

diffeomorphisms and there is a result of [2], which says that rotation number is 
absolutely continuous as function of t. When c>1  the maps are non- 
homeomorphisms and have no rotation number. However, there is a result of [6] 
about endpoints of rotation interval. It is quite different from the result for 
diffeomorphism just mentioned above - both endpoints of rotation interval are 
rational almost everywhere in the sense of Lebesgue measure. The case of c = 1 is 
covered by the present work. It was also studied numerically - the results strongly 
suggested that rotation number should be rational almost everywhere (see [-3]). 

We give a mathematical proof of this. In many aspects it is the continuation of 
[6]. Our main analytic tool is cross-ratio. Given four points a < b < c < d on the real 
line, we define their cross-ratio by 

, ,, ( b -  a) ( d -  c) 
Cr(a,o,c, aj= (T-2_ ~ • 
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Suppose also that h : IRON is an increasing function. The distortion D of the cross- 
ratio by that function is given by 

Cr (h(a), h(b), h(c), h(d)) 
D(a,b,c,d;h)= 

Cr(a,b,c,d) 

It is known that ifh has no flat critical points then it is possible to D estimate the for 
h and, which is more interesting, for large order iterates of h. The estimations of 
that kind are used in [4] and [7] and prove to be useful there. We make the general 
assumption that all critical points of our maps are non-fiat. We shall give precise 
formulation of that later. We need also differentiability with respect to the 
parameter in order to ensure that our maps change regularly, in particular near the 
critical points. 

Throughout all our work we shall deal with a continuous family f of lifts of 
homeomorphisms of the circle of degree 1. The parameter space wilt be denoted by 
U, so that we have f :  U x 1R~N. Parameter values will be denoted by t, while 
arguments on the real line by x. We also refer to particular lifts, denoted by f and 
defined by f (x)=f( t ,  x). 

Now we shall formulate 2 sets of hypotheses. 

Hypothesis 1. The family f is real analytic with respect to both variables and the 
of 

derivative ~ is positive everywhere in U x N.  Each f has at least one critical point. 

Hypothesis 2. The family f is of the form f(t ,  x )=h(x)+r ,  where the function 
h : N ~ I R  satisfies: 

a) It  is at least C 3. 
b) It  has at least one critical point and in the neighbourhood of each critical point 

there exists the derivative of  some order vanishing nowhere in that neighbourhood. 

The Claim, which holds under any of  these hypotheses says that: The Lebesgue 
measure of the set of  parameter values for which the rotation number is irrational is 
zero. 

2. The Technical Version of Assumptions 

Now we shall formulate the set of assumptions which are in fact a result of 
localisation of the hypotheses given in the previous section. Thus we shrink the 
parameter space U to a compact interval T and assume that the following 
conditions are satisfied: 

1 ° There exist m, with 1 <__ m < ~ ,  functions k i : T ~ ,  of class C 1 such that ki(t ) 
is always a critical point of  f and all critical points o f f  modulo 1 are represented in 
this way. Moreover, we suppose that: 

a) k~(t) are distinct modulo 1 for every t, 
b) for each i there is an open neighbourhood Vii of  the curve (t, ki( t)) in T × ~ and a 

Oz~f natural number I i such that ~ exists, is continuous and is non-zero everywhere in V. 

Ol,- l f  
C) ~ (ki(t))= 0 for each i and t ~ T. 
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2 ° The function f is of class C 3 with all derivatives bounded simultaneously and 
uniformly by a constant L. 

Of >_ a everywhere in T x ~ .  3 ° There is a positive constant a such that -0-{ - 

Then we claim that 

The rotation number is irrational only on a set of zero measure. 

Corollary. I f  Hypothesis 1 or Hypothesis 2 from the previous section holds, then for 
any t E U there is a neighbourhood of t in U, which, possibly with an exception of 
countably many points, can be covered by compact intervals on which the assumptions 
of the technical version are verified. 

Proof The only difficult point is to show that Hypothesis 1 of Sect. 1 implies that 
critical points of f can be locally represented as claimed in assumptions 1 ° of TV 
(the abbreviation of "the technical version"). In order to demonstrate this we fix 
some to in U and we are going to show that some neighbourhood of to can be 
covered, except for countably many points, by intervals on which TV is satisfied. 
Let the critical points of fo  be kl , . . . ,  km with orders I1, ..., 1,, respectively. We 
assume that there exist natural numbers 21 < 11 . . . .  ,2 , .<  1,, and analytic functions 
z I . . . .  , z ,  defined on some neighbourhood V of t o with values on the real line such 
that z~(to) = k, and the derivatives 2, . . . . .  l~ offt vanish at z,(t) for all i between 1 and m 

, 0 z ' f  
and t from V. We also assume that in this way we obtain all the zeros or }a~x in 

neighbourhoods of(to, k~) in U x R for each i respectively. Observe that it is always 
possible to obtain such a situation for every t by the implicit function theorem. We 

shall proceed by induction with respect to ~ 2 i. If it is m, which is the least possible 
i = I  

value, then 1 ° is evidently satisfied in some neighbourhood of t (possibly finer than 

V). Otherwise we consider some i such that 2~ > 1. The function ~ (z~(t)) is real 

analytic in V. Hence it is either 0 identically in some neighbourhood V' of t or it is 
non-zero in V + and V- one-sided neighbourhoods of t. In the first case we can 
reduce ;t~ by 1, in the second case we can do the same in one-sided neighbourhoods 
of t using the implicit function theorem. By induction we obtain easily that each 
point in a punctured neighbourhood of t has a neighbourhood, which can be 
covered by intervals on which TV holds with exception of only countably many 
points. The corollary follows. [] 

Observe now, that using the corollary the theorems mentioned in Sect. I follow 
immediately from the technical version of the theorem. Indeed, every point of U 
has a neighbourhood on which the set of parameter values corresponding to 
irrational rotation numbers has measure zero, hence that point cannot be a density 
point of this set. 

Now we just assume the technical version and begin the proof of its claim. The 
words "technical version" will be abbreviated to TV. 

We begin the proof with presentation of our main technical tool. 
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Cross-Ratio Inequality. Let us consider a system of fours of points of the real line 
covering the circle by a canonical projection. We denote the points by ai, b~, % d~ 
with al <bl <c~ <d~ for i=  1 ... . .  n. We assume further that the intervals (a~, d~) 
projected onto the circle by the canonical projection cover each point of it at most 
k times. For  every t E T there is a constant Ck, independent of t, n, and the choice of 
points such that the following inequality holds: 

~I D(ai, bi, % di; f )  <- Ck" 
i=1 

Before we prove the inequality we shall demonstrate several lemmas. 

Lemma 1. There exists such w > 0  such that intervals Wi, t=(ki( t ) -2w,  ki(t)+ 2w) 
satisfy the following conditions for every t ~ T and i with 1 <i<_m: 

a) For different i and f ixed t the intervals W~, t are disjoint modulo 1. 
b) The Schwarzian derivative of  f ,  which is defined by 

f(a, 3 {f,,'~2 sl;= 
f /  2 \ f ; )  

/ - -  / 

is negative in Wi, t. 
c) There are numbers Ai, t, uniformly bounded by a constant A with the property 

A~,t. Ix-k~(t)l ~'-1 <f/(x)< 2. ai, t- [x-ki(t)] h-1 for x s  Wi, t. 

Proof The condition a) will be satisfied if only w is small enough. Next, we fix i and 
consider a function 

1 
a , ( x ) -  - -  ~ '~(x) .  

(li-- 1)[ 

The function a~(x) is a continuous function of 2 variables defined in E. We have 

f / ( x )  = (x - ki(t)) l ' -  1.  a~(xl), 

f"(x) = (1 i -  1). (x-- ki( t)) h- 2. at(xz) ' 

f ' ( x )  = (li-- 1). (li -- 2). (x - ki(0)"- 3. a(x3), 

where ]x i -  ki(t)] < Jx - ki(t)] for j = 1, 2, 3. 
Since a~(k~(t)) is non-zero for every t, the condition c) follows easily from the 

continuity of at. In order to prove b) we calculate the Schwarzian derivative as 
follows: 

{'(l i - 1)(l i -- 2). at(x3) 3 (l,-- I) z. atZ(x2)'~., 
sf~ (x ki(t)) 2 . 

aXx, )  - ~ ' a?TZO,) -J 

at(x3) at(x2) 
Since the ratios ~ as well as ~ are uniformly close to 1 when w is small 

enough, the negativity of Sft follows from 

( l i - 1 ) ( l i - 2 ) < 3 . ( l i - l )  2 . QED 

For each t ~ T we consider the set 

Et = lR \(~O (k,(t)- w, k~(t) + w) + JE), 
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~f  > ~ on E for some positive and define E = 0 ({t} x E0. It is easy to see that Ox 
t~T  

constant Q. Indeed, E is a compact set which does not  contain points like (t, k~(t)). 
Let a, b, c be any three points of the real line such that b lies between a and c. 

Then we denote c-- a f t (b)-  f(a) 
Dh(a,b,c;f)= 

b - a f t (c) -  f(a)" 

Note that D(a, b, c, d; f )  = Dh(a, b, c; f ) .  Dh(d, c, b; ft). 

Lemma 2. For any a, b, c e F, such that the quantity Dh(a, b, c;f t  ) is defined it is not 
greater than a constant K2 independent of t. 

Proof We fix a parameter value t and we are going to remove it from further 
notations in this proof. It will suffice to consider Dh(a , b, c; f )  when a < b < c. We 
consider three cases: 

a) (a,c)CE,. 
b) (a, c) C IV//for some i. 
c) Neither a) nor b). L 
It is very easy to resolve a) - w e  immediately obtain Dh(a , b, c; f ) ~  ~.  Observe 

also, that c) implies c - a  > w. Now a simple compactness argument shows that 
f(b) - f (a ) ,  

c - a  is bounded by an absolute constant. So does b-L--da - which is 
f(c)--f(a) 
bounded by L. Now we shall concentrate on b). 

We substitute a = a -  ki(t), b = b -  ki(t), e = c -  ki(t). We also denote hi(x ) = x  t~. 
We compute 

ih,(b)-hi(a)[ Ai" h'i(x)dx t f ' (x)dx 1 [f(b)-f(a)l  

tc--al te--a} 
The inequality here follows by Lemma lc). Since evidently Ib-al  = t b - a l '  it 

follows that Dh(a , b, c; f )  <= 2. Dh(a, b, c; hi). Further we observe that Dh(ar, br, er; hi) 
= Dh(a, b, e; hi) for any r different from 0. Hence we may assume a = 1 and consider 
D h as a function of two variables e and b. It is clear that if }el is large enough (not less 
than li), then Dh(l , b, c;  h/) < 1. Since D h also has finite limits when b or e tends to 1, it 
has a bound independent of both, as well as t, by the compactness argument. This 
constant may be done independent of i too, by taking maximum with respect to i. 

QED 

Proof of  the Cross-Ratio Inequality. We divide the set M = {1, ..., n} into 3 subsets 
M1, M2, M 3 in the following way: 

1 ° A number i belongs to M1 if and only if (al, dO is contained in some Wj. t. 
2 ° The number i belongs to M e if and only if (al, di) is contained in Er  
3 ° M 3 = M \ ( M l u M 2 ) .  
We shall prove that each of the products 

[] D(ai, bi, c~,di;~), 
i~Ms 
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s = 1,2, 3 is bounded by a universal constant, which will clearly yield the cross-ratio 
inequality. 

1 ° We define Mla a subset of M I in the following way: 

Mla = {i~ M~ :(al, di) contains a critical point of ft}. 

Since the cardinality of this set is bounded by m- k, we obtain by Lemma 2 that 

1-I D(ai, bi, cl, di; ft) < K2k". 
j~Mla 

If ieM~\M~,,, then the Schwarzian derivative of ft is negative on (ai, di) by 
Lemma lb). It is a well-known fact (see for example [-5] that it implies 
D(ai, bi, % di; ft) < 1. 

2 ° Since the derivative of f with respect to x is bounded away from 0 by 

uniformly in E, the variation of log f '  over E~ is bounded by ~ for every t. The 
classical distortion argument gives us the estimation, e 

~1 D(a~,b~,c~,d~; ft)_<exp(2k -L)  
ieM2 

for every t. 
3 ° Since W~,t and Et overlap, i ~ M 3 implies that d~- a~ > w. There are at most k 

w 
such intervals and their contribution to the distortion of the cross-ratio can be 
bounded by Lemma 2. 

This concludes the proof. QED 

3. Basic Notions, Notations, and Ideas 

First we shall briefly present the formalism of Farey series. It is described in an 
elementary way in [1]. (p,  _p~ 

A Farey interval is an interval A = (q, q' > 0) with pq' - qp' = 1. We shall \q"  q} 
quote without proofs several properties of Farey intervals. 

A) The rational in A with smallest denominator is p + p' q+q'" 
B) There is no other rational in this interval with denominator less than 

2- min (q, q') + max(q, q'). 
We shall usually work with good Farey intervals, that is Farey intervals 

satisfying max(q, q') < 2. min(q, q'). The notations A, p, p', q, q' will be used in the 
sense given above throughout the whole work. For technical and notational 
simplicity we shall usually assume that q' > q, which implies also p' > p. We shall 
call such Farey interval a normalised one. We note that for r = p ' -  p and s = q ' -  q 

the interval , is a Farey interval containing A. That fact holds also if -pq < q' 

with ordering of endpoints of the intervening Farey intervals consequently 
reversed. 

The main subject of our interest is the function which ascribes to every 
parameter value t the rotation number off~. It is denoted by e. It is well-known that 

is continuous and, as a consequence of the assumption 3°TV, non-decreasing in 
T. 
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Now we shall briefly sketch a scheme of our proof. We fix a good normalised 
Farey interval A and consider functions ft for t ~ 0-1(7) • Notice that the results will 
be valid for not normalised intervals as well because of the following trick. By an 
affine change of parameters we can make T be the interval [ -  1,1 ]. We consider a 
family of maps f '  defined by ft'(x)= - f_~(-x)  and the corresponding function 
Q'. It is easy to verify that f '  satisfies the hypotheses of TV if only f does so. There 

/ - -  ", 

is also an equality o'(t)= 1-Q(t)modl .  Hence if A =  (P ,  P-P-} is not normalised we 
/Vq-p  q'-p'q~ \q q./ 

may consider f '  for t eQ'-I  ,~_ -.([-a ' q; 1 )  with the last interval already 
- - I /  

normalised. Any results concerning proportion of the set of parameter values 
with rational rotation numbers obtained for f '  on that interval imply the same 
estimates for f on Q-~(A). Namely, we shall show that independently of A the 

proportion of the measure of o-l ({P~} {P}) to the measure of o-l(A) is 

smaller than some positive constant. This will easily yield the claim of the 
technical theorem. 

In Sect. 4 we begin with simple considerations concerning the link between 
arithmetic properties of rotation numbers, expressed in terms of Farey series for- 
realism and ordering of orbits of the maps. In Sect. 5 we thoroughly study peri- 
odic orbits of a critical point of f, for various rotation numbers from A, namely 

np + p' p + np' These sequences tend to the either of the form u ,=  nq + q---~ or V, -q  + nq'" 

endpoints of A. We shall examine how much orbits of the critical point for those 
rotation numbers differ from orbits with periods q and q'. We measure this 
difference in a geometrically transparent way by taking the distances between 
points and their q-th (respectively q'-th) images. The result is that the differences 

. _ t  

between periodic orbits of the critical point for rotation numbers u, and ~, v,, and p 

and between P~ and P- are all comparable by uniform constants, independent q of A 
q 

q q 
and, what is more interesting, of n. The idea of Sect. 6 and Sect. 7 is to show that 
this implies that analogous distances between parameter values are also compar- 
able, which clearly gives the desired estimation. This can be done directly though 
the calculations involved are fairly complicated. Section 8 is an easy conclusion. 

We finish this section with some notations. 

Definition 3.1. For any continuous function z from the parameter space to the real 
line and an integer i we define the function gi(';z): T ~  by the formula g~(t;z) 

Definition 3.2. For a function z as above and a Farey interval A we define points in 
the parameter space as follows: 

E(z, A) = sup {t ~ T: gq,(t; z) = p' + z(t)} 

and H(z, A) = inf{t e T: gq(t; z) =p  + z(t)}. 

The interval (E(z, A), H(z, A)) will be denoted by I(A;z). 
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The above definition makes sense if the sets mentioned are both non-empty. 
We assume that it is the case. 

Once and for all we choose one of the functions k~ defined in 1 °TV. We shall 
denote it by k and refer to its values as the critical point. 

4. Rotation Numbers Determine Orbits 

We fix a good Varey interval A =  (P '  \q,, q j  as usual. 

Lemma 3. Suppose that the function z from definitions of Sect. 3 is a constant P. 
Then the intervals gi((E(P, A), H(P, A); P) for i > 1 and i < max(q, q') when projected 
onto the circle cover each point of it at most twice. 

Proof Suppose the contrary. To simplify notations we shall remove A and P from 
them. Let rc be a canonical projection. We can find il, i2, i3 natural numbers not 
exceeding q"= max(q, q') such that 

z~(gil( H)) e rc(gi=( E, H))c~Tz(gi3(E, H)) . 

Since f~ are increasing with t it is easy to see that it implies also 

for any natural j. In particular, it implies that there are parameter values t 2 and t3 
in 1(14; P) such that P is periodic with period iz + q " -  il and i3 + q" - il for f~ and 
ft~ respectively [if q"=q' one should choose il, i2, ia so to have 

~z(gil(E)) 6 ~z(gia(I))~Tz(gi3(I)) 

in order to obtain this corollary]. Suppose that i 2 - t - q , 1  il---, q + q, which is the 
least possible value, then i 3 + q " - i  1 must be at least q+q'+min(q,q')>2q" 
because A is a good Farey interval. We obtain a contradiction. QED 

Lemma 4. Let A be a Farey interval, not necessarily a good one and ¢(t)~ A. Then, 
for any point P on the circle the positively oriented arcs (~z ofq o ~- l (p) ,p)  and 
(P, Tzofq'o 7z-l(P)) contain no point of the form ~o f i  o~z-l(P) for O<i<q+q' .  

Proof Suppose for example that there exists such i as above and rc ofio ~- l (p)  
belongs to the second of the intervals mentioned above. Consider the family f on 
the interval (E(P, A), t) (P here means the constant function equal to P). Since for 
E(P, A) f~(P) does not belong to [P, ft q] (which degenerates to the single point), 
there must exist some intermediate parameter value T such that either f~(P) 
= P (mod 1) or f~(P) = f~'(P). In either case there is an orbit offT- of period less than 
q+q', but in A there are not rotation numbers with denominators less than 
q+q'. QED 

p' 
Lemma 5. Let Q(t) ~ A. We assume as usual that the endpoints of  A are p-q and -~ with 

q' - q = s, but now instead of > ~ we assume that q' > q. Let P be any point of  the 

circle. By I we denote the arc (~ o f q( P), rc o i f (  P)) and I' is ( ~ o f q -~(P), if(P)). We claim 
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that arcs I, ~ o f  o re- t(I),..., 7c ofq-  1 o ~ -  1(1 ) cover each point of the circle at most 
twice and so do the arcs I', .... rcoff-l(I'). 

Proof In both cases it suffices to consider only points of I or I' because f is a 
homeomorphism. By Lemma 4 there is no iterate off t  of order less than q' + q other 
than q' by which the image of P belongs to I. Thus the only iterate of order less than 
q by which and endpoint of I comes to I is the q -  s th, which proves the first part of 
the claim. The second assertion follows in the same way when we consider a Farey 

interval with endpoints r_ and p -  r and apply Lemma 4 to it. QED 
s q--s  

Finally we shall consider the case when the function z of definitions of Sect. 3 is 
no longer constant, but may be one of the functions k i defined in I°TV. We choose 
once and for all one of those functions and shall denote it by k. 

Lemma 6. Let z be either a constant junction or k. Then, for every positive i the 
dgi(t; z) 

derivative - - - d ~ -  is not less than the positive constant a mentioned 3°TV. 

Proof We compute for every positive i: 

~ f .  dgi l(t;z) 
dgi(t;Z)dt - ~ (t'gi-a(t;z))+ ~x tt'gi-a(t;z))" d#  " 

In the situation of the lemma, the second term vanishes for i = 1. The first term is 
then not less than a, in particular positive. The second term is always non-negative 
by induction and the lemma follows. QED 

A function z satisfying the hypotheses of Lemma 6 will be referred to as a 
variable point. We introduce the notation j(A)= ~-I(A) for a good Farey interval 
A. 

In the following proposition we shall use simplified notations. We shall remove 
function z whenever it will be the function k and for E(z, A) and H(z, A) we shall 
write just E and H. 

Proposition 1. Suppose that tj(A)[ > _1 Then there is a constant N independent of A 
such that the intervals [I(A)I = 2" 

gl(I(a;k);k)  . . . .  ,g~+~(I(A; k); k) 

when projected onto the circle cover each point of it at most N times. 

Proof Whenever we do not  specify a variable point we mean the function k. The 
notation A will be also omitted. Let us choose points P1 . . . .  , P ,  in the closure o f / i n  
such a way that E = P ~ < P 2 <  ... < P , = H .  Then we consider intervals 1i, 
j =  1, . . . ,n defined by I j=I(A;  k(Pj)), where k(Pj) is regarded as the constant 
variable point. We shall prove that if the points P are sufficiently close to each 
other, then g~(Ij;k(Pj)) and g~(I~+l;k(Pj+x)) intersect for every positive i and 

n 

j = i , . . . ,  n -  1. It means that the sets U~ = U g~(Ij; k(Pj)) are all connected. Since we 
j = l  

have assumed that P1 = E and P,  = H, each U~ contains both g~(E) and gi(H). Thus 
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it contains the whole gi(l). It is a simple corollary to Lemma 3 that U1,..., Uq+s 
cover each point of the circle at most 2n times. The proof is finished by the 
following. 

Auxiliary Lemma. Under the assumptions of Proposition 2 there exists a positive 
constant 6, independent of A, such that if P , R ~ I  and tP-R]<6.] I I ,  then the 
intervals gi(I(A; k(P)); k(P)) and gi(l(A ; k(R)); k(R)) intersect for every positive i. 

Proof We begin with the following simple observation: 

P ~(H(k(P))) = e(H(k(R))) = - ,  
q 

while p' 
e(E(k(P))) = Q(E(k(R))) = ~ .  

It implies the inequality 

® :min(H(k(P)), H(k(R)))- max(E(k(P)), E(k(R))) > Ij(A)I. 

We shall prove that choosing 6 appropriately we can ensure that the following 
inequalities hold: 

g l(n(k(P)); k( P)) > g ~(E(k(R)); k(R)) 

and 

gl(H(k(R)); k(R)) > g~(E(k(P)); k(P)). 

We shall prove only the first one - the proof of the other is practically the same• 
We estimate: 

g, (H(k(P)); k(P))-  g I(E(k(R)); k(P)) >_ a. I H(k(P)) - E(k(R))I 

(7 

>= a. Ij(A)I >= 2" [I(A)I ' 

where the successive inequalities follow from Lemma 6, ® and the assumption of 
Proposition 1. On the other hand: 

g~(E(k(R)); k(R))-  g l(E(k(R)); k(P)) <_f(E(k(R)), k(R))-f(E(k(P)), k(P)) 

<= L . ]k(R )-- k( P)] <= B . L . ] P -  R] , 

w h e r e w e h a v e u s e d 2 ° T V a n d b y B w e h a v e d e n o t e d s u p { ~ t  : t s T } w h i c h i s  

• • o " ~ finite provided 1 TV holds. Thus lf2-. ]I(A)] > BL.  ]P-  R[, we obtain the inequality 

a 
we desire. The above condition must hold if we put c5- 

2BL" 
Now we shall prove that gi(H(k(P)); k(P)) > gi(E(k(R)); k(R)) for every i positive 

integer, once more the proof of the inequality 

gi(H(k(R)); k(R)) > g~(E(k(P)); k(P)) 
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is quite similar. It is a simple induction: 

gi + I(E(k(R)); k(R)) = f(E(k(R)),  gi(E(k(R)); k(R)) 

< f (U(k(n)) ,  gi(H(k(n)); k(n))) = g~ +1 (H(k(P)); k(n)) 

-- we have only used ® and the fact that f is increasing with respect to the first 
argument and non-decreasing with respect to the second one. 

It is clear that the inequalities we have proved yield the claim of the 
lemma. [] 

The proof of Proposition 1 is also finished- the Auxiliary Lemma ensures that 

for every A we can choose no more than [ 6 ]  +2  points P~ with the desired 

2 a 

We have assumed that Ij(A)I > _1 in Proposition 1 - it is an immaterial 
II(A)I = 2 

restriction, since our aim will be to prove that this ratio cannot be too close to 1. 
We shall not explicitly verify this when using Proposition 1 in the future. 

5. Periodic Orbits of the Critical Point 

In this section we shall study periodic orbits of the critical points for maps ft with t 
in I(A, k), moreover with Q(t)~ A. Our objective is to find a sense in which these 

p' 
orbits are geometrically far from those with rotation numbers ~q or ~;. 

It will be usually more natural to consider things on the circle instead of the real 
line. A map f, then projects to a circle homeomorphism, denoted by G. Lengths of 
ares, their ratios and cross-ratios have the obvious meaning on the circle. Our 
main tool will be the Cross-Ration Inequality. Observe that constants Ck are 
independent of the particular choice of G. All other constants found in this section 
are of this type, which we shall mark by referring to them as "universal constants." 
As the result, our estimations are independent of A. 

The Farey interval A is assumed to be a good one. We shall use letters p, q, p', q', 
r, s in the sense defined in previous sections with the convention q' > q. Images of a 
point by iterates of G will be written as the point marked with the appropriate 
superscript - for example z q for Gq(z). The critical point will be denoted by z. 

We assume that G is chosen so that z is periodic with rotation number of the 
np + p' 

form u , -  for some natural n. The geometric shape of the resulting orbit is 
nq + q' 

shown on Fig. 1. We also furnish Fig. 2, which illustrates the situation for the 

rotation number of the form v , -  p + np' however we shall not solve that case 
q + nq" 

explicitly, but reduce it to the situation with u. It is possible that orientations on 
both figures should be actually reversed. 
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Z 3q : z-q Z-3q = Z ~  
/ -  

zq 
Fig. 1 z 

/ 
z-3q'= z-q z3q': z q /  

z-q' Z q" 

Fig. 2 z 

Fig. 3 J 

We consider intervals with endpoints at neighbour points of the orbit of z. The 
set of such intervals is denoted by X. In other words, X consists of images by 
iterates of G of the arc (z q, z). The maps G induces a permutation of X. 

We fix the orientation of the circle by the demand that (z, z ~) should be 
positively oriented. 

Lemma 8. Let 11 and 12 be different arcs from X having a common endpoint. There is 

a universal constant Ks with K~ 1 < II1[ 
= 1121 -<_Ks. 

Proof Let us consider 11 and I2 as in the hypothesis, such that the ratio of lengths 

[I2t is minimal. We shall denote that ratio by S. Let a, b, c, d be 4 consecutive in the 1/11 
sense of the ordering on the circle points of the orbit of z, such that b and c are 
endpoints of I1. Obviously we have Cr(a, b, c, d)<= S. There is also i less than the 
cardinality of X, such that (b i, c i) is the shortest interval of X, which implies that 
Cr(a i, b i, d, d i) ~¼. We may choose minimal such i and then, since H induces the 
permutation of X, we may also use C-RI with k=3 .  Thus K 8 = 4 . C 3  will 
work. []  

Lemma 9. Let J be an arc of  the form (z ~, z ~ +~) for some i and let J' be J shifted by one 

interval Jkom X, as shown on Fig. 3. Then K 91 < tJ'l constant. = IJ--~ < K 9  with K 9 a universal 

Proof. The arc J contains at least 2 arcs from X, as provided by the properties of 
Farey intervals. Thus we obtain in notations of Fig. 3: 

IJ'l> IJ'l-[Ix[ - - 1 -  Ilzl >__l liE[ >_1 1 
IJl = IJl IJl - 112l+1131 - -  1 + K s  1" 
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IJI Since ~ can be estimated in the same way, we may put K91 equal to that 

constant. [] 

Lemmal0 .  Let us consider intervals J and J' of  the form J=(zi, fl +~) and 

j ,  = (fl+~, z~+ 2~) for some i. There is a universal constant K lo with K~g <= <__ Kao. 

Proof. The present lemma is analogous to Lemma 8 and the idea of the proof is also 

similar. We pick J '  and J like in the hypothesis and with ~ = S and minimal. We 

also choose points a, b, c, d like in the proof of the lemma and make j be minimal 
such that (b ~, d) is the shortest of intervals (b, c) ..... (b a- 1, c q- 1) _ of course j < q. 
The first observation is that by Lemma 7a the number k from CR-I for those 
intervals is 3. Another point is that they constitute "almost a partition" of the circle 
- it would actually be a partition if the period of z were q or, in other words, if 
(b a - ~, d - ~) = (b q - ~, b a) were shifted by t arc from X. Thus, ifj is different from both 0 
and q - s ,  the argument of Lemma 8 applies - otherwise it works after shifting (b, c) 
or (bq-~,e a-~) by 1 arc from X. We may put K10 =.K 9 . K  s in any case. 

Lemma 11. Let us consider points z i+a, z ~, z ~+a+i, z ~+~ for some i. Let j<_<_q. Then 

D(z ~+a , z i, z i+a+~, fl+~; C/) >__ K1 x 

with K l l  being a uniform constant. 

Proof We denote fl+q=a, f l=b,  fl+q+~=c, z~+~ =d. Let D(a,b,c,d;G~)=S. By 
CR-I and Lemma 7, we obtain that D(a j, b j, d, di; G a-j) ~ Ca, thus D(a, b, e, d; G a) 
< S. Ca. The points a a, b a, c a, d q are shifted by 1 arc from X with respect to a, b, c, d. 
By the above inequality we obtain that either 

I(a a, ba)l <V~2-C~ 3 I(a, b)[ 
I(a ~, ca)l l(a, c)l 

or 

I(d, d~)l < ~ ' ~ - 3  ' l(c, d)l 
I(b a, da)l = I(b, d)[ 

We are going to consider the first case only, because the second one is analogous. 

Since I(a~' cq)l [(~, c)[ < K9 by Lemma 9, we obtain 

](a q, ba)J < ~S-  C3- Kg- ](a, b)l 

and, by Lemma 8, K~ -1 = ~ - K  9. Hence we may put 

1 
K l I = K ~ . K ~ . C 3 "  [] 

Now we want to make a comment. Lemma 11 reveals surprising rigidity of 
action of G on arcs from X. Of course, we have also the inequality with the sense 
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opposite to that in Lemma 11, as provided by CR-I and Lemma 7. It is clear that 
such rigidity must impose restrictions on G and X near the critical point which 
usually distorts cross-ratios by large amounts. Such restriction is proved in 
Lemma 12. It is worth noticing that the proof of that lemma is the only point in the 
whole work, where we need existence of a critical point. 

t(:, z°)l 
Lemma 12. There is a universal constant K12 with i(: , :+q) I >K12. 

Proof We know by Lemma 11 that D ( : , z ° , z ¢ , : ; G ) > K l r  By Lemma 2 

Dh(:, z ¢, z°; G) > K2. 

It follows that Dh(Z q, Z O, Zq; G)>K;  1. K1r  By Lemma lc we obtain that 

t(G(:), G(z°))l ~ ~ / t(:,z°)l Y 
i G ( z O ,  z .  )l "- ' ' 

where 1 is of the order of the critical point. It follows that lengths of (z q, z °) and 
(z °, z ¢) are comparable by a universal constant, which implies the claim of the 
lemma. QED 

Lemma 13. There is a universal constant Kt3 such that 

Cr(z ~, z 0 ' :+2~, zZ~) > Kt3. 

Proof By Lemma 10 we obtain 

I(:', :)I I(z ¢, :)1 
I(:', :+¢)1 ~K~o 'l(z 0, zgl" 

Multiplying both sides by I(zq+ 2, z2,)l and using Lemma 11 we get 
I(: ,  zZ~)l ' 

Kll<K10"L(:+q':)[  l(:+2~,zZ~)l 
= t(z °, : )1  I ( : ,  z2~)t ' 

i(:+ 2~, zZg[ 
from which we obtain i(:,z2,) [ >KI~" K[~. On the other hand, by Lemma 12 

1(:' z°)[ >K12. Finally we observe that by Lemma 10 the lengths of (:, z 2~) and 
I ( : , : ) 1  = 
(z°,z 2~) are comparable and the same for ( : , : + 9  and ( : , : + 2  9. The lemma 
follows. QED 

[(zq+S'zS)l >K14" Lemma 14. There is a universal constant K14 with i(zO ' z")~ = 

Proof. First we note that Cr(:-' ,z-~,zq+~,:)>=K13.C;l.  It follows from 
Lemma 13 by Lemma 6 and the Cross-ratio Inequality. It implies in particular 

that [(zq+~' zs)[ ;> Kt3. C21 
l(z-', :)1 = 

hence also I(zq+" :)1 l(zo,:)l _->Ka3"C21- QED 
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We sum up the results of this section in the following proposition: 

Proposition 2. I f  the rotation number of ft is of the form u, and the critical point z is 
periodic, then Cr(z q+ 1, z 1, :+~+ 1, : +  1)>Q2 ' for Q2 an absolute positive constant. 
In the similar situation when the rotation number is v,, then 

Cr( :+  1, :+q" + 1, z 1, z¢ + 1)> Q2. 

It should be stressed that Q2 is independent of n. 

Proof If the rotation number is u, we first note that Cr ( : ,  z °, z a+~, : )  is not small by 
Lemma 12 compared with Lemma 14. Then the first inequality follows by 
Lemma 11. In order to prove the second one we consider a good Farey interval 

' p +  ' 
with endpoints p and ~ P ;  instead of A. Numbers u, for the new interval are of the 
form q q + q 

np'+p+p' (n+l)p'+p 
nq' +q+q' = (n+ l)q' +q =v ,+ l .  

Then we obtain Cr(zq'+l, zl, zq+q'+l, zq+1)>Qz , but this is written by the 
assumption that (z, : )  is positively oriented. If we want to follow the convention 
that (z, : )  is positively oriented, we have to reverse the order of points obtaining the 
second inequality claimed in Proposition 2. QED 

6. How Does a Small Change of Parameter Disturb Orbits of the Critical Point? 

From now on we assume that A is a good normalised Farey interval (see the 
discussion in Sect. 3). We fix some natural n and the corresponding rotation 
numbers u n and v,. We choose h so that the critical point is periodic for fh with 
rotation number u, and e so that it is periodic for fe with rotation number v,. The 
notations E(k, A) and H(k, A) will be abbreviated to E and H respectively. We 
denote 

~=max ( ~ _  eh,~_E) • 

From now on, without mention to the contrary, the function z used to define g~ will 
always be k. The main result of this section is the following proposition: 

Proposition 3. There is a constant Q3 independent of A and n such that 

Cr(g¢ + I(E), gq,+ l(e), gq,+ l(h), g¢+ I(H)) < . "  Qa- 

Proof is quite complicated and will be divided into several lemmas. 

Lemma 15. The inequality (q + s) . [I(A)[ < N is satisfied independently of A. 
ff 

Proof By Lemma 6 the total of lengths of intervals gfl(A)), g2(I(A)) ..... gq +s(I(A)) 
is at least (q+s).lI(A)[.a. On the other hand, it does not exceed N by 
Proposition 1. The claim of the lemma easily follows. [] 
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Now we introduce some notations. Images of points in the parameter space by 
function gi will be denoted by the same letters as points themselves printed in 
boldface and marked with the superscript i, for example gi(E; k)= E i. Further, let B 

dg~ 
mean supremum over all parameter values of the derivative -~7 - it is finite, since 
gl is of class C' .  Finally, 

zi = max(D(E i , e i, h i , Hi; fe), D(E a , e i , h i , Hi; fh)). 

L e m m a  16. For positive i there is an inequality: 

Cr(Ea, e i, hi H i) < e.  e -  2. B. L.  2. FI max 1, z j, 
j=l  

Proof. The proof will follow by induction with respect to i. For i = 1 it is trivial to 

obtain Cr(E ', e ' ,  h 1, I t l)  < c~. o-- ' .  B. Since L . - -  is greater than 1, the inequality 
holds, a 

Let it hold also for some i. We denote f~(Ei), fe(ei), fe(hi), f~(H i) by E, 6, ~,/4 
respectively. We consider zi as the first approximation of the ratio between 

Cr(Ei+' ,e i+l ,hi+ ' ,H~+')  and Cr(Ea, ea, ha, Ha). 

Our task now is to estimate how much the actual value of that ratio can exceed zi. 

By the theorem of Lagrange we get e i+ ' - E  a+ ' =  g - E +  ~---f t (E, Y l ) ( e - E )  and 

h i+ ' - E  i+ ' = K - E +  %(E, yO(e-E)+ ~f(h, y2)(h-e) 

for suitably chosen y,  and Y2. Thus we obtain 

e i + ' - E  i+1 {~-E ~ (E'yO(e-E) t 

- - - -  il h i + t - E  i+'  h- aO_~(h, yE)(h_e)+~t(E, yO(e_ E 

< ['O-E L e--E .~). 
= m a x ~ - Z ~ '  ~ ~Z-E)  < f 6 - E  L =maxt, ' 

In further reasonings we assume that the inequality 

e i + 1  --E i+1 6 - E  

(*) h~+l _ E i + I  ~ ~__~ 

is verified - if it is not the case, then obviously 

Cr(Ei+ a,ei+ 1 hi+ X, Hi+ 1) =< L .  ~, 
o" 

and the inequality for i + 1 holds. 
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H i + l _ h i + t  
The estimation of the ratio Hi+ 1 _e l+  1 

numbers D 1, Dz, D3 by 
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is more complicated. We define 

D 1 = h i + l - - h ,  

D2 = H  i+ 1 - - fgW),  

D3=Hi+ I--/7--D1--Dz . 

Observe that Da and D2 are necessarily positive, while D3 may be negative. The 
following relations hold: 

h i + l = h + D 1 ,  HI+I=DI+D2+D3+/7, and e i + l = ( .  

Using them we compute 

H i + l - h  ~+1 H - h + D 2 + D  a < f / 7 - h  D 2 + D  3 "~ 
Hi +, _el+ 1 = / 7 _ ~  + D1 + D2 + D3 = m a x  ~ ' D , + - D - z + - D 3 - )  " 

It will be enough to bound Dz+D3 D1 +D2 +D3' since otherwise we obtain by (*) that 

Cr(Ei + 1, ei+ 1, h~+ 1, Hi+ 1) < Cr(E, ~, h, H) -< zi" Cr(E i, e ~, h i, W), 

in which case the inequality for i +  1 is obviously satisfied. We consider 2 cases: 
1 ° Dz >D3, then we have 

L D2+D3 <2. ---Dz <2 . - . ~ ,  
DI+D2+D 3 DI+D2 a 

where the last inequality follows easily from the hypotheses of TV by the mean 
value theorem. Thus in this case the inequality for i+  i is also satisfied. 

2 ° D3>=D 2. We calculate D3: 

Da =Hi+  x _ H _ D t  _D2 =Hi+  1 _ H _  (Hi+ 1 _fh(Hi))_D1 

= fh(Hi)- B-( fh(h i ) -h)=i  ( ~ ( y ,  Hi)-  ~o~(Y, hi)) dY 

h 

~ L.  (H i - hi)dy = L. (H i - h i) (h - e), 
e 

azf  
where L bounds Oxat on T × R.  Further we obtain 

H~+l -h  i+t D2+D 3 D3 
(**) Hi+l  ei+l < < 2 . - -  <2 -  a - (Hi -h i ) .  

- -  = DI + Dz + D3 - D1 

Then we may repeat the same reasoning interchanging roles between H and E and 
between e and h, considering fh(E), fh(e), fh(h), fh(H) instead of E, ~, K,/7 and 
carrying out analogous estimations. The result will be that either the inequality for 
i + 1 is satisfied or the inequality 

ei+ ~ _ E i +  1 L 
hi+l_Ei+ 1 =<2- ( e i - E  i) 
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holds. Multiplying both sides by (**) we get 

( Cr(Ei+ 1, el+ 1, h~+ 1, H~+ 1)__< 2. - Cr(Ei, e~, hi, H~) - ( H i -  ei). (h~- E~). 

The inequality for i +  1 follows. QED 

Proof of Proposition 3. From Lemma 16 we obtain in particular that 

Cr(Eq,+,,eq,+~,hq.+l Hq,+a~N 2BLot 1-I max(l,z~, 2 .~- (H -EJ))  . 
" - -  - ~ "  j=  I 

We need to prove that the right-hand side of this inequality is bounded by a 
uniform constant. By Proposition t and the Cross-ratio Inequality we obtain that 

q' 

l--[ max(l,  zj) < C~ 
j = l  

(we need the square since z~ are distortions of cross-ratios for 2 different maps - f~ 
and fh)- Further we use 

max t ,2 .  (H J - E  J) --< L 
2 . - -  otherwise. 

O" 

By Proposition 1 the second possibility can occur for at most [-2LNI numbers j. 
The proposition follows. QED 

Even if Proposition 3 holds, we emphasize that functions g have not, as a rule, a 
negative Schwarzian derivative, even if the functions ft are quite nice and depend 
on the parameter in a simple way. Hence it would not be enough to assume that the 
cross-ratio Cr(E, e, h, H) is small in order to obtain the claim of Proposition 3. 

7. Why ~ Cannot be Too Small 

We prove in this section that Proposition 2 implies that the number a of the 
previous section cannot be very small. In merging the results of Sect. 5, which was 
done on the circle, and the rest of our work, which applies to the situation lifted on 
the real line, we meet some notational problem. We introduce the following 
convention: X ° =g l (X;  k) where X should be replaced with E, e, h, H, 

X-'~=gl_~(X;k)+r, 

X~=gs+ l ( X ; k ) - r ,  

Xq' = gq' + I(X; k) - p', 

Xq=ga+ l (X ;k ) -p .  

Using the new notation we need not to trouble whether we use points of the 
circle or from the real line. Please note, however, that points with superscript 0 
mean critical values now. 
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L e m m a  17. The following inequalities are satisfied: 

I(e q, e°)[ > a. ( h -  e) and [(h °, ha')[ => a.  ( h -  e). 

Proof. We shall concentrate on the proof of the first inequality only, since the proof 
of the second one is quite analogous. We consider the function G : T ~ S  1 defined by 
G(t)= gq+ l(t; k(e))-p,  where k(e) means the constant function. Then we have: 

a) G(e)=e q, 

b) G(h) < e ° -- it is so because Q(h) < -P, 
q 

dG 
c) ~ -  > a by Lemma 6. 

The lemma follows immediately. QED 

By Proposition 2 the sizes of (e q, e °) and (e °, e q') are comparable, as are the sizes 
of (h q, h°), (h °, he), (h ¢, hS). 

All possible ratios between them are bounded by Q;  1. There is also an obvious 
relation t(e °, h°)l ~ L - ( h - e ) .  From this and Lemma 17 we obtain further 

Using now the corollary from Proposition 2 we get 

(**) l(hq',hS)I>Q2 .[(h°,h¢)f>Q2. 1+ I(e¢,h¢)l. 

On the other hand we have I(e q, h°)[ > I(h q, h°)l, because h q > e q. Hence 

](e°,e¢)l>Q2l(eq, e°)l>Q2 1+ I(ea, h°)[ 

- the last inequality is implied by Lemma 17. Further we get 

[( ha, h°)l > Q2[( h°, ha')l > Q2" 1 q- I(e a', ha')[ 

I(e°' eq')l is bounded away from 0 by an absolute by (*). It follows that the ratio 1(:', h¢)l 
constant. 

Recalling also (**), we see that Cr(e°,e ¢, h a', hS)> Q7 with Q7 being a positive 
absolute constant. The more Cr(E °, e ¢, h a', H ~) > QT. Now Proposition 3 implies 
that c~_> Q7. Q3 I. 

8. Complet ion of  the Proof  

Since the lower bound for a obtained in the previous section is independent of n, 
the result of the previous section may be stated as follows: 

For any good Farey interval A a part of I(A) consisting of not less than Q7" Q31 
of its whole length is occupied by parameter values corresponding to rational 
rotation numbers. 
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Suppose now that the set ~ -  I(N\(I~) has a positive Lebesgue measure. Then it 
contains a point of density y. There exists a descending sequence A, of good Farey 

intervals such that ~ A , =  {Q(y)}. Then also ~ (A,)= {y}, since every irrational 
n = l  n = l  

rotat ion number  corresponds to only t parameter  value, as follows for example 
from Lemma 6 and the density of orbits of a homeomorphism with an irrational 
rotation number  proved in I-7]. We see that y is not a point of density of Q- I(N\tD,), 
hence the Lebesgue measure of the latter is 0. 
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