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Abstract. Connection is established between one-dimensional Toda lattices, 
constructed on the basis of the systems of simple roots of classical and affine Lie 
algebras, and other integrable systems of interacting particles. That connection 
allows us to find new lattices differing from the known ones by the interaction of 
particles near the ends. Some of the new lattices admit non-Abelian 
generalizations. 

1. Introduction 

The study of the propagation of waves in infinite one-dimensional lattices made it 
possible to derive exact analytic solutions to an infinite system of nonlinear 
differential equations describing the exponential interaction between the nearest 
neighbouring particles [1 ]. Once Henon, Flaschka [2] and Moser [-3] have shown 
complete integrability of finite-dimensional Hamiltonian systems of that type 
(nonperiodic and periodic Toda lattices), a number of papers have appeared 
devoted to the investigation of their properties. Kostant [6], Olshanetsky and 
Perelomov [7] have established the connection between nonperiodic lattices and 
classical Lie algebras. Hamiltonians of those lattices may be constructed with the 
use of systems of simple roots {p} of classical Lie algebras {t5}, 

H =  + V ,  U s =  Y. exp(c~q), (1) 
j =  1 I~i =e{p} 

where ~ are root vectors, pj and q1 are respectively momenta and coordinates of 
particles. For the algebras d . ,  ~ . ,  ~f., and @. the potentials V~ are of the form 

n--1 
V e =  2 exp(qi--qj+0, U~ =V~, +exp(q.), 

j = 1 (:2) 
V~= V~¢ + exp(2q.), V~= U~¢. + exp(q._ 1 +q.). 
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For the exceptional algebras systems like (1) have no simple mechanical 
interpretation and will not be considered here. Bogoyavlensky [4] has pointed out 
a method for constructing generalized periodic lattices that, as first shown in [9], 
corresponds to the use in (1) of a system of simple roots of affine algebras. 
Potentials V for loop algebras d~l), ~-~,~(1), ~,~(1), and --,~1) can be written in the form 

V~,~ = V~r+exp(q,-qO, V~I~ = V~ + e x p ( - q l  -q2) ,  
(3) 

V~¢~ = V~ +exp( -2q l ) ,  Ve~, = Ve + e x p ( - q l - q 2 ) .  

To the twisted loop algebras there correspond the potentials [18] 

V~,~ = V~. + exp(q,) + exp( -  2ql), 

V e f.~+ ~ = V~° + exp( -  ql - q2) + exp(2q,), (4) 

Vo~, ~ = V~. + exp(q,) + exp ( -  q 1). 

The Lax representations for generalized periodic lattices (3) and (4) depend on 
the spectral parameter, and the corresponding Hamiltonian flows are linearized on 
the Jacobi varieties of the algebraic curves associated with the L-matrix spectrum 
[7, 8]. The list (2-4) covers atl the potentials corresponding to infinite series of the 
Kac-Moody algebras. The existence of other, different from (2-4), integrable 

systems with exponential potentials like V= Z exp ~ Njkqk has been 
j = l  k= l  

questioned by Adler and van Moerbeke [10]. They have shown that when the rank 
of N equals n, the Kowalewski-Painlev~ property pertains only to the trajectories 
of systems (3, 4). Matrices of a smaller rank were not analysed. 

The main purpose of this paper is as follows. It is known [13-15], that 
multiparticle systems in which the structure of an interaction potential is defined 
by systems of all positive, and not just simple roots of algebras ~5, are also 
completely integrable. I shall show that all the above-listed Toda lattices are 
particular cases of these systems corresponding to certain limit situations. And 
what is more, taking advantage of that correspondence, I will obtain new 
integrable lattices. This does not contradict the results of [10] as they may be 
interpreted as systems with matrices Njk of a rank smaller than the number of 
degrees of freedom. Also, lattices will be found for which the interaction of particles 
at the ends is not exponential. 

In Sect. II, I describe the systems given in [13-15] and the limit transitions via 
the lattices (2-4) are obtained. In Sect. III, explicit expressions are presented for the 
Lax matrices of new lattices and non-Abelian generalizations of some of them. 
These matrices depend on the spectral parameter, and the number of poles of the L 
matrix is twice that for the earlier known lattices (3-4). Some unsolved problems 
are also pointed out. 

2. Toda Lattices as Limit Cases of Integrable Systems 
with a Non-Exponential Interaction 

Moser [13], Olshanetsky and Perelomov [14] have reported a class of integrable 
Hamiltonian systems of type (1) with a potential Og(q) constructed with the use of 



Finite Toda Lattices 631 

systems of positive roots {A +} of classical algebras, 

~¢(q)= Z g2~V(aq) • (5) 
aeA+ 

The constants g. may depend on the length of the root vector but not on its 
direction. Systems of type (5) generally describe the motion of 2n particles of unit 
mass interacting via the potential V(Q and with an external field under the 
symmetric initial conditions pj = -Pj+n, q~ = - q  j+., 1 __<j =< n. We have proposed 
further generalization of (5) in [15] and [19], assuming that the form of the 
function V(aq) may change with changing the length of the vector a. 

Thus, it suffices to consider the root systems d n and Nc~. to which there 
correspond the potentials 

~(q)=°lit(q)+e[°llz(q)+~g3(q)], e=0,  t ,  (6) 

~/l(q)=g 2 2 ~(qj--qk), ~g2(q)=g 2 • ~(qj+qk), (7) 
j>k j>k 

(8) 
Here ~(¢) is doubly periodic Weierstrass function, 

[i ' ' ] + Z 
ml,,~2~z ~+mlcol-+m2c%) 2 (mlcol-~m2co2) 2-" 

The Lax representation for the systems (6) at e = 0 has been found by Moser 
[13]; in ref. [14] the integrability has been established in two cases: g l = g 2  
= g3 = g4 and g2 = g3 = g4, g2 = g2 + 292 _+ 2 ~r2gg2, i.e. when the sum in brackets in 
(8) can be written as g2N(qj)+ g2N(2qj)" In ref. [15] we have determined the Lax 
matrices for (6.8) for the constants {g~} obeying the only condition 

~=i g ~ -  p g~g~2 2 =64  ~=1[I g~. And finally, in [19] also this constraint has been 

removed, and the Lax representation obtained here is valid for arbitrary values of 
g, {g~} and contains the spectral parameter defined on a complex torus, the factor 
I[I on the lattice of periods of some elliptic Jacobi functions. 

Let us now show how from (6-8) one can obtain potentials of the Toda lattices 
(2-4). To start with, note that the Weierstrass function is real-valued if and only if 
one of the periods, for instance o)1 is purely imaginary (in what follows we shall set 
o~ = 2hi, i2= _ 1); and the other is real-valued. In the degenerated case, a~ 2 ~ 0% 

N(~) is a trigonometric function, ~(~)=  ~ + , and the potentials (7, 8) 
assume the form 

dl/l(q) =- g2 ~ sh- 2 ( ~ )  ' j>k ~//2(q) = g2 ~ sh- 2 (qJ~ q~k) ' j>k (7a) 

g2 +q2 chq j+g2ch2qi ]  . (8a) 

? 
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All the constants here are arbitrary, the corresponding Lax representation with the 
spectral parameter has already been found in [15]. Introduce now variables xj by 
the relations 

qj=xj+(j- I)A, A >0.  (9) 

Since g, {g~} can be chosen arbitrary, we set g = exp ~- , and in (7a) take the 

limit A--*oo with qj given by (9). As at large A one may expand [sh (qJ2q-----~k)]-2, 

Ish(qJ2q~)l-2~_4exp(--A(j--k))exp(xk--Xj)+O(e-~¢i-k)), j>k (10) 

in the potential ~l(q) when A ~ oe there remain only terms corresponding to the 
interaction of nearest-neighbour particles: 

~l(x)= lira °-g~(q)=goV~,(x ). (11) 
zt ---> oo 

Thus, at e = 0 we obtained the potential of nonperiodic Toda lattice (2) from the 
Moser potential. Let us clarify the matter with other terms in (7, 8a). It is easy to see 
that °//2 now contains only one term, 

~2(x)= lim q/2(q)=go e x p ( - x :  -x2) .  (12) 
A---~ o0 

Inserting (9) into (8a) and using (10) we observe that the limit when A ~ oo is finite 
only when gl and g2 do not depend on A, whereas g3 and g4 are exponentially 
decreasing, g2 ~ eke- ~" - 1) and g] --, ~ e - 2A(n - 1) 

°~3(x)= lim a °~'3(q)=g0Ls h f + s-h~x: +~ex~+~e2~  • 

Here as in (8a) the constants s], ~,  ~, and .~ are arbitrary. Thus, we have got the 
system with the potential 

V l (X)  = ~ l ( X )  -[- 13 [ ~ ¢ 2 ( x )  --~ 8 ~ 3 ( x ) ]  .~- g o  V,~an(x) 

+ego[e-~'-x~+ ~ 7  + ~ 
sh 2 x A_: ~-~xl + ~ e ~ + ~ e 2 " ~  (13) 

1 2 

When ~ 7 = ~ = 0  and e = l ,  (13) represents the potential of the lattice with 
exponential interaction 

V2(x) = go [V~(x) + e-~' -~2 + C~e~. + ~e2X~]. (14) 

The cases ~ ,  R (1) and ~/<1) (2-4) follow from (14) with the choice of constants ~ n  "~'~ 2n + 1 
<g=~=0,  ~ = 0  and q¢=0, respectively. Any of nonzero constants in (14) can be 
made equal to 1 by a finite shift of all the coordinates. 

Shifting the whole system to the right, xj~xi+A1, AI>0, l<j<n, and 
~ , ~ e  a:  ~ ~ e  2~ 

performing"renormalization" of the constants ~ ¢ ~ - ~ ,  ~ ~ , ~ q ~ e  -a~, 
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and @-+~e-2A1 we obtain from (13), when A x--+ co, the potential 

V3(x)=go[V~,(x)+de -x~ + N e  -2~  + CgeX" + @e2~"]. (15) 

It describes the motion of the Toda system whose extreme particles interact with 
an external field, the interaction potentials being different for the first and last 
particles. When part of the constants vanishes in (15), we obtain the known lattices 
of the type (2-4): 

Ve~,, cg= 1 , d = ~ = ~ = 0 ,  V~, ,  ~ = ~ =  1, ~ ¢ = ~ = 0 ,  

v~., ~ = i ,  a ¢ = ~ = ~ = 0 ,  v~,#~,, a¢ = ~e= 1, ~ = ~ = 0 ,  (16) 

V~e~,, 2 = ~ =  1, a¢ = c g = 0 .  

By finite shifts of the type xs+x j + 6 ~ +j6 z and change of the time scale one of 
the nonzero constants can be made equal to 1 in each of the pairs ( d ,  2) ,  (cg, @) so 
that the potential actually contains only two arbitrary constants. 

Thus, from the trigonometric degenerations of (7, 8) we have obtained the most 
part of the known lattices with exponential interactions (2-4) and some new ones 
(13-15). There are, however, two cases: a/~ 1) (the periodic lattice) and ~{1) that 
cannot be derived from (7a, 8a) in any limit. Nevertheless, they may also be 
included into the general potential (7, 8). To demonstrate this, note that we passed 
from (7, 8) to (13-15) via two stages: first we tended the real-valued period of the 
Weierstrass function, co 2, to infinity, and then carried out shifts of the coordinates 
of particles without correlation with 0)2. Now let us put 

1 
qs=xj+(]-l)o)2z,  0 < z <  h -~-]- '  (17) 

and use for N({) the representation (co 1 = 2~zi): 

1 [ ( °" i 
_ s h  - - - -  . ( i s )  

~ ( ~ ) = ~ , ~ = _ ~  + C ,  C - - 1 2  2,~=lshzmo)2 
2 

In the limit of large values of the argument and real-valued period, from (18) we 
derive the expansion 

N(¢ + o)25 ) = C + exp { - 4(5 - ½)16 - ½1-1 _ co=(½ - ] 6  - 11) } + O(e- o,2(~-la- }l)), 

where 0 < 5 < 1, 6 =t= 1/2. (19) 
We put g2 = eO,2~ in (7) and calculate the limits of the potentials ~l(q) and qlg(q) 

with the coordinates (I 7) when co 2--+ oo. From (19) it follows that the limit of °Yt(q) 
1 

may contain an additional to (11) term only for the choice z =  - w h e n  there are 
/./ 

/ \ 

expansions ~ ( g , + l - - q j ) . . ~ C + e x p ( x i - x j + O x e x p ( - ~ - ) ,  2a(qn-ql ) valid the 

lim ~l(q) = Vd.(x) + e x" -'~1 = V~,~.(x). (20) 
¢02 --+ 00 
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Here and in what follows we shall, in calculating the limits, omit the constant C 
that can be made zero by subtracting the constant n(n + 3)C, inessential for the 
equations of motion, from the potential (6). The potential q/z(q), when co 2--+ o% and 
with a given choice of q, z for n > 2 diverges as the numbers k < j  < n may always 
include such for which j + k = n + 2 ,  qj+qk=Xi+Xk+O)2,  and ~ ( q j + q k ) - - C  
remains constant, while g2 increases indefinitely. Consequently, for n > 2 we should 
put in (6) e=0 ,  and then we arrive at a periodic Toda lattice. For  n = 2  and "c = 1/2 
the expansion (19) does not hold valid (6=1/2) and it is to be changed to the 
asymptotic representations 

,e(¢) ~ _ _  
4 sh 2 

1 

4 ch 2 - 
2 

¢ ~ @ + - ~ - )  ~e- '°~/Zch~,  

~ ( ~ q- °o12c°2.) ..~ - e -~2 /2  ch ~ . 

By this means we obtain a lattice with the potential 

d ~ cg 
- - ~ - -  V ( 2 ) ( x ) - = e X ' - ~ 2 + e ~ 2 - X ' + e X ~ + ~ 2 + e - X ~ - X 2 + - - + ~ - ~ +  - x--~ ~ sh2x2 

sh z x l  sh 2 - -  
2 2 (21) 

When n > 2, there is one more possible choice in (17) not leading to divergences of 
qlz(q). It is realized under the condition 

z- min(]+ k - 2 )  = 1 - z  • max( i+  k - 2 ) ,  n > j > k > l .  (22) 

From (22) it follows that z = 2 ( n -  1-~---)' 

(6), according to (19), are finite: 

lim ~ l (q )=  V~c.(x), 
0~2~  oO 

lira q/3(q) = 
x1 ~oz-~ co sh 2 -2  

which corresponds to a lattice with the potential 

and at g2 = e~,2~ the limits of all the terms in 

lim ¢g2(q) = e -  ~1 - ~ + e ~" -~ + x", 
692-4" O0 

+ - - + - - + - -  
X 1 Xn Xn 

ch25-  sh25-  ch~5- 

V(x) = V~c.(x) + e -  ~1 - ~ + e~,.-1 + ~. + __ + ~ + 
sh 2 x1 ~n-x 1 sh 2 --Xn 

2 2 

(23) 

@ 
+ S-h~x £ . (24) 

The constants d ,  N, c~, and ~ are arbitrary and connected with constants in (23) 
by linear relations. It is easy to see that (21) differs from the potential (24) only by 
the term e x2 - ' l  if we put n = 2 there. The case of @~1) in (3) corresponds to vanishing 
all four arbitrary constants in (24) of terms describing nonexponential interaction 
of the first and last particles of the lattice with external fields. 
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3. The Lax Representations. Non-Abelian Lattices 

Above we have considered the limits that allow us to derive the Hamiltonians of 
the Toda lattices from (6). Integrability of new lattices requires the corresponding 
limits to exist for the Lax matrices, i.e. the divergences to be absent in the constants 
of motion of higher orders in momenta. For the lattices (13-15) it can easily be 
proved with the Lax representation [15] for the trigonometric degeneration 
(7a, 8a) of the potentials (7, 8). For  the lattice (24) immediately obtained from (7), (8) 
it is simpler to construct the Lax matrices anew, as in the representation found in 
[19] use has been made of matrices of a higher dimension than in [14] and [15]. 
Here we shall cite the resutts for the lattices (14), (15), and (24). In all the cases the 

• dL 
matrices L and M obeying the Lax equation ~ = [L, M]  have the dimension 2n 

x 2n and the structure 

~p* l ' M =  --Z* ' (25) 

where l, m, ~p, and Z are n x n matrices, 1 and m being the same for almost all the 
lattices: 

( q k  - -  qk  + 1 

. - .  

The matrices ~p, ~p*, Z, and Z* are meromorphic functions of the spectral parameter 
h and for the lattices (14), (15), (24) are of the following form (for simplicity we set 
9 = 1  in (14), ~ = ~ = 1  in (15)): 

. /,~[ Ch +hc~jneq~) '~ j~ = h k  + 1/2 [,-Z~- I a jk , 

eqn'~ 

1 ]//2 hC~jkC~jneq~' Z'k= + t~Jk(~jn h '  

ql + q2 
#j=O,  2jk=ie 2 (3ilfik2 + fij23kO, (14a) 

~ /~ ~ ( h ( d h - ~ )  +~jle_q~+h6jne~.) ,  'PJ~= V ~°j~ t ~z_ i 

, ,- / ~ h - d  +c~jle_q,+h_lc~jneq,,) iP jk = V 2 C~ jk ~ ~2--~1 . 

l/~ ajk(--3jle-ql+h(~jneq"), ZYk=--2 - ( + ~  eq') zjk= -~- 1/2 aj~ - a j ,  e-~' , 

&--O. (15a) 
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For the lattice (24) with four arbitrary constants let us introduce the following 
notation: 

' ' 

b=v + 

' v 5  ' 

The matrices ~p, ~p*, Z, Z*, m in this notation can be represented in a relatively 
simple form 

~Pjk=i{ 6jk~2h(2h-z)k h2-1  + ( 2 ( c t h q l - 1 ) + s h @ ~ )  6jl 

shq~) _1 +~jk , 

--(z(cthqh--1)+S~h)h-13jh] +Qj~+V~}, 

ZJ k = ~  6J k shZql 6J 1 

z+bchq .  6j.h I __~3k+h,,jk}, 
+ sh 2q. 

i {  [ )°+achql 
Z ~ = - ~  6J k sh2qa 6J 1 

"c+bchqh 6 h-l~ } + ~-~_ J, l--0ik+h-lVjk, 
~ln _l 

#j= - i[(a + 2 chq O (shql)- 2 611 
+ (z ch q, + b) (sh q,)- 26j,]. (24a) 

The matrix L (25) as a function of h has extra poles at the points h = + 1. This 
phenomenon is characteristic of almost all the trigonometric degenerations of the 
potential (7, 8) including those describing the motion of systems of interacting 
particles of the Sutherland type in an external field with the potential W(~) 
= d ch (24) + ~ ch(4 + ~) when d ~  # 0 [I 6]. For the rational degenerations of the 
potential (7, 8a) the matrix L has one pole at h = 0 and a pole common with M at 
infinity. On each of 2n sheets of the spectral curves det(L(h)-Iz)=O the 
eigenvectors of L possess essential singularities at the poles of the matrix M, which 
allows us to construct the vector Baker-Akhiezer functions and to obtain explicit 
expressions for particle trajectories in the systems (14, 15, 24) as combinations of 
multidimensional theta functions. Results of these calculations for the Hamil- 
tonians with the potentials (7a), (8a) and all their degenerations, trigonometrical 
and rational, listed in [15] and [16] will be published elsewhere. 
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The above consideration may also be applied to relativistic analogs of the 
potentials (6-8) whose integrability at e= 0 has been established by Ruijsenaars 
[20] and at e=  1, n= 2 by the author [21]. 

Note also that the lattices (15) possess non-Abelian generalizations: the 
systems of nonlinear matrix equations for matrices gj e gl(s, ~R), 1 <j < n, 

d ~ g  j )=gj_lgTl-gf l] -+*l+~j l (gr2+~g;1)-~j . (g2+flg . )  (26) 

admit the Lax representation with the structure of L and M (25) where l, m, ,p, and Z 
are block (ns x ns)-matrices: 

d& -1 - i 
Iik=a.ik"d~g~ +fij, k-tgjgk +aj- l ,k ,  

1 { ~-dgj _ ~ - i - a j_ ,, kl mjk = ~ - -  t~ jk  gj q- 6j, k - t gjgk / 

6jk \(2(c~h-fl)hh E _ _  1 ) lpjk = - ~  + g-~ 16jl + hg,f jk , 

6J k (2(flh-- ~) +g.~lfjl  +h_lgnrjn) 
W/*=V2 \ h2-1  

1 
Zjk = 2 ~  ~ j k [ - g l  lfijl q- hgnajn], 

, 1 
Zjk = 2 ~  8jk [ -- g [ i ajl + g~h- i am]. 

The systems (26) represent general~ations of the non-Abelian lattices given in [17] 
and analogous of Abelian systems of the type g~l) and ~e~n+O~(2) 1" Two-dimensional 
analogs existing for all earlier known lattices (2-4) are absent for the systems (14) 
and (15) which cannot be included into the Zakharov-Shabat scheme of 
construction of two-dimensional nonlinear evolution equations. 

To conclude, it is to be noted that of extreme interest seems to be the group- 
theoretical interpretation of the systems (14, 15, 24). For the lattices (2-4) it has 
been obtained in refs. [6, 9, 11, 12, and 17] where a detailed study has been made for 
the connection of the Lax matrices with orbits of a coadjoint representation of the 
Kac-Moody algebras and solution of equations of motion has been reduced to the 
problem of factorization in the corresponding infinite-dimensional groups. For the 
systems (14) and (15) with the exponential interaction the Lax matrices in the gauge 
L = f2LO- 1, ~ = f2Mf2-1, 

can also be reatised as orbits of the Kac-Moody algebras. As for the systems (24), it 
is necessary first to obtain the algebraic interpretation of the potentials (7), (8) 
containing the Weierstrass function. At present there is no such interpretation 
even for the simplest case of e = 0. Solution of this problem would permit finding 
the methods of studying quantum systems with potentials (6-8) and their 
nontrivial trigonometric and rational degenerations [15, 16]. 
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