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Abstract. Recently V. Yakhot, S. Orszag, and their co-workers have suggested 
that turbulent flows in various regions of space organize into a coherent 
hierarchy of weakly interacting superimposed approximate Beltrami flows. A 
mathematical framework is developed here to study organized Beltrami 
hierarchies in a systematic fashion. This framework is applied to several 
important classes of examples with universal Beltrami hierarchies. An analysis 
of the persistence of such Beltrami hierarchies is also presented for general 
solutions of the Navier-Stokes equations. 

Introduction 

Recently V. Yakhot, S. Orszag, and their co-workers [3, 4] have suggested that in 
various regions of space, turbulent flows organize into a coherent hierarchy of 
weakly interacting superimposed approximate Beltrami flows. Their evidence for 
such behavior is based on detailed numerical experiments for channel flows and 
decaying homogeneous turbulence utilizing spectral methods; however the 
mechanisms for the existence of such a hierarchy are not understood. 

In this paper we develop a mathematical framework to study organized 
Beltrami hierarchies and then we analyze this structure in solutions of the Navier- 
Stokes equations. We advocate the theoretical framework presented in detail in 
Sect. 1 as a readily implemented new diagnostic for further numerical tests with 
spectral codes for the existence of weakly interacting Beltrami hierarchies. In 
Sect. 1 we also describe the concept of Beltrami spectrum as an effective measure of 
the extent to which a given incompressible velocity field is an organized 
superposition of weakly interacting Beltrami flows. Expressions yielding the same 
numerical value as the Beltrami spectrum were mentioned in works on helical 
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turbulence, under the names "degree of helicity at higher wave numbers" [I 3] and 
"relative helicity" [14]. 

In Sect. 2, we exhibit some general families of exact solutions of the 3-D Navier- 
Stokes equations which are weakly interacting but include solutions with 
enormous enstrophy production at high Reynolds numbers Nevertheless, the 
Beltrami spectrum associated with these flows is universal - it is invariant with 
time, Reynolds number, and also for appropriate external forces. The Beltrami 
spectrum for these flows is computed by explicit formulae in Sect. 2. We also 
analyze the physical pancake eddies observed in the numerical experiments in [4] 
and prove that appropriate nearby configurations exhibit no local enstrophy 
production at moderately large Reynolds numbers. This theorem provides 
rigorous justification that appropriate solutions of the Navier-Stokes equations 
near such pancake eddies are indeed weakly interacting. Finally in Sect. 3, we 
study the evolution of the Beltrami spectrum for general solutions of the Navier- 
Stokes equations. We establish a direct link between changes in the Beltrami 
spectrum and the depletion of energy in a given energy shell. Then we use this link 
together with some straightforward estimates to obtain a general quantitative 
estimate for time intervals where the Beltrami spectrum has negligible change; the 
estimates for this time interval are non-dimensional and depend on the Reynolds 
number. 

Next we present some background information which provides a link between 
some of the ideas presented in [4] with the quantitative developments in the 
remaining sections of this paper. 

The three-dimensional Navier-Stokes equations in rotation form are 

& - u x c o = - V  p+ +vAu+F(x,t), t>O 

(0.1) 
divu = 0, 

where u = t(u~, u2, u3) is the fluid velocity, p is the scalar pressure, o)= curlu is the 
vorticity while F(x, t) is a prescribed external force and v >0  is the viscosity. Here 
for simplicity in exposition we primarily discuss the case of periodic fluid flows 

e 3 with period L so that with x=(xx,x2,x3) , u(t,x+eiL)=u(t,x) with { i}~=1 the 
standard unit basis vectors. For L-periodic flows, any square integrable incom- 
pressible velocity field, u, admits the Fourier expansion 

with Fourier coefficients uk for k s Z 3 satisfying 

i) u_~ = ~ (to guarantee real valued velocities) t 
ii) (uk, k) = 0  (to guarantee incompressibility). ~ (0.3) 

3 

Here we use the notation (w, 4) = Y. w~, for w, ~ e I123. In (0.2), we have grouped 
i = 1  

the Fourier coefficients into energy shells. Thus, A is the countable set of numbers 
so that 2 belongs to A if and only if 2 is a sum of squares of three integers and the 
inner sum in (0.2) involves all Fourier modes on the energy shell associated with a 
given 2. 
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Beltrami flows are exact steady solutions of the inviscid Euler equations 
[defined by setting v = 0 in (0.1) with external forces F =- 0] so that the velocity and 
vorticity are collinear everywhere, i.e., there is a smooth function e(x) so that 

curlu = e(x) u, div u = 0. (0.4) 

An obvious compatibility condition for the existence of a Beltrami flow is that the 
function c~(x) satisfies 

(uV)  =0, (0.5) 

i.e., c~(x) is constant on streamlines. Clearly Beltrami flows are non-interacting 
exact solutions of the Euler equations since the nonlinear terms on the left-hand 
side of (0.I) vanish. Periodic Beltrami flows are readily generated through Fourier 
series [7]. If we consider a fixed energy shell defined by 2 ~A and prescribe 
arbitrary coefficients Uk satisfying (0.3) then the functions 

+_ 1/' ~ik Uk) ?@<x,k> (0.6) × 

define Beltrami flows since 

2n l /~  + 
curlu~ = _+ L v u ; "  (0.7) 

/ 4n 2 \ 
We also remark that expt- .vZ -t)u;(x)generates a solution of the Navier- 

\ / 

Stokes equations with initial data corresponding to the Beltrami flow defined in 
(0.6). Our main result in Sect. 1 is a proof that any incompressible velocity field u 
not only has the Fourier expansion in (0.2) but also the refined orthogonal 
decomposition 

u= Z uI + u; (0.8) 
2cA 

with u~ defined via the Fourier coefficients of u through the formulae in (0.6). All 
functions on the right-hand side in (0.8) are mutually L2-orthogonal; in particular, 
on a fixed energy shell, (u], u~-)=0 for the L 2 inner product, (u, v), given by 

(U'V) ~" ~ (N(X)'V(X----)) d x = L 3  Z (Uk 'V-k) '  (0.9) 
QL k~3 

I 
The implications of (0.6)-(0.8) for fluid dynamics is that every incompressible 

fluid flow is a superposition of Beltrami flows. Furthermore, by writing the Navier- 
Stokes equations in (0.1) as nonlocal equations for the corresponding Fourier 
coefficients and utilizing the refined decomposition in (0.6)-(0.8), we see that every 
solution of the Navier-Stokes equations is a superposition of interacting Beltrami 
flows. Next, we compute the nonlinear interaction terms in the Navier-Stokes 
equations from (0.1) with the expansion in (0.8), 

2n ,-- + 
u×o = 2 + u ; ) × ( u + - u 2 )  • (o.1o) 

;~,I*~A 1-. 
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The local contribution on a fixed energy shell to the nonlinear interaction terms in 
(0.10) do not contribute to the dynamic evolution of u for a given 2 if and only if 

u~ x u~ = Vq~ (0.11) 

for some function qx. As discussed by Yakhot et al. in [4], there are two simple 
ways in which the nonlinear interactions in wave number space can vanish. The 
first possibility occurs when there is nontrivial pressure balancing so that there is 
q~4:0 satisfying (0.••); this occurs in steady rotating eddy solutions of the 
2-dimensional Navier-Stokes equations [8]. The second possibility is that either 
u~ or u~- is identically zero on a given energy shell. This discussion leads to the 
following 

Definition 1. An incompressible velocity field u is a generalized Beltrami function 
provided that for each 2 ~ A, either u~- or u~- in the decomposition in (0.8) vanishes 
identically. 

Thus, if a solution of the Navier-Stokes equations is a generalized Beltrami 
function at a given instant in time, it is weakly interacting at that time since all local 
Fourier interactions in (0.10) vanish identically. The numerical experiments 
described in [4] give several tests which indicate regions in wave number space 
where classes of turbulent fluid flows behave approximately like generalized 
Beltrami functions for appropriate bands of wave numbers one configuration 
typically observed in the numerical experiments from [4] are the pancake eddies 
which we analyze at the end of Sect. 2. The concept of Beltrami spectrum which we 
describe at the end of Sect. I is one effective and simple measure of the extent to 
which a given incompressible velocity field behaves like a generalized Beltrami 
function for a regime of wave numbers; therefore a corresponding solution of the 
Navier-Stokes equations with this velocity at a given instant in time is weakly 
interacting in this band of wave numbers. 

Definition 2. With the expansion in (0.8) for an arbitrary incompressible velocity 
field, u, the Beltrami spectrum of u, {fla(u)}z ~a, is the sequence of numbers defined by 

lug-[z _ lug-I 2 (0.12) 
ilk(u)= lu -I z + lu;; 12. 

Of course, flz(u) is only defined provided there is any energy at all on the 2-shell, i.e., 
]u] ]2 + Ju~-]2 > 0. The following elementary properties of the Beltrami spectrum are 
discussed at the end of Sect. 1 : 

i) - 1 __< fl~(u)_-< 1 for all 2. 

ii) lflz(u)[=l for all 2 c A ,  
(0.13) 

if and only if u is a generalized Beltrami flow. 

iii) For any purely two-dimensional flow u, fiz(u)= 0 for all 2. 

In particular, with property ii) and the above discussion, one effective way to 
quantify the study of weakly interacting Beltrami hierarchies as proposed in [4] is 
to find solutions of the fluid equations with energy shells prescribed by 2 e A, where 
the Beltrami numbers fl~.(u) satisfy 

(1 - f12(u))l/2 ~ q -  1 (0.14) 
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with q - 1  >0, a prescribed small number. We also remark that purely two- 
dimensional flows are very far from Beltrami flows and indeed property iii) 
guarantees that such flows have a Beltrami spectrum which has the largest possible 
deviation from generalized Beltrami functions. Some useful refinements of the 
Beltrami spectrum are presented at the end of Sect. 1. With these concepts, Sect. 2 
is devoted to non-trivial examples of classes of fluid flows with remarkably rigid 
Beltrami spectra and also satisfying (0.14) for a broad band of wave numbers, while 
Sect. 3 contains an analysis of the evolution of the Beltrami spectrum for general 
solutions of the Navier-Stokes equations. 

We end this introduction with a few general comments. Beltrami flows are 
exact solutions of the inviscid Euler equations with an extremely simple structure 
in wave number space, but such flows can exhibit tremendous complexity in 
physical space. Even simple examples such as the Arnold-Beltrami-Childress flows 
can have everywhere dense particle trajectories [6]; such flows are difficult to 
represent ecbnomically by a direct local description in physical space such as 
computational vortex methods. Earlier in this introduction, we have described the 
fashion in which the Navier-Stokes equations can be rewritten as the evolution of 
interacting Beltrami flows. In contrast, as Chorin has remarked in 1973 [1], vortex 
methods represent solutions of the Navier-Stokes equations as interacting 
superpositions of steady rotating eddies which are exact solutions to the 2-D 
inviscid Euler equations - the physical space description of a rotating eddy is 
extremely simple but the Fourier description is rather complex and not 
illuminating. Similar remarks apply for 3-D vortex methods. It is conceivable that 
turbulent flows may exhibit both regimes of weak local interaction and strong 
local interaction (due for instance to vortex stretching) between their Beltrami 
components. These facts suggest the possibility of a "nonlinear uncertainty 
principle" for turbulent fluid flows which mediates between regions of effective 
description of the flow field in physical space and regions of effective description of 
the flow field in wave number space. The discovery of such an uncertainty principle 
might be a major breakthrough in the understanding of turbulent fluid flows. 

1. The Beltrami Decomposition and Beitrami Spectrum 
of Arbitrary Divergence Free Functions 

Let u be a smooth periodic function with period L, 

u : QL-~IR 3 

with QL= I -  L L ]  3" The functi°n u is rec°vered fr°m its F°urier series by 2 '  

/ 2rci ) 
u(x)= k~z3ukexp~ ~-(x ,k)  . (1.1) 

We consider real incompressible velocity fields u, with mean zero - this last 
condition is imposed only for simplicity in exposition. Thus, the Fourier 
coefficients, us, satisfy the conditions in (0.3) and also uo -= O. Degrees of smoothness 
of the function u are measured by various Sobotev norms. 



440 P. Constantin and A. Majda 

The Sobolev spaces H ' are defined by 

H*= Iu  = /2rci ke~3UkeXp~--~--(x,k>) U k satisfy(0.3) 

and k~3~ (l+[klZ)~luklZ<°c}" 

In particular the L 2 space corresponding to s = 0 will be denoted by H. The scalar 
product and norm in H are denoted by ( , )  and [. l and are given by the standard 
formulae already presented in (0.9). 

We are going to describe a canonical orthogonal decomposition of any 
periodic, divergence free function as a sum of Beltrami functions, i.e., the special 
exact solutions of the 3-D equations already discussed in (0.4)-(0.7). In order to 
describe this decomposition we define, for each kEZ3\{O} the projections 
p~ .  lEa...+lE3 by 

P~(z)= ~ z_+ l~  x z . (1.2) 

We gather together a few facts about the maps P~ in the following 

Proposition 1.1. Let k ~ 0 be fixed. Then 
(i) + P=k----Pk . 

(ii) z = P ~ ( z ) + e ; ( z )  for 
(iii) P~ (z) = P~ (5) ]'or 
(iv) P~(Pk+-(z))=P[(z) for 

all z ~ tE a. 
all z ~ lE3. 

all ze lE  3 satisfying (z,k>=O. 
all z ~ 113 3 satisfying (z, k> = O. 
all z, ( e lE 3. 

z ~ lE3 satisfying (z, k> = O. 

(v) P~ (P[ (z)) = 0 for 
(vi) <Pf(z), [> = <z, P/([)> for 

. k x P[(z)= +_P[(z) for all (vii) z•  

Pro@ The first three properties are obvious. Properties (iv), (v), and (vii) follow 
from the identity 

t ~  x x z  = z ,  (1.3) 

valid for all z ~ lE3 satisfying (z, k> =0. We use the notation (a, b, c> to denote the 
determinant of the complex matrix (a, b,c) formed by the column vectors 
a, b, c e lE3. The property (vi) follows from the observations 

xz , (  = ,z,( forall z,~elE 3, (1.4) 

and 

for  15, 
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The above algebraic properties readily yield the important analytic fact 

Lemma 1. Consider a fixed wave number k +-O: 
1) For arbitrary complex vectors u k, v k ~ {E 3, with (Uk, k) = O, the two functions 

, / 2 7 r i )  , /2~ri ) 
P2(Uk)exp[T-(x ,k)  and P~(vk)exp[--£-(x,k) are always orthogonal in L 2. 

2) For any vector ukelE 3 with (Uk, k)=O, Uk=P~(ug)+ P[(uk) and the two 

functions Re P{(uk)exp[--L-(x,k ) are simple single mode BeItrami flows 

satisfying (0.4) as well as being orthogonal in H. 

The proof of this lemma is a straightforward exercise utilizing the identities in 
Proposition 1.1 and we leave this for the reader. Nevertheless, the above lemma 
indicates that any incompressible velocity with a single mode decomposes into a 
unique L2-orthogonal sum of Beltrami flows. This is the crucial observation for the 
results which we present next. 

First, we give a precise notation for the grouping of Fourier coefficients along 
energy shells which we have already described in (0.2). We recall that A is the 
countable set of numbers so that 2 belongs to A if and only if 2 is the sum of squares 
of three integers. If 2 > 0  is an arbitrary number, we denote by R;. the spectral 
projector of the 

4~ 2 
eigenvalue ~ 2: 

Stokes operator onto the eigenspace corresponding to the 

Ra(u)= ~ u k e x p ( ~ - ( . , k ) ) .  (1.6) 
k~Z3\O 
Ik12=~ 

For 2 ~ A, R~(u) is the projection on the corresponding energy shell. Of course, if 2 
4g 2 

does not belong to A then -L-f-2 is not an eigenvalue; we set Rx equal to zero for 

such 2 in order to unify notation. Rx is a projector in H and also simultaneously in 
all H ~, s >0. This means that R* = Ra and R~ = R~, where we denote by T* the 
adjoint operator of the bounded linear operator T. Now we define a decompo- 
sition of Ra into a sum of two projectors P~- and P~ corresponding to eigenvalues 
+ 1 and - 1 of the operator ( - A ) -  1/2 (g x • ) restricted to RxH. These projections 
yield the Beltrami decomposition described earlier in the introduction. Thus, we 
define P~(u) by 

\/2~i ) 
P; (u )=  Y, P~(Uk)exp{T-(x,k  ) . (1.7) 

k ~ Z  3 
Nz=~ 

We will also use the notation 

P~(u)=u~ . (1.8) 

First we remark that by virtue properties (i) and (iii) of Proposition 1.1, ifu is a real 
valued function so is P~(u). Actually the operators P f  are linear bounded 
operators from H into H. They commute with R~ and consequently with any 
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power of the Stokes operator. They are actually bounded in all the Sobolev spaces 
H S. Some of the most important properties of the operators P f  are collected in the 
following proposition: 

Proposition 1.2. Let 2 > 0 belong to A. Then 
(i) R~ = P~- + P~-. 

(ii) (P~)* = P~. 
(iii) + ± + :~ PzPu =P2P.  = 0  /f 2 # # .  
(iv) P~'P~- = O. 
(v) (p~)2 = p ~ .  

Proof. Properties (i) and (iii) are obvious. Property (ii) follows from properties (vi), 
(iii), and (i) of Proposition 1.1 and the formula (0.9) defining the scalar product. 
Properties 0v) and (v) follow from properties (v) and (iv) of Proposition 1.1. 

Now we can define the decomposition of arbitrary divergence free L 2 functions 
into Beltrami flows. We will set P~ = 0 if 2 does not belong to A. 

Definition. Let u e l l  (i.e., u is an L 2 divergence free function). We call the 
orthogonal expansion 

u =  2 (u~-+u~-) (1.9) 
,~EA 

the Beltrami decomposition of u. 
We note that the convergence of the series in (1.9) takes place in H. If the 

function u belongs to H s then all the functions u;~ belong to H ~ and the 
convergence of (1.13) is in HL In particular, if s>  3/2 there is uniform pointwise 
convergence. We list the most important properties of the Beltrami decomposition 
in the following. 

Theorem 1.1. Let u e H  1 with u= ~ (u~ +u[) its Beltrami decomposition. Then 
) t e a  

(i) For each )teA, u2 and u[ are Beltrami flows: 

V x u ~ = +  T u2. (1.I0) 

(ii) The fimctions u~ are mutually orthogonal in both H and H 1. 
(iii) The Beltrami decomposition of the curl V x u is 

2~ ~ lf~,u+ v x u =  -E ;. - u ; ) .  1) 

(iv) The energy, enstrophy and helicity of u are given respectively by 

lul 2= Z (]U~'[2"~]U2-[2) ' (1.12) 
2cA 

47~ 2 
I F  x ul = = t,- + lu ; l=) ,  (1.13) 

(1.14) 
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The proof is straightforward from Propositions 1.1 and 1.2. Let us note that if 
u e H 1, then the equality in (1.11) takes place in L 2 sense. However, if the function u 
belongs to H ~ with s > ~ + 1, then the functions up are continuously differentiable 
and (1.11) is a pointwise identity. In general, up are always infinitely differentiable 
and are mutually orthogonal in all the H ~ spaces. 

Now we are going to introduce the notion of Beltrami spectrum of a divergence 
free function. First we define a generalized Beltrami function to be one for which all 
the restrictions R~(u) are Beltrami functions. Clearly if in the Beltrami decompo- 
sition of a function, for each 2 at least one of u~- and uS is zero then u is a 
generalized Bettrami function. The converse is also true. Indeed, assume that 
R~(u) = v is a Beltrami function. Since the function v belongs to the 2 energy shell, it 
follows that v satisfies the elliptic system 

. 4n 2 
- A v =  ~ ,~v 

divv = 0 .  

Also according to (0.4) V x v = ev for some function e(x). We also require that 7(x) is 
continuously differentiable. Taking the curl of the last relation we get 

47r 2 
L2 2v--V x(o~v)=o~(V × v ) + V ~ x v .  

We form the scalar product, at fixed x with v(x) to get 

47c z 
g 2 "~lv(x)l ~ = (~(x))  2 Iv(x)l 2 . 

2/~ 
It follows that [ e (x ) l=~-V2  for all x for which ]v(x)[#:0. Because v is not 

identically zero and is a solution of an elliptic system, v is real analytic and thus 
I v ( x ) l + 0  almost everywhere. Since e(x) is continuous, it follows that e(x) 

2n 
= _+ ~ - l / ~  and consequently Rz(u)= u~. The Beltrami spectrum of a function 

provides a quantitative description of the extent to which the function is or is not a 
generalized Beltrami function: it measures the angles between V x Rz(u) and Rz(u). 

Definition. Let u ~ H. For  each 2 > 0 for which Rz(u)4:0 we define the Beltrami 
numbers ilk(u) by 

+ 2  - - 2  
lu~ I -lug. 1 0.15) 

/ b l u ) -  tu+l~ + fu;12. 

The sequence ([I~.(U))~A is called the Beltrami spectrum of u. 
First we observe that the Beltrami numbers satisfy 

IMu)l-<_ 1 
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for all u, 2, by definition. Clearly, u is a generalized Beltrami function if and only if 
Ifl~(u)l = 1 for all 2. Also we note that 

(Rz(u), 17 x Rz(u)) 
fl~(u)= ]R~(u)I" IV x R~(u)I (1.16) 

This means that fla(u) is the cosine of the angle between Rx(u) and V × R~(u) in H. 
Because P~, R z are spectral projections it follows that the cosine of the angle 
between Rz(u) and V × R~.(u) is the same in all the Sobolev spaces H s. From (1.16) 
it follows obviously that two dimensional functions have trivial Bettrami 
spectrum. 

That is, if u = u(xl, x2)= then fi~(u)= 0 for all 2. Clearly also 

fi~(u) e Iinf cosO~(x),supcosO,~(x) 1 , 

where 

cosOx(x)= (Rz(u) (x), (V x Rx(u))(x)) 
[Rx(u ) (x)[ [(V x R~(u)) (x)[ " 

Refined Beltrami Decompositions. Finally we mention that one can decompose 
-+ further into sums of Beltrami functions. It is enough to take any partition each u~ 

of each energy shell Ikl 2 = 2 with 2 e A into disjoint sets (closed under the operation 
k ~  - k, in order to be able to get real valued functions). The finest such partition is 
formed by the sets {k, -k} .  Corresponding to it one has the functions 

+ 2hi p£(uk)exp(~_(x,k)) + /2hi + q- P:k(U-k)exp~-(X, --k)) =U(i,-k} 
\ /  

which are Beltrami functions. By Lemma I the functions u~,-k} are orthogonal. 
One can associate to this decomposition a Beltrami spectrum indexed by the 
projective integers PTI 3 = {{k, - k } ;  k+0 ,  ke2g3}. For {k, - k }  e P Z  3 one defines 

U + 2 U -  { k , - k }  - -  { k , - k } 1 2  

G, _~}(u)= + 2 - 2 "  lu{~,-k}l + lu{k,-~}[ 

These numbers measure the Beltrami spectrum for the finest partition. Obviously, 
we can use Lemma I to generate the Beltrami spectrum for other partitions of the 
energy shell into groups of Fourier modes in a similar fashion. 

2. Classes of Fluid Flows with Universal Beltrami Spectrum 

Here we compute the Beltrami spectrum explicitly for a class of interesting time 
dependent exact solutions. We also study configurations which are perturbations 
of the "pancake eddies" observed in the numerical experiments from [4]. 
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A) A Universal Beltrami Spectrum for a Class 
of Quasi-Two-Dimensional Flows 

We let v = *(v,(t, xl, x2), v2(t, x,, x2)) be the velocity field for any solution of the 2-D 
Navier-Stokes equations 

~--V-v --vAv+(v. V)v= Vp+ f ] 
Ot } (2.1) 
div v = 0 

with periodic boundary conditions, i.e., the function v satisfies v(t,x~+L, xz) 
= v(t, x~, x2 + L) = v(t, xt, x2). There is a procedure to generate general solutions of 
the 3-D Navier-Stokes equations which depend only on the two spatial coordi- 
nates (x~, x2). The reader can readily verify that if v3(t, x~, x2) satisfies the scalar 
diffusion equation, 

~va +(v. V)v3-vAv3=g(t, xl, xz), t > 0  / 
St } (2.2) 

v3[t=o=V3°(x,,x2), 

then the velocity field 

U = t(Vl(t , X1, g2) ,/)2(t, X1, X2) , v3(t , xl, x2) ) 

is a solution of the 3-D Navier-Stokes equations in (0.1) with external force 
F = *(fl, f2, g)- Such exact solutions are called "quasi-two-dimensional" flows in 
the literature although the authors regard the terminology as unfortunate since 
such fluid flows can exhibit tremendous vorticity growth in time (see the discussion 
below). Special flows of this sort are important in understanding secondary 
instabilities in shear layers (see [-2, 8]). 

Here we compute the Beltrami spectrum for a class of quasi-two-dimensional 
flows. To define these flows, first we assume that the external forces f ='(fl(xl ,  xz), 
f2(xl, x2)) in (2.1) are smooth, periodic, and time independent. The scalar vorticity, 

&2 aVx, of the 2-D flow in (2.1) satisfies the scalar diffusion equation, 
& l  ~x2 

009 
a~ -vAco + (v- V)co = cur l f  = g. (2.3) 

Thus, from (2.2) and (2.3), we see that the velocity, 

/ Vl(t, Xl, X2) \ 
u(t'xDx2)= ~ v2(t'xx'x2) l (2.4) 

defines a special class of quasi two-dimensional fluid flows for any constant e. The 
solution in (2.4) always has non-zero helicity for ~ :~ 0 and can display very strong 
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enstrophy growth. Indeed simple computations show that 

( ) I IVxul 2dx---L e2 I I 117c°lZdxadxz + ~ f ]°)[2dxxdx2, (2.5) 
Q L  - E l 2  - -  L / 2  - L / 2  - L / 2  

U2 U2 
(u. V x u ) d x = L e  ~ ~ l~12dx ,  dx2 . (2.6) 

Q L  - L / 2  - L / 2  

The first relation shows that the enstrophy of u is related directly to the gradient of 
the vorficity of the 2-D flow. It is well known that in 2-D flow at high Reynolds 
numbers the gradients of the vorticity can become very large; they are the 
quantities governing 2-D turbulence (see [5]). The second relation shows that the 
helicity of u is a multiple of the enstrophy of v. One sees from the above relations 
and from the construction ofu that a purely 2-D fluid flow corresponds to ~ = 0 and 
that at e + 0 one gets a way of injecting 2-D turbulence into 3-D. We compute the 
Beltrami spectrum for the 3-D flows defined in (2.4) in the following 

Theorem 2.1. Let v be any solution of the 2-D periodic Navier-Stokes equation (2.1). 
Let og=cuflv and let 

V 2  
U ~ 

where L is the period and 6 is an arbitrary nondimensional parameter. Then u solves 
the 3-D Navier-Stokes equation. The Beltrami spectrum of u is independent of time, 
viscosity, initial data and body forces and is given by the universal formula 

/~(u)= 1 + ~2~. 

With Ikl identified with ~/~, the same universal formula also applies to the 
Beltrami numbers, fl~_ k,k}(U), associated with the finest decomposition described at 
the end of Sect. 1. 

We see that the Beltrami spectrum of this class of quasi-two-dimensional flows 
is time independent, universal and nontrivial. By universal we mean independent of 
the viscosity v, body forces b and initial data. By nontrivial we mean not only that 
flz(u) is not identically zero but also that it exhibits a broad band of wave numbers 

2roe . 
with a weakly interacting Beltrami hierarchy. That is, if 6 = L -  as nonzero, say 

positive, then fl~(u)> l - q  for 2~ ~ , j  for some c~ < 1 <c2 depending on 

only. The length of the interval where fl~(u) >= 1 - ~ gets larger as 6 ~0. This is the 
behavior of a singular perturbation because, as we noted earlier, at 8 = 0 the fluid 
flow is purely 2-D so the spectrum fix(u) is trivial, fl;~(u)= 0. Of  course, as 6 4 0  the 
location of the broad band with a significant Beltrami hierarchy moves far to the 
right along the 2 axis to regions where viscous effects eventually are overwhelming 
at a fixed Reynolds number. 
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To prove the theorem we compute the Beltrami spectrum for this class of quasi- 
two-dimensional flows. First we represent the vortic~ty co: 

( < ) )  co= ~ w k exp ~ - ( x , k )  (2.7) 
ke~2 \O  

with Wke(U, #k=W_k . We identify Z z with the subset {(kt, k2,0)tk 1 e Z ,  k2eZ } of 
]ga. The function v has the representation 

\ N /  

[ 2 7~i 
exp~-L ( x , k ) ) .  (2.8) 

Therefore, the Fourier series of u is 

u = 2~ k~\O Ikl 

ik2 

- i k l  
qfi- 

We make a few remarks about dimensions. Clearly, if the function u defined in 
(2.4) is to have the dimensions of velocity then e should have the dimension of 
length. Thus 

= 2~ze (2.1 O) 
L 

is a nondimensional parameter. We recall that Wk, CO have the dimension (time)- 1 
and u, uk have the correct dimension (length) x (time)- 1. We denote by 7([k[ z) 

2 ~  
7=7(]k]2)=~-]k[=6[k[. (2.11) 
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Then, with these notations from (2.9) we have 

I Ikl 
..L_ wk | _ ik for 

u, = 2n Ikl ~ 
\ 
\7(Ikl: 

We note that 

(k!) k =  

ik21 X [ - - i k  I ] = [ (--ik__.__~l'~ 

(2.12) 

(2.13) 

and 

Then, computing P~(uk) we get 

L w k 
P~(Uk)= 4n [kl (1 +7) - ik~ tt- (,k, 

\ _+(~_+7) 

(2.14) 

L ) 2 [Wkt2 
iP~(uOle=2 ~ i_~(1+v)a. (2.15) 

rl2~i )] 
Denoting by Ram= Y. wkLexPtT(x,k)  ,we  have 

IklZ=a 

lP~ (u)l 2 = i \ ~ )  te~'c°12(1 -+ 7(2))2" (2.16) 

Thus, in the expression of the Bettrami numbers flz(u) the common factors 

2\4n} ]Rxc°[2 cancel and we obtain the formula claimed in Theorem 2.1, 

27(2 ) 26]/~ (2.17) 
& ( u )  = 1 + (~(~))~ - 1 + (a ~)~ 

Obviously, from (2.15) the same calculation applies for the refined Beltrami 
spectrum, {fl{,,-k}(U)}. 

We make a simple remark on the preceding calculations. First the formula 

27(2) 
fl2(U) = 1 --~ (7(~)) 2 (2.18) 
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is valid for any function u whose Fourier coefficients have the structure 

Ikl 
L w k - ik 

u,= lk-I l -lki 
\~(Ikl = 

at k= 

for any function 7(2). Of course, if the function 700 is not a multiple of L/2 then this 
kind of structure is not preserved in time by the 3-D Navier-Stokes equations. 
However, this observation implies that any sequence of numbers can be realized as 
the Beltrami spectrum of an incompressible velocity field depending on two space 
variables. 

B)  "'Pancake Eddies" and Enstrophy Production 

First we consider an incompressible initial velocity field Uo which has Fourier 
coefficients supported on a straight line in Z3; i.e., there is ko ~Z3\{0} so that u0 
has the Fourier expansion 

with Fourier coefficients U~ko satisfying the conditions in (0.3). It is well known that 
for such initial data, the Navier-Stokes equations reduce to linear equations. The 
Fourier coefficients of the exact solution u(t, x) of the Navier-Stokes equations 
with this initial data satisfy the linear equations 

4zc2 2 tik+-L~-vlkl uk=0, (uk, k)=O, 
(2.20) 

Uk[t=O = ~ ulko' k=Iko 
( O, k .# Ik o . 

Thus, the solution u(t, x) is given by 

u(t ,x)= ~ UlkoeXp ---L-U-I [/Co[ vt exp ~ - l ( x ,  ko) . (2.21) 
1 = - - ~  

These exact solutions have the form, 

u = vl((x,  ko), t)e 1 + v2((x, ko), t)e2, (2.22) 

where ei, i = 1, 2 are two orthonormal vectors with (/c o, e,) =0, i = 1, 2. Such flows 
provide other examples of the quasi-two-dimensional flows described earlier in 
(2.1), (2.2). While such flows are very special, as reported in [4] the more general 
fluid flows computed in [4] have regions of both physical and Fourier space with a 
local structure approximately given by the simple flows in (2.19)-(2.22). The term, 
"pancake eddy" is used in [4] and can be motivated by the form of these exact 
solutions given in (2.22). It follows from (2.21) that the Beltrami spectrum is 
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invariant with time for these exact solutions. In particular, if the initial data is a 
generalized Beltrami function, the solution is a generalized Beltrami function at 
any later time. Also, since all nonlinear interaction terms vanish in these exact 
solutions, the enstrophy always decays. 

In the remainder of this section, we prove that ifa solution of the Navier-Stokes 
equations has a velocity with Fourier coefficients concentrated in a suitably 
narrow cone (depending on Reynolds number) at some instant in time, then the 
enstrophy necessarily decays at that time. This result yields a rigorous proof of the 
assertion that suitable perturbed flows near the pancake eddy configurations in 
wave number space are weakly interacting. More precisely we prove the following 
fact: 

Theorem 2.2. Assume that u(t, x) is a solution of the Navier-Stokes equation. 
Consider the nondimensional Reynolds number R defined at a given time t by 

R = L 1/zlV x u(t)[ (2.23) 
V 

with I [ the L2-norm. Then there is a fixed constant c a so that if 6 satisfies 

6 ~ c3R - 1, (2.24) 

and if the Fourier coefficients uj(t) for u(t, x) vanish for those j satisfying both 

> ~ for some k o 4=0, (2.25) 

d iV×ul2<0" then there is no enstrophy production at time t, i.e., 

Before proving the theorem, we make a few remarks. First, it is well known (see 
[10-12]) that if the number R defined in (2.23) is sufficiently small at time t = 0, then 
there is no enstrophy production for any later time. Theorem 2.2 implies that if the 
Reynolds number R is arbitrary but the Fourier transform of the solution is 
concentrated in a narrow cone of aperture roughly l/R, then again there is no 
enstrophy production. Of course, it is not necessary that the Fourier coefficients 
vanish identically outside the cone; the proof below shows that these coefficients 
only need to be suitably small [see (2.28) below]. 

For the proof of Theorem 2.2, first we write down the equation for evolution of 
the enstrophy for a solution of 3-D Navier-Stokes, 

1 d i V × u l 2 + v l A u l 2 +  _ _  i Y, (uj, k)(Uk, Ul)]ll2=O. (2.26) 
2 dt ~+k+l=O 

j,k,l~Z3\O 

Next we split the sum int° tw° parts: One in which I~] - I~ ~ / +  Ik~ <6 or <6 

and the rest. Because of the fact that (uj, j ) = 0 ,  we write 

 uj, k)= (uj, k± Ikrj  
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If we are in one of the situations [~.1 _+ 1~ < 6 this implies that 

I(uj, k)l <=61ujl N. 
Therefore we get the estimate 

Z (uj, k> (Uk, Ut> 1112 
j+k+l=O 

I +-hi <--o 

-< lu, • lu, ijl4)   

Now we take a cone F of aperture 6/2 and denote Ur by 

and Ur, by 

6 E lujl lukl lu,I I112 Ikl 
j+k+l=O 

2hi ) 
Ur = ~r u~ exp ~ -  ( x , j )  , 

J 
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(2.27) 

ur u exp( /<xj ) 
j c r  

Since either j ~ F and k ~ F or at least one ofj  and k is not in F by combining (2.26) 
and (2.27) obtain the bound 

1 d IV x u] 2 --~ vlAul 2 < c06] V × ul 3/2 IAu] 3/2 
2 dt 

+ cllV × ur,[ 1/2 IV × ul IAul a/2 

"t- Cll V x ul 1/2 l[ 7 x UF, I IAuJ 3/2 . 

After using Poincar6's inequality 

117 × ul <c2LIAul, 

finally we get 

l d  2 0___~_ ~l[Txul +lAul3/2lVxul 1/2 
(2.28) 

X ( ( c2 L) -  1/2 v - -  Co~ I [7 x u[ - -  C l IF  x Ur, [ 1/2 ([ V x u] 1/z + IV x Ur, [ l/z)). 

It follows that, if the enstrophy of Ur,, i.e., the part of the enstrophy which is 
produced outside the cone F, is small, and if 6 > 0 is small enough then there is no 

d 2 enstrophy production, ~- IV x ul < 0. In particular for functions u whose Fourier 

transform is supported in F there is no enstrophy production if 

6<__c3 R - 1  , 

where  R=J~/2117 × ul is defined in (2.23). This completes the proof. 
Y 
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3. Time Evolution of the Beltrami Spectrum of General Flows 

Here we consider an arbitrary solution of the periodic 3-D Navier-Stokes equation 

with smooth initial data 

Oust -vAu+(u.div u = 0V)u= Vp [ 
(3.1) 

u(O, x) = Uo(X) (3.2) 

and L periodic boundary conditions. We use the notations 

llull 2 =  j" ] lT×ul2dx,  (3.3) 
QL 

b(u, v, w) = ~ (u. Vv). w dx (3.4) 
QL 

for real, smooth, divergence free, L periodic functions u, v, w. 
With the examples which we just presented in Sect. 2, it is obviously interesting 

to understand the evolution of the Beltrami spectrum for general solutions of the 
Navier-Stokes equations. Our main result in this section is a proof of the fact that 
as long as there is no complete depletion of the 2-energy level, there is no 
significant change in the Beltrami numbers, fl~(u). We also give some simple 
general quantitative bounds for this depletion time which are non-dimensional 
and depend on Reynolds number. Before stating this theorem, we recall from (1.6) 
that for 2 ~ A, Ra(u) is the projection of u onto the energy shell corresponding to 2, 
i.e., 

f Zni ) 
R~.(u) = 2 Uk exp ~ -  ( . ,  k)  . 

IktZ=,l 

The energy in the 2-shell at time t is measured by ]Ra(u(t))] 2 while a natural measure 
of the Beltrami number for the 2-shell is ]/1-(flx(u(t))) 2. Below we prove the 
following 

Theorem 3.1. Let u(t) solve the L periodic 3-D Navier-Stokes equation in (3.1). We 
fix q > 1 (with q -  1 small typically) and s > 3/2. Then on any interval of time where 
the bound given below in (3.13) is satisfied, simultaneously both of the estimates 

( Ie~(u(t))l exp \ ~ T  > Rz(uo)], 

and 

[]/1 -- (fl:.(u(t))) 2 -- ] / t  -- (flx(Uo)) 2 ] ~ q-- 1 

are true. In particular, both bounds are true for t with 0 (_ t (_ Tx with T;. given in terms 
of the initial data by the a priori estimate 

v~Lx ( 2  vT~) fl/~cs2~/2,Uo,~-l,R~uo]q--1 
exp 4n ( 2 - 1 ) ~ T  = \v  - v~i~-J luol q 

(see (3.18) below). 
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The first bound measures the energy depletion in the 2-energy shell while the 
second bound measures the change in the Beltrami spec t rum-  both are controlled 
simultaneously at least for a time interval T~ given by the nondimensional formula 
stated above. The constant c~ is a non-dimensional embedding constant. 

We begin the proof of Theorem 3.1 by deriving an equation for the evolution of 
the Beltrami numbers, flA. 

Proposition 3.1. Let 2 > 0  be a sum of  three squares of  integers. Then, as long as 
]R x(u(t))] 4: O, the evolution of  the Beltrami numbers flz(u(t)) of  the solution u(t) of  (3.1) 
is given by the equation 

2 flx(u(t))+ iR).(u(t))12 b(u(t),u(t),(l - f l ; )u~( t ) - (1  +fl~.)u-~(t))=O, (3.5) 

where flz = flz(u(t)) and u~(t) = P~(u(t)). 

We note the fact that the viscosity is not explicitly present in the equation. 

Proof. The evolution of lu~(t)l 2 is given by 

1 d + 2 2 Y)~ lu;(t)l +47t ~]u~(t)12+b(u(t),u(t),u±(t))=O. (3.6) 
2 

Using the definition 

lu~-(t)12 _ lu~-(0t 2 
fi~.(u(t)) = ju~_(t)l 2 + tu;(t)12, 

we obtain (3.5) by a straightforward computation. 
We compute that the norm of 

is given by 

Thus 

I(l - f ix )u l  - ( 1  + fla)u; 12 = (l - fl~)2 lu l l  2 + (1 + flz)~ lu ;  12 

= (1 + f l ~ ) I R z ( u ) l  2 _ 2flx(lu~- 12 _ l u ; i  2) = (1 - f l ~ ) I R z ( u ) l  2 .  

I(1 - fla)u~ - (1 + fix) u;I = 1/1 - fix(u) z IR~(u)!. (3.7) 

By using the Sobolev imbedding HsC L °~ for s > 3/2 and the fact that ( 1 -  fla)u~- 
- (1 + flz) u~- lies in the eigenspace RzH of the Stokes operator we get the inequality 

l[(1 - fix)u+ - (1 + fl~.)u~ IIz~ < cJ  f12 ] /~- f l~  L-  3/2 IRx(u)l (3.8) 

with a nondimensional constant % Using (3.8) we obtain from (3.5) the bound 

]211 d fl~(u(t)) <cs2"/2L -3/2 ,u(t)[ ,[u(t),[ ]//1-(flz(u(t))) 2 (3.9) 
= tR~(u(t))l 

for every t, where lRz(u(t))J 4:0, s>  3/2. Because Iflx(u(t))l_-< 1, by dividing we get 

d v1  - (flx(u(t))) 2 2es2~/2L - (3.1 O) lu(t) l II u(t) II < 3/2 
= [R~(u(t))[ " 
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On the other hand, from (3.6) we obtain the bound 

d lR~(u(t))f + ~2 IR~(u(t))I < 2cs 2~/2L- lu(t)l If u(t) If. (3.11) 4n z 3[2 

Therefore we have 

4~2 t 2 
exp(--~-v2t)lRz(u(t))l--lR~uo, <2c~2S/2L-3/Z!exp(~Z2-v2z)lu(z)] ,lu(z)ltdz. 

(3.12) 

In order to control the evolution of flz(u(t)) we see from (3.10) that we need to make 
sure that IRz(u(t))l is bounded from below. Let q > 1 be arbitrary. We see from (3.12) 
that if we define 

tz = t~(lUol, lRz(uo)l, v, L, q) 

by the condition 

~ /'4n 2 \ q -- 1 
2cs2*/ZL-3/2 o ~ expk7~-, v,~z ) ]u(-c)] Ilu(z)l] dz<= IR~uol, (3.13) 

q 

then 
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/4n  2 \ I 
exp ~ ~ -  v2t ) IR z(u(t)) t > q [R zu ol (3.14) 

for t<tz. Using (3.14) and (3.13) in (3.10) we deduce that 

1~/1 - (fl; .(u(t))) 2 - ~ /1  - ( f la(Uo))  2 1 --< q - 1 (3 .1  5)  

for all t ~ t~. Finally, the familiar two consequences of the energy estimate 

f 47¢ 2 '~ 
lu(t)l~luolexp~-v-fft),  for all t > 0 ,  (3.16) 

v,llu,t, ll2dt< , forall  t ~ 0  (3.17) 
o 

are easily used in order to produce a lower bound for tx expressed entirely in terms 
of the initial data; therefore, we have ta> T~ with Tx given by 

v ~  exp (24n ( 2 -  i v Ta - ~  ) = ( ~ c~2S/ 2 ~ ~ -1] R zu° l q - uo ] q \ vL / (3.18) 

vZ luol 
We remark that the groups LZ, vL1/2 are nondimensional. 

We see that as long as there is no complete depletion of the 2 energy level there 
is no significant change in the fl~ Beltrami number. The proof of Theorem 3.1 is 
complete. 

Now we are going to describe possible situations in which 

I[/1 - ( f l z (u( t ) ) )  2 - c~ _ ( f l z ( U o ) ) 2 1  < q-- 1 
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for all t >0. It is well known ([9]) that for any initial datum Uo e H 1 leading to a 
globally defined strong solution of the 3-D periodic Navier-Stokes equation there 
exists ).(Uo)> 1, an integer which can be represented as a sum of three squares of 
integers and which satisfies 

= - -L-~- v2(Uo). (3.19) 
t ® \  t ~-~® 

Moreover, 
// 4;~ 2 \ 

fu(t)l _-< cluol exp ~ - ~ -  Vt2o(Uo)), (3.20) 

[lu(t)H <=clluoll exp(  ~ -  Vt2o(Uo) ) (3.21) 

for all t__ 0. The constant c is nondimensional and can be chosen uniformly for 
,~(Uo) + luol bounded. Using (3.20) and (3.21) in (3.13) we see that (3.13) will be true 
with t~ = c~ provided 2 < 22(Uo) and 

492 - 2 ) ~ l R a u o l .  2c~c21Uo1 IJ Uo II )#2L- 3/2 __< L~- v(22(Uo) 

Introducing the nondimensional number 

a =  22(Uo)_2  \ l R z u o l /  - ' 

we see that (3.13) is valid, with t ~ =  0% if 

a < q -  1 (2CSC2)_ 1 (3.23) 
q 

Thus we have proved 

Corollary 3.1. Let Uo ~H ~. Assume u(t) is a smooth solution of the 3-D Navier- 
Stokes equation. Assume that q > 1, s > 3/2 are fixed. Let 2(Uo) be the positive integer 
defined by 

lim (l°gltu(t!!) __ 4rCZv2(uo) " 
t-+O O L 2 

Let 2 be a positive integer satisfying 

2(Uo) N 2 < 22(Uo). 

Assume that the nondimensional number a defined in (3.22) satisfies the condition 
(3.23). Then, for all t > 0 simultaneously we have 

/'4re 2 "~ 1 
exp ~ ~ -  v 2t ) [R z( u( t))l > IR~uol 

and 

11//1 -- (flz(u(t))) 2 -- 1 / ~ ) ) 2 1  =< q-- 1. 
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W e  note  that,  since 2(Uo) is not  k n o w n  explicitly and  since it m a y  vary  in 
d iscont inuous  ways, the "smallness  condi t ion"  (3.23) can very well be vacuous.  F o r  
instance this is surely the case if we have 2 < 2(Uo) because, obvious ly  in tha t  case 

/4n 2 
exp~-LTV2t  ) R~(u(t))~O in view of (3.20). I f  2=2(Uo) f rom 1-9] we k n o w  tha t  

\ / 

lim exp R;~(u(t)) = V~ 4: O. Therefore, in that case 
t---~ oo 

7 lu(t)l liu(t)II dt 
,o J Ig~u(t)l 

is finite. Foias and Saut proved that the sets Mk = {Uo E H 112(Uo) > 2k} are smooth 
(analytic) finite codimension, unbounded manifolds in H 1. Here {2k} is the 
increasing sequence of positive integers which are sums of three nonnegative 
integers. 

F r o m  this result it follows tha t  condi t ion (3.23) can be fulfilled by  m a n y  initial 

data,  including m a n y  for which the quant i ty  U/2 H Uoll is not  small. 
/) 
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