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Abstract. Using the central charge of the Virasoro algebra as a clue, we recall 
the known constructions of the A, D, E algebras and discuss new Bosonic 
constructions of the non simply laced affine Kac-Moody algebras: the twisted 
A, D, E and the B, C, F, and G algebras. These involve interacting Fermions and 
a generalization of the Frenkel-Kac sign operators which do not form a 2- 
cocycle when the horizontal algebra has more than one short simple root. 
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Introduction 

The theory of affine Kac-Moody algebras [I, 2] once more illustrates the 
conspiracy of mathematics and physics. It appeared in the late sixties, in 
mathematics with the abstract classifications of Kac [3] and Moody [4], and in 
physics with the development of current algebra [5], string theory [6], and the 
discovery of the Virasoro algebra [7]. 

During the seventies, the theory underwent a slow but steady development 
with several landmarks: in physics, the discovery of the superstring by Neveu- 
Schwarz and Ramond [8], the first construction of Kac-Moody modules (the level 
one representation of the untwisted affine unitary and orthogonal algebras) by 
Bardakci and Halpern [9], and the understanding of the boson-fermion corre- 
spondence [9, 10]; in mathematics, the generalization by Kac of the Weyt 
character formula [11] and his analysis of the Verma module representations of 
the Virasoro algebra [12]. 

These two currents merged in 1980 when Lepowski and Wilson [13], Frenkel 
and Kac [14], and Segal [15], realized that the tachyon emission vertex operator 
of the Veneziano model can be used to represent the simply laced affine Kac- 
Moody algebras of level one. 

Soon afterwards, Kac, Kazhdan, Lepowski, and Wilson [16] generalized the 
principal construction to all the A, D, E affine algebras, and Frenkel [17] and 
Witten [18] gave a new impetus to the boson-fermion correspondence. 

Since, the theory of Kac-Moody algebras has become a major focus of interest 
in mathematics and physics, with applications in arithmetic, partial differential 
equations, statistical mechanics, and quantum field theory. Implicit in the early 
years, the modular group plays a central role in the two most impressive recent 
realizations: the construction of the moonshine module [19] and of the heterotic 
string theory [20]. 

A recent bibliography has been compiled by Benkart [21], and in the books of 
Kac [1] and of Schwarz [22]. 

The aim of this study is to review the theory of affine Kac-Moody algebras in a 
language accessible to the physicists and to solve a vexing riddle: the generaliz- 
ation of the Bosonic construction of Frenkel, Kac, and Segal to the non-simply 
laced algebras A--D--E twisted, B - C - F ,  and G. The analysis of the associated 
Virasoro algebra is the key of our constructions. 

Our paper is organized as follows. Chapter A provides a self contained 
introduction to affine Kac-Moody algebras. In Sect. A.1, which closely follows the 
notations of Kac [1], we classify the Kac-Moody algebras and study their 
gradations. In Sect. A.2, we introduce the associated Virasoro algebra, summarize 
the theory of its representations, and study in detail the energy of the vacuum. In 
Sect. A.3, we illustrate these considerations on the simple case of the algebra A t ~1). 
Section A.4 introduces the methods of quantum field theory, current algebra, and 
operator product expansions. Very many formulae, which will be continuously 
used in the sequel, are gathered in this chapter. 
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Chapter B describes the constructions of Kac-Moody modules such that the 
central charge of the associated Virasoro algebra is integral. We define two classes 
of constructions: bosonic and fermionic. In the bosonic, the Hilbert space carrying 
the representation is the Fock space of a set of free bosonic oscillators in one to one 
correspondence with the imaginary roots, tensored by the weight lattice of the 
horizontal algebra. By the theorem of Goddard, Kent, and Olive [23] this space is 
large enough, since the central charge of the Virasoro algebra is equal to the sum of 
the degeneracies of the imaginary roots. We prove irreducibility. The Frenkel-Kac 
construction [14] is recalled in Sects. B.1 and B.2 and generalized to the twisted 
algebras in Sects. B.4 and B.6-B.8. In the fermionic construction of the 
twisted algebras g(~), Sects. B.5 and B.8, the bosonic fields are averaged over an 
outer automorphism ofg without fixed point. Hence, they loose their zero modes, 
and the weight lattice of the horizontal algebra is replaced by a finite dimensional 
spinor. The signs are provided by a system of generalized Dirac matrices. These 
constructions appear in Lepowski [24] and implicitly in Kac and Peterson [25]. 

Chapter C deals with modules such that the central charge of the Virasoro 
algebra is not integral. We rely on the methods of quantum field theory. Extending 
the results of Eguchi and Higashijima [26], we define in Sect. C.1 two complemen- 
tary stress-tensors built upon the root system of an algebra of type A, D, E, and 
construct their primary fields which behave as generalized interacting fermions 
[27]. In the following sections, we use these fields to complete the vertex operators 
of the level two modules of A, D, E, and the level one modules of the affine algebra 
of type C, F, and G. These constructions are irreducible only as (Virasoro) "* (Kac- 
Moody) modules, where (Virasoro)" is one of the complementary stress-tensors. 

The bosonic constructions of Chaps. B and C involve the e operators, first 
considered by Frenkel and Kac [14], which map the square of the root lattice of the 
horizontal algebra go onto { -  1, + 1 }. When go is of type A, B, D, E, and G, the 
e form a two-cocycle, however, when go has more than one simple short root 
(type C and F) they do not. Modified ~ are defined in Sect. B.6. They only depend 
on go, and we use the same e in the constructions of Chaps. B and C even though 
the currents are very different. 

Chapter D describes some amusing manipulations which illustrate the 
enormous symmetry of the affine Kac-Moody algebras. 

A. Tools 

A.1. Classification of Kac-Moody Algebras 
Following the book of Kac [1], we recall in this section the main definitions and 
properties that we shall need throughout our discussion. 

Consider an integral (r + 1) * (r + 1) square matrix aij, called the Cartan matrix, 
satisfying the conditions: 

au=2 , aq<=O, i~j ,~ 
(AI-1) 

aij=O :=~ aji=O. J 
The Kac-Moody algebra g(a) is the Lie algebra generated by the 3(r + 1) elements, 

{hi, e?,e:~}, i=0,1 .... , r ,  



184 D. Bernard and J. Thierry-Mieg 

satisfying the relations: 
[h. hj] = O, 

[hi, ej  ±]  = + aijej  +- , 
(AI-2) 

[e i+, ej - ] = 613h;, 

(Adei-+) 1 -a~ej-+ =0 ,  

and the Jacobi identity. 
One should distinguish three cases: 

i) Finite case. The Cartan matrix is invertible. Then, we shall prove that the 
algebra is one of the finite dimensional simple Lie algebras classified by Killing and 
Cartan. 

ii) Tamed case. The Cartan matrix is of rank r. Then, the algebra is called an 
affine Kac-Moody algebra. It is infinite dimensional but not too difficult to study. 
The aim of our paper is to construct explicitly the "simplest" highest weight 
unitarizable representations of these algebras. 

iii) Wild case. The Cartan matrix is of lower rank. Very little is known so far in 
this case although the lorentzian algebra Elo, which belongs to this family, is 
undoubtedly of great interest, to mathematicians and physicists alike. 

The maximal commuting subalgebra H generated by the hi is called the Cartan 
subalgebra. Its dual vector space H* is the root space. To every generator ei +, we 
associate a vector ei of H*, called a simple root, by the relation: 

cq(h~)=aj i .  (A1-3) 

All information specific of a particular Kac-Moody algebra is coded in its 
Cartan matrix. It is very convenient to describe this matrix via its Dynkin diagram 
defined as follows: 

i) to each simple positive root c~ associate a vertex, 
ii) join every pair of vertices by max( la i j l ,  [aj~]) lines, with an arrow pointing 

from i to j if [aij [ < ]aji[. 
Two Cartan matrices which differ by the ordering of their index sets have the 

same diagram; they generate isomorphic algebras. If the Cartan matrix is 
indecomposable, the diagram is connected and vice versa. We restrict our 
attention to this case. If a Cartan matrix is not symmetric, the transposed matrix is 
also a Cartan matrix; its Dynkin diagram is obtained by reversing all the arrows of 
the original diagram. 

Let us first consider the lowest ranks. 
a) The unique rank-one simple Lie algebra is A 1 = su(2): a11= 2. 
b) By inspection there exist three indecomposable regular Caftan matrices 

corresponding to the finite dimensional algebras: 

[ A 2 a =  - 1  0 0 

B 2 = C  2 a =  [ - 2  

G2 a=  [ - -3  
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and two tamed matrices corresponding to the affine algebras: 

A2 (2) a = ( ) \5 ( ) 
_ _  / 

In higher rank, since every rank two subalgebra must be of finite type, the off- 
diagonal entries of the Cartan matrix satisfy the strong condition: 

if r > 2 ,  i#:j {ei ther  aij=aji=O, 
or ~ m i n ( -  a~j, - aji) = 1, [ ( m a x ( -  %, - aji) < 3, 

which shows that affine Dynkin diagrams and Cartan matrices are in one to one 
correspondence. 

Since the rows of the Cartan matrix are linearly dependent, we can associate to 
each simple root ei its Kac label ki, and its dual Kac label ki,  defined by: 

rain (ki) = min (ki~) = 1, 
(A1-4) 

j = O  j = O  

The sums: 

h= ~ ki, h*= ~ ki v (AI-5) 
i = 0  i = 0  

play an important role in the theory; they are called the Coxeter and dual Coxeter 
numbers of the algebra. Diagramatically, every Kac label ki is equal to half the sum 
of its neighbours kj in the Dynkin diagram, weighted by the number of lines if j is 
on the larger side of an arrow. 

By construction, the Cartan generator 

k= ~ kiVhi (A1-6) 
i = 0  

commutes with all the generators of the algebra, and hence with the whole algebra. 
It is called the central element, or central charge. Since the kernel of [a] is one 
dimensional, this element is unique. 

The classification of the affine Dynkin diagrams is now extremely easy. It is 
actually easier than the classification of the finite diagrams (which follows as a 
consequence) because an affine diagram cannot appear as a subdiagram of a larger 
one and because of the existence of a Kac labelling. Following these two rules, 
one immediately derives the classification given in Tables 1-3 where, for future 
convenience, the algebra are sorted according to their twist. By deleting a vertex, 
one recovers the finite diagrams shown in Table 4 [3, 4]. 

Let us now associate to each algebra a symmetric matrix gij satisfying: 

g~j = gji, (A 1-7 a) 
gij = ),iaij, )Li > O, 
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Table 1-3. Dynkin diagrams of the simple affine Kac-Moody algebras sorted according 
to their twist z. Each diagram has (t o + 1) vertices. The numbers on the diagrams are the Kac labels 
kl (h  1-4) 

Table 1 Table 2 

z= I: untwisted affine algebras ~=2: 2-twisted affine algebras 
1 3 (1) 

1 

1 2 2 2 2 
A 2L ' (L> 21 A(l ~l (l>~2} 

(31 U. 1 

[ "" Lit_ 1 

Dlt 1 ) 
O1 " ' ' O 1  

E(1) ,5 

1 2 3 O1 4. 3 2 1 
El1) 

Et l )  
8 

FH) 4 
1 2 3 4. 2 

G'~ ) O-- -42~] ,  
1 2 3 

,2, 
E 6 

D 4. 
1 2 1 

Table 3 

= 3 :  3-twisted anne algebras 

and the normalization: 

max(gu)=2. 

This is always possible, since either the Cartan matrix is symmetric, or the Dynkin 
diagram contains no cycle. In the first case, called simply laced, we choose gu = au" 
In the latter case, we start from the largest vertex, as indicated by the arrows of the 
diagram, and we symmetrize recursively. By inspection, we observe that: 

2-1~=1,2,3 or 4. (Al-7b) 

The matrix gu defines a degenerate metric on the root space H* [with long 
roots normed to (e, e) = 2] through: 

(oh, a j) = gu" (a  i-8) 
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Table 4. Dynkin diagrams of the simple 
finite dimensional Lie algebras (A 1-4) 

A t 0 - - - - 0 - -  - - 0 - - - 0  

Bt 0 O- - . - 0 : = ~  

C t 0 0-----0-~ 

D I 0 O- .--..0 < 

E 7 0 

187 

F~ 0 

G 2 C; ~ 0 / 

In terms of this scalar product, the Cartan matrix can be written as: 

(% c~j) (A 1-9) a u = 2 (% ~i)" 

The dual metric gu; which can be derived from the dual Dynkin diagram with 
short roots scaled to (e, c~) v= 2, defines a metric on H: 

(hi, hj)V= g~j = 4 (% c~j) (A 1-10) (c i, @%, 
The central charge k is a null vector for this metric: 

(k, k)~= 2 k,guk~--O, (At-1t) 
Z, J 

whereas there exists a root a which is the null vector with respect to the metric gu: 

(6,6)=0, 5=z  ~ k~i, (A1-12) 
i = O  

where z, the twist, is number of the Tables 1-3, where the diagram appears. 
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Because of these degeneracies, H and H* are not dual to each other metricwise. 
It is therefore very interesting to introduce a new Cartan operator, denoted by d or 
L o, called the derivation or energy operator, and a new element A 0 of H*, dual to 
the central element k. A o is called the highest weight of the basic representation. 

6(k) = O, Ao(k ) = 1, 
(A1-13) 

~(d)=l, Ao@=0. 

The metric on H and H* are extended to: 

(d,d)V=0, (Ao, g )=z ,  

_ ( a l - 1 4 )  
(d, k)~ = 1, (A0,Ao)=0. 

There remains, however, a great arbitrariness in the choice of the quantities 

c~(d) = (d, h y =  ? 

which define recursively a gradation of the root space. Throughout this paper, we 
shall work in the homogeneous gradations that we define as follows: 

*) Call eo a root such that its Kac label is ko = 1. 
*) Delete this root; the remaining subdiagram generates a finite Lie algebra, 

called the horizontal algebra go (see Table 5). 
*) The gradation is then defined by the relation: 

[d, go] = 0 ,  (A 1-15) 

which implies that, e¢(d)=0 for i=  1 to r, and its dual counterpart, Ao(hi)=O for 
i = 1 to r. The metrics on H and H* are then completed by the definition 

(hi, d)V=(Ao, Cq)=O, (al-16) 

and can be extended to the whole algebra g. 

Table 5. Decompositions of the Lie algebra g under the automorphisms a of order z 
corresponding to the homogeneous gradations of g(O (A1-25) 

g z go gi g2 dim(gi) 

A2. 2 /3. I ~  

Az. -  1 2 D. 
c, N 

D.+l 2 B,.ff~B._,.  ( 0 , 0  ) 

E 6 2 C 4 

D 4 3 A2 ~E~ 
1 

mq 
1 

n(2n + 3) 

2n2+n- - t  
2n 2 -- n -- 1 

(2m+ l)(2n--2m + 1) 

42 

26 

10 

7 
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Our definitions (A 1-12) through (A1-16) differ from those of Kac [1]. In our 
notations the roots of the untwisted affine subalgebra of the twisted algebra are 
normalized exactly as in the untwisted affine algebra [thanks to the factor ~ in 
(A 1-12)]. Furthermore, if the Kac-Moody algebra is of type g(~), the auto- 
morphism a which centralizes go in g is of order z (this is not the case for A2~ (2) 
in Kac, driving him into several complications). 

The twisted algebras Aze_l (z), E6 (2), and D4 (3) admit 2 homogeneous 
gradations, the De- (2) several. We shall construct the level one representations of 
these algebras in each of these gradations. 

A gradation can actually be associated to each conjugacy class of the Weyl 
group of g (112 in the case of E s [25]). Our homogeneous gradations correspond, 
in the untwisted case, to the class of the identity. The principal gradation, which is 
such that cq(d)= 1/h for all the simple roots of g, corresponds to the class of the 
Coxeter element. 

Geometrically, a modification of the gradation corresponds to a modification 
of the horizontal direction in the root space, see Figs. I and 2. 

If we extend the Dynkin diagram of g according to (A l -13)-(A I -16), we 
obtain the over-extended Dynkin diagram with a single additional node con- 
nected to the root c%. The corresponding Cartan matrix is lorentzian, 
with one time and r + l  spatial directions (signature - + + + + + ...). As 
emphasized by Goddard and Olive [28], d corresponds, in the relativistic 
language, to the momentum of a photon, k to the conjugate null direction, 
and h * to its transverse polarization. 

Q 

J 

• . - - I  d?=  0 
6 / -  

A J " -  u~" 

o ' "  ~ " ; 0  

Fig. 1. Root diagram of the algebra A1 (1) (A 1-13). (%, al) and (~0, ~1) are 2 systems of simple roots 
of A~ ~). 6 is the null root. 6 points in the null direction, but the dual direction d = 0 can be chosen at 
will. Three examples are illustrated, d and ~ correspond to the 2 possible homogeneous gradations. 
They are exchanged by the outer automorphism Tll z. dp corresponds to the principal gradation 
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m •  
/ 

/ 
/ 

/ / 
/ / 

- . ~ / J "  i . . I  "~ . 

d ~ - _ o  . t  • 

/ 
/ 

• 1 •  / 

/ t 
1 1 . - I  do= :t 

/ 

/ 
t -  

Fig. 2. Root diagram of the algebra A2 (2) (A1-30). The d o gradation corresponds to the outer 
automorphism of order 2 of Az, the dl gradation, to the automorphism of order 4 

The Weyl group of g(a) is the discrete group generated by the reflections Ri in 
the simple roots e~: 

R i : H * - ~ H * ,  
(AI-17) 

2 ~ 2 - 2  (2' c~i) ~i. 

This group is infinite and contains an abelian subgroup T isomorphic, in the 
simply laced case, to the root lattice of the horizontal subalgebra. The null root 6 is 
Weyl invariant. The Weyl orbit of a real root has unbounded d-eigenvalues. 
However, since the metric on H* is Weyl invariant by construction, the orbit of a 
weight A of level k(A)= k lies on the paraboloid 

P(A) = {~ + n6 + kAo, ~ ~ H I, (~, c~) + 2"cnk = (A, A)}, 

which is d-bounded from above if k > 0. The structure of the Weyl group will be 
more detailed, in the particular case of AI(~), in Sect. A3. 

Let us now give a realization of the untwisted and twisted algebras, describe 
explicitly their root systems and prove that our classification (see Table 4) of the 
finite Kac-Moody algebras is complete. 

a) In the untwisted case, the Kac-Moody algebras can be realized as the 
central extension of the algebra L(g0) of the periodic map from the circle into the 
Lie algebra go. Let C[t,  t-  ~] be the algebra of Laurent polynomials in t, and L(go) 
be the algebra C[t,  t - 1 ] g  0 with the bracket 

[tm@T ", tn@T b] = tin+"® I T  a, Tb]. (A 1-18) 
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The affine algebra is the algebra 

= L(go)G~kGCd 

with the brackets: 

(A1-19) 

[k, d] = [k, t'~® T o] = 0 ,  

[d, t"@ T q  = - nt"® T °, (A 1-20) 

[tm® T a, t"@ T b] = tm+"®ET ~, T b] + mk(T ~, Tb)V6m+n, o, 

where (T ~, Tb) v is the standard Killing metric on go. 
Introducing the Chevalley basis of the algebra go, and its structure constant 

f(a,  r) [f(a,  r) = + 1 only in the cases A, D, B, E, and G], the commutation relations 
(A 1-20) can be written as: 

f(a, fl)tm+"QG+ p if a + f l  is a root of go, 

0 if not ,  
[tmQG, t"®ep] = (A 1-21) 

2m 
tm+~Qh~+ ~ k b m + . ,  o if a + f i = O ,  

[t~®h, tnQh '] =re(h, h')*k6m+., o , 

[t"®h, t"®G] = a(h)t" +"®G, (A 1-22) 

[ d , k ] = 0 .  

It follows that the simple roots are the simple roots of the horizontal algebra 
completed by the root ( 6 -  q~), where ~b is the highest root of the algebra go- (The 
Cartan matrices of these simple root systems are effectively those of Table 1.) The 
roots of the untwisted algebra are then 

A = {c~+ n6, n~7Z}w{n6, n~;g}, (A 1-23) 

where c~ is a root of the horizontal algebra. The roots, ~ + n6, have positive norm 
and are called real roots. They are non-degenerate. The roots, n6, are r-times 
degenerate and have zero norm. They are called imaginary or null roots. 

In this way, to any finite dimensional Kac-Moody algebra we can associate an 
untwisted affine algebra. Its Dynkin diagram must appear in Table 1; thus we 
prove that the classification given in Table 4 is complete. 

b) The twisted algebras are associated to the outer-automorphism of the 
simple Lie algebras. Indeed, given a finite order automorphism of a Lie algebra g, 
say a with a M = 1, one can define a gradation of the algebra g as: 

g = @ g~, [gk, ga] C g~7 ,  (A 1-24) 
k~ZM 

where g~ is the eigenspace of a for the eigenvalue od=exp(i2Hj/M). The go 
component is a Lie algebra. The g j, j > 0, are representations of the go algebra. It is 
possible to define a loop algebra L(g, a) associated to this automorphism by : 

L(g, a )=  @ (t"®ga). (A1-25) 
nEZ 



192 D. Bernard and J. Thierry-Mieg 

The affine algebra is then defined by the generalization of Eqs. (A t-19) and (A 1-20). 
However, inner-automorphisms generate isomorphic algebras. Therefore, the 
twisted algebras are only related to the eonjugacy classes of outer-automorphisms. 
These classes are isomorphic to the symmetries of the Dynkin diagram of g, which 
exist only in the cases A~, D e, E 6. The go algebras, the g~ representations and the 
order of the automorphism are listed in Table 5. The Dynkin diagram of go is 
obtained by deleting from the Dynkin diagram of g(~) a node cq with Kac label 1. 
The Dynkin weights of the go-representation g l are equal, up to a rescaling, to the 
i th line of the Cartan matrix ofg ~) [compare with (A1-9) and (A1-35)]. It is easy to 
verify that a system of simple roots can be chosen to be the simple roots of the 
horizontal algebra go together with the root ( 6 -  0), where 0 is the highest weight of 
the representation g 1. As expected, the Cartan matrices of these root systems are 
those given in Tables 2 and 3. The Kac labels come from the decomposition of 0 on 
the simple roots of go. 

The root diagram follows from this realization. Let A(go) denote the root 
system of go and A(g 0 the non-zero weights of the go-representation gl. The real 
roots of the twice twisted algebras are 

Are = {A(go) +~g6} ~{A(gl) + (2g+ ½)6}. (A1-26) 

They are non-degenerate. The imaginary roots are 

A'm = {½rag, m e 2g}. (A 1-27) 

Their degeneracy is rank(go) if m is even, and it is (rank(g)-rank(go)) if m is odd. 
Similarly, for D4 ~3) the real roots are, in the homogeneous gradation with go = G2: 

Are= {c~+Za, ~EA(G2)}k.){co+(TZ-4-½)6, O # ~ e 7  of G2} (A1-ZSa) 

or, in the homogeneous gradation with go=A2: 

Are= {c~ +Z6,  oceA(Az) } 

0, e L0} 
u{co+(Z-½)6, 0 # t o e  1-~}. (a 1-28b) 

In both gradations, the imaginary roots are 

A im = {½rag, m e 2g} (A 1-29) 

with multiplicity equal to one if m + 0 rood 3 and to two if m = 0 mod 3. As in Figs. 1 
and 2, the distinction between (A 1-28 a) and (A 1-28 b) corresponds to two choices 
of the horizontal direction in the same root diagram. 

In Sect. C, we shall construct the level one representations of Aze ~2) in another 
gradation, corresponding to an outer-automorphism of order four of A2e. The new 
horizontal algebra is the symplectic algebra Ce. The relation between these two 
gradations is illustrated in Fig. 2, in the particular case of A2 ~2). The A2e algebra 
decomposes with respect to this non-regular symplectic subalgebra as: 

A2t = (Ce) o + (t2)1 + (s + 0)2 + (D)3. (A 1-30) 

The real root system is then described by: 

Are={½~e-1-(2g+½)5}u{%+½7Z6}w{%+Z5}, (A1-31) 
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where a t and as are the long and short roots of the Ce algebra. The simple roots can 
be chosen to be the simple roots of Ce and the root ( 6 -  0) where 0 is now the highest 
weight of the [] representation. This description A 2 9  ) is the one used in the book of 
Kac [ I ] .  

It remains to be shown that every Kac-Moody algebra admits a unique 
Dynkin diagram, or equivalently, that the algebras corresponding to different 
Dynkin diagrams are not isomorphic. This follows from the fact that two distinct 
diagrams never have at the same time the same rank and the same Coxeter 
number. 

Now consider the base Ai of H* dual to the hi: 

Ai(hy) = 3 u, i, j = O, 1 .....  r. (A 1-32) 

Their sum 0 is the Weyt vector, usually defined in the finite case as the half sum of 
the positive roots. Again we need to specify 

Ai= A,(d). (A1-33) 

A natural choice for these numbers will be given in Sect. A 3. The A~ are called the 
fundamental weights. A vector A of H* is called an integral weight if its 
contravariant components 6i on the Ai basis are integers: 

A = Z 6iA~, A(h3 = 6~ ~ • +. (A 1-33) 

The 6i are called the Dynkin weights of A. They are used to label an important class 
of linear representations of the Kac-Moody algebra. 

We consider, in a vector space J¢~, a vector [A> satisfying: 

h~lA>=6ilA>, 

ei + [A > = 0, (A 1-35) 

dlA>-=AIA>, 

The Verma module V(A) is the linear span of the vectors obtained by repeated 
action of the negative generators e~- on IA>. This space, carries a representation, 
usually reducible, of the Kac-Moody algebra, which is called a highest weight 
vector representation. The action of every generator follows from the definition 
(A1-35) and the commutation relations (A 1-2). 

It is well known that the only unitarizable highest weight representations of the 
finite Lie algebras have non-negative integral Dynkin weights. This condition is 
necessary also in the Kac-Moody algebras, since each 6i is the Dynkin weight 
corresponding to the" A1 subalgebra (hi; e~+; ei-). According to Kac [1, Chaps. 9 
and 11], the condition is sufficient. As a consequence, the eigenvalue k of the 
central element of the algebra, called the level of the representation, is also a 
positive integer 

klA>= L kiVhi]A), 
~= o (A 1-36) 

k=A(k)= L 3ik(" 
i=0 
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By abuse of notation, we denote by the same symbol, k, the central element and its 
value in a given representation. 

Note  that E8 "), E6 (2), and D4 (3) have a unique level one representation, whereas 
De (~) has four: called the scalar, vector and the two spinors, by the name of the 
representation of the horizontal subalgebra Dr. 

It is very important to note that the level of a representation is intrinsically 
defined, whereas the definition of go, and hence the name of the representation, 
depends on the choice of the derivation operator, or Virasoro operator (Lo = d). In 
the principal gradation, the 4 level one modules of De (1) become isomorphic, even 
as Virasoro-Kac-Moody modules. 

A.2. The Virasoro Algebra and Its Unitary Representations 

Let g~) denote an affine Kac-Moody algebra, d a homogeneous gradation, go the 
horizontal subalgebra. If we only consider the finite algebra g, the Casimir 
operator: 

Cas0= Z Kab e"eb (A2-1) 
a,b 

commutes with g. In (A2-1), the summation is taken over all the generators of g, 
and Kab is the standard Killing metric scaled to: 

Caso(A ) = (A, A + 20), (A2-2) 

where A is a highest weight and Q the Weyl vector. In the adjoint representation, 
with highest weight ~b, we have Cas(~b)= 2h; where hVis the dual Coxeter number 
of g. Note that hV(g (°) does not depend on z. 

In the case of the affine algebra g(O, there is an infinite number of generators and 
the summation must be regularized. In the homogeneous gradation (A 1-15), we 
define a normal ordered product of generators as: 

l eameb n , m .~ 1,z, 

ooa obo  l a b b a (A2-3) ~ , , ~ , o =  ~ ( e m e , + e , e m ) ,  re=n ,  

ebnea m , m ~> n.  

Let z =  1, 2 or 3 denote the twist. We define the Virasoro generators as: 

1 
~'-.b oe m+.e -.o + V6~.o, (A2-4) Lm - -  2 ( k  + h ~) a, b2 2~ ~7 o a b o 

n6 T 

where v, the energy of the twisted vacuum, is equal to: 

z -  1 k(d img-dimgo)  (A2-5) 
v= 4z 2 • k + h  v 

The L. satisfy the Virasoro [7] algebra which is the central extension of the algebra 
of vector fields on the circle: 

C 3 [Lm, Lm] = ( m -  n)Lm +. + ~ (m - m)~,~ +., o, (A2-6a) 

[L,~, e~] = - ne~, +.. (A 2-6b) 
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L o can be identified with the derivation d (A 1-t 3)-(A 1-16). The new central charge, 
c, is related to k, the dimension d ofg and the dual Coxeter number hVofg by the so- 
called Sugawara equation: 

kd 
e=  k + U "  (A2-7) 

The Virasoro generators can be defined in a similar way for the gradation 
corresponding to an arbitrary automorphism of order M of g (A 1-25). The central 
charge is not modified. It is an intrinsic characterization of the algebra. However, 
the energy v of the vacuum becomes [-2]: 

c ~a . . dimg- 
v= 4M 2 j~=o j(M-j) ~ .  

In a highest weight representation of g(O, the L o eigenvalue of the highest 
weight is given by: 

A = Cas0o(A) + v, (A 2-8) 
2(k + h )j(g/go) 

where J(g/go) is the Dynkin's index of the imbedding of go in g. Hereby, we fix the 
coefficients A~, left undetermined in the definition of the fundamental weights (A 1- 
32). Note that the normal order (A2-3) and hence the conformal weight A are 
gradation dependent. 

The linear coefficient (-mc/12) in (A2-6a) is not intrinsic. Let us define the 
"improved energy tensor" corresponding in the dual string models [22] to the 
substraction of the intercept: 

C L,=L,--~6,,o. (A2-9) 

The L, satisfy the modified relations: 

C 3 
[Lm, L.] =(m-n)L,,,+.+ 7~m 6,.+.,o (A2-10) 

in which the linear term ( -  nc/12) has totally disappeared. The passage from L to L 
improves the modular properties of the characters of the representations of the 
Virasoro algebra and facilitates the evaluation of the asymptotics of the string 
functions [2]. 

Since the Virasoro algebra commutes with the horizontal algebra, the so-called 
string of weights: 

S~= {/~- n6, n~N,  #eVa, I~+6~VA} (A2-11) 

carries a representation of the Virasoro algebra L. By construction, # is a highest 
weight of the Virasoro algebra. Furthermore, this representation is unitarizable 
whenever the representation of the Kac-Moody algebra is. The character of L 0 in 
the string, noted 

CAr(q) = Yrs.(q L°- f~Z/2k), (A2-12) 
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where fi is the horizontal component of #, is called the string function of the 
weight/~ in the A representation. Strings which are conjugated under the Weyl 
group of the affine algebra have identical string functions. Thus, there is only a 
finite number of string functions in a given representation. In particular, the level- 
one representations of the simply laced and twisted algebras, all of type A, D, E, 
have a unique string function. Since/~ are eigenvectors of the horizontal Cartan 
subalgebra, the character of V(A) follows from the knowledge of all string 
functions. 

The exact form of the string functions is difficult to establish in the general case. 
Kac and Peterson [2] found a number of them using their covariance under the 
modular group. In this paper, we shall recover a number of their results and a few 
new ones by explicit constructions of the representations and by the analysis of 
non-regular subalgebras of Kac-Moody algebras (see Sect. D). 

Consider a highest weight vector IA): 

LoM) =AIA), (A2-13) 
L, IA)=0,  n>0 .  

Define the Verma module as the completion of the linear span of vectors of the type 

I] (L_k)"kl A ) .  (A2-14) 
k 

We wish to find a unitarizable representation, carrying a sesquilinear form such 
that 

Lm + = L_,,. (A2-15) 

In particular A and c must be real positive since 

(AIL,L_,IA)= 2nA+-~(n -n)  (AIA)>O. (A2-16) 

The Verma module is irreducible if it contains no invariant submodule. Kac [12] 
has shown that this happens if A is real positive and c > 1. Then the "improved" 
character of the Virasoro algebra is simply given by: 

A - ~ 4  -1  oh(A, c)(q) = q ¢p(q) , (A2-17) 

where q~(q) denotes the infinite product: 

q~(q)= I-i ( l - q" ) .  (A2-18) 
n>0 

When c = 1, the Verma module is reducible if A = n2/4, n integer, and contains a 
maximal submodule with A =(n+2)2/4 [12]. In this case the character is: 

ch ~- ,1  = q~--- q(" 42)2 / ( ) n(q)- 1, (A 2-19) 

where r/(q)=q 1/z4. ~o(q) is the Dedekind function. When c=O, the only unitary 
representation is the trivial one. On the other hand, if 0 < c < 1 the Verma module 
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contains points of negative norm. However, it follows from Kac's determinant 
formula [12] that for 

c =1 6(p-q)2 
Pq 

(A2-20) 
(rp -- sq) z -- (p -- q)2 

A =A~s= 
4pq 

with p, q coprimes, the Verma module is reducible. Belavin et al. [29] noticed that 
these modules are relevant in statistical mechanics. This led Friedan, Qiu, and 
Shenker to the important discovery that, when c < 1, the only possibly unitary 
highest weight representations of the Virasoro algebra have c and A as in (A 2-20), 
with p - q  = 1. This theorem was announced in [30], the details can be found in 
[31]. In particular, we shall use the fact that, in these series, there is only a finite 
number of unitary weights given by (see Table 6): 

6 
C,n = 1 

m(m + 1)' 
(A2-21) 

A,~= (r(m+ l ) - s m ) 2 - 1  O < r < s < m  
4m(m + 1) 

Table 6, Lowest unitary conformal weights A,~ of the Virasoro 
algebra when the central charge c is less than 1 (A2-21) 

c = 1 --6/rn(m + 1), 

m= 3, c=  1/2, 

m = 4 ,  c=7/10, 

A,s = ((r(m + l ) -  sin) z -  t)/4m(m + 1). 

0 1/2 

t/16 

~ 1 2 3 

0 7/16 3/2 

3/80 3/5 

1/lo 

m=5, c=4/5, 1 2 3 4 

0 2/5 7/5 3 

1/40 21/40 13/8 

t/is 2/3 

1/8 
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The characters of these representations can be found in Feigen and Fuchs ['32] or 
in Rocha-Caridi [33]: 

ch(cm, A J  = (,Ho (1 __q,))-1 (,~z ( - q "  + qb,)), 

(2m(m + 1)n + (m + 1)r + ms) 2 - 1 
a, 4m(m + t) , (A 2-22) 

(2m(m + 1)n + (m + l)r - ms) 2 - 1 
b, 

4m(m + 1) 

Goddard, Kent, and Olive [34] and also Kac and Wakimoto [35] have 
completed the theorem of Friedan, Qiu, and Shenker and shown that all the 
representation of type (A2-10) with p -  q = 1 are indeed unitary since they occur in 
th e splitting of the product of the basic and the level p - 2  representation of A1 ¢1) 
with respect to the diagonal A ~¢~). The demonstration is based upon a very elegant 
and simple observation of Goddard, Kent, and Olive [23]. Let h be a sub-algebra 
of the horizontal algebra go and let us choose a basis of go such that the first (dim h) 
generators form a basis of the h algebra. Denote by L,(h) the Virasoro generators of 
the affinization of h, and by c(h) their central charge. Then, Eq. (A2-6) applied to g 
and h implies that: 

[L,(g)- L,(h), hi = 0, (a 2-22) 

and hence: 

[L.(g)- L.(h), L.(h)] = 0. (A 2-23) 

As the L(g) and L(h) satisfy the Virasoro algebra, their difference does: 

K,(g/h) = L,(g)- L,(h). (A2-24) 

The central charge of the K algebra is the difference of the two central charges, 

c(g/h) = c (g ) -  c(h). (A2-25) 

In the case of g ( 1 ) = A ~ ¢ t ) [ k = m - 2 ] * A l ( 1 ) [ k = l ]  and h(1 )=A~(1 ) [k=m-1]  - 
diagonal, using (A2-7) we find indeed: 

c(g/h) = 3 m -  2 + 1 - 3 m -  1 6 
m m + l  =1 re(m+1)" 

By computing the characters, one may verify that all the weights Ar,~ occur in the 
decomposition [34, 35]. We shall use this construction repeatedly throughout our 
paper. 

A.3. Application: The A1 (1) Algebra 

As an illustration, we wish to give here a detailed description of the simplest Kac- 
Moody algebra, A~ (1), the affinisation of su(2). The vertex operator constructions 
of its representations become more and more involved as the level k increases. 
They will be given in part B for k = t and 2 and in part C for arbitrary k. 
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The Cartan matrix of A1 ~1) is: 

A~j= I_22 -22]. (A3-1) 

The root system, in the homogeneous gradation is: 

A = { ~ + n 6 ;  e=0,  + 1 , - 1 ;  n~Z} ,  (A3-2) 

where ~ denotes the positive simple root of su(2), (~, ~) = 2, and 6 the null vector of 
H*, dual to the central charge, 6(k)= 1. The adjoint representation neither has a 
highest weight, nor a lowest weight. The real roots, ~ + n6, have positive norm + 2, 
while the imaginary roots, n6, have zero norm. In A~ C~), all the roots are non- 
degenerate. 

If we denote by e, -+ and by h. the generators corresponding to the root 
(+_~+n6)  and n6, respectively, the non-trivial commutation relations of the 
algebra (A 1-22) read: 

[hm, h.] = 2ink6,. +., o, 

[h,., e±n] = _ 2e±m+. ,  (A3-3) 

[e + , , , , e - . ]=h , .+ .  + mk6, .+. ,o  • 

Note that any pair of real roots, say +_ (~ + p6), generates a subalgebra A ~ of A ~( TM 

[e+p, e -  _p] = h o + pk .  (A3-4) 

A system of simple roots defining a homogeneous gradation is: 

~(o) = - ~ + 6, ~.) = ~. (A3-5) 

The corresponding Cartan operators are: 

h(o ) = -- h o + k, h(1) = ho. (A 3-6) 

Since each Cartan operator corresponds to a finite SU(2) subalgebra, a highest 
weight representation can be unitary only if h(o) and h(~) have non-negative integer 
eigenvalues, 6o and 6~. Therefore, k = Jo + J1, is a positive integer. 

The Weyl group is, as usual, the group generated by the simple reflections: 

R. : H * ~ H * ,  (A3-7) 
x ~ R~,(x) = x - -  2(x, ~)/(c~, ~)c~. 

Since the Cartan matrix is degenerate, the Weyl group is infinite with an Abelian 
component. It can be parametrized by: 

a) the reflexions in 
R ~ ( ~  + n6) = - ec~ + n6 , (A 3-8) 

b) the translations parallel to 6 

Tm= R-~,+m,~° R~,, 
(A3-9) 

Tm(e~ + n6) = e~ + ( - 2me + n)6 , 

with e = + 1, - 1, 0. 
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Note that the imaginary roots are Weyt invariant. The translation T1/2 is not an 
element of the Weyl group, but corresponds to the outer automorphism of A1 (1) 
which exchanges the simple roots e(o ) and e(1) and thus, the spinor and the tensor 
representations (see below and Fig. 1). 

Consider a representation V(A) of level k with highest weight ]h, k )=[A) :  

h(0)[A ) = 6(0)lA) = ( k -  h)lA),  

h(x)lA ) = 5(1)11 ) = hlA),  (A 3-10) 

e - , + l t A ) = e + , I A )  =0 ,  n>0 .  

Let A 0 denote the fundamental weight, %)(A0)= 61o. The A 0 component of the 
weights of V(A) is k. The a-component of the weights are integral in the tensor 
representations, and half integral in the spinor representations. 
The action of the Weyl group on V(A) looks very different from its action on the 
root diagram. If/~ = ( p c - q 6 +  kAo) is a weight of V(A), we have: 

R ~ ( # )  = - p a -  q(3 + kAo, 
(p + ink) 2 (A 3 1 1 ) 

T,,,(#) = kA o + (1) + ink) a - ( q + k _p2) (~. 
If we project onto the weight lattice of A 1, the Weyl group acts, when k = 1, as the 
affine Weyl group of At, i.e. as the group of automorphisms of the root lattice of A1, 
including the translation in e. On the other hand, as the Weyl group preserves the 
norm 

(#, #) - (e, a)p 2 - 2kq, (A 3-12) 

all the weights of the representation V(A) are inside the parabola: 

P A = {#, (#, #) = (A, A)}. (A3-13) 

The weights closest to the parabola are highest weights of the Virasoro algebra. In 
the case lh = 0, k > i ) ,  k ( e -  6) is a highest weight of the Virasoro algebra. Since the 
Virasoro algebra commutes with the horizontal algebra At ,  ( - k 6 )  is also. 
However, the Verma modules (c > 1, A = 0) and (e > 1, A = k) are irreducible. Hence, 
the partition function of the string of weights of A t(1)[k > 2] is larger than lfl/(q). In 
other words, the representation space is necessarily bigger than the Fock space of a 
single boson. 

The outer automorphism 7"1/2 maps the highest weight ]h=0, k - - l )  of the 
basic representation, which consists solely of tensors of so(3), onto the highest 
weight lh = 1, k = 1) of the spin representation, which consists solely of spinors of 
so(3). As such, T~/z acts as a supersymmetry, but it does not commute with the 
energy operator Lo (see Fig. 1). 

It is easy to compute the multiplicity of a weight # in the highest weight module 
V(A) using the recursion equation of Racah: 

0=  • e(w)multa(#+O--w(o)) (A3-15) 
weWeyl 

for ~ + 0 )  not Weyl-conjugated to (A +0), and the initial condition 

multa (A) = 1, multa(A + Q -  w(o)) = O. 
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This equation specializes in the case of A~ (~) to 

multA(#)= ~,~z (--l)"muttA(#+nc~+n(n~l)6)" (A3-16) 

Using this formula, Feingold and Lepowski [36] proved that the string function 
(A2-12) of the basic module of A1 m is 

CaA(q) = q(q)- 1. (A 3-17) 

For future use, we establish in Fig. 3 that 

mult3Ao(3Ao-- 36) = 6, 
(A3-18) 

multAo + 2a1(3Ao - 6) = 3. 

A.4. Two Dimensional Conformally Invariant Q.F,T, and Algebras 
We shall consider in this section the Kac-Moody and Virasoro algebras from the 
alternative point of view of two dimensional quantum field theory. We shall 
describe how the algebraic properties of a set of currents come from their operator 
product expansions (O.P.E.) [6, 29, 37]. 

/ 

//0ooooo  
Fig. 3. The Racah construction (A3-18). The weight diagram of the representation ~ of 

A i ~i) is shown. Its envelope is the parabola PA supporting the Wey| orbit of A. Pw(#) is the parabola 
(~-~ + w(Q)) used in the Racah recursion. The alternated sum of the multiplicities of the weights 
supported by this parabola is zero for every choice of # 
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Consider a two dimensional field qS(z, a). If it depends on a and z only through 
the complex coordinate z, z = e x p ( - z  + ia), it is called a chiral field. 

Let J"(z) denote a set of chiral fields satisfying the operator product expansion: 

k6 ab f"b c 
Ja(z)Jb(w) = ( z -  w) z + z -  w JC(w) + regular (A4-1) 

defined for Jzl > Iwl and, by analytic continuation, for all values of(z, w) except z = 0, 
w = 0, z = w. We assume that this expansion is even under permutation of J~(z) and 
J%'): 

Ja(z)Jb(w) = Jb(w)Ja(z). (A4-2) 

Then, define the Laurent coefficients of the ji  fields: 

J" ,=  ~ ~ i z " J " ( z ) ,  J"(z)= • J",z - " -1  (A4-3) 
Co z 

The contour Co turns counter-clockwise around the origin of the z-complex plane. 
The commutation relations of the J", operators follow from the O.P.E. (A4-1): 

( 1 ) 2 { , d z , d w -  ,dz,dw}Ja(z)Jb(w)z'nwn. (A4-4) 

[J°m, jb]  = ~ /  fzl >lwl Izl< Iwl 
At fixed w, the z-contour can be deformed in the region where the OPE is analytic 
and we just pick up, at fixed w, the poles located in between the 2 z-contours. In this 
method, it is essential that the OPE should have no cut and be of defined parity 
(A4-2) in order to be able to identify the two integrands occurring in the 
commutator. Let us illustrate it in the case of the J"(z) fields. The commutation 
relations become: 

dw dz ,, , , b 

Co 

= f"bcJ~,, +, + mkt"bt, .  +., o " (A 4-5) 

The Kac-Moody commutation relations (A 1-20) are equivalently reexpressed in 
the field theory language by the O.P.E. (A4-1). The hermitic conjugation relation, 

(J",) + = J " _ ,  (a4-6a) 

is equivalent to the hermiticity property of the ja field, 

z "Ja(z)= l /z*" J"(1/z*). (a4-6b) 

The same techniques can also be applied to the Virasoro algebra. Let T(z) be a 
stress tensor satisfying the O.P.E.: 

c/2 2 1 
T(z)T(w) - ( z -  w) ~ + ( z -  w) 2 T(w) + z - w  O~,T(w) + reg o . (A4-7) 

The Laurent coefficients of the stress tensor T(z) 

T(z)= E L,  z - " - 2  (A4-8) 
n~2~ 

satisfy the Virasoro algebra (A2-6) with central charge c. 
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Furthermore, the primary fields, qSa(z), of the Virasoro algebra (those which 
have a defined conformal weight), are defined by their commutation relations with 
the Virasoro generators: 

[L,, ~b~(z)] : z"(z8~ + (n + l)A)q~(z). (A4-9) 

A is the conformal weight. These commutation relations follow from the O.P.E.: 

A 1 
T(z)d?d(w) = ( z -  w) 2 qS~(w) + z -  w OMbA(W) + reg. (A4-10) 

In particular, the commutation relations (A2-6) between the Virasoro and the 
Kac-Moody generators mean that the currents J"(z) are primary fields for the 
Virasoro algebra defined in Eq. (A2-4), with conformal weight one. 

Let us now consider the example of free bosonic or fermionic fields. Let A* be a 
one dimensional lattice and let us denote by IP> its elements. Define on A* the 
action of the Abelian translation group: 

ei~qlP> = IP + ~5. (A4-1 la) 

Let x, denote the modes of a harmonic oscillator 

[x,,, x,] = mr,, +,, o. (A 4-12a) 

We identify x0 with the operator p, conjugated to q: 

[p, q] = i, (a4-1 lb) 

xolP> =PIP). (A4-12b) 

If we consider the conjugation x, + =x_ , ,  and the normalization (PIP)= 1, the 
sesquilinear form defined on the union of the Fock spaces constructed on the 
vacua IP), 

® (H(x-k)"%lp> 
pea* \ k / 

is positive defined. 
Over ~ ,  we define a free Fubini-Veneziano field [6]: 

Z n 

X ( z ) = q - - i p L o g z - i  • x _ , - - ,  
n¢-O gl 

and its associated momentum operator: 

e(z)=iz<X(z)= E x_.z". 
n~Z 

Defining the normal order by: 

~XmX n m ~ n 

~XmXn°° ~ ( X n X m ,  m ~ l ' l  

and 

(A4-13) 

(A4-14a) 

(A4-14b) 

(A4-15a) 

o o o q p o _ q p ,  opqo=° ° -  (A4-15b) 
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we obtain the O.P.E. of the P(z) field 

Z W  
P(z)P(w) = ( z -  w) 2 + ;P(z)P(w)g " (A4-16) 

Reciprocally, one could postulate the definitions (A4-14b) and (A4-16) and deduce 
(A4-12a). 

To the X field, we can associate a free stress tensor which generates a free 
Virasoro algebra: 

TX(z) = ½ °o O~X(z)(V~X(z) °o. (A 4-17) 

The O.P.E. of T(z) follows from Eq. (A4-16) and the Wick theorem. The central 
charge of this free Virasoro algebra is one. 

On the other hand, let us consider two types of two-dimensional Majorana- 
Weyl fermion field F: 

F(z) = 2 b_ ,z" ,  (A4-18) 

where the summation is over n e Z + 1/2 in the Neveu-Schwarz case (N-S), and over 
n e Z in the Ramond case (R) [8]. Their Laurent coefficients satisfy the canonical 
anti-commutation relations 

{b,,,b,}=g),,+,,o. (A4-19) 

Once more, the anti-commutation relations are equivalently expressed by the 
O.P.E. of the F(z) fields, 

r ( z ) r ( w )  = A(z, w) + o r(z)r(w)  , (A4-20) 

where 

z--}-w 
A(z ,w)= 2(z--w) R. (A4-21) 

~ / ~  N.S., 
Z--W 

and where ~ ~ denotes the fermionic normal ordering. In the Ramond case, the 
normal ordering of the zero modes is specified by: 

r(z)r(z)  = o 

Anti-commutation relations, instead of commutation relations, come from the odd 
parity of the two point functions A(z, w). The free stress tensor of the F field, which 
generates a Virasoro algebra, is: 

-+ {O N.s.R" (A4-22) z2 Tr(z) = ½ ~z~z(P(z))F(z)~ 

Its Virasoro central charge is one half. 
In the following sections, we shall construct representations of Kac-Moody 

algebras from these fields. These constructions extensively use the properties of the 
string vertex operators. Let X~(z), i -  1 to •, be # free bosonic fields. Then, define the 
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vertex operator U(e, z) as: 

U(e, z) = o ° expis- X(z )  

[ [ z n l =exp ~, c ~ ' x - ,  n ei~'qz~'Pexp - F, e . x , ~ -  , (A4-23) 
n>0 n>0 

where e = (ei, i=  1 to [) is a [ dimensional vector, and we have used the normal 
ordering (A4-15b). A different ordering of the zero modes p and q, as used for 
example by Frenkel, implies several modifications of the next formulae. 

Note that U(e, z) acts by translation on the zero modes, pi. The U(c¢, z) fields 
satisfies the hermiticity properties 

(z  ~2/2 u ( ~ ,  z)) + = ~ -  ~2/2 g - ~, ~ , 

and also the famous O.P.E. 

Z 
P"(z)U(~, w) = ~°U(~, w) + . . . ,  

z - w (A 4-25) 

U(o~, z) U(fl, w) = ( z -  w) ~" p ~exp fie.  X(z )  + ft.  X(w))~ . 

This expression converges for [z[ > [w[, and it can be analytically continued for 
[z[ < [w[ except poles at z=0 ,  w=  0, and z =  w. Note that its pole structure and 
symmetry under the exchange of 0¢ and fl and z and w is controlled by the scalar 
product e- ft. Equation (A4-25) has a well defined symmetry and no cut if and only 
if e- fl is integral. 

The vertex operators U(0¢, z) are primary fields, of the free Virasoro algebra 
(A4-17), with conformal weight e.  ~/2. 

~2 1 

T(z)U(c¢, w ) -  2(z -  w) 2 "[- z - -  w ~O~,U(a, w)~ . (A4-26) 

The importance of this O.P.E. can be illustrated by the fermion-boson 
equivalence in two dimensional quantum field theory [-9, 10, 17, 28]. Suppose that 
e.  e = 1, then from (A4-25): 

{B~m,B~,}=O,  {B~ , , ,B -~ , }=Sm+, .o  . (A4-27) 

The modes B' ,  of the field B(o¢, z ) = z t / 2 U ( e ,  z) form a Clifford algebra. 
The hermitic fermionic fields are defined, from the bosonic field, by: 

F+'(z) = ~ o  (B(~, z) + B( - ~, z)), 
V ~ 

(A4-28) 
i 

F_ ~(z) = ~ (B(c¢, z) - B( - u, z)). 

If the momentum p belongs to the lattice Zu, F_+ ~ is of Neveu-Schwarz type, whereas 
if p belongs to the shifted lattice (Z + 1/2)~, F+ ~ is a Ramond field. Reciprocally, 
from the fermionic fields F+ ~, one can define the bosonic field by 

cz . P ( z )=  ~B(~, z )B( - -~ ,  z)~ , (A4-29) 
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where the normal ordering o ~ is defined by Eq. (A4-21), namely, 

B(o~, z)B(-- ~, w) = ~B(~, z)B(--~, w)~ + A(z, w). (A4-30) 

In Sect. C, we describe how the bosonic and fermionic Virasoro algebras are 
related [relation (C l-l) particularized to the su(2) algebra]. By evaluating the 
Virasoro character via the bosonic or fermionic description, one shows that this 
boson-fermion equivalence is related to the Jacobi identity: 

, , ,  

( , ~  q ,~ /z )~( l_q , ) - l=2]/q~(1  +q,)2 

It is also possible to formulate another boson-fermion equivalence which mixes 
the N-S. and R. fields. This fermionization, built upon a bosonic field of defined 
parity, will be the key of the constructions of the twisted affine algebras, Sect. B.5. 

Consider a bosonic field Y~_)(z), containing only odd modes, 

Z n 

Y~_)(z)=-il/~ • x_ , - - ,  (A4-31) 
n ~ 2 Z + l  n 

where the x2,+1 obey the usual commutation relations (A4-12). Its two point 
function is: 

(Y(_)(z)Y_(w)}=- Log (z~wW). (A4-32) 

Now, define the vertex operators U(_)(r, z), 

U(_)(r, z) = ½ ~exp ir. Y~_)(z)~. (A4-33) 

Their O.P.E. read: 

1 - ( z - w Y  "~ ~expi(r. Y~_)(z)+s" Y(_)(w))~ ° , (A4-34) U~_)(r, z) U(_ ~(s, w) = 4 \ z  + wJ 

and fully characterize the algebraic properties of the U(_)(r,z) operators. In 
particular, if the "root" r has length one, the Laurent coefficients, U,, of the 
U(_)(r, z) field, 

dz ,, 
U. = ~ ~ z U~_~(r, z) 

satisfy the Clifford algebra: 

{v~, v.}- ( -  1)~ 2 5m+,,,O. (A4-35) 

The hermitic conjugation, F_n + =(-1)"F,,  follows from the hermiticity property 
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The U(_) field, containing odd and even modes, can be written as the sum of two 
fermionic fields of defined parity, or in more usual notations, as the sum of a 
Ramond and a Neveu-Schwarz field: 

V~U(_)(r,z)=FR(Z2)+iFNs(z 2) with F(z2)+=F(2-2). (A4-37) 

This fermionization, contrary to the previous one, mixes the R. and N-S. fields. 
This boson-fermion equivalence is also illustrated by the bosonization relation: 

Pc-)(z) = i~/2z~Y(_)(z)= 2i]/~I'Ns(ZZ)FR(g2). (A4-38) 

The fermionic field content of the U(_) operator appears again in its conformal 
properties. The Virasoro algebra of the Yt-) field 

D-).,=¼ 2 ~X-,X2m+,~+~6m.O (A4-39) 
n ~ 2 ~ g +  1 

has central charge one. It can also be written, via the boson-fermion equivalence, 
as the sum of the R. and N-S, stress tensors. This equivalence reflects the Jacobi 
identity 

1~ (1 _q ,+~) -  1 = 1~(1 +q")(1 +q"+~). (A4-40) 
n n 

On the other hand, if X(+)(z) is an even field 

Z n 

X(+)(z)=q-ipl°gzZ-iv  ~ Z x_ , - - ,  (A4-41) 
n~ 2 Z  F/ 

its two point function is: 

(X(+)(z)Xt+)(w)) = - Log(z 2 - w2). 
Izt > lwl 

The vertex operators Ut+)(r, z) 

Ut+)(r,z)=½~expir'Xt+)(z)~--(U+(-r,1)) + 

satisfy the O.P.E.: 

(A4-42) 

(A4-43) 

U(+)(r, z) U~ +)(s, w) = ¼(z 2 - w2) "'~ ~ exp i(r. X(+)(z) + s. X(+)(w)) ~. (A 4-44) 

More generally, a bosonic field quantized in modes x,, n e(zZ+_q), has two 
commuting Virasoro algebras L (q) and L ~-q) defined by: 

L(q) =--1 ~ °oX_,X,,~+,o° + ~ f i , , o -  (A4-45) 
" 2z n~z+q 

They have the same central charge, c=  1, and the same vacuum energy, 
v = q(z -- q)/4r 2. 
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B. Free Fields Vertex Operator Constructions 

B.1. K = 1 Representations of A1 (1) 

Let us first consider the algebra A1 (1), in the homogeneous gradation. Following 
Frenkel, Kac, and Segal [14, 15], we first define a graded Hilbert space, with the 
correct partition function. Let ~ denote the simple positive root of A 1, normed to 
~ -~=2 .  Consider the weight lattice W of the Lie algebra A1. Denote 
by IP> its elements, and define on W the action of the Abelian translation 
group by the formula: 

ei~qlP> = IP + c~>. (B 1-1) 

On the other hand, consider the affine U(1), or Heisenberg, algebra, corre- 
sponding in the physical language to the canonical commutation relations of a free 
bosonie field 

[Xm, Xn] = m~m+n,  0 . (B 1-2) 

We identify Xo with the variable p, conjugated to q, 

[p, q] = i, xo]p> = PIP>. (B 1-3) 

If we consider the conjugation, x. + = x _ . ,  and the normalization <pip>= 1, the 
union of the Fock spaces constructed on the vacua IP> of the weight lattice: 

= Fock (x)® W (B 1-4) 

is a positive defined Hilbert space. 
Over ~ ,  we can construct the level one representations of the Kac-Moody 

algebra Aa (~) as follows: 
i) Consider the Fubini-Veneziano field (A4-14): 

Z n 
X(z) = q -- ip L o g z -  i ~. x _ , - - .  (B 1-5) 

n*O n 

The fields 

and 

~/2z- 1P(z)= i ~/2O~X(z), (B 1-6a) 

h, = ~ ~ i  z"- 1P(z), 

e +,= ~ zne +(z)=(e -v _,)+. 
(B1-7) 

e+(z) = ~expic~ • X(z)~ (B 1-6b) 

are primary fields of the free Virasoro algebra defined in Eq. (A4-17), with 
conformal weight one. 

ii) Represent the A 1 (1) algebra by the Laurent coefficients, h, and e, +, of these 
fields: 
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One may check the commutation relations either in the current algebra language 
or in the oscillator modes language. 

The central element, k, of the algebra is represented by one. Therefore, the 
highest weight should be either 

or ( ~ .  

This can be read directly on the definitions of the operators; due to the presence of 
zero modes in the Fubini-Veneziano field, the field e(z) contains a term z "p. This 
term is well defined if and only if the momentum ]p) is integral, i.e. if ]p) belongs to 
the weight lattice of A1. A highest weight vector must be annihilated by the two 
simple positive roots, eo + and e~-" 

This requires 

Z n dz • x x_n-- 

eo+lP>= ~2~  e .>o .ip+~>z=p=O, 

dz -a E x - n ~  
e l - ] p ) =  ~2~ e ,>o Ip_cQz,-~p=0. 

(BI-8) 

0 ~ p . c ~ = l ,  (B1-9) 

leaving only two possibilities, p = 0 and p = ~/2, which correspond to the basic and 
spin representation of A 1 (1). Since there is no other highest weight vector, the space 

is not reducible any more. Therefore, the characters are: 

ch(A1 (1), k = l)(q) = O(q) (B 1-10) 
t/(q) ' 

where O(q)= y.q~-Z/2; the sum Y, is over the root lattice, Z~, in the basic 
representation, and over the spin coset, (Z + l/2)a, in the spin representation, t/ 
denotes the Dedekind function (A2-19). 

We insist once more on the fact that these two representations are exchanged 
by the outer-automorphism T1/2. In other words, all the weights of the basic 
representation., which are tensors of the horizontal su(2) generated by eo +, eo-, and 
h0, are spinors of the oblique su(2) generated by e l - ,  e_ ~ +, and k -ho .  T1/2 acts 
inside the module as a sort of supersymmetry. It does not commute with the 
Virasoro energy operator, since T~/2 changes the definition of simple roots and 
hence the definition of the normal ordering (Fig. 1). 

Our definition of the ¥irasoro generators as the Laurent coefficients of the 
stress tensor T(z) does not coincide with the general definition (A2-4). However, 
following Goddard, Kent, and Olive, we remark that they have the same central 
charge, c = 1. Hence, their difference, which also forms a Virasoro algebra, has 
central charge zero. Its only unitary representation is the trivial one. Hence, the 
two Virasoro algebras identify in the representation space. In higher level 
representations, the difference of these Virasoro generators will not be trivial, and 
the representations will necessarily involve additional fields besides the free boson 
field X(z), associated to the Cartan subalgebra. 
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Consider the string of weights 

S A = { A _ m 6 ,  m a N ,  A =  na n2 } 
5 - -  ~ -6  . 

This string carries a representation of the Virasoro algebra no larger than the Fock 
space of a single boson. On the other hand, the weight t '/= (n + 2)c~/2 + (n + 2)26/4 
which is Weyl-conjugated to A, is also a highest weight of the Virasoro algebra. 
Therefore, the vector e _ j t l ) ,  is also a Virasoro highest weight vector, since the 
Virasoro algebra commutes with go- We recover in this way the fact that Verma 
module representation IA = n2/4, c = I )  of the Virasoro algebra are unitary and 
reducible, and that the partition function of the irreducible representations 
IA =n2/4; c = l )  are given by Eq. (A2-19). 

B.2. K = 1 Representations of the Simply Laced Algebras 

The generalization to higher rank algebras is straightforward except for a problem 
of signs in the definition of the commutators. Consider a simply laced algebra, A~, 
D~ or E~ of rank f, and its root lattice A and weight lattice W. The Cartan matrix ai~ 
serves as a metric on A. All the roots have length (c~. c~)-- 2. To each element p of W 
we associate a vacuum vector ]p), normalized to one, (pip) = 1. Over each of these 
vacua, we construct a Fock space in f boson fields, Xi(z), i = 1 to f. The union of the 
resulting Fock spaces is the Hilbert space (A4-13) 

= Fo ck (X~) ® W. (B 2-1) 

We consider now f Fubini-Veneziano fields, X~(z), i=  1 to E. The operators 
U(z) = izO~X~(z) represent the Heisenberg, or affine Cartan subalgebra, and the 
vertex operators, (A4-23), 

U(e, z) = ~exp(ie- X(z)) ~, (B 2-2) 

where c~ is a root of the A, D, E algebra, represent the current algebra up to the 
Klein sign factor. Indeed, from the O.P.E. of the U(e, z) fields, see Eq. (A4-23), one 
deduces that the modes U, ~, and hm ~, 

satisfy: 

d z  n 
u . ~ = ( a _ . - ' )  + = } ~ / z  u(.,z), 

dz , i dz n i h ; = ~ ~ z h (z) = ~ ~ z P (z) 

(B2-3) 

, 

Um~U.~--(--I)~SU]Wm~= U,.+. ~+p, 

~. hm+n+m6m+.,o, 

These pseudo-commutation relations differ from commutators by a sign depend- 
ing on the pair (~, fl). 

~ ' /~>0 ,  

~" ~ =  - 1, (B2-4) 
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To compensate this sign, Frenkel and Kac [14] have introduced a two cocycle 
~,/~): 

e : A ® A ~ { + I , - - I } ,  (B2-5) 

which can be constructed in the following way: 
i) order the simple roots, ~-i, of the finite Lie algebra in an arbitrary way and 

define e(a~, ~) in terms of the Cartan matrix a~i by: 

- I ,  if i = j ,  

e(cq, c~j) = +1 ,  if i < j ,  (B2-6) 

( - 1 )  ~j*, if i > j ,  

ii) extend this definition to the whole root lattice by the bimultiplicativity law: 

{~(~ +/~, ~)= ~(~, ~)~(/~, ~), 
(B2-7) ~(~,/~ + ~,) = ~(~,/~)~(~, ~). 

It automatically follows from (A 1-7), (A 1-8) that 

~(~,/~)~(/~, ~) = ( - 1 ) ~  ~, 
(B2-8) 

~(c~, ~)=( -  1)  ~ ~ / ~  . 

The e(a, fl) trivially satisfy the cocycle condition 

e(~, fi)e(a + fi, ?) = e(a, fl + 7)e(fi, ~) (B 2-9) 

and define a central extension .~ of the abelian group A by { + 1, - 1}, 

l ~ { + l , - I } ~ A ~ A ~ I  

with the definition 

~,fl~A, a,b~ +1 ,  

(~, a) . ([3, b) = (~z + fl, e.(a, fi)ab ) . 

Let us now extend e to A x W~ { + 1, - 1 }. Each equivalence class of W / A  has a 
single representation inside the first affine Weyl chamber of A which is the 
highest weight )a of one of the fundamental representations of the algebra. If 2 
belongs to the equivalence class of 2 a, we define %(a, 2) by: 

e.(~, 2)= e(a, ~ -  2~). (B 2-10) 

Now, the Kac-Moody algebra is represented by the currents V(a, z): 

V(a, z) = U(a, Z)~, (B2-1 I) 

where the cocycle operators ~, act on the state IP> as: 

~=IP> = e,(~,p) lp>. (B2-12) 

By construction, the ~ remove the sign factor in Eq. (B2-4). Indeed, from Eqs. (B2- 
8) and (B 2-9), the new O.P.E. reads, 

V(a, z) V(fl, w) = U(a, z) U(fl, w)e(a, fi)e, + ~ (B 2-13) 
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from which it follows that the V, ~ and p i modes close by commutation. The 
introduction of the cocycle operators modify the hermiticity properties. The l/~" 
modes are now defined for a positive by: 

dz n 
V,~= ~-~i z V(c~,z), (B2-14a) 

and for e negative by 

a + d z  n 
V, ~ = (V_, - ) = e(a, c0 ~ ~ z V(~, z). (B 2-14b) 

Again, it is easy to check that the only highest weight vectors in ~ are the 
fundamental weight vector 12 ~) of the finite algebra. Therefore, ~¢' is only finitely 
reducible and the string functions are equal to 

c(q) = (,(q))- t, (B 2-15) 

The vertex operator exp(ic~X) first appeared in the dual string theory. This 
construction, including the necessary sign factor, is due to Frenkel and Kac [-14] 
and to Segal [15]. It was explained very clearly to physicists by Goddard and 
Olive [28] and is incorporated in the heterotic string theory [20]. Of 
course, many other constructions, differing by the choice of the gradation, are 
possible [16, 25]. 

Specializing to the D, (1) algebra, we note that it has only four level one 
representations, the scalar, the vector and the two spinors. They can be shifted one 
into another by changing the normal ordering in the Virasoro operators or, 
equivalently, the horizontal D, algebra. The energy of the vacuum of the scalar, the 
vector and the two spinors are respectively: 

A =0, 1/2, n/8. (B2-16) 

In the particular case of D4 (1), the outer-automorphism which exchanges the 
tensor and spinor representations, is an automorphism of D4, not only of D4 (1), 
known as the triality: 

It follows that the vector and the spinor representations of D4 (~) have the same 
character; one recovers, using (B3-11), the famous identity of Jacobi: 

1-I (l+q"+~) s -  l~ (l-q"+~)8=16Vqql~(l+q") 8. (B2-17) 
n ~ n 

B.3. K =  1 Representations of  the B, (1) Algebra 

The simplest example of non-simply laced affine algebra is B, (1}. The Dynkin 
diagram of the B, = so(2n + 1) algebra has a double link (see Table 1). If we denote 
by ei an orthonormal frame in R" the root system of B, consists of 2n(n-  1) long 
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roots, _+%+_e j, generating a subalgebra Dn=so(2n ), and 2n short roots, _+%, 
generating the vectorial representation of D,. The long roots are then normalized 
to e- e = 2, the short ones to 1. The existence of the short roots is at the origin of 
new complications. 

Given n Fubini-Veneziano fields, X~(z), the Cartan operators P~(z), and the 
vertex operators, exp(ieX(z)), associated to the long roots, represent the atone D, (1) 
subalgebra of B, ~1). The vertex operators exp(ieX(z)) are rotated by the D, (~) 
algebra as desired. However, they have several defects: 

i) With respect to the free bosonic Virasoro algebra, the short root vertex 
operators, exp(i~X(z)), have as conformal weight one half rather than one. 

ii) The O.P.E. of the short root vertex operators, V(~,z)V(-%,w), have a 
simple pole in ( z -  w) rather than a double one, and furthermore, this expression is 
antisymmetric rather than symmetric. In other words, the vertex operators, V(ei, z), 
represent the aft'me Clifford algebra (see Sect. A.4), rather than the ((A0"p) 
subalgebra associated to the short roots. 

iii) At the same time, in the level one representation, the central charge of 
Virasoro algebra [(A2-4) and (A2-7)] associated to B, ~1) exceeds by one half that of 
the n free Fubini-Veneziano fields. 

To cure all these defects at once, we uniformly multiply the short root vertex 
operators by an auxiliary field, F(z) say. In order not to impair the fact that the 
short roots form the vector representation space of the long D, subalgebra, F(z) 
must commute with the bosonic operators. The F-field itself should have an odd 
O.P.E. with a simple pole structure: in this way, the overall O.P.E. is again 
symmetric and has a double pole as desired. At last, 1,, should contribute one half to 
the Virasoro central charge. 

There are two possibilities: the fermionic Neveu-Schwarz or Ramond fields, 
explicitly defined in Sect. A.4, Eq. (A4-18). 

The total Hilbert space of the model becomes in the NS and R cases: 

= Fock (X ~, 1-') ® W(B,). (B 3-1 ) 

We define a 2-cocycle on the root lattice A(B,) as before (B 2-5)-(B2-9), with one 
modification: the order of the roots is no longer immaterial, we order them from 
long to short. Since the metric g~i on A and the Cartan matrix only differ in their 
last line g , i=a , J2  (AI-9), we still have, when c~ is long and e short: 

e(e, e)e(e, c~) = ( -  1) "'e . (B 3-2a) 

However: 

e(e, f)e(f, e) = ( -  1) 1 +e-S. (B 3-2b) 

Bimultiplicativity then yields: 

e(e, fl)e(fl, e)=(- -  1) ~'p +~p~ . (B 3-3) 

Thus, since ez. f12 is odd only when both ~ and/~ belong to the vector coset 
(e+A(D,)), we get an additional minus sign only in that case. This sign just 
provides for the symmetrization of the auxiliary NSR operators that we attach to 
the short roots [compare (A4-20), (A4-25), (B2-4), and (B 3-4)-1. Thus, to the short 
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roots, we associate the currents: 

zJ(e, z)= z e2/z ~exp(ie. X(z))~ F(z)~e, (B 3-4) 

and to the long roots, the Frenkel-Kac currents (B2-11). 
The weight lattice W of the B. algebra splits with respect to A into two classes: 

W(B,) = A(B,)•(s + A(B,)), 

where s denotes the highest weight of the spin representation. The lattice A is, of 
course, integral, therefore if p belongs to A the scalar product e- p is integral. On 
the contrary, the scalar product e- s = 1/2, Thus, as the zero modes of the Fubini- 
Veneziano fields contribute z e "p to the currents (B 3-4) whereas the prefactor z e' ela 
contributes z ~/2, the operators (B3-4) are well defined iffwe use the N.-S. auxiliary 
field if p belongs to A(B,), and the R. field if p is a spinor. 

The currents (B 2-11) and (B 3-4) are primary fields with conformal weight one 
[(A4-9) and (A4-26)] with respect to the Virasoro algebra: 

T(z) = T~(z) + Tr(z). 

The central charge is c = n + 1/2. 
In the Hilbert space of the model (B3-1), there are three highest weight 

vectors. They correspond to the three possible level one modules; the spinor in the 
Ramond case, the scalar and the vector in the Neveu-Schwarz case. The later 
being separated by the eigenvalue of the Gliozzi-Scherk-Olive G-parity operator 
[38] which commutes with the currents (B3-4): 

G = ( - 1 )  p2+Nr, (B3-5) 

where Nr is the fermion number operator. 
It follows that ~ is finitely reducible, and that the three string functions can 

readily be evaluated: 

n - - 1  
pin 24  

~ S p i n ( q ) = q  l ~  (1 +qk)(l--qk)-", 
k > O  

2 n +  1 
c S e a l a r [  ~ 1 ~ ,~s k~>O(1--qk)-'[k~o(l+qk+~)+k~O(l--qk+')] , (B3-6) Scalar (q]  ~ "~ ~/ 

2n+  1 
c V e e t o r (  "1 48  

so.l~tqJ= ½q k~>O(1--qk)-n[k~>=O(l +qk+~)--k~>=O(1--qk+~) 1 " 

The string functions of the vectorial representation follow from those of scalar 
representation by the outer-automorphism which rotates the fork of the Dynkin 
diagram of B.(1): 

c v e e t a r  __ g-'Scalar t~Sealar __ ( 'Weetor  (B 3-7) 
Vector - -  ~"~Sealar, ~JVector - -  ~-'Sealar " 

These representations can also be constructed just with fermionic fields. Each 
long root of the B, algebra is the sum of two orthogonal short roots: e = e + f  with 
e . f=0 .  The vertex operator, V(c~, z) is then the product of two vertex operators: 

Xexpie • X~ = ~expie. X~ ~expif. X~. (B3-8) 
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Moreover, via the fermion-boson equivalence (see Sect. A.4), the short roots vertex 
operators, V(e, z), can be written as a linear combination of the 2n fermionic fields, 

r+e(z) = °o l-~-4e~e'x~) + e-~ex(~))~ 
l~ 5 "  

(B3-9) 

F-~(z)= :1~  (e'~ x~) e ~x~)):. 

Together with the auxiliary fermion F(z), they form a set of 2n + 1 fermionic fields. 
The currents, J~(z) and J~(z), then become the Bardakci-Halpern currents: 

JOb(z) = rO(z)rb (z) (B 3-10) 

with a, b = 1 to (2n+ 1). It follows, in particular, that the affine D or B algebra quark 
model representation (B 3-10) is finitely reducible. This property also follows from 
the factorization of the theta functions of the weight lattice A*(B,): 

Oa¢,,)(q) = II (1 - qk)"(1 + qk- ~)2,, 
k>0 

(B3-11) 
Os+ A(B.)(q) = 2"q "/s I] (1 -- qk)"(l + qk)2,. 

k>0 

This spinor construction first appeared in physics in the work of Bardakci and 
Halpern I-9]. It was rediscovered by Kac and Peterson [-39] and by Frenkel [40]. 
The mixed construction, with one fermion and n bosons can be found, in a 
somehow cryptic notation[, in Lepowski and Primc [41]. This paper was later 
translated by Alvarez, Mangano, and Windey [42]. 

B.4. K = 1 Representations of  D,+ 1 (2), First Construction 

The twisted algebra D,+ 1 (2) contains B, ~1) as a subalgebra and can be represented 
in a similar way. The root system of D,+I (2) decomposes into two pieces: 

The roots, which are at an integral 6-level, are isomorphic to the roots of the 
B, (1) affine algebra. They can be represented by the currents J(e, z) and j(ei, z), 
defined in the previous section. In particular, the currents associated to the roots 
contain an auxiliary fermionic field, F say. 

The real roots which are at half integral &level, are isomorphic to the short real 
roots of B, m. Therefore, their associated currents can be represented by the 
product of vertex operators V(ei, z) (those which also contribute to the B, ~1) 
currents), by another auxiliary fermionic field, F* say. But, in order that the integer 
and the half integer currents be simultaneously single valued, the two fermionic 
fields, F and F*, must be of opposite type. Then, the half integer imaginary roots, 
(Z+1/2)6, can be represented by the product of the two auxiliary fermions, 
F(z)F*(z). As F and F* are of opposite type, the (Z + 1/2) modes of these currents 
are well-defined. 

It is now easy to check that these currents close under O.P.E., and therefore 
that they represent the D,+ 1 ~2) with central charge one. 
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Furthermore, the currents will be single valued if and only if F(z) is of N.-S. (R.) 
type if the momentum pi belongs to the tensor (spinor) coset of the weight lattice W 
of B,. The irreducibility of the representation spaces: 

2/f =Fock(X~,F,F*)® [A(B,)+ {O 1 (B4-1) 

which is the tensorial product of the Fock spaces of the boson (X i) and fermion (F 
and F*) by one of these cosets is directly shown by looking at the possible highest 
weight vectors. Note that D,+ 1 (2) only has 2 level one modules. This can be read 
from the Dynkin diagram and from the fact that the GSO projector (B 3-4) does not 
commute with the currents corresponding to the half integral 6 levels. It follows 
that the improved string functions of the level one representations ofD, + 1 ~2) are all 
equal to: 

,+1 ~ l~ (B4-2) C(q)=q 24 (1 +qk)(1 +qk-½) 
k>o (1 _qk), 

The generalization of this construction to the other twisted algebras involves non- 
independent auxiliary fermionic fields; it is presented in the following sections. 

It is, however, easy to generalize this construction to the other homogeneous 
gradations of D, + 1 (2). Indeed, all the Kac weights attached to the Dynkin diagram 
of these algebras are equal to 1 (Table 2). According to the discussion (A 1-15), we 
may associate a homogeneous gradation to each simple root and keep as 
horizontal algebra the subalgebra Bp@Bq, with p+q=n. We represent the 
integrally graded subalgebra by the currents of Sect. B.3 and the half integral 
currents, which form a (vector, vector) representation of Bp ®Bq by the product of 
the vector currents: 

U(e, z) = z e2/z ~exp(ie • X)~ ~e (B4-3) 

of each algebra. These currents are well defined if and only if one carries an integral 
power of z when the other is half integral. When p or q vanishes, the construction 
reduces to the previous one. The cocycle is the product of the cocycles on Bp and 
Bq. The Hilbert space is the product ofa Fock space with p + q = n bosons, one NS 
and one R field, by one of the cosets (vector spinor) or (spinor vector). 

We obtain in this way the two level one modules ofD,+ 1 (2) in these gradations. 

B.5. Fermionic Construction 
of the Twisted Kac-Moody Algebras At (2), D2g + 1 (2), and E6 (2) 

In this section, a fermionic construction of the twice twisted Kac-Moody algebras 
due to Lepowski [24], is presented. In keeping with the spin-statistic principle this 
construction is fermionic in two respects: 

*) It only involves oddmoded Fubini-Veneziano fields Y(-)(A4-31),whichare 
equivalent to a mixture of interacting Neveu-Schwarz and Ramond fields obeying 
anticommutation relations (the statistical aspect of fermions). 

*) In the absence of zero modes, the group lattice A (B 1-4) is replaced by the 
Dirac spinor representation of an SO(M) algebra, and the cocycles (B2-5)-(B2-13) 
are replaced by a set of Dirac (Clifford) matrices F~ associated to the simple roots as 
shown in Fig. 4 (the spin aspect of fermions). 
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Fig. 4. Dirac matrices involved in the Fermionic construction of the 2-twisted algebras (B 5-14) 

This fermionic construction of At (2) will be used again in the next section as a 
piece of a new bosonic construction of the twisted algebras. 

Let us first consider the At case. Let a be the involution, o- = - 1, of the root 
diagram of the algebra A t=  SU(C + 1). The a-invariant generators, 

e~+e_~ (B5-1) 

generate the subalgebra SO(f + 1), whereas the generators 

e~-  e_~, h~ (B 5-2) 

generate the orthogonal complement corresponding to the irreducible traceless 
symmetric tensor of SO(C + I). 

Let A denote the root lattice of At. The quotient A/2A is isomorphic to the 
finite group (Z2) t 

A 
2A ~- (Z2)t" (B 5-3) 

Let Z denote the Dirac spinor of SO(~), a vector space of dimension 2 Lt/zj. Consider 
the corresponding Dirac matrices 7~, i = 1,..., t" generating the Clifford algebra 

~,~ e End (x), (B 5-4) 

?i?j + 7j?i = - 26~j. (B 5-5) 

There is a natural application F of the roots of A/2A into End(z): 

F ni~i =ya "1 l~ (7i-17i) ~', (B5-6) 
i = 2  

where ~i e {0, + 1 }, cq denote the simple roots of At and ~ = 2 n~c~ is a distinguished 
representative of his class in A/2A. The product on the right-hand side is ordered in 
i, increasing from left to right. 
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We can now define a cocycle e(e,/3) through 

e ~ A / 2 A ® A / 2 A  ~ {  + 1, - 1}, 
(B5-7) 

By itself this definition of e(~,/~) imply the cocyclicity (B 2-9). Furthermore, we have 
chosen (B 5-6) in such a way that on the simple roots the e(% ~j) satisfy the relations 
(B2-8) 

~(c~, c~) = ( -  1) ~~/2, (B 5-8a) 

e(c~,/~)e(/~, e ) = ( -  1) ~'p . (B 5-8b) 

One may verify bimultiplicitivity 

s(~ +/~, ?) = ~(~, 7)s(/~, ?), s(c~,/~ + 7) = s(~,/~)e(~, ?), (B 5-9) 

and hence, (B 5-8) extends to every pair (a,/3) e A /2A  ®A/2A .  
Let us now introduce f odd graded Fubini-Veneziano fields Y_~ as in 

(A4-31) and consider the tensor product of the Fock space of the Y fields by the 
spin space Z: 

~ = Fock(Y')® Z . (B5-10) 

The currents 

t 

hi(z) = z pi(_ )(z) = i~/20~ yi(_ )(z) , 

i 
Ui(_)(c~, z) = 2zz ~exp(i~ • 

e A +(Ae), ~" ~ = 2, 

represent the affine algebra At (2), twisted by the root automorphism a = - 1 .  
The modes U, ~, 

dz n 
U,~= f~z~i z U(o~,z) (B5-12a) 

for 0~ positive and 

(B5-11) 

for c~ negative, are even and odd. The even modes close by themselves and represent 
the subalgebra SO(f  + 1) (1), i.e. By(l) if g = 2p or Dr(1) if E = 2p - 1. The odd modes 
U2,+,~ together with the odd modes hzn + 1 ~, 

h,i = f~ i  z"-  'U(_)(z) (B5-13) 

form a representation of the horizontal algebra SO(f  + 1) which, together with the 
even modes complete the construction of the twisted algebra At (2). The currents 
h~(z) and Ui(_)(~, z) are primary fields, with conformal weight one, with respect to 
the Virasoro algebra L (-) (A4-39) whose central charge if ~. 

U,, ~ = ( U _ , -  o)+ (B 5-12b) 
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The same construction (B5-11) can be applied to the other simply laced 
algebras Ee and De. We just need to modify (B 5-6) and to choose the image F of the 
simple roots as shown in Fig. 4. The set of F~ matrices is defined from the F~i 
associated to the simple roots 0~ v Namely, if e = Z hi% 

e 
II (B5-14) 

i=1 

where fii--- n~ mod[2], fii~ {0, + 1}. The product is also ordered in i from left to 
right. 

In the case of D2e, E7, Es the automorphism is inner, yielding a fermionic 
construction of the D2e (I), E7 (1), E8 (11 in which the integrally graded subalgebra is 
isomorphic to (D e + De) (i), A7 (1), Ds (1). 

In the case of A e, D2t+~, E6 the automorphism is outer, yielding a 
homogeneous construction of the Ae (2), D2e+~ (2), E6 (2) in which the integrally 
graded subalgebra is respectively SO([ + 1) (1), (Be +Be) (', and C4 (~). 

The character of Lo in the carrier space (B4-10) is 

e e 1 
Tr~qLo=2tM/21q,6 24 II (B5-15) 

k>O (1 _qk-÷)e, 

where ~ is the rank of the algebra and M = ~ in cases A e, E e or M = E - 1 in case Dt 
(see Fig. 4). 

Let us verify that ~ is irreducible. The whole Fock space Fock(xi2.+l) is 
necessary to the definition of the currents. As the highest weight vector must be 
annihilated by the modes hi ~, it must be a vacuum vector. The question is then the 
irreducibility of the SO(M) Dirac spinor Z- By itself Z is the lowest eigenspace of Lo 
and must therefore carry a representation of the horizontal algebra go- The choice 
of the imbedding of SO(M) in go proves irreducibility and specifies the 
construction. 

A2e (2), E6 (2), and E8 (x) have a unique level one module. In these cases, M = 2f, 6, 
and 8; and Z is respectively identified with the irreducible Dirac spinor of 
SO(2f+ 1), the fundamental of C4 and the vector of D8. 

Aze_ (2) has two level one modules. Indeed, S 0 ( 2 [ -  1) has two imbedding in 
SO(2g) such that the Dirac spinor ~ of SO(2[ -  1) is identified with one or the other 
chiral spinors of SO(2~). 

E7 (1) also has two level one modules. They differ by the identification of 2 as the 
8 or g of SU(8). 

In the case ofDze + t (2) ~ B e * Be, we identify Z as the spinor of either Be, yielding 
the two inequivalent basic modules. 

At last, in Dze (1) 3 De * De we identify Z with a chiral spinor of either chirality in 
either algebra. 

B.6. Bosonic Construction 
of the Twisted Kac-Moody Algebras A2e_ 1 (z), De+ (2), and E6 (2) 

In this section we present an alternative bosonic construction of the twisted 
algebras gN(~)=A2e_l (2), D¢+1 (2), E6 (2), D4 (3), based on the outer diagram 
automorphism of gN= A 2t_ 1, De+ 1, E6, and D4 centralizing go = C e, Be, F 4, and 
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G2. The rank of go is smaller than the rank of gN by p units, 

p = rank (gN) - rank (go) = rank (gN (~)) - rank (gN(~)). (B 6-1 ) 

However, in the affine Kac-Moody root diagram, the roots are not lost, they 
are just reorganized: the multiplicity of the root 6 drops to rank(go) whereas a new 
imaginary root + 6/z appears with multiplicity p/(r-  1). Also, the short roots of go 
are repeated every 6/z [(A 1-26)-(A 1-28)]. 

A'~(gN ~)) = {Alo,g(go) + 7Z6} 

w {A ~ho~t(go) + Z6/~}. (B 6-2) 

The long integrally graded subalgebra gr. (1) is respectively (Ale) m, De (1), D4 (~), 
and A2 (~). We read from the Dynkin diagram of go that its short simple roots 
generate a regular subalgebra of type Ap, and we also note that go has ph/(z- 1) 
short roots organized into p(p + 1)/2 representations ofgL; h denotes the common 
Coxeter number of gu and go (Table 7). 

Dropping the case of D4 (3) till Sect. B.8, we are going to associate each of these 
representations to a positive root of the "short" A v in the following way: 

Let ch (e) and c~j (') denote the long, cde). c~ (e) = 2, and short, c~ ('). ~(')= 1, simple 
roots of go. We map A(go) onto A +(Ap): 

by: 

e • A(go)-~ A + (Ap), 
(B6-3) 

N - p  N 
~= E mi~Y ) + E njO~j (s)' 

i=1 j = N - p + l  
(B6-4) 

N 

j = N - p + l  

with h i t  {0, +1} and ~j= nj [2]. Note  that (c~-/~_+ ~. fl) is always integral. 
If we represent the long integrally graded subalgebra gL (1) of gN (~) by the 

Frenkel-Kac currents (B2-13), the Frenkel-Kac currents associated to the short 
roots will have the wrong conformal weight and O.P.E., as explained in Sect. B.3. 
We are going to complete the Frenkel-Kac currents associated to the short roots 
by the Lepowski currents (B5-11) of the fermionic construction of Ap (2) by 
associating one rescaled Lepowski current to each representation of gL" 

Table 7. The horizontal (go), short (Ap), and long (gL) regular subalgebras 
involved in the Bosonic construction of g.(~) (B6-1) 

gN A2,,- I = SU(2n) D,~ + 1 = SO(2n + 2) E6 (2) D,~ (3) 

go C,, = Sp(2n) B,, = SO(2n + 1) F 4 G2 
Ap A,,-1 =SU(n)  A 1 A2 A2 
gL (A1)" D.=SO(2n)  0 4 A 2 
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The construction is the following. Consider (N-p)  even graded Fubini- 
Veneziano fields and p odd graded ones: 

• Z n 

Xi(+)(z) = q -- ip Log z 2 -- i ~'2 ~ x' _. - - ,  
2 Z  t"1 

(B6-5) 
• Z n 

YJ~-)(z)=-i]//~ 2 x '_ . - - .  
2 Z +  1 g/ 

Let W denote the weight lattice of go. We consider the Hilbert space 

J f  = Fock(X ~, Y')® W(go). (B 6-6) 

We want to define as in Sects. B.2 and B.3, a map e, 

e:A®A-+{ + I ,--1}.  (B6-7) 

In the case of A, D, E the Jacobi identity implies that the Chevalley structure 
constants (A1-21) form a two-cocycle. However, in the case of Lie algebra with 
more than one short simple root, they do not, since there occur Jacobi identities 
with three non-vanishing double commutators. We modify the construction (B 2- 
6)-(B2-9) as follows: 

i) Order the simple root of go from long to short and set 

- 1, if i : j ,  

~(% ej) = + 1 ,  if i<j ,  (B6-8) 

( - 1 )  a~, if i>j. 

ii) Extend their definition to the whole lattice by the distorted bimultiplicativ- 
ity law: 

e(~, fl + ?) = e(~, fl)e(~, y), (B 6-9a) 

e(~ + fl, y) = e(~, ?)e(fl, 7)~(~, fl; ?), (B 6-9b) 

with 

~(~, fl; 2))= ( -  1) ( ~ ~ -  a- ~) ~ . (B 6-10) 

measures the deviation of Q from being a homomorphism of additive groups. It is 
well defined since ( ~ - - ~ - ~ - ~ )  always belongs to 2A(Ap). 

The ~ satisfy the distorted cocycle relation 

+ j = (S 6-i 1) 

and, 

e(~, fl)e(fl, ~)= ( -  1) ~'p+a'~ . (n 6-12) 

The last equation can be proven by recursion. (B 6-12) is true on the simple roots by 
construction (B6-8). Furthermore, either side of (B6-12) satisfies the distorted 
bimultiplicativity law (B6-9b). Restricted to the sublattice A(gL), 0 is a homomor-  
phism and ~ coincides with the cocycle of Sect.. B.2. 
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We extend e to A x W as usual [Eq. (B2-10)] and define on Jig (B6-6) the 
operators: 

~ :  ~tP> =e(~,P)[P>. (B6-t3) 

We represent 

*) the Caftan currents by (B2-13) 

i i h¢+)i(z) = ~gzX¢+) (z). (B6-14a) 

These currents only have even graded modes. 

*) The currents associated to the roots (n + 1/2)6, whose degeneracy is p, by the 
odd moded fields 

i 
ht_)J(z) = ~ O~Y~_) (z). (B6-14b) 

*) The currents associated to the positive roots of go by 

J(~, z )=z ~2-1U~+)(~, z)U~_)(c~, z)~= V(~, z)g~, (S 6-14c) 

where U¢+) and U¢_) are the even and odd moded vertex operators defined by (A4- 
43) and (A4-33). If ~ is a long root, ~ = 0 and J(~te), z) only has even modes. If ~ is a 
short root, J(~¢~), z) has even and odd modes. The operators U¢_)(c~, z) are rescaled 
Lepowski currents (B 5-I 1) which play the role of a set of non abelian interacting 
fermions. The O.P.E. of currents is 

~P  

V(e, z) V(fl, w) = (z2 _ w2)~. p ~ V(e, z) V(fl, w);. (B 6-15) 
kZ+W/  

Under the exchange (~, z)~(fl, w), this O.P.E. changes by a factor ( -  1) ~ +a~. The 
operators now play a double role. On the one hand, by Eq. (B6-12), they turn the 
commutators of the modes of the currents J(~, z) and J(fl, w) into a Cauchy integral 
(A4-5). On the other hand, when ~- ~> 0, i.e. when ( ~ )  # ~ + ~, there may exist a 
pole at z = - w .  This induces a parasite sign factor in the residue, since: 

U +(~, - w ) =  U+(cz, w ) ( -  1) z~'" . (B 6-16) 

This sign is just compensated by the factor ¢(~, fl; p) in the composition law (B 6- 
11). 

The fields (B 6-14) are primary fields with conformal weight one with respect to 
the Virasoro algebra defined as the sum of the free Virasoro algebra (A 4-45) of the 
even and odd oscillators. 

As usual, we define the modes by 

dz ,, 
~ ~ + (go),  J~. = ( o -  ~ - . )  + = ~ ~ z J ( . ,  z ) ,  

d z  n 
h(±),= ~ i  z h(±)(z) 

(B6-17) 

which close by commutation. 
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A highest weight p in 24f is annihilated by all the positive simple roots of go 
(thus all its Dynkin weights are positive or zero), and by O, the level 6/2 simple 
root, which implies 

IP" Ol < 1 (B6-18) 

as a generalization of(B 1-8). Therefore, in keeping with the Dynkin diagram rules 
(A 1-6), ~ has two components in case A2e _ 1 (2) with p = 0 or p the highest weight of 
the [] representation of Ce, two in De+ 1 (2) with p the scalar or the spinor highest 
weight of Be, and a single one, p=O, in E6 (2). 

In each case, there is an unique string function: 
p N 

c(q)=qt6 24 I~ (1--q")P-N(1--q"-~) -v.  (B6-19) 
n>o 

It should be noted that this construction reduces in the case of De+l (2) to the 
construction of Sect. B.4. 

B.7. The Bosonic Construction of  the A2e (2) Twisted Algebra 

The A2e (2) twisted algebra contains the AEe_ 1 (2) twisted subalgebra and can be 
represented in a similar way. There exists a gradation of A2e (2) (A1-30) 
corresponding to an outer-automorphism of A2e of order four, which extends the 
homogeneous gradation of the A2t_ 1 (2) subalgebra. The horizontal algebra is Ce 
and the real root system (B 6-2) is simply completed by the [] representation of Ce 
at the levels (2Z÷ 1)6/4. 

~{~ +z6/2, ~ e A~(Ce)} 

The imaginary roots of Aze-1 (2) :Z6 with degeneracy f and (;g+ 1/2)6 with 
degeneracy (~'-1) are comNeted by an additional imaginary root (Z+1/2)6 
corresponding to the Ce singlet of (A 1-30). To each imaginary root, we associate a 
free bosonic field: EXi(+) and ( f -  1)Y J(_) as in Sect. B.6, plus a new odd field Z(_). 
The total central charge of the Virasoro algebra is 26 and the energy of the vacuum 
is f/16. 

We represent the imaginary roots by the currents (B6-14): 

h~ + = it3 zXit +)' (B 7-2) 

h J- = iOz Y J(_), 

h i = iSzZ(_), (B 7-3) 

the integrally graded long roots by the even Frenkel-Kac currents (A4-43): 

J(o:,z)=zU+(c~,z)~, c~2=2, (B7-4) 

and the Z/2 graded short roots by the currents (B6-14c): 

J(~, z)= U +(~, z)U_(~, e)~,, 0~ 2 = 1. (B 7-5) 
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g~ is the e operator of the weight lattice of Ce defined in Sect. B.6. ~maps the short 
roots 1/V~(+ei+_ej) of Ce onto the ~= 1/~-2(ei-e~) of A +(A~_ 1). In a consistent 
way, we map the roots i/l/~e ~ of the [] representation of C e onto the weights 

1 /e I 5\  = ( i -  7 z of the [] of A , -1  F or these roots, the,,conformal weight of a 

current of the type (B7-5) would be e2/2 + o52/2 = 1/4 + 2X~-. We complete these 
currents by an additional Z vertex operator: 

1 o J(~, z) = U + (~, z) U_ (~, z) ~ exp i V ~ Z ( _ ) o .  (B 7-6) 

The factor ]//(2f+l)/2E restores the local character and also produces the 
necessary double pole in the O.P.E. 

Once more, one can check the existence of a unique highest weight Ae in the 
representation space: 

= Fock(X ~, Y~ Z)®W(Ce), (B7-7) 

and evaluate the string function: 

C(q) = q- 2g/24 + g/16 H (1 - -  qn)- e ( l  _ q , -  1 /2) -  g. (B 7-7) 
n>0 

B.8. Two Constructions of D4 (a) 

D4 (3) admits two homogeneous gradations such that the horizontal algebra is 
either A2 or G2 (see Sect. A. 1). We shall construct in each case the unique level one 
module. 

The construction with A2 horizontal is parafermionic, and generalizes the 
fermionic construction of the 2-twisted algebras. We use four Fubini-Veneziano 
fields without zero modes. We average over the orbits of an automorphism o- of 
order three of the root lattice of D4 without fixed point. 3 * 3 matrices generalizing 
the familiar Dirac matrices provide the necessary sign factors. 

The construction with G2 horizontal generalizes the bosonic construction of 
the 2-twisted algebras. We start from the Frenkel-Kac representation of the long 
roots of G2. This involves two Fubini-Veneziano fields with their zero modes 
included and the usual cocycle (B 2-6). Then, we complete the currents associated 
to the short roots by auxiliary fields which are, up to a rescaling, the Kac- 
Kazhdan-Lepowsky-Wilson currents of the principal construction of A2 (~) [16]. 

Let us first recall this last construction. Consider a pair of 3Z graded fields 

Z n 

~ o ( z ) = - i  Y. (1 -co ' )x_ , - - ,  (B8-1) 
n~Z n 

where the x, operators satisfy the canonical commutation relations (A4-12a) and 
co = exp(_+ 2irc/3). 

Now consider the inner automorphism o-, o -3 = e, of the root lattice of A2 which 
rotates the first simple root into the second. The six roots of A 2 split into two orbits 
with representatives el and ( - el). The affine Kac-Moody algebra A2 (~), twisted by 
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this inner automorphism, is represented on the Fock space 

= Fock(x,; n 4:0 rood 3) (B 8-2) 

by the currents, 

ho~(z) = i~ ~p,,(z) , (B 8-3) 

and by the vertex operators, 

V~(z) = z-1  ~ exp ilp,o(z) ~ . (B 8-4) 

There is no need for a cocycle because the O.P.E. of the V,o are symmetric. 

V~,(z)Vo,(w) = ( z -  w) 2 1 ~ e~(V~(~) + ~,(~))X, (B 8-5a) 
( z -  ~ w ) ( z -  ~w) zw 

( z - -w) ( z - -~w)  1 ~ei(~(~)+~(w))oo " (B8-5b) 
v,o(z)V~(w)= ( z_~w)  2 ~w 

The eight generators of SU(3) are reorganized as follows: six generators are 
represented by the (3Z +m), m =0, 1, 2, modes of V~, and V~; the two others, by the 
h,o which only have modes in the class (3Z_+ 1). 

There is in this construction a single level one module for the following reason. 
As explained in Sect. A, the distinction between the various level one modules of an 
affine algebra is gradation dependent. The principal gradation of A2 (~) that we are 
considering is symmetric in the 3 simple roots of A: (~). In the notations of Sect. A, 
we have: 

~i(d) = 1/3, i = 0,1, 2. 

The three level one modules are therefore isomorphic even as Virasoro-Kac- 
Moody modules. The partition function of 5(( is 

2 

Tr~e(q~°)=q 18 l~ (1--qn-1/3)(1--q n-2/3) 
/n>O 

= q(q)/~l(ql/3). (B 8-6) 

The bosouic construction of D4 (3) corresponds to the gradation in which the 
horizontal algebra is G2. The root system given in (A 1-28a) follows from the 
decomposition of D 4 with respect to Gz, 

D 4 = G 2 + 7 + 7 .  (B8-7) 

As G2 has short roots normed to a- ~ = 2/3, the standard vertex operators must be 
completed by auxiliary fields. By analogy with the De+l (2) case in which the 
auxiliary fields introduced in Sect. B.6 are the rescaled fields of A~ (~) principal, we 
introduce the rescaled fields of A2 (x) principal (B8-4) as auxiliary fields for D4 (3). 

Thus, let us introduce the tensor product of the Fock space generated by two 
Fubini-Veneziano fields, X(3)~(z), i=  1, 2, containing only modes modulo 1-3], by 
the Fock space (B 8-2), 

= Fock (X(3) I, ~p)® W(G2). (B 8-8) 
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% 

Fig. 5. Root diagram of G 2 (B8-9). eo and a~ form a 
system of simple roots. The 6 short roots form the quark 
and antiquark representations of the long SU(3) 
subatgebra 

Note that W(Gz), the weight lattice of G2, associated to the zero modes of the fields 
Xi(z), coincides with the root lattice of G 2. 

Once more, we define the 2-cocycle, e(a, fl), on A(G2) by Eqs. (B2-6)-(B2-9). As 
aij, i+-j, is always odd, we can choose any order in (B2-6). The long roots of G2 
generate an algebra A 2. The short roots split into two representations of this A2: 
the quark and the antiquark as described in Fig. 5. By bimultiplicativity (B 2-7), 
~(~, fi) is a two cocycle, and hence satisfies 

e(a, fl)e(fl, ~ ) = ( -  1) ~~--] '(~)t(p) = ( -  1) 3~'p , (B 8-9) 

where t(~)=0 if a is a long root or t(a)= + 1 ( - 1 )  if a is in the (anti-)quark 
representation: t is the triality of SU(3). 

Let us now define the rescaled fields of Az (~) principal, 

W,o(z) = ~ exp ~/~po~(z)~, (B 8-10) 

which satisfy the O.P.E. (B8-5) up to the power (2/3). 
The bosonic construction of D4 (3) is then given by the currents, 

hi(z) = iO~Xi(z), i = 1, 2, 

ho(z) = iOWo,(Z), co = exp(_+ 2in/3), 
(B8-11) 

J(a, z) = z 3~2-1 oOexpi~. X(3)(z)~ W~(z)~, 

The modes, 

= exp(2int(~)/3). 

h. i= ~2-i z"- 1Pi(z), 
(B8-12) 

dz 
J.~ = ~ J(~, z), t(~) = 0 

appear only for n - 0  [3], and represent A2 (1) of level one. The modes 

dz 
S , '=  ~ S ( a , z ) ,  t(a)+O (B8-13) 

complete the A2 (1) representation to D4 (3). All the n-=-0 [31 modes represent the 
G2 (1) subalgebra of level one. 
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The Hilbert space 240 is irreducible and contains the unique level one module of 
D4 (3). The highest weight is a scalar of the horizontal algebra Gz. The string 
function of D, ~3) of level one reads, 

C(q)=q2/18-4/24/II (a-q")2(1--qn-'/3)(1 __q,-2/3). (B8-14) 
In>O 

The fermionic construction corresponds to the gradation having A2 as 
horizontal algebra. It is defined by an outer automorphism a of D4 of order three 
without fixed point, o- is completely defined, up to a Weyl transformation, by 
imposing, 

+ a~ + o-2~ = 0 (B 8-15) 

for every root ~ of D4. The o--invariant algebra is A 2. 
By analogy with the construction B.5, which corresponds to the automorphism 

a = - 1 ,  we introduce four Fubini-Veneziano fields Xf(z) (A4-14a), and their 
associated e-fields, ;~,i(z) and Z,i(z), defined by 

2 

~" z~(z)= Z (G~).x(o~z), 
p : 0  

2 

~" z~(~)= E (~.).x(~z). 
p=O 

The fields )~ and Z~ commute, 

(B8-16) 

with 

2 

e(fl, ~)e- 1(~, t)  = I] (c°P) ~'*~¢. (B 8-22) 
p=O 

[X~(z), X~(z)] : 0 (B 8-17) 

and only contain modes n-_+ 1 [3] [due to (B8-15)]. For the automorphism 
o - = - 1 ,  Z~ reduces to the odd graded field introduced in B.5. The G-vertex 
operators 

U~(c~,z)= ~ e x p  c~ " Z~(z) ~ = U~(~rct, oJz) (B8-18) 

satisfy the O.P.E. 

2 

U~(o~,z)U~(fl, o9)= U (z-°gPw)"P~'~U,~(~z,z)U~(fl, w) ~" (B8-19) 
p = 0  

The fermionic construction is defined on the space 

= Fock(z~)® V (B 8-20) 

tensor product of the Fock space of the fields Z, by a three dimensional vector 
space V. On the space V, we introduce a set of 3 * 3 matrices, E~ where a is a root of 
D,, satisfying 

E ~  e = ~(~,/~)E~ + ~, ( a  8-21) 
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They can be defined by, 

E~ = l-[ ( E J " '  if ~ = Z nlai 
i 

from the matrices associated to the simple roots ~ of D4. Namely, 

0 1 0 1 0 0 0 

E , , =  0 0 1 , E ,2=E,3=  0 co 0 , E~,= 0 

1 0 0 0 0 o3 1 

(B8-23) 

03 0 

0 co 

0 0 

(B8-24) 
Now, the currents, 

h~(z) = iO~z~i(z) , (B 8-25a) 

J,,(e, z ) z -  1 U,(e,  z)E~, (B 8-25b) 

represent D4 (3) in the fermionic gradation. The modes, 

h~ i= ~ dz z"A,/(z) (B 8-26) 
2i7r 

appear only for n=  _+ 1 [3], whereas the fields J~(~, z) contain all the integral 
modes, 

dz n 
a~" = (J_ =-") + = ~ ~ z a~(~, z). (B 8-27) 

The modes n--0 [3] represent A2 (1) of level three. 
The Hilbert space is irreducible and contains the unique level one module of 

D4(3): the space Videntifies with the representation 3 of A 2. The q-dimension of the 
representation is: 

C(q) = 3q4/18-4/24/~> ° (1 - q"-1/3)2 0 -q"-2/a)2 = 3tl(q)Ztl(q,/3)-2. (B 8-28) 

At last, the definition of the a-vertex operator can be extended to an arbitrary 
automorphism a of a simply laced algebra. This fermionic construction of D4 (3) is 
implicit in the work of Kac and Peterson [25]; the bosonic construction is 
completely new. 

C. Interacting Field Constructions 

The algebras C, (1), F4 (1), and G2 (t) in their unique homogeneous gradation are the 
integrally graded subalgebras of A2, _ 1 (2), E6 (2), D4 (3). As such, their construction is 
implicit in Sect. B. However to disentangle the integrally from the non-integrally 
graded short roots we need to modify our construction quite drastically. 

*) We construct, in Sect. C.1, an auxiliary Virasoro algebra with a fractional 
central charge (Table 8) and its primary fields (Sect. C.1). 

**) We use these primary fields as auxiliary currents to construct G2 (1) and 
A2 (2) in Sect. C.3 and C, (1) and F4 I~) in Sect. C.5. 
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Table 8. Decomposition of the central charge c of the Virasoro algebra of the level k module 

of g(~): c = rank(g) + G~.  

g.~ is the auxiliary Lie algebra used to construct an interacting stress tensor of type (1) or (2) with 
central charge Ca~x (C1-3) 

g k c g~x c(1 ) c(2 ) 

A 1 N 1+2(N-1 ) / (N+2)  A._~ 2 (N-1) / (N+2)  

l A, gv Dp 2 p + hp/(h + 2) gp hp/(h + 2) 

[ G  
B v 1 p + l / 2  A, 1/2 
Cv 1 p+p(p-1) / (p+2) Ap_~ p(p -  1)/(p + 2) 
F4 1 4 + 6/5 A2 6/5 
G2 1 2+4/5 A2 4/5 

***) As a side step, we need the level three and four representations of A1 (1), 
which are contained in G2 (1) and A2 (2) of level one, and the level two 
representations of A,_ 2 (1) which are contained in C, (1) of level one. We actually 
solve a slightly more general problem: we construct the representations of A o )  of 
arbitrary level in Sect. C.2, and the representations of level 2 of A, D, E in Sect. C.4. 

C.1. Construction of  the Auxil iary Virasoro Algebras 

As explained in Sect. B, the currents which generate the Kac-Moody algebras are 
constructed by completing the Frenkel-Kac vertex operators, corresponding to 
the Cartan subalgebra, with some auxiliary fields. These auxiliary fields must be 
primary fields with respect to the auxiliary Virasoro algebra, L(g)-  L(h), where h is 
the Caftan subalgebra of g. The central charges are given in Table 8. When the 
central charge is not a half integer, the Virasoro algebra cannot be represented 
by a free field stress-tensor. But, by completing the work of Eguchi and 
Higashijima [26], one can define the following stress-tensor: 

7"(z)=Za Z ~(i~OzJ~) 2~ + b  ~, ~eZia'2~. (CI-1) 
~A ~A 

Here, ~ is a root of an A, D, E Lie algebra of rank p. ~ is normed to ~- ~ = 1. The 
fields J~i(z) are p Z-graded Fubini-Veneziano fields (A4-11). T(z) operates on the 
space Fock()~) * W, Eq. (A4-13). After a lengthy calculation, using extensively the 
relation [43]: (~, ~(a, 

2 (~,~) =h('fl, y3 
~eA 

(where h is the Coxeter number) one can show that T(z) generates a Virasoro 
algebra if the coefficients a and b are: 

a(o ) = 1/4h, 

a(1) = 1/2h(h +2),  

a(2 ) = 1/4(h + 2), 

b(o) = O, 

b(~) = 1/(h + 2), 

b(z ) = -- 1/(h + 2). 

(c1-2) 
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The central charge of the three Virasoro algebras L(o), L(1), and L(2 ) are (Table 8): 

2p hp 
c(°)=P' c(1)= h + 2 '  C(a)- h+2" (CI-3) 

L(o) is the Virasoro of the p free bosons (A4-17) and is also the sum of the two 
others, 

L(o ) = L(a ) + L(2 ) . (C 1-4a) 

Furthermore, the generators L(t) and L(2) commute, 

[L(1 ), L(2)] = 0 .  (C 1-4b) 

The central charges c(a) for the Lie algebras SU(N) correspond to the auxiliary 
central charges of the level N representation of su(2) affine. They also correspond to 
the auxiliary central charges of the basic representations of Be (~) and Gz (~) which 
contain representations of level 2 and 3 of At (a). It should be noted that for the 
algebras Ee, A2, A3, the central charges c(~) are less than one. As expected, they 
belong to the unitary series c = 1 - 6/m(m + 1). Their value are c(1 ) = 6/7, 7/10, and 
1/2 for E6, E7, and Es respectively. The central charges c(2) are the auxiliary central 
charges of the level two representations of the A (1), D (1), E (1), and also of the basic 
representations of F4 (a) and Ce (t). 

We shall now construct primary fields of these Virasoro algebras which may be 
used as auxiliary fields in the current algebras. For the L(1) algebras, primary fields 
can be constructed by means of vertex operators defined on the basic represent- 
ations of the Lie algebras A,D,E.  Namely, let us define the fields F(z) as: 

1 y~ ~eZiC°x('~, (CI-5) 
r.(z)= d g i-g5 

where the weights c3 belong to a minuscle representation, noted R, of A, D, E Lie 
algebras. It is a primary field for both L(o) and L(a) with the same conformal 
weight A : 

A(o ) = A(I ) = 2(b 2 . (C I-6) 

In particular, for the vectorial representation of su(N), noted IN, and for its 
complex conjugate Q, the conformal weights are: 

N - 1  
Arz=Acz-  N (C 1-7) 

Furthermore, by using the relation (C 1-3) and the fact that the conformal weights 
with respect to L(o) and L(1) are equal, one deduces that the fields F(z) commute 
with the third Virasoro algebra L(E). That property will be very useful in the study 
of the various Kac-Moody representations constructed below. 

In the case of su(2), the F(z) fields reduce simply to fermionic fields (A4-28): 

F(z) = - ~  [e i~: + e- ix]. (C 1-8) 

F(z) is a N.-S. or R. field according to the lattice class to which the momentum 
belongs. 
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Primary fields of the L(2 ) algebras can be defined by: 

z _i~.~: e-~•x].  (C I-9) 
z)= 1/2 

They are also primary fields of the L(o ) algebras. Their conformal weights are equal 
to 

A(°)=A(2)- 2 - 2 '  (C1-10) 

reflecting their fermionic character. As before, they commute with the last Virasoro 
algebra L(1). 

C.2. Representations of A1 (1) of Arbitrary Level 
The currents of the level N representations o r a l  (1) will be written as the product of 
the Frenkel-Kac currents by some auxiliary fields that we shall now determine. In 
keeping with Weyl group properties (A3-11), the square of the root appearing in 
the Frenkel-Kac vertex operator must be normalized to 2/N. Furthermore, as su(2) 
is of rank one, it is sufficient to introduce only one auxiliary field and its complex 
conjugate. In order that the currents be primary fields of the total Virasoro 
algebra, Lr=Lfree(X)+L(1)(AN_I), with a conformal weight equal to one, the 
auxiliary field must be a primary field of the L(1) algebra with (N-1)/N as 
conformal weight. At the same time, the O.P.E. of  the currents, product of the 
standard vertex operators by the auxiliary fields, are single valued if the auxiliary 
fields are primary fields for the Lt0 ) algebra with the same conformal weight, 
(N-1)/N. Therefore, the fields FD(z ) and Fo(z ) [(C 1-5) and (C 1-7)] are respectable 
auxiliary field candidates. Their O.P.E. are inferred from the decomposition of the 
tensorial product of the su(N) representation; [] * ~ = A d j +  i, and [] * [] 

= V]-q + ~ .  They read: 

1 2'N 2 
-= ( z -  w )  , - 

x[c~n~e2iC~"x'~)-x(~")~+(z-w)Z~ + ~,~Aaj Z ei(~" x(~) + ~" "x(w))~ j ' 

1 2 2'N ( C 2 - I )  
r=(z)rD(w) = - A ( z -  w) - 

x I~,~n ~e2ic~(x(z)+~(w),x+(z-w)-2 ~*co' ~ Zei~"x(~)+ic°"X(w)z I" 

The level N representation of Aa m is defined as follows. Let (+ ~) denote the 
roots of A~ rescaled to e. c~= 2/N, and W(AO the associated weight lattice. Let 
ITV(AN-1) denote the weight lattice of An-t ,  the roots of AN-1 being normed to 
~ -~=  1. Define also the bosonic fields, X(z) and $i(z), i=1 to ( N - l ) ,  (A4-11), 
respectively associated to A1 and AN- 1 "Aa (~) is represented on the Hilbert space, 

= Zock (X,)~') ® W(A 1 ) ® VV(AN _ 1). (C 2-2) 
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The currents associated to the real roots are 

J(e, z) = F[] (z) ~ exp ic~. X(z)~, (C 2- 3a) 

J ( -  ~, z) = lzl- 2j ~, = Fc~(z ) ~exp- i~X(z)~, (C 2-3b) 

whereas the imaginary roots are represented by the currents, 

h~(z) =iNe.  ~X(z). (C2-4) 

The commutation relations directly follow from the O.P.E. (A4-25) and (C2-1). 
W(A1) decomposes into two cosets: the tensor and the spinor weights. W(AN-1) 
decomposes into N cosets which correspond to the N fundamental representations 
R~ of AN_ 1, 

N-1 
W(Au-1)= U (2j+A(AN_,)), (C2-5) 

j=O 

where 2jis the highest weight of the R i representation of A N_ 1. The currents will be 
single valued if the momentum p of X and/~ of J~ satisfy 

(2c5p + ep) e 7/,. (C2-6) 

The absence of fractional power of (z-w)  in the O.P.E. of the currents reveals that 
these constraints commute with the currents. 

As the L(2) algebra commutes with the currents (C2-3), these representations 
are infinitely degenerate. But, by looking at the representations of the product 
L(2) * A~ m, one reduces the degeneracy to a finite order. In particular, the highest 
weight vector of the (n @ N -  n) * L(2) representation, A = hA1 + ( N -  n)Ao, is the 
vacuum vector whose momentum p is the highest weight of the n tn representation 
of su(2) and whose momentum p is a weight of the n th representation of su(N). The 
infinite set of highest weight vectors of A~(1) is then generated by applying the L(2 ) 
generators to these vectors, i.e.: they belong to the L(2)-Verma module built upon 
these vectors. 

In the case of N < 3, we can say more about the structure of the representations. 
Each string is a reducible representation of the total Virasoro algebra, 
L r= Lfro~(X)+L(~). Let us define the quotients of the strings by the Lf~oo-Verma 
module. On these spaces, the Virasoro algebra L r identifies with the L(~) algebra. 
These quotient spaces are unitary representations of L(~). The string functions can 
thus be written as: 

CAu(q) = rl- t(q)chL(1)(q), (C2-7) 

where chL(~) are the character of the L(~) Virasoro algebra in the quotient spaces. 
In general, these quotient spaces can also be highly reducible. But in the N__< 3 case, 
the auxiliary central charge is less than one, and hence the degeneracy is finite. If 
A (1) is the conformal weight, with respect to L(a), of the highest vector of the string, 
the conformal weight of the vectors of the quotient space are (A (1) + k), k ~ N. A new 
highest weight vector of L(1) occurs in the quotient space only if(A(~) + k) belongs to 
the set of unitary conformal weights (A2-21). 
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In the N = 2 case, the central charge is one half. The unitary weights are 0, 1/2, 
and 1/16. Therefore the quotient spaces are irreducible, and the string functions 
read: 

C2°(q) = r I -  l(q)chL(1)(c = 1/2, A = 0)(q), 

C~°(q) = t 1- l(q)chL(1)(c = 1/2, A = 1/2)(q), (C2-8) 

c~ll(q) = t  l -  1(q)chL(1)(c = 1/2, A = 1/16)(q), 

where Ci'ke(q) = C iAO + jA lkA 0 + eA,(q)" 
The conformal weights A(1 ) which occur in the N = 3 case are for the (1 ~ 2) 

representation, A(1)= 1/15 and 2/5, and for the ( 3 ~ 3  0) representation, A(1)=0 
and 2/3. But the conformal weights 7/5 and 3 are also unitary weights for c = 4/5. 
Therefore, the quotient spaces in the strings having A(a ) = 0 or 2/5 can be reducible. 
The degeneracy in these strings can be evaluated by means of the Racah recursion 
(see Sect. A.3 and Fig. 3), and the representations with conformal weight 3 or 7/5 
do occur. Thus, the various string functions read: 

C~O(q) = tl - l(q) [ch(4/5, O) + ch(4/5, 3)] (q), 

C~ ~(q) = tl- l(q)ch(4/5, 2/3)(q), (C 2-9) 

C~2(q) = tl- l(q)ch(4/5,1/15)(q), 

C3~ ° = tl-  ~(q) [ch(4/5, 2/5) + ch(4/5, 7/5)] (q). 

It is quite puzzling to note that these combinations of the Virasoro characters 
coincide with those appearing in the 3-state Potts model [44]. 

This method of evaluation of the string functions of the representations of A 1 (1) 
cannot be pursued for higher level. However, all the string functions of A1 (1) were 
evaluated in [45], from their modular properties. 

C.3. K = 1 Representations of  Be (1), G2 (1), and A2 (a) 

As the representations of A (1), D (1), E (1) follow from the representation of 
Ai~l)Ek=l], the representations of Be ~l), G2 (1), and A2 (z) follow from the 
representations of A1 (1) with k = 2 ,  3, and 4 respectively. 

In the construction of Be (1) given in Sect. B.3, the vertex operator associated to 
a short root is completed by an auxiliary free fermion F(z). This field is equivalent 
to the FD(z ) of S U(2) (C 1-8), needed in the construction of A1 t 1 )[k = 2]. The string 
functions are trivially related, compare (B3-6) and (C2-8). 

The root system of the G2 algebra is described in Fig. 5. As the ratio of the 
square of the long roots by the square of the short ones is equal to three, the basic 
representation contains a level three representation of su(2) affine (see Sect. D). On 
the other hand, the short roots belong to the [] and 0 representations of the su(3) 
regular subalgebra generated by the long roots. Therefore, the currents are 
naturally defined on the space, 

ffd = Fock(X i, ~k)® W(G2)® 17V(A2), (C3-1) 

where Xi(z), i = 1 to 2, are the Fubini-Veneziano fields associated to G2, and Xk(z), 
k = 1 to 2 are the auxiliary bosonic fields introduced in Sect. C.I in the particular 
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case of SU(3). The real roots currents are 

[ o°expie • X(z)~ ~ ,  

J(a, z)= Ft~(z ) ;expioc. X(z)~ e~, 

Fc~(z ) o°expic~ • X(z); ~ ,  

t(a) = 0, c~ 2 = 2, (C 3-2a) 

t(e) = 1, (C 3-2b) 

t(a) = 2, (C 3-2c) 

where t(a) and e~ are the triality and the cocycle operators defined in Eqs. (B2-6) to 
(B 2-9) and (B 8-9) and the F D (z) fields are defined in (C 1-5). The imaginary roots are 
represented, once more, by the fields iO~Xi(z). From Eq. (C2-1), particularized to 
the N = 3 case, it is easy to verify that these operators have the correct O.P.E. in 
order to represent the G2 (1) affine algebra. 

The structure of the representation follows from the structure of the level three 
representations of A1 m. First, the L(2 ) Virasoro generators commute with the 
currents (C 3-2). Second, the auxiliary central charge is less than one. Therefore, the 
string functions of the 2 level one modules are: 

C A~A~(q) = C AoA°(q) = tl - ~(q)C ~ °(A 1 (1))(q), 
(c3-3) 

CA 2 A O(q) = CA 0.42(q) = tl - a(q)C ~ 2 (A 1 (1))(q). 

The last algebra in which these auxiliary fields can be used, is the twisted affine 
algebra A2 ~2). In Sect. B.4, a fermionic construction of this algebra was given in 
terms of odd fields. It was based on an automorphism of order two of A2 yielding 

the Z 2 gradation: A2 = A1 + 5. (C3-4) 

The root system given in Fig. 2 follows from that decomposition. 
We now present a bosonic version of that construction. The construction is 

defined on the space 

Jt ° = Fock(X, )Tk)®([] + A(A 1))®(D + A(Aa)), (C 3-5) 

where X(z) is the Fubini-Veneziano field association to the horizontal algebra A1, 
and the Xk(z), k = 1 to 3 are the bosonic fields associated to the auxiliary algebra 
SU(4). ([2]+A(Ap)) is the coset of the weight lattice of Ap containing the 
fundamental representation. 

The ratio of the square length of the simple roots is equal to four. The auxiliary 
fields, that must be introduced in front of the vertex operators of the short roots, 
are built upon an su(4) algebra. We define the fields Fc~(z) and Fc~(z ) by Eq. (C 1-5). 
We define also the hermitic field fg(z) constructed over the 6-representation of 

su(4) by the same equation. The O.P.E. given in Eq. (C 2-2) and the following ones: 

1 1 
rD( )r B (w) = z -  w 

x [co+~r~ aeZ'(C~x(='+c°"'t(w"a+(z-w)2Y',~.~, > o a e2'(co"~ + co' 4c~)a] ' 

1 1 (C3-6) 
F~(z)FB(w)- 6 ( z - w )  2 

x [ Z ~eZi~(x'=-x'~'~ + ( z - w )  2 2 ~e2i(co'x'+co"x')g], 
Lco~Z~ co-~'>_-o 



Level One Representations of Simple Affine Kac-Moody Algebras 235 

show that the twisted A2 (z) algebra can be represented as follows. We normalize 
the roots e of A1 to a. c~ = I/2. We consider the currents: 

~e-2~'x~ r o -i~.Xo FB (C3-7a) • []oe  o ,  , F 0 o~°ai~X°o, ~e2iax°o, 

F o ~e-i~x°o, i~zX, F o ~ei~X3, (C3-7b) 

which are distributed in keeping with the root diagram of A2 (2), Fig. 2. The 
currents are primary fields for the Virasoro algebra L T = Lfr~,(X ) + L(~). Its central 
charge is two in agreementt with (A2-7). 

When (p,p) betong to the (O, O) coset of the weight lattice of A , ® A 3 ,  i.e. 
p ~ (Z + 1/2)~ and p e (O + A(A3)), the currents (C 3-7a) only have (Z + 1/2) modes, 
the currents (C3-7b) onty Z modes, the operators have no cuts and close by 
commutation. This restriction on p agrees with the Dynkin diagram where we can 
read that the highest weight of the basic module of A2 (2) must be a spinor of the 
horizontal A~ algebra. 

The string function cannot be evaluated from this construction because the 
central charge of the auxiliary Virasoro algebra is one. However, we already know 
from (B7-5)that c(q)= q(Vq )- 1. 

C.4. K =  2 Representations of Ae (~), De (1), and Et (1) 

We shall construct in this section the level two representations of the affine A, D, E 
algebras, and then use them to construct the basic representations of F4 (t) and 
C, (x). The L(z ) Virasoro algebras defined by Eqs. (C 1-1 ) and (C 1-2) have the central 
charge expected for the auxiliary Virasoro algebras of the level two representations 
of the simply laced algebras (Table 8). At the same time, in keeping with the 
analysis of the Weyl group (Sect. A), we wish to normalize the real roots to 
~. ot = 2/k = 1. Therefore, the Frenkel-Kac vertex operators have con_formal weight 
one half with respect to L f ~  and we need auxiliary fields with conforrnal weight 
one half with respect to Lm). Hence, the fields ~(~, z) defined in Eq. (C 1-9) are 
reasonable candidates. But, the O.P.E. of the currents will be of defined parity - 
which is absolutely necessary in order to reduce the computation of the 
commutation relations to the evaluations of the poles of the O.P.E., see the 
discussion following (A4-4) - if some sign factors are incorporated in the definition 
of the auxiliary fields. Consider the auxiliary space, Fock (X) * 17V (A 4-13), where 1711 
is a second copy of the weight lattice of A, D, E. And let us define the fields ~(~, z) 

as: ,p(8, z)= ½[e i~x + e- i~7~(-  1)z~], (C4-1) 

where ~ is a root of A, D, E and is normed to if- ~ = 1. ~ e { + 1, - 1 } is defined on 
A/2A by the recursion: 

(~ +~ = ~ ( -  1) z~~. (C4-2) 

The fields 5u(c4 z) define a set of non-independent fermionic fields. Their O.P.E. 
read: 

w) = ¼(z- w f  
× [ge~'x(~)+~'x(-)oo + ~e-~sc(~)-~sc(~')~ ~ + ~ ( -  1) 2(~ +))~] 

+ 

× [~,e~"~t~l-i~"~(W)°o ~)(-- 1)2~'P + °e-i~"~(~)+it~'~(w)3 ~ , ( -  1)2~(~+~)]. (C4-3) 
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The Virasoro generators for which the fields ~(~, z) are primary fields are those 
defined in Eq. (CI-I)  up to simple sign factor modifications: 

T(z) = a Z ~ 2(i~0~)~) 2 ~ + b ~, o cEil. Xoo ~ ( _  1)1 + 2~.~. (C4-4) 

The coefficients a and b are the same as those previously defined (C1-2), and they 
also correspond to the same central charges (C 1-3). 

Let us now consider the space, 

= Fock (X i, ~k) ® W(g) ® ~(g) ,  

where g is of type A, D, E. This space is just the square of the Hilbert space of the 
level one module (Sect. B.2). 

To each positive root 0~ of A we associate the same root ~ in ~, and we consider 
the real root currents: 

J(~, z) = ~p(~, z) °ei~'x(~)~ ~ .  (C4-5) 

g, is the cocycle of Sect. B.2 [Eqs. (B2-6) to (B2-9)]. As usual, the Caftan currents 
are the fields [i~- O~(z)]. The commutation relations follow from the O.P.E. (A 4- 
25) and (C4-3). Thanks to the factor ~ ( - 1 )  z~p, they are effectively of defined 
parity, The currents are single valued if the momenta p and p satisfy the constraint: 

(ap + 0~/~) ~ Z .  (C4-6) 

We shall now detail the reducibility of these representations. The currents 
J(a, z) are primary fields of the Lf~oo(X) + L(o) and Lf~¢~ + L(2) Virasoro algebras. 
They commute with the L ( ,  Virasoro algebra, which can be identified with the 
algebra K = L(g(~)[k = 1] * g(~)[k = 1])-L(g(~)[k = 2]) in the Goddard,  Kent, and 
Olive construction (A2-24). As L(a) commutes with the currents J(~, z) we can study 
the reducibility of the representation of L(1)* g(1). A highest weight vector of the 
algebras ~(~) and g(~) is also a highest vector of the three Virasoro algebras, L(~), 
L(z), and Lf~oo(X). By (C1-4), it is also a highest weight vector for the free Virasoro 
algebras L(o) = Lf~o¢(X). Hence, it is a vacuum vector of Fock (X, J~). Its momen- 
tum p and /~ are constrained by the condition (C4-6) and by the highest 
weight vector condition; they are given by: 

Pkj = (,Ok "~ (D j ,  f f k j  = "~ ((Ok - -  ( f ) j ) ,  (C 4-7) 

where COk are the weights of level one (with the convention co o = 0). 
In particular, we cannot describe a representation whose highest weight is not a 

sum of two level one weights. These only occur when g is of type D or E. The 
representations of the L(~) algebra which correspond to these highest weights are 
characterized by their maximal conformal weight A(~)[k, j]. Knowing the value of 
the conformal weight A for the total Virasoro algebra, L r = Llano(X) + L~2), we can 
evaluate A(2 ) by using (A2-8): 

Cas(j, k) p2 
2(h + 2) = -4- + A(2)" (C4-8) 

We obtain: 
~t(dk, j) = (cok- co j)2 

2(h +2) " 
(C4-9) 
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In the case of the algebras A~, Az, and Ee, the central charge is less than one: these 
conformal weights (C4-9) beIong to the family of unitary weights (A2-21). 

In conclusion, each representation decomposes, with respect to the product 
L(,) * g(1) as: 

L,o)(co), A(1)(k, j))® V(~, A k + A~). (C4-10) 

Each of these components is twice degenerated due to the symmetry p-~ - p. Up to 
straightforward modifications, this decomposition can be reproduced for the other 
constructions presented in the previous sections. 

C.5. Basic Representations of F4 °~ and C~ (~ 

The construction of these representations follows from the considerations of Sects. 
B.6 and C.4. Let g be of type F 4 or Ce. Let Ap be the associated short algebra (iv = 2 
or ~ -  1) defined in (B6-1). To each root ofg we associate a positive root c7 = ~(e) of 
A v (B6-3). We normalize the long roots of g to e(o. e(e)=2, and those of Ap to 
5.5 = 1. Observe the matching of the central charges of the Virasoro algebra of 
gtl)[-k= 1], Cartan (g) and L(2)(Ap) [Eq. (C4-4)~, 

c(g tl)[k = 1]) = rank(s) + c(2)(Av). (c5-1) 

We will complete the vertex operators associated to the short roots ofg by the 
currents (C4-1), which have conformal weight one half with respect to L~2). 

The representation space is, 

= Fock(X, JT)® W(g)® 17V(Ap). (C 5-2) 

We represent the Cartan subalgebra as usual by [ia. azX(z)], and the real roots 
by the currents 

s(~, z)= ~(~, z) U(~, z)~, (c 5-3) 

where the factors are defined by Eqs. (C4-1), (A4-23), and (B 6-8)-(B 8-12). The 
O.P.E. of the product T(c~, z)U(c~, z) is of defined parity, ( - i )  ~p+~, as in (B6-15). 
The defect factor ~(e, fl; p) (B6-10) is needed here to compensate the extra p- 
dependent signs which occur when 5. ~> 0. Indeed, in these cases, it is the second 
term of the O.P.E. (C4-3) which contributes to the poles. 

The Virasoro algebra L(t)(Av) (C1-1) commutes with gO) and we look for a 
highest weight of g(1)@L m. The momenta (p,/~) must satisfy the constraints 

W,  c~-p+~./~eZ. (C5-5) 

Up to the symmetry p ~  - p ,  L(1)@g (*) has two and (~ + 1) highest weight vectors, 
in the case of F4 and C e respectively. They are Fock vacua with momentum (p,/5): p 
a fundamental weight of g and p such that its Dynkin weights 6(/~) in Ap are just 
obtained by restricting the Dynkin diagram of g weighted by 6(/)) to its short roots. 

Since the central charge of L(2)(Ap) is more than one, we cannot directly extract 
the string functions. 
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D. Character Identities 

The explicit constructions, in Chaps. B and C, of several Virasoro* Kac-Moody 
modules V(A) has enabled us to evaluate a number of string functions 

C A~(q) = q - [22/2k Trs, qLO . (D- 1) 

Here, A denotes the highest weight of the Virasoro Kac-Moody module, and fi is a 
weight of the horizontal algebra go. The trace is evaluated over the/~ eigenspace of 
the Cartan subalgebra of go. Lo denotes the improved Virasoro generator 
(Sect. A.2) satisfying the commutation relations 

¢ 3 [L.,,L.] = ( m - n ) L , , + , +  ~ m  3,,+,,o (D-2) 

without linear dependence in m in the central extension. 
The prefactor q(-~,~/2k) is such that strings which are Weyl conjugated have 

identical string functions. But the most remarkable property is that string 
functions of level one module of A, D, E algebras, which are collected in Table 9, 
have excellent modular properties: they depend on q only through the Dedekind 
function (A2-18). To verify Table 9, it is necessary to keep in mind the shift q ( - C / 2 4 )  

(A2-9) and the prefactor q(") corresponding to the energy of the twisted vacuum 
(A2-25) and (A4-25). 

Comparing the bosonic and fermionic constructions of the affine algebras, we 
can compute several O functions. 

Remember that, in a given weight diagram, a choice of gradation just 
corresponds to a choice of the horizontal Lo = 0 hyperplane (Fig. 2). A modific- 
ation of this choice cannot alter the string functions. Consider for example the 

Table 9. Improved string functions of the level one modules of g. 
These functions do not depend on the gradation. If go is horizontal, 
the q-dimension of the module is the product of the string function 
by the O function of go (D-2) 

g(O String functions 

A.(1),DJI),E., (1) 

B.(l) 

Dn+ 1 (2) 
Er(2) 

A2e- (2) 
A2~ (2) 

D4(3) 

q(q)-" 

Co"=Co ° 

c,s=n(q:)n(q) - . -  z 

r/(l ~qq ) -lt/(q ) -n+l  
q(q)- 2~t(]/~ )- 2 
q(q)- lq( /q)-e  + l 

q(q)-iq(qi/a)-i 
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bosonic construction of E6 (2) with F4 horizontal. The string function c(q) is given in 
(B 6-19). If we rather consider the gradation with C4 horizontal, the q-dimension of 
the basic module is the product of the same string function by the O function of the 
[] coset of the weight lattice of C 4, scaled to a- c~ = 1. On the other hand, the q- 
dimension of the same module is given by Eq. (B5-15) via the fermionic 
construction. Hence: 

O([3 + C4)(q) = 8 ~ [I (1 - q2")4(1 + q,)4. (D-3a) 
n > 0  

In the same way, comparing (B 8-6) and (B 8-28) we get: 

O([N + A2)(q)=3q 1/3 [I (1-q3")3 
,>o ( l -q" )  " (D-3b) 

The same method, applied to A(~ 2) yields the well known O functions of the 
orthogonal series B and D. 

We shall now try to gain some information on the character of several higher 
representations by combining the method of Goddard, Kent, and Olive (A4-25) 
with the classical results of Dynkin, 

Consider a finite Lie algebra g, a subalgebra h of g, and let e(fl) denote the 
generator of g corresponding to the highest weight of the adjoint representation of 
h. Equation (A 1-20) particularized to the generators e(fl) and e(-fl), 

It m ® %, t"® e_ ~] = t m + "® (ft. h) + re(r, r) ~k6 m +,, o (D-4) 

indicates the level k of the h (1) representation inside the g(1) representation of level 
k. Recalling that the standard bilinear form is normalized in such a way that the 
square of the long root q~ of g is two, we find; 

kh = kg (~' (o) (fl, r) = kfl(g/h), (D-5) 

where j(g/h) is the Dynkin index of the embedding of h in g. 
We may now evaluate the central charge of the Virasoro algebra of (g/h) (A2- 

25). If c(g/h) is less than one, the g-module splits into a finite number of h-modules 
since in that case, L(g/h) has a finite number of unitary conformal weights A,. s 
[(A2-21) and Table 6]. 

Let A be the highest weight of the g(~)-module V(A). Let Ag(A) denote its 
conformal weight with respect to the g(1) Virasoro algebra 

Ao(A)= Ca%(A) (D-6a) 
2(kg + hg~) " 

Ifa weight # of V(A) is a highest weight ofh m, it is also a highest weight of L(h) with 
conformal weight, 

Cash(#) 
Ah(#) = 2(kh + hh, 3 • (D-6b) 

However, # necessarily belongs to some unitary module of L(g/h), with conformal 
weight At, s. Hence, 

3 r, s/Ao(A ) -  Ah(#)-- A~s E N.  (D-7) 
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When c(g/h) is less than one, this constraint selects a small number of possible 
highest weights of h u) * L(g/h) inside V(A). One may check by computing the 
degeneracy of a few levels of V(A) whether they occur. 

Let us first illustrate this method in the case c(g/h)= 0. Consider a maximal 
regular subalgebra h of a simply laced Lie algebra g. The Dynkin index is one and 
c(g/h) automatically vanishes. For example, by looking at the subalgebra D8 (t) of 
E8 m in the homogeneous gradation, one obtains the decomposition, 

oh(E8, basic) = oh(D8, scalar) + ch(O8, spin). (D-8) 

Using the Bardakci-Halpern (B 3-10) and the Frenkel-Kac constructions (B 2-15), 
we derive the character identity: 

Oes(q)= {½(,~o (1 "-}-qn-1/2)16"Ji- nO0 (I--qn-1/2)16) 
q, 16 (1__q.)8 +128q >He(l+ ) },,~o (D-9) 

This identity plays an important role in the heterotic string models. 
In the twisted construction of E8 (~) (Sect. B.5), we find the alternative identity: 

ch'(E s, basic) = ch(D8, vector) + ch(Ds, spin) 

=16~/q I] (1-q"-1/2) -s ,  (O-10) 
n>O 

which is equivalent to the Jacobi identity (B2-17). 
Looking at non-regular subalgebras, we may obtain a large value of the 

Dynkin index, and hence a h-representation of high level. For instance, B 2 has an 
A1 subalgebra of index 10 (Fig. 6). The three level one representations of B2 (1) 
decompose as 

1 10 4. 6 

+ 0 - - - o  

I 6 & I0 
+ (3-------0 ( D - l l )  

~ 7 3 3 7 
+ 

All the possible highest weight Ah appear in the decompositions. Indeed, the first 
two representations are conjugated by the outer automorphism which exchanges 
the two long roots of Bz(1); this shows that the two representations of A1 (1) 
participate to these decompositions. The B2(1)-spinor representation is real under 
this automorphism which implies that the two complex conjugate representations 
(3 6 7 - - O  7) and (7 ~ 3) are present in the decomposition. No other 
representations of level 10 of A 1 m satisfies Eq. (D.7). These decompositions relate 
the string functions of a level ten representation of A1 (1) to those of a level one 
representation of B2 (1) 
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) Q 

Fig. 6. The irregular subalgebra A11 o of B2 (D-1 I). This diagram shows the restriction 10 = 3 + 7 of 
the adjoint representation of Be to Aa 

Table 10. Irregular subalgebras of the exceptional Lie 
algebras such that the central charge of the Virasoro 
algebra L(g/h) is less than I. j(g/h) is the index of the 
imbedding of h in g. c(g/h) actually vanishes in all cases 
except F4 C E6 

g h j(°lh) 

62 
F~ 
E6 
E7 
E8 

A12s 
Gz 1 +A1 s 
A29, G23, C41 , Gz 1 + A22, F41 (c(g/h)=4/5) 
Az 21 , G21 + C31 , F41 +A1 s, G22 + A17 
G21 + F41,Azr + A~16,B2 lz 

The work of Dynkin contains many more examples. We present in Table 10 
part of his classification of the non-regular subalgebra of the exceptional Lie 
algebras which we read as the splitting of the level one modules ofg (1) as level j(g/h) 
modules of h (1). We have included those subalgebras such that the central charge of 
the Virasoro algebra L(g/h) is less than one. 

Let us first consider the decomposition of the E 6 with respect to F4, in which 
the central charge c(g/h)=4/5 < 1. The highest conformal weight of the scalar 
representations of E6 (1) are 0 and 2/3. Those of the scalar and 26 representations of 
F4 (1) are 0 and 3/5. Therefore, we obtain the decompositions: 

O-C (~) I(o)÷(3}1 

1 
® ® Et%t.I%tl 

® 

1 1 

(D-12) 
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where (A) denotes the representation (c = 4/5, A) of the Virasoro algebra. Equation 
(D 2-12) is sufficient to find the q-dimension of the level one representations of the 
affine algebra F4 o). 

As a last application, we consider the imbedding 

E8 °) D F4~1)O G2 °) . (D-13) 

The central charge c = 8 of the Virasoro algebra associated to the eight free fields 
involved in the Frenkel-Kac construction of E8 (t) (Sect B.2) splits into (4+2) 
associated to the Caftan subalgebra of F4 and Gz, plus (6/5 + 4/5) associated to the 
auxiliary A2 algebra (Chap, C). It follows that the basic module of E8 ~1) restricts to 

1 1 

1 1 
(D-14) 

Comparing (D-12), (D-14) and the character of the level one modules of Es (1) 
(Sect. B.2) and Gz (~) (Sect. C), we infer identities between the theta functions of the 
E6, E8,  and G2 weight lattices. 

The method can be applied to many, many examples... 

Conclusion 

Using the methods of quantum field theory, we have constructed the level one 
modules of all the simple affine Kac-Moody algebras in all their homogeneous 
gradations. On the way, we have constructed several level two representations of 
the A, D, E algebras and the representations of A1 °) of arbitrary level. 

Chapter A is intended to provide a relatively self contained introduction to the 
Kac-Moody and their associated Virasoro algebras, in a language accessible to 
physicists. We follow quite closely the notations of the book of Kac [-1] except in 
the analysis of the gradings of the twisted algebras (A 1-16). 

The constructions are explained in Chaps. B and C. The crucial element is the 
value of the central charge, c, of the associated Virasoro algebra. When c is integral 
(Chap. B), we are able to construct a positive definite Hilbert space carrying an 
irreducible Kac-Moody module. We have defined two types of constructions: 
bosonic and fermionic. In the bosonic constructions, the horizontal Caftan 
subalgebra is represented by the zero modes of a system of free Fubini-Veneziano 
oscillators. The long roots are represented by the Frenkel-Kac vertex operators; 
the short roots, by a generalization of the Neveu-Schwarz-Ramond vertex 
operators involving entangled non-abelian Neveu-Schwarz and Ramond fields 
(A4-37), (B 6-I 4). A major modification needed to generalize the work of Frenkel- 
Kac [14] to the twisted version of the A, D, E algebras (Sect. B.6) is the fact that the 
Chevalley structure constants no longer define a two-cocycle (B6-11). In the 
fermionic constructions, also considered by Lepowski [19, 24] and by Kac- 
Peterson [25], the oscillators have no zero modes and the vertex operators are 
completed by Dirac matrices (B5-14). 
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When c is not integral (Chap. C), our constructions are irreducible only as 
(Virasoro)" *(Kac-Moody) modules, where (Virasoro)" denotes an auxiliary 
algebra defined as follows: We complete the Frenkel-Kac currents associated to 
the short roots by a set of primary fields of a Virasoro algebra L which can be 
regarded as the stress-tensor of an interacting field theory (Sect. C.1). (Virasoro)", 
defined in the same Hilbert space, appears as a complement of L commuting with 
the Kac-Moody algebras. We construct in this way the level one representations of 
the algebras F4 (1), Ce(t), and G2 (1), and the level two of the simply laced algebras. In 
their parallel work, Goddard et al. [47] introduce similar auxiliary fields, but an 
apparently different system of e operators. 

Chapter D illustrates how one may relate various constructions of the same 
modules and derive in this way arithmetical identities. 

We hope that these constructions will prove useful in statistical mechanics and 
string theory. 

Appendix. The Chevalley Structure Constants 

The Chevalley structure constants f(~, fl) are defined if and only if ~, fl, and ~ + fl 
are roots of g by the relation: 

[e~, e~] =f(a ,  fl)e~+~. (1) 

By construction, they are antisymmetric: 

f(c~, r) = - f ( f i ,  c 0 . (2) 

Furthermore, if all the double commutators are non-zero, the Jacobi identity 
implies: 

f(~, fl)f(a + fi, 7) + f(fi,  7)f(fl + 7, a) + f(7, a)f(7 + e, r) = 0. (3) 

If g is of type A, D, E, the square length of every root is 2. Hence, ~, r, and ~ + fl 
are roots if and only if a.  fl = - 1. Because of this constraint, the Jacobi identity 
involves only 2 terms and reduces to: 

f(~, fl)f(~ + r, Y) =f(~, fl + Y)f(fi, 7). (4) 

By inspection, this is also true for the algebras of type B and G. In these cases, we 
may recursively rescale the generators so that: 

fresc,led(a, r) ---- e(ct, r) ---- ___ 1 (5) 

and by (4) and (5), the e define a 2-cocycle on A(g). 
In contradistinction, if g has more than one short simple root (type C and F), 

Jacobi identities involving 3 non-vanishing double commutators occur. One may 
not reduce (3) and (4). The f do not form a 2-cocycle and cannot be rescaled to _+ 1. 
A modified construction is explained in Sect. B.6. 

Ifg is of type A, B, D, E, G, we may choose the signs of the generators e~ in such a 
way that the e are bimultiplicative: 

= 

(6 )  

= 7 ) .  
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This  choice cons ide rab ly  simplifies all ca lcula t ions .  However ,  despi te  [14], it  is no t  
poss ib le  to assume b imul t ip l i ea t iv i ty  and  e(e, e) = + I on all the roots .  Indeed,  if e, 
/~, and  e + #  are  roots ,  (6) implies:  

e(c~ +/~,  c~ + /g)  = - e(~, ~)e(/~, # ) .  (7) 

This  imposs ib i l i ty  leads  to a comp l i ca t i on  in the def ini t ion of  Hermi t i c  F renke l -  
K a c  currents  [Eqs.  (B2-3) and  (B2-14)] which is usual ly  over looked .  
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