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Abstract. Each “graded KMS functional” of a Z/2-graded C*-algebra with
respect to a “supersymmetric” one-parameter automorphism group gives rise
to a cyclic cocycle.

In order to match algebras of primary mathematical interest for which there are no
p-summable Fredholm modules, A. Connes introduced the wider notion of
0-summable Fredholm module [1], which also encompasses the Dirac operator on
loop space rigorously constructed by A. Jaffe and collaborators [2] — and
subsequently developed the corresponding generalizations of cyclic cohomology
and of the Chern character [ 3]. For constructing the latter, Connes had to resort to
a “formal square root” (Ref. [ 3], p. 20), so to speak enforcing supersymmetry, and
thus leading to conjecture a deep relationship between cyclic cohomology,
supersymmetry, and the modular theory of Von Neumann algebras [4]. On the
other hand A. Jaffe, A. Lesniewski and K. Osterwalder were led by the
investigation of supersymmetric field theoretical models [2] to propose (under a
different name) an interesting alternative construction of the Chern character of a
f-summable Fredholm module [5] {cf [9]).

The purpose of the present note is two-fold: first, using a Z/2-graded version of
cyclic cohomology [6, 7], we enrich the (slightly adapted) Jaffe et al. (overall even)
cocycle by a second component (odd both for the degree-of-form and the intrinsic
grading)'. Second, we point out, as a first step towards the program [4], that the
Jaffe et al. construction may be reinterpreted to pertain to “graded-KMS
functionals” with respect to one-parameter automorphism groups “supersym-
metric” in that they possess infinitesimal generators “with a square root.” Under
this aspect, [5] appears as describing the cocycle attached to the “superextension”
of KMS-states of a type-I flavour. We defer to a later publication the discussion of
more general cases.

! We in fact also treat the overall odd case (cf. 9 below)



346 D. Kastler

1. Definition. Let A= A°+ A* bea Z/2-graded C*-algebra (i.e. A’ and A" are closed
linear spaces with 4‘4'C A'*7mod2)? possessing a unit 1. A continuous one-
parameter automorphism group of A4 is called supersymmetric whenever

(i) o preserves the Z/2 grading:

afA)cAl, i=1,2, teR, H
(i) the infinitesimal generator of a:
d
-] 2
D dt t=0at ( )

is the square of an odd derivation ¢ of 4, i.e. one has on the domain &; of ¢
{contained in the domain 2, of D):

D=§, G3)
Sab)=(0a)p +(—1)%adb, a,beP;nA°nA", @

[note that (1, 2), (1, 3), and (1, 4) hold on the *-subalgebra A4, of infinitely
differentiable (=smooth) elements of 4]

2. Definition. With («, 5) a supersymmetric one-parameter automorphism group of
the Z/2-graded C*-algebra A=A%+ A", and with teR, a (bounded) linear
form ¢ of A is called graded t-KMS whenever one has?

o(ba)=(—1*"p(ax b)), a,beAd,NA’NA", (%)
and
poo,=¢, teR (hence pe-5=0). (6)
With these definitions one has

3. Theorem. Given a Z/2-graded C*-algebra A=A°+ A", a supersymmetric one-
parameter automorphism group (e, 8) of A in the sense [1], and an (even®*) graded
t-KMS form ¢ of A in the sense [2], setting, for a,, ai,...,a,€ A4,

o'(agda,...da)=t" 2i"@ (ao Ijn # (6ay)... oci,"(éa,,)dt> , (7

where
I={te(t;,...t,); 0st; <...S1,5¢t} ]
yields a cyclic cocycle of A in the sense that one has
9(fe+B)=0, ©

2 We shall denote by da the grade of as 4°0 4", and by 0 the grading automorphism of 4 (for
ae A%, da=0 and Oa=a; for ac A*, da=1 and fa= —a)

3 Condition (6) is not independent of (5). Note that in restriction to A°, ¢ is --KMS in the usual
sense

* Even in the sense that ¢ vanishes on 4 (could be left out, cf. 9)
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where® Be=f'e—ac with, for ag, ay, ...,a,,,€ A°UAY,

Belagday...day, ) =(— 1)aacaoaﬂi‘h Ada, 41

+ z (—1) " £ 2o aoday...daa;.1)...da,,,, (10)
acs(aodal...da,,ﬂ):(—1)(1+6a"”)("+kEOaak)a,,Haodal...da,,, (11)
and B=B A with i
Bo(ayda, ...da,)=1dayda,...da,+ (1) =o"™ayda,...da,d1, (12)
and A= i A on ", where
k=0
Magda,...da)y=(— 1" """ E" )y daoda, ... da,_ . (13)
In fact one has
n—1
@'o Belagda, ... da)=t 2 " o (5a0 Ij" o (6ay)... oci,"(éa,,)dt>
= —¢'oBlayda,...da,), (14)

The proof follows from a sequence of lemmas.

4. Lemma. With u,, i=1,...,n differentiable functions: R— A, setting f',=1 and

Sy, .oy ug)= Ij" uy(ty)...u(t)dt, teR, 15
t
. d
we have that, with u,= Eui’ i=1,...,n, for 1<k<n,n=1,2,....
f(;)(ul’ Uzs e un)=f(;— Uiy, us, .. ”n)_”1(0)f(;— (U, s hy)
f&)(ul, eees Uy © )=f(; 1)(”1, e Ul p 1510y “n)_f(;— 1)(”1, N TAPY R T |
fn)(ub s Uy 15 Y, n) ﬁn 1)(u1= Uy )un(t)_.f&— 1)(”1’ ey Uy, Uy lun) (16)
and, with 1 the constant unit function,
n—1 ’
kzl ﬁn+ 1)(”1: (] uk’ ]15 uk+ ERERE] un)= tle)(ula [RA] un) . (17)

Proof. Equation (16) foliows straightforwardly from (15); and (17) by termwise
adding the relations obtained by making i, =1(u(t)=t1) in (16) for k=1,...,n

5.Lemma. Setting, for ay,ay,...,a,€ A°UA,

Y]t(aodal . 'dan) = aof&)(égla [EXS 5gn) H (1 8)

5 We have used the definition of the Hochschild boundary fe and the operator A of Z/2-graded
cyclic cohomology as formulated within the differential envelope Q= @ " [6]. For the
formulation in terms of multilinear forms, see 6 below neN
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where g, denotes the function t—o,(a,), k=1, ....n, (so that '=t 2i"po ¥, ¢f.(7))
we have, for® we QU ae A°UAL, be A:

V(B e(adwdb)) —(— 1YV adw) Po, (b)) = 6 P (adwdb) — sa¥P'(Lwdb), (19)
where B'e is the operator (10).

Proof. For ag, ay,...,a,e A0 A" we have, using the derivation rule (4), and
relations (3) and (16),

— (1) ao3{ f\0ay, ..., 5a,)}
=(— 1)6“°a0a1f(§, 1)(5a2, e da,)
+ z (1) o0 5 (00 sty ) 0)
(AT fe (Ga by )@
= —{ao fw(0ay, ..., 0a,)} +day fi(bay, ..., 0a,), (20)

yielding (19) for ay=a, a,= b, w=da,, ..., da,_,.
Equating the values for both sides of (19) of a graded t-KMS linear form ¢ of 4
then yields the first equations (14), since’

(= 1) p{¥Hadw) ¥ (0o (b))} = (— 1)@+ Do [ Yi(10) P (adew)}
= p{ P (dadwdxk))} . (21)
For the proof of the second equation (14) we need

6. Lemma. Let ¢ be an even graded t-KMS linear form of A, and set, for a,,
aq,...,0,€A4,

Flnfao, ay, ..., a)=(ao fnl@1, - 4). (22)
We have the properties
Fola,a0,ay, ..., 0y )=(— 1" Fi(ap, a5, ....a,), a,eA°UA", (23)
and
I B s (24)
Proof. Using (5) and (6) we have
Fiplag. ay, ..., a,)
= tej‘T @{aoy, (ay). ..o (@)} dt

n-1
aa"kgoaak

(=1 tejI" (p{anai(t—tn)(ao)ai(z+tn-t1)(al) v Xt p —t,,)(an— 1)} dt, 25

% Q° and Q* are the even, respectively odd parts of the differential envelope € for its total grading
(sum of the n-grading and the intrinsic grading). The total grade of weQ°U Q! is denoted dw
7 Note that the first equation (14) holds for all graded +KMS linear forms of A, irrespective of
parity
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however, with s =(sy, ..., 8,), §, =t —t,, S3=t—"t,+1,...,5,=t—t,+1,, one has

teltiff seI7; and @ is even, i.c. vanishes unless Y Ja,=0: this proves (23). As for
k=0
(24), it immediately follows from (22) and (17).

We now check the second equation (14): rewriting definition (7) as

¢'(ada;...da)=t Zi"Fi,(a,,day,...,0a,), (7.a)
we have from (12), since 1 =0, and using (23),
_nti
@' o Bylagda,...da)=t 2 I"*'F{, . (6aybay,...,6a,1), (26)

hence, since @, and thus F{,, ,, is even

n+1

@' o Boi(agda,...da)y=t 2 P*IFL . (Sag,....00, p1,...,0a,),  (27)
whence our result, by termwise addition.

7. Remark. As explained in [6] Remark [3, 5], the following regauging of ¢':

(00 @y - s ) = (— 1™ "Ee™ 0yt da, . da,) (28)

will produce the cocycle condition (b + B)t*=0, where

-1 .
(b ag, a, - a)= 3, (—1YT(ay,-...,a81 1, ..., 4n)

j=0 .
—(~ i)n_ ! +aa"kEO6“"'5’((;}:{,10, 7PN B 29
and B=AB, with
(Bot) (g, a4, -, @) =71, ag, ..., a,) (30)
and A= Y J¥ where
k=0
n-1
() (ags - a)=(—1)" T "E™™(a ag, ay, ..., ). (31)

8. Remark. In a quantum field theory situation we know from [8] that any
extremal invariant 8-KMS (temperature) state of the bosonic part A° extends
uniquely to a state ¢ of 4 invariant for «(R) and 6 and such that

@ba)=g{a(yoy)(b)}, abed (32)

with y=id but, for ¢ odd, (32} is a reformulation of (5).

9. Remark. Theorem 3 holds as well for odd (graded = ordinary) -KMS forms.
Indeed, as one checks easily, for ¢ odd relation (23) holds without the sign factor
right hand side, whilst (26) and (27) hold as they stand.
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Note added in proof. Theorem 3 suggests the following questions:

(i) In which situations is the entire cohomology class independant of temperature (as found
in [5])? If this prevails in physics, to which extent is the construction of relativistic supersym-
metric field theories tantamount to computing the entire cyclic cohomology of a universal
algebra (array of local type IIIs with intermediate type Is)?

(i) Are the KMS-states the adequate generalization of elliptic operators to the non-
commutative {possibly type III) frame?



