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Abstract. We calculate the exact temperature of phase transition for the Ising 
model on an arbitrary infinite tree with arbitrary interaction strengths and no 
external field. In the same setting, we calculate the critical temperature for spin 
percolation. The same problems are solved for the diluted models and for more 
general random interaction strengths. In the case of no interaction, we generalize 
to percolation on certain tree-like graphs. This last calculation supports a 
general conjecture on the coincidence of two critical probabilities in percolation 
theory. 

1. Introduction 

Consider a tree, as in Fig. 1; we use the word t ree  to mean a countable connected 
graph which has no loops or cycles and which is locally finite (i.e., each vertex 
belongs only to a finite number of edges). In the Ising model of ferromagnetism 
[KS, Prl ,  Big], there is a particle at each vertex with spin either up ( + 1) or down 
( -  1). Each particle interacts with its nearest neighbors in such a way as to favor 
alignment of the spins; we shall assume that there is no external magnetic field. 
At temperatures higher than a certain critical temperature, To, there is only one 
Gibbs state, while at temperatures below To, there are at least two. (In fact, for 
T < To, there are an uncountable number of extreme Gibbs states on a tree.) 
Clearly, adding edges and vertices to a tree can only increase its critical temperature 
[Lig, Theorem IV.1.21, p. 186]. We shall at first assume that the interaction strength 
is the same along all edges. Thus, Tc is a measure of the number of edges per 
vertex "on average." Remarkably, after a scale conversion, this notion of average 
number of edges per vertex coincides with one which has already been studied in 
connection with percolation, random walks, and Hausdortt dimension [Lyo]. This 
correspondence between the Ising model and percolation, exact for trees, is only 
approximate for other graphs [Bisl, Bis3]. 
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Fig. 1. 

There is another critical temperature, Tpc, above which the probability of finding 
an infinite (connected) cluster of (aligned) spins is 0 for any Gibbs state, while 
below Tpc this probability is 1 for some Gibbs state. We shall calculate Tpc as well 
and show that it depends only on To. 

In the (quenched) diluted Ising model, particles are removed from the tree at 
random and independently, so that each particle remains with some fixed 
probability pc [0, 1]. In this situation, T~(p) and Tpc(p) are random variables, but by 
Kolmogorov's 0 - 1 law, they are constant almost surely. In fact, the value of this 
constant is easily calculated by combining the results mentioned above with the 
percolation results in [Lyo-]. 

All of these calculations can be generalized to the case of differing interaction 
strengths along different edges and even to random interaction strengths. Past 
results for the Ising model on trees have been exclusively for homogeneous trees 
(where each vertex has the same number of edges as every other) 
[Prl, KS, Spi, MS, KT, Mtb, Mtd, KM, Con]. 

In order to obtain the percolation results for the Ising model, we first study a 
general percolation model. This extends a result of [Lyo] and also enables us to 
study percolation on tree-like graphs, as in Fig. 2. Here, we call a graph tree-like 
if it is countable, connected, locally finite, and each vertex belongs only to a finite 
number of cycles (simple closed paths). Under mild assumptions, we show that 
the critical probability, Pc, for Bernoulli percolation is equal to another more easily 
calculated critical value, Pout- This lends further support to the conjecture made 
in [Lyo] that Pc = Peut for all countable graphs. Previous calculations of Pc for 
tree-like graphs, other than trees, have been for regular structures [FE, Bis2, 
Con]. 

We now describe our results more precisely. Given a tree, F ,  designate one_of 
its vertices as the root, 0. (None of our results depend on which vertex this is.) If 
a is a vertex, we write Iol for the number of edges on the shortest path from 0 to 
~r. A cutset, H,  is a finite set of vertices such that every infinite path (i.e., path 
containing infinitely many distinct vertices) from 0 intersects H. The branching 



The Ising Model and Percolation on Trees 

° ° 

Fig. 2. 
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number of F [Lyo], denoted br F,  is defined by 

br F = inf {2 > 0:inf ~ n  ~ n 2 -  I°1 = 0}" 

As explained in [Lyo], this represents an average number of branches per vertex, 
where the edge leading towards the root does not count as a branch. This is 
independent of the chosen root, so that we may regard 1 + br F as an average 
number of edges per vertex, i.e., an average coordination number. 

If J > 0 is the interaction strength along each bond and k is Boltzmann's 
constant, then phase transition in the Ising model on F occurs at the temperature 

J 
Tc - k coth~- i br F '  

as we show in Sect. 2. In the diluted Ising model, we first create a random graph 
by means of a Bernoulli site percolation process on F,  then we consider the Ising 
model on that random graph. If p is the probability of a vertex of F remaining, 
then this is of interest only for p larger than the critical probability, Pc, which equals 
(br F ) -1  [Lyo]. In this case, we have 

J 
To(p) = a.s. 

k coth-  1 (p. br F )  

The following more general result in Sect. 2 allows for arbitrary interaction 
strengths. For vertices a and z, we write tr N z if o- is on the shortest path from 0 
to ~. If o-¢0, then ~ denotes the vertex such that "~< o and I'gl = Io-1- 1. The 
edge from ?- to tr is denoted e(o'). If the interaction strength along e(o) is J~, p is 
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the survival probability of each vertex (p = 1 for the undiluted model), and 

then 

inf J .  > O, sup J~ < 0% (1.1) 
O ~ a E F  O ¢ : a E F  

 tan ; 0} as 
Still more generally, we may state the following theorem. 

Theorem 1.1. Let F be a tree and let J~(O ¢ aeF)  be independent random variables, 
none a.s. zero, satisfying 

inf{J~:J~¢O, O C a e F } > O  a.s. 

and 

sup J,~ < ~ a.s.  
O ~ a ~ F  

The critical temperature of phase transition for the Ising model on F with random 
interaction strengths J~ is 

Tc=inf{T:inf~nofl<= E[tanh'klT]=O} a.s. 

In particular, if J~ are identically distributed, then Tc is a.s. the solution to the equation 

Note that Theorem 1.1 encompasses the aforementioned diluted model: given 
constants J~, we construct independent random variables equal to J~ with 
probability p and to 0 with probability 1 - p .  Consideration of the component 
connected to 0 with nonzero bond strengths shows that the randomness of the 
bond strengths in Theorem 1.1 is equivalent to the randomness of the sites in the 
diluted model. (Of course, this is special to trees.) 

In Sect. 3, we study a general percolation process on trees, which we term 
quasi-Bernoulli. It is used in Sect. 4 for spin percolation in the Ising model and 
in Sect. 5 for Bernoulli percolation on tree-like graphs. Our first result in Sect. 4 
is for constant interaction strength J > 0; here, the critical temperature for spin 
percolation is 

i b r F  ~ if b r F < 2 ,  
Tpc= kc° th-1  2 - b r F /  

~ + ~  if b r F >  2. 
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For the diluted model, we have a.s. 

J 
if p.br F < 2, 

r.o(p)= kc°th-l(2-p'brC-p-brr/'  
+oo if p ' b r F  > 2. 

More generally, with interaction strengths satisfying (1.1), we have 

Tpc(p) = inf t T:inf ~ I-I p(1 + e-2S'/(kr~) -1 = 0 t  a.s. 
t. H a~HO@~<a ) 

For random interaction strengths, the critical temperature is determined as follows. 

Theorem 1.2. Under the same hypotheses as in Theorem 1.I, the critical temperature 
for percolation in the Isin9 model on F is 

Tpc=inftT:inf  ~ E[(l+e-2~'/~k~)-']=O} a.s. 

Given a countable connected graph G and a point O~G, a cutset (relative to 
0) is a finite set of vertices, H, such that every infinite path from 0 intersects H. 
Let G0(o)) be the (random) connected component of 0 for a Bernoulli bond or site 
percolation process on G with survival parameter p. In [Lyol, we defined the 
critical probability 

pc,t( G) = sup { p:infEp[card H c~ Go(o)) ] =0} ,  

where Ep is expectation with respect to the percolation under consideration and 
"card" counts the vertices. For comparison, we state the definitions of the usual 
critical probabilities: 

pc(G) = sup {p:Pp[card Go(o)) = oe] = 0} 

and 

pT(G) = sup {p :Ep[card G0(o))] < ~}, 

where Pp denotes probability with respect to the percolation. Clearly 

pr(G) _--< p,t(G) =< p~(G). 

In the case of many regular lattices G, all three are equal [AB, MMS]. For arbitrary 
trees, F, pc,t(F)= p~(F), while p r ( F ) =  p~(F) only for sufficiently "regular" F 
[Lyo]. We conjectured in [Lyo] that Pc,t(G) = pc(G) for all G. In Sect. 5, we show 
that this is the case when G is tree-like and satisfies a mild regularity condition; 
this condition includes the case when the blocks of G are uniformly bounded in 
size. Here, a block of G is a maximal connected subgraph having at least one edge 
and no outpoints [Har, p. 26], where a outpoint is a vertex whose removal would 
disconnect the subgraph. 
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2. The Ising Model 

Given  a tree F and vertices a, z s F ,  we write a < z if o-< v and a ¢ z. If  a = ¥,  we 
write a ~ z and  we call z a successor of a. We shall modify  the definition of  cutset,/7, 
so as to exclude the possibility that  H contains two vertices, a and z, with a < z. 
A special cutset is the sphere of radius n, Sn = { a s F : l a [  = n}. We write a N H if 
every infinite pa th  f rom a intersects H ;  the set of  such a is denoted --</7. We also 
write a < H if a = < / / a n d  a¢H.  We say that  a sequence of cutsets, {/7,,}, tends 
to oo iflim,_, oo rain {l~rl : a E / 7 . )  = oo. W e  denote the subtree {zeF:a  < z} by F ~. 

L e t / 7  be a cutset. Let  u ~ {  + 1, - 1} be r a n d o m  variables denot ing the spins 
for a < / 7 .  Fo r  "plus"  bounda ry  conditions,  these are determined by the 
Hami l ton ian  

J 
JC~n(U) - k T o<~_ Fl bl ~ bl ~ - 

in accordance with Bol tzmann 's  equat ion 

Pn[u~A] = ~ e-yen(")/Z n (A ~_ q/), 
u~A 

where 

Z rz= ~ e -yen(u) 
uEql 

and q / =  {us{ + 1}~-n:U[n= + 1} is the space of all is the par t i t ion function 
configurations.  We are part icularly interested in Pn [uo  = + 1]. F o r  a = +_ 1, let 

Z~(O) = Z e-yen("). 
uc-qg 

u o : a  

More  generally, for a < / 7 ,  consider a as the root  of F ~ and I Ic~F ~ as a cutset 
of  F ~, and  define Z n ( a )  analogously  to Zn(0)  above.  Finally, for a s H ,  let 

Z.n(a)  = ~a, + 1. 

Thus,  

whence 

~Oma 

= Z ~I e"~J/(kr'Zff(a) 
re{+ 1}sl a~Sl 

= I-[ E e"~ l~ ' z"  + 1( ) -t- e - a J / ( k T ) z  _/I1(O")], 
aES 1 

Pn[uo  = + 1] 

P n [ u o  = - 1 ]  

Z+l(tl O ) / Z  II  ,o,J/(kT)~ t7[ (r'r~ -!- o - J / ( k T ) ~  H (r'r~ 
- -  - - - - - - -  H ~ - ~ + l ' ~ J  ~ ~ ~-I~'~P 

Z H j ( O ) / Z  FI ~ S l  e - - S / ( k T ) z  +//1(0") ~- e S / ( k T ) z  -//1(0") 

= l-I o~(z 7~(~)/z_~1(~)), 
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w h e r e  a = e 2J/(kT) a n d  

For a < H,  set 

a x +  1 
O~(x) - x + ~ " 

343 

fn(G) = z f l (~) /z  gl(~), 

which we interpret as + Go for a e H .  We have thus arrived at a recursion formula 
for f n :  

; [L .~ ,o~ ( fn ( z ) )  if a < H,  
fn(~) (2.1) - - [+~  if a~H. 

The empty product is defined to be i, so that it follows from (2.1) that when 
I I ~  F ~ = ~J, f u (a )  = 1, as it should. 

We now pass to the thermodynamic limit. Choose a sequence of cutsets {H,} 
tending to infinity. From considerations of monotonicity, it is well known that 

f ( a )  = lira fn . (a)  
n - . ~  c~  

exists and is independent of the choice of {H,}; furthermore, 

P[u o = + 1] 
f(O) = 

P[u o = -- 1]' 

the probabilities being taken with respect to the limiting Gibbs state. For  T > T~, 
f(0) = 1, while for T < To, f(0) > 1 [Pr l ,  Proposition 8.9, p. 67]. 

Theorem 2.1. Let  F be a tree. Phase transition in the Isino model on F with constant 
interaction strength J > 0 occurs at 

J 

Tc - k co th-  lbrF" (2.2) 

If fl = (e - 1)/(e + 1), then (2.2) is equivalent to 

f l c .brr  = 1. (2.3) 

The key to estimating f lies in replacing g~ by an exponential function, as the 
latter behaves much more simply under composition and multiplication. For  this 
purpose, we shall use the following inequalities. 

Lemma 2.2. For x >= 1, 

x ~-x~/(~+x~ <-_ o~(x) < x a. 

Proof.  First, by the weighted form of the arithmetic-geometric mean inequality, 
we have 

0 & ) =  ~ x _~ X + X ~ X~/(~+x)X-x/(°~+x) = X (~-x)/(~+x). 

o : + x  o~+x 
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Second, we have 

x d 
loggy(x) = !~tlogg~(t)dt= i s z -  1 

=i i , 

Proof of Theorem 2.1. We shall show that  if f l .brF < 1, then f (0)  = t, while if 
f (0)  = 1, then ft .  b r F  < t. Given a cutset H ,  define h on = H  recursively by 

h ( a ) = { c ~  ~ ff a~/7, 
~_,,h(z) ~ if a < / 7 .  

We claim that  for n large enough t h a t / 7  ~ =</-/,, we have fn.(a) <-_ h(a) for a < / 7 .  
This is a consequence of the following facts when combined with (2.1): 
g~(fn.(a)) < s = h(a) ~ for a~/7; g~(fn,(a)) <= fn.(a) p for a < H.  In particular, 
f (0)  =< h(0). Set O(a) = fll,I log h(a). Then O(a) = ~_~,O(z) for a < / 7 ,  whence 
0(0) = Z~,nO(a)= Z ~ n f l  I~1 - l  log e. This yields the bound  

f (0)  < h(0) = e °(°) = aP-~x, o J  "1. 

By definition of br F ,  it follows that  if fi" br F < 1, then f(0)  = 1. 
Conversely, suppose that  f (0)  = 1. Then f(a) = 1 for all a e F  by (2.1). Choose 

floeJ0,fl[  and set ~o = (1 + f lo) / (1-  flo). Given n so large that  fn.(a)< S/So for 
aeS~, there is a c u t s e t / 7  c_ <--/7, such that  for all a < H,  

f n.(a) < ct/s o, (2.4) 

while for all a~ /7 ,  there is a successor % of ~ such that  fn.(%)> S/So. Put  
a = g,(S/ao). Since fn ,  > 1, we have for a~/7, 

f ra(a) = I-I g~(f rt,(~) ) ~ o,( f  n,(Vo) ) > a. 

Furthermore ,  for x < S/So, we have (c~-x ) / ( ,  + x)> rio, whence by (2.4) and 
Lemma 2.2, we obtain 

g~(fn,(a))> fn,(a)P° (a< /7). 

If we define h on ~ H recursively by 

h(a) = { ~ i  if a~H, 
~_~h(~) ~° if a < H ,  

then it follows that  fn,(a) > h(a) for a < H.  In particular, 

f n,(O) > h(O) = aG~ Jo ~l. 

Since a > 1 and f n . ( 0 ) ~ l ,  it follows that  infn57~nfllo ~1 = 0 - i n  other  words, 
flo'br F < 1. Since this is true for all fl0 < fl, we arrive at our  desired conclusion: 
f l .brF < 1. • 
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In combination with Corollary 6.3 of [Lyo], this theorem has the following 
immediate consequence for the diluted Ising model. 

Corollary 2.3. Let F be a tree, (br F ) -  1 < p < 1, and J > O. For the diluted Ising 
model on 1-" with survival probability p and constant interaction strength J, we have 

J 
T~(p) = a.s. 

k coth-  l(p. br F )  

We shall now allow the interaction strengths to vary according to the bond. If 
J ,  is the strength along e(a), the Hamiltonians take the form 

1 

~rt(U) = - -k-To <~<__ 17 J~u`u ~" 

Correspondingly. we write % = e2ao/t~T) and //~= (7~-1)/(a~ + 1)= t a n h J j  
(kT). The same reasoning as above leads to the equation 

~I , - . g~ ( fn ( z ) )  if o < H. 
fu(a) 

( + m  if aE/7. 

Theorem 2.4. The critical temperature of phase transition for the Ising model on a 
tree F with interaction strengths J.  > 0 satisfies T, < Tc <= T*, where 

T , = i n f ~ T : i n f ~  d J tanh J~ ) ]-I t a n h J ~ = O }  
( n ~ u  \ kTJo<~<=,, kT 

and 

T * = i n f t T : i n f ~ J ~ t  n ~ u  o<~<,l-I t a n h k ~ = O  }. 

Then as in the proof of Theorem 2.1, fn.(a)< h(~r) for a < / /  and /7 c__ ~ 17,. 
Therefore 

_ 2 J ~  
f(O) _-< h(O)= exp ~Tn ) ~  ~ 0  Z(<[ [ ~fl" 

which entails, by our supposition, that f(O) = 1. Thus Tc _-< T*. 
Conversely, suppose that f(O) = 1. Choose T' > T and define c~', fi '  accordingly. 

Given n sufficiently large, there is a cu tse t /7  __ ~/'/, such that 

fn.(a)<%~ - f l ' ~ - %  (a < / - / )  
+fi; ¢o = 

Of course, in most cases, T, = T*. Certainly this happens if infJ~ > 0. 

Proof. Suppose that infrt~]~r/J~[I0<,<~fi, = 0. Given a cutset H, define h on 
=</7 by 

h(a)= N 

(l~¢_,h(z)P, if o" < H. 
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while each a~H has a successor Zo such that fn,(%)> a~/ ~. Put a, = 9~(~/%) 
and note that a~ > (a,/~'j'- by Lemma 2.2. Define h on z H by 

{a~, if a~H, 
h(a)= yi~_,~h(~)e, ~ if a < H .  

Then fn,(a) > h(a) for a < /7 ,  so that 

frt,(0) > h(0) = exp E (log a~) H 8; 
a ~ / 2  r O < ~ < a  

>exp 8~ log H 8; 
0 < ~ < a  

_ 1 t 

Our supposition entails, therefore, that infnZ~nS'fl~[-L~8'~=O. Since T' is 
arbitrary, the conclusion Tc > T, ensues. • 

Corollary 2.5. The critical temperature of phase transition for the diluted Isin9 model 
on a tree F with interaction strenoths J~ satisfyin9 (1.1) and survival probability p is 

T~(p)=inftT:inf~ n~r/o<~=<~ ~ H ptanh--=kTJr 0} a.s. 

Proof. Let Fo(CO ) be the connected component of 0 arising from the Bernoulli 
percolation on F, let//(co) = Hc~ Fo(CO), and define fnt~)(a) for aaFo(CO ) as before 

for the tree Fo(CO ). Let fo,(0)= lira fn(,o)(O). Now T~(p) is a constant (a.s.) and for 
//--* o0 

T> T~(p), fo,(0)-- 1 a.s., while for T <  T~(p), fo~(0)> 1 with positive probability. 
Suppose that {/7,} is a sequence of cutsets tending to infinity such that 

lim ~ ]-I PS,=O. Then 
n"~ oo a e  Hn  O < "¢ ~ a 

L a s  n , , (~)  O < e = a  a~ r/,, O<~_<~r 

whence, by Fatou's lemma, 

= Z  1-I pS,--,o, 
~ H n  O < r = < a  

lim Y, H f l ,=0  a.s. 
n--)~  ~ / / ~ ( ~ )  0 < z < a  

It follows from (the proof of) Theorem 2.4 thatfo(0) = I a.s., whence To(p) <= Ta.s. 

On the other hand, suppose that inf ~ H pfi~ > 0 and choose T' < T. Define 
H a a H 0 < z < a  

fi'~ accordingly; we claim that inf ~ (T'/T) I~l 1-I Pfl'~ > 0. For let F(t) = log tanh t. 
H a~_rl 0 < r < a  
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Then if t > 0, 

whence 

sech 2 t 2 1 
F'(t)  - < - ,  

tanht  sinh2t t 

J/(kT) 
1 og(pd/~)=  ~ F'(t)dt <log(T'/T). 

d/(kT') 

Our claim follows. 

We next claim that inf ~ l~i fl'~ > 0 with positive probability. Given this, 
/7 a~F/(o) 0<~_-<~ 

we may conclude from Theorem 2.4 that T~(p) > T' with positive probability, hence 
a.s. Because of our choice of T', this entails the relation T~(p)> Ta.s., which 
completes the proof. 

The proof of our claim is exactly parallel to that of the second half of Theorem 
6.6 of [Lyo]; we merely sketch it. We call a function, 0, on F a unit flow if 0 > 0, 
0(0) = 1, and V ~ F 0 ( e )  = ~ 0(G Write o" A T for the vertex farthest from 0 which 

17--+~ 

is N both cr and z. Put p~ = 1-I p/?'~. Using what was established above, we may 
0 < ~  

find, as in the proof of Corollary 4.2 of [Lyo], a unit flow, 0, such that 

Define 

E 0(O')2 P~ t < O0. 
0 g: ¢xeF 

k(e) = O(cr)p-l~tl ro(.,)(a), ~. = ~ k(a). 
~ESn 

Then {~,} is a nonnegative martingale satisfying 

2 G[~ . ]  --< Y~ O(G)O(~)p-l~^~l < y, o(G)=p-I~l 
~,~eS,~ l,rl_-<n 

This is uniformly bounded in n by virtue of our choice of 0 (and the fact that 
p~ < pl~l). Hence {~,} has a nonzero limit with positive probability. Set 

and 

O<~:<a 

I1. = ~ a (¢  A : ) -  1 k(¢)k(:) .  
¢,reSnn Fo(~o) 

Then Ep[Y, ]<  ~ 0(a)2p~-l; as this is bounded, we obtain lira I1,< ooa.s. 

Therefore lira yn~-2 < co with positive probability, whereupon our claim follows 
it--+ oo 

from Lemma 3.2 of [Lyo]. • 

The proof of Theorem 1.1 is exactly parallel; the only significant change that 
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needs to be made is to define k(a) as 

O(a)o<l~<= t a n h ~ / E [ t a n h ~ ] "  

3. Quasi-Bernoulli Percolation 

Given a tree F, suppose that (~, P) is a probability space associated with random 
subgraphs F (09) o f F (co e ~). We assume the measurability of the indicator functions 
corresponding to the presence or absence in F(co) of any vertex or edge of F. Let 
Fo(co ) be the connected component of 0 in F(co) and K(a)= {co:aeFo(co)}. We 
say that (F, 12, P) is a quasi-Bernoulli percolation process if there is a constant 
M <  oo such that for all a,z~F, 

P[K(a) c~ K(v)] 'P[K(a ^ z)] =< MP[K(e)]P[K(z)]. 

(The motivation for the name "quasi-Bernoulli" is more apparent when the above 
inequality is expressed in terms of probabilities conditioned on K(a ^ z).) 

Theorem 3.L Let (F, so2, P) be a quasi-Bernoulli percolation process. If  

inf ~ P[K(a)] =0, (3.1) 

then P[card Fo(CO ) = ~ ]  = 0. If  there are positive numbers w, such that ~ w, < oo 
n > _ l  

and - 

inf ~ wl,iP[K(a)] > 0, 
H a ~ / 7  

then P[card Fo(co ) = ~ ]  > 0. 

Proof. If (3.1) holds, then there is a sequence of cutsets {H,} such that 

E[card(Fo(co)c~H,)] = ~. P [ K ( a ) ] ~ 0 .  
a e / T n  

By virtue of Fatou's lemma, 

(3.2) 

lim card (Fo(co) n/-/n) = 0 a.s., 

which is the same as card Fo(co) < ~ a.s. 
On the other hand, if (3.2) holds, then the max-flow rain-cut theorem provides, 

as in the proof of Corollary 4.2 of [Lyo], a unit flow 0 on F such that 

Define 

O(a)2p[K(a)]-i < ~ .  (3.3) 
0"e jr- 

X , =  )-' 1K~)0(o)P[K(~r)] -1. 
o'ESn 
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Suppose, for a contradiction, that Fo(o~ ) is finite a.s. Then X, is eventually 0 a.s. 
Now 

E[X,  z I = ~, O(a)O(~)P[K(a)l- 1P[K(z)] - I  P[K(a)  c~ K(z)] 

<= M ~ O(a)O('c)P[K(a ^ z) l -  1 
cr ~'~Sn 

= M  Z P [ K ( ~ ) ] - t  Z O(a)O(z) 
I~l<n ~ A ~ = 0  

__< M ~ 0(0)2P[K(0) ] - t .  
I01 < n 

In view of (3.3), E[Xn 2] is bounded, whence {X.} is uniformly integrable. Since 
X,  ~ 0 a.s., it follows that X,  ~ 0  in L 1 [DM, p. 231, which contradicts the fact 
that E [ X , ]  = 1. • 

4. Spin Percolation 

Markov random fields lead naturally to quasi-Bernoulli percolations, as we shall 
see below. Thus, the critical temperature for spin percolation is amenable to 
calculation via Theorem 3.L Because of its greater simplicity, we shall treat the 
case of constant interaction strength first. 

Theorem 4.1. Let F be a tree. The critical temperature for percolation in the Isin9 
model on 1- with constant interaction strength J > 0 is 

I J if b r F  < 2, 

Tp~= k c ° t h -  1- br--F- 
2 - br F (4,1) 

~ + o e  if br F_>__ 2. 

If 7 = a/(a + 1), then (4.1) is the same as 

7~ = max ((br F ) -  1, 1/2). (4.2) 

Proof. To the Gibbs state (O,P) on F, we associate the random subgraphs 
F(~o)= {o-eF:u~(co)= + 1} (with e(a) present iffu~(co)=u~(cn)= + 1). By the 
Markov random field property of the Gibbs state and the fact that F is a tree, 
we see that 

P[K(a)c~K(z)IK(a ^ z)] = P[K(e)IK(a  ^ ~)] 'P[K(z)IK(a ^ z)]. 

Therefore (F, f2, P) is a quasi-Bernoulli percolation process. Now 

P[K(a)]  = P [ u  o = 1] 1~ P[K(z)IKfY)] = P [ u o  = 1] l-[ P [ u , =  llK(z~)] 
0 < ~ < a  0 < l : < a  

= P [ u o = 1 1  1] P [ u ~ = l l u  v = l ] ;  
0<r_-<a 
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in the last step, we have again used the Markov random field property. To calculate 
P[u,  = 1 [u~ = 1], it suffices to consider the tree F ~ u  {T} rooted at ¥. Now it is 
easy to see that 

P[u~ = u~ = 1] 
= "fO:)- P[u T = 1 &u~ = - 1] 

Consequently 

which gives us 

P[u~= l lu¥= 1 ] - - -  
e f (v)+  1' 

_ f(O) l~ . f (z)  
P[K(o)]  f(O) + 1 o<T__<, af(z) + 1" 

For T larger than the value for Tp~ asserted in (4.1), we have T > T~, whence f = 1 
and the above reduces to _*,,I-I Thus, if ? ' b r F  < 1, Theorem 3.1 ensures that the 

2 1  " 

probability of an infinite cluster of up spins containing 0 is 0. Since T > T~, the 
same is true of down spins, and since F is connected, this entails the a.s. lack of 
any infinite duster. 

On the other hand, if T is smaller than the value for Tp~ asserted in (4.1), then 
s incef  ~ 1, we still have that P [K(o)] ~ 121<. Now Theorem 3.1 provides that 0 
is in an infinite cluster with positive probability. Since the tail field is trivial for 
extreme Gibbs states [Pr2, Theorem 2.1], this guarantees the a.s. existence of some 
infinite cluster. • 

As before, this leads to the determination of the value of Tpc for the diluted 
Ising model (by means of Corollary 6.3 of [Lyo]). 

Corollary 4.2. Let F be a tree, (br F ) -  1 < p < 1, and J > O. For the diluted Ising 
model on 1" with survival probability p and constant interaction strength J, we have a.s. 

Tpc(p)= k c o t h - l (  p . b r F  ~ if p . b r F < 2 ,  

\2 c/ 
+oo  if p . b r F  > 2. 

We now generalize to varying interaction strengths. In fact, it is no more 
difficult to handle the case of random interaction strengths immediately. 

Proof of Theorem 1.2, Let the probability space corresponding to the random 
variables {J~} be (so2 ', P) and that corresponding to the Gibbs state associated with 
{ J~((o')} be (~,  P~,,) (co'sf2'). The compound process yields the random subgraphs 
F(~o', co), as in the preceding proof, representing the clusters of plus spins. For 
each co', (F(cd,.), ~ ,  P~,,) is a quasi-Bernoulli percolation process with 

P o ; [ K ( o ) ] -  f~/(O) !j< ( l + e ~ ( j ) _ l f ~ , ( z ) _ l ) _ l .  
fo,,(0) + 1 o<,=, 

I f i n f E [  y , n  L~n0<~_-<~I-I ( l + % - l ) - l l = 0 ,  t h e n b y F a t ° u ' s l e m m a ,  
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inf ~ I-I (1 + ~ - 1 ) - ,  = 0  a.s. 
H a e H  O < ~ < a  

Furthermore, by Theorem 1.1, T > T~ a.s., so that f ~ , -  1 a.s. This means that 
(3.1) holds and percolation does not occur a.s. 

On the other hand, if T is tess than the asserted value of Tv~, choose T' > T 

nf e2JJ( T ) Now s u c h t h a t i  E 1-[ ( t+a~- l )  -1 > O a n d s e t ~ , =  
0<~<a 

1 + ~ 1 < e -~(1/T- 1/T') (1 + (a')- 1)- 1(1 + a~-i f ( a ) -  1) < 1 + (a ' ) -  1 = 

where 

e = i n f{d log (1  + e - 2 ~ ' / k ) - l : l < _ t < _ l , o ¢ a ~ F }  

is positive a.s. in view of the hypotheses. Let 

w, = e-nt(1/T- l IT ' )  

Then ~ w, < oo a.s. and 
n 

inf ~ W l ~ l P [ K ( a ) ] > i n f ~ ,  1 I-I (1 +e-2JJ(kr')) -1 >0,  
H a e H  H t r e H ~  O < ~ < a  

whence Theorem 3.1 ensures percolation with positive probability a.s. In fact, 
percolation is a.s. as before. • 

5. Bernoulli Percolation on Tree-like Graphs 

From every tree-like graph, G, and eutpoint 06G, we form a tree, F,  rooted at 
0 in the following manner. The vertices of F are the cutpoints of G and a has z 
as a successor iff a and z belong to the same block and every path in G from 0 
to z passes through a. Every subgraph G' of G induces a subgraph F '  of F as 
follows: a vertex a E F  lies in F '  iff a6G'  and an edge in F lies in F '  iff its endpoints 
lie in G' and are connected in G'. In particular, every bond or site percolation 
process on G induces one on F; if that on G is Bernoulli, then that on F is 
quasi-Bernoulli in many cases--e.g., if the blocks of G are uniformly bounded in 
size. 

Theorem 5.1. Let  G be a tree-like graph, O~G a outpoint, and F the associated tree. 
Suppose that for  each 0 < p < 1, there are constants M < ~ and r < 1 such that if  
a, zeF\{0},  "6 = ¥,  a ~ z, and a and z are in the same block B in G, then 

Pp[a, z, ~- are connected] < MPp [a, ~ are connected] Pv[z, ~ are connected] 
(5.1) 

and 

s,(p):= Pp[a, '6 are connected] < r, (5.2) 
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where Pp denotes probability with respect to Bernoulli bond [site] percolation on B 
with survival parameter p. Then the critical probability for Bernoulli bond [site] 
percolation on G is given by 

Pc(G)=suptp:inf~ n~no<~__<~ ~ l~ s~(p)=0},  

where H denotes a cutset of F. 
It follows that pc(G) = Pout(G) (for both bond and site percolation on G) because 

cutsets H of F give only some of the cutsets of G. Note that the hypotheses are 
satisfied if the blocks of G are uniformly bounded in size. 

Proof. The condition (5.1) guarantees that Bernoulli percolation on G induces 
quasi-Bernoulli percolation on F.  Furthermore, in the notation of Sect. 3, 

P[-K(a)] = H s~(p). Thus, in light of Theorem 3.1, it suffices to show that for 
O < z < o "  

p < p ' <  1, 

sup H s~(p)/s~(p') < o% 
n_->l I,~l=n O<~<,r 

which we shall accomplish by demonstrating that 

sup s,(p)/s~(p') < 1. 
0 ¢ ~ r ~ F  

Now the law of B(c~) under Pplp2 is the same as the law of B(09t)~B(~02), where 
B(o~) are chosen independently via Pp~ (i = 1, 2), respectively. Of course, if ~r and 
~- are connected in B(~I)c~B(~2), then they are connected in each of B(~o~). 
Therefore 

S,r(PlP2) < S,~(PO'S,~(P2). 

It follows that s~(p)/s~(p')< s~(p/p'), which, together with (5.2), completes the 
proof. • 
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