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Abstract. Recently, the classical problem of the evolution of patches of constant 
vorticity was reformulated as an evolution equation for the boundary of the 
patch. We study this equation in the neighborhood of the circular vortex 
patch and introduce a hierarchy of area-preserving nonlinear approximate 
equations. The first of these equations is shown to have a rich rigid structure: 
it possesses an exhaustive increasing sequence of linear invariant manifolds of 
arbitrarily large finite dimensions. On each of these manifolds the equation 
can be written as an explicit finite system of ordinary differential equations. 
Solutions of these ODEs, starting from arbitrarily small neighborhoods of 
the circular vortex patch, are shown to blow up. 

Introduction 

Recently, Zabusky et al. [9] and Majda [5] reformulated the classical hydro- 
dynamical problem of the evolution of patches of constant vorticity as an evolution 
equation for the boundary of the patch. In [5] Majda conjectured that singularities 
will develop spontaneously in some solutions of the vortex patch equation (VPE). 
On the other hand, the circular, uniformly rotating vortex patch is a solution of 
the VPE whose linear marginal stability [4] and even mildly nonlinear stability 
[7] are well known. Of course, these known stability results are not strong enough 
to preclude instability and subsequent blow up of quantities such as the length 
or curvature of vortex patches whose initial shape is nearly circular. In this paper 
we study the evolution of nearly circular vortex patches. We devise a hierarchy 
of nonlinear area-preserving approximate equations. These equations intertwine 
with the equations obtained by retaining finitely many terms in the Taylor 
expansion near the circle of the nonlinearity. The first of the area-preserving 
approximate equations, a quadratic nonlocal correction of the linearization about 
the circular vortex patch, has some interest of its own. For every n > 0 the linear 
manifold of trigonometric polynomials of degree at most n is invariant for this 
equation. This means that no cascade of "energy" from large scales to small scales 
occurs: high frequency modes are not excited during the evolution. We obtain 
blow up results for small data (i.e., nearly circular initial data) for this first 
approximate equation. 
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The paper is organized as follows. In the first section we provide some general 
considerations on the VPE. One of the motivations for the conjectured blow up 
of solutions to the VPE was that the equation obtained from the VPE by 
differentiation is a quadratic integral equation with strongly singular kernel. A 
similar, but simpler equation was known to blow up ([1]). In Sect. 1 we describe 
different ways of writing the VPE: one in which the kernel of the integral operator is 
not" singular and another one in which the singular integral operator is well-known 
(the Hilbert transform). 

In Sect. 2 we prove a blow up result for the system obtained from the VPE by 
differentiating once. The blow up occurs in the absence (and because of the absence) 
of the constraint that makes the system equivalent to the VPE. 

In Sect. 3 we recover the well known Kirchhoff ellipses as exact solutions of 
the VPE. They are obtained as first order trigonometric polynomials of mean zero. 
The equations for the coefficients are simple ordinary differential equations which 
we integrate easily. Section 4 is devoted to the study of the linear approximate 
equation (linearization) about the circular vortex patch. We find, remarkably, that, 
although the nonlinearity of the VPE is of high order (requiring, for instance, a 
Sobolev space of order larger than 3/2 for well-posedness) the first variation of this 
nonlinearity around the circular vortex patch is a bounded diagonalizable operator 
in L 2. We find its explicit expression in the Fourier representation and are able 
consequently to integrate explicitly the linear approximate equation. The circular 
vortex patch is found of course to be marginally Lyapunov stable for the 
linearization. The linearization is an infinite collection of uncoupled 2 x 2 complex 
ordinary differential equations. In Sect. 5 we investigate the area of a patch as a 
functional of the boundary of the patch. The expression of the area functional in 
the Fourier representation is 

A(z) = rc ~ j(Izj[ z - Iz_j lz) ,  (0.1) 
j = l  

where zi are the Fourier coefficients of the 27c periodic curve z. 
This shows that the area is a quadratic indefinite functional very similar to 

the helicity 

H(u) = S curl u.u dx (0.2) 

for three dimensional incompressible flow. In fact, formula (0.1) is exactly the same 
as the formula expressing the helicity of a flow in terms of its Beltrami decomposition 
([2]). We proceed by a proof of the conservation of the area functional for the 
VPE and for more general singular integro-differential equations. All that is required 
for the kernel of such an equation in order to obtain the area conservation property 
is that it be real valued and symmetric. With this observation the task of construct- 
ing area preserving approximate equations is easy, not only near the circular vortex 
patch, but in general. We end Sect. 5 by the study of the first approximate area- 
preserving equation referred to earlier in this introduction. In Sect. 6 we show that 
the quadratic (non area-preserving) approximate equation has explicit solutions 
which do not blow up and approximate well for long times the Kirchhoff solutions. 
The linear manifolds of trigonometric polynomials of order n > 4 are not invariant 
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for this equation. However, an infinite dimensional family of exact solutions is 
found explicitly. Also the manifolds of trigonometric polynomials of order n < 3 
are found to be invariant and lead to interesting explicit systems of ordinary 
differential equations. 

1. The Vortex Patch Evolution Equation 

The classical problem of the evolution of patches of constant vorticity is, in modern 
language, the problem of the evolution of weak solutions of the two-dimensional 
incompressible Euler equations with initial data prescribed as follows. The initial 
vorticity is the characteristic function of some set D O in R2: the initial velocities 
are obtained via the familiar Biot-Savart formula. 

The global existence and uniqueness of solutions of this problem follow from 
the fundamental work of Yudovitch ([8]). The vorticity is advected passively and 
at later time t is the characteristic function of the advected set Dr. Assuming (for 
simplicity) D O simply connected and bounded and introducing a parameterization 
of the boundary ~Dt of Dt by a complex valued 2~ periodic, time dependent function 
z(t, ~), z(t, ~ + 2~) = z(t, ~), A. Majda ([5]) derived the following nonlinear equation 
for the evolution of z: 

~z 2 ~ ~z 
~{(t,~) ~o logtz ( t ,~) -  z(t, fl)l-~(t, fl)dfl. (1.1) 

Once the curve z(t, ~) is known then all the hydrodynamical quantities (vorticity, 
velocities, pressure) are readily computed. The global estimates of Yudovitch ([8]) 
for these hydrodynamical quantities are consistent with the possibility of break- 
down of solutions of the vortex patch evolution equation (1.1) ([5]). The motivation 
for expecting blow up for the solutions of (1.1) came from two sources: numerical 
experiments ([9, 3]) and the nature of the equation one obtains by differentiating 
(1.1). This equation is 

~o~(t,~)= 1 2 iRe(  co(t,~) , . 
0-t- ~ o z(t, ~---~t,/3)) ~(t'/~) aft, (1.2) 

with 
~z 

co(t, ~) = ~ (t, ~). (1.3) 

The sign ~- stands for Cauchy's principal value of the integral. Equation (1.2) is a 
quadratic integral equation with a strongly singular kernel and is similar to the 
simpler equation 

069 
& (t, ~) = co(t, ~)(Hco)(t, ~) (1.4) 

which does blow up ([1]). Here H is the Hilbert transform. However, unlike in 
(1.4), the singular kernel in (1.2) depends on the solution via (1.3). This dependence 
is such that one can rewrite (1.2) in an equivalent form in which the new kernel 
is nonsingular. In order to show how this is done we recall the well known Plemelj 
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formula [6] 

1 £f(()d( 
2hi ~ ~ ½f(z), z~OD, (1.5) 

valid for continuous functions in OD which can be extended to analytic functions 
in D. Applying Plemelj's formula with f equal to one we can rewrite (1.2) as 

3o9 i 1 ~ I ( co(t,a) ) 
( t ,  = - o g ( t ,  + m \ z ( t ,  - og(t, (1 o6~ 

Equation (1.6) has a nonsingular kernel. Indeed, while Re((~?z/O~)(t, a)/z(t, ~) - z(t, t3)) 
is singular at fl = a, the expression Im((&/O~)(t, ~)/z(t, a) - z(t, fl)) has a finite limit 
as fl tends to a. We will denote throughout this paper by z o = Zo(C0 the function 

Zo(a ) = e i~. (1.7) 

One can see easily in the form (1.6) of Eq. (1.1) that the unit circular vortex patch 
rotates with constant angular velocity equal to -½. That is, the function 

z(t, a) = e-li/2)'Zo(a ) (1.8) 

is a solution of (1.1) with initial data equal to Zo. 
In order to have the circular vortex patch as a steady solution we write (1.1) 

in a frame of reference which rotates together with the unit circular vortex patch. 
That is, we multiply solutions of (1.1) by e (i/2)t. The new functions, denoted again 
z(t, a) solve 

2n _ _  i 1 0z 
8z ( t ' a )=2z( t 'a )+  ! loglz ( t ,a) -z ( t ,  f l) l-~(t ,  fl)dfl. (1.9) 

This is true because of the property that, if z(t, a) is a solution of (1.1) then cz(t, ~) 
is also a solution of (1.1) for any c belonging C. This property is of course true 
for Eq. (1.9), too. It follows that Zo is not an isolated steady solution of(1.9); rather, it 
is imbedded in a complex line cz o of steady solutions. In view of (1.6) we have in this 
frame of reference the system 

ao9at (t, ~) = ~ oj- Im \z(t ,  ~) - z(t, fl) co(t, fl)dfl (1.10) 

coupled with 

Oz i 1 2~ 
-~( t ,a)=~z( t ,a)+~-~ ! loglz(t ,a)--z(t ,  fl)Iog(t, fl)d fl (1.11) 

and the constraint 

0z 
o9(t, a) = ~ (t, ~). (1.12) 

It is for solutions of this system, in the absence of (1.12), that we show blow 
up in the next section. 
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Equation (1.1) can be also written as an integral equation in which there are 
two integral operators: one singular, but linear and with prescribed singular kernel 
and the other nonlinear, with nonsingular kernel. This can be achieved for any 
prescribed prototype vortex patch by writing 

z(t, a) -- z(t, r) = (~o(a) -- z0(fl)) \ ~o(a ) Zo(fi) // 

with ~o(a) the prototype and using the properties of the logarithm. In particular, 
for 2o(a) = Zo(~ ) we obtain from the form (1.9) of the equation the equivalent form 

• 1 5~, [ z ( t , a ) - z ( t ,  fl) Oz . . . . .  
Oz 1 H ) z ) ( t , ~ ) + ; -  J log , , -Z0(fl ) fffi(t,p)ap. (1.13) ?-i (t, ~) = ~ ((i + ~ o ~ot~) 

Indeed, this follows from the identity 

2~ 

l ! log[zo(a)__zo(fl) I _d_fl(fl)d = ~ ( . f ) ( a )  (1.14) 

with H the Hilbert transform 

l ~ c o t ( ~ 2 f l ) f ( f i ) d f l .  (1.15) (H f)(~) = ~ o 

The form (1.13) of Eq. (1.9) (and thus of Eq. (1.1) in a rotating frame) is best suited 
for study of nearly circular vortex patches. The relation 

(i +/-/)z o = 0 (1.16) 

shows again that z 0 is a steady solution of (1.13) and that (1.13) yields readily an 
equation for the deviation ~(t, a) = z(t, a) - Zo(~ ). 

2. A Blow Up Result 

In this section we consider the system of equations 

Oz i 1 2~ 
ff[ (t, ~) = x z(t, ~) + -;- S log I z(t, ~) - z(t, r) I co(t, r) dr 

z zT~ o 

~[  (t, ~) = ~ ~ z(t,  t, ~) 

which, in the presence of the constraint 

0z 
co(t, a) = ~ (t, a) (2.2) 

is equivalent to the equation of evolution of vortex patches (1.13). We will prove 
a blow up result for the system (2.1) in the absence of the constraint (2.2). Let us 
seek solutions to (2.1) of the form 

z(t, ~) = ~l(t)Zo(~) 
(2.3) 

co(t, a) = y2(t)coo(a) 
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with Zo(~ ) = e i~, COo(e ) = ie ~. In view of the identity 

i l 2~ CqZ o 
+ j log l~o(~) -  ~o(~)IV(/~)d/~ = 0, z°(°0 2rro (2.4) 

we see that  the functions z(t, ~), co(t, ~) given by (2.3) solve the first equation of 
(2.1) provided the coefficients 71, ]12 satisfy 91 = (i/2)(]11 - 72)- 

Substituting (2.3) in the second equation of (2.1) we obtain 

1 ~ / ~2coo(~) '~ . . . . .  
92COo(e) = ~ 0~ lm 1,]1~(Zo~) -~Zo(fl)))Y2co°~p)ap" 

Now 
COo(~ ) i 1 ( ~ - - f l )  

Zo(~) _ Zo(fl) - ~ + ~ cot T ' 

and using the identity 

l ~ c ° t ( ~ - 2 f l )  o (2.5) 

we arrive at the conclusion that z(t, cO, co(t, oO are solutions of (2.1) if the coefficients 
71, Y2 satisfy the system 

91 = ~ (~, - ]12) 

(2.6) 

1(]12"]~,2. ~2 = - ~ I m  \ ] 1 , /  

Dividing in (2.6) by ~1 we obtain for 

the equation 

]12 
] 1 = m  

Yl 

1 i 
= - ~ (Ira 7)7 - ~ 7( 1 - 7). (2.7) 

We note that if 71(0) = y2(0), i.e., if 7(0) = t, then for all t, yl(t) = ~2(t) = yi(0). This 
corresponds to solutions of the system (2.1) which satisfy the constraint (2.2) i.e., 
to solutions of the form z = CZo, ceC  of the vortex patch evolution equation. 
However, it is easy to see that  if Re (]1(0)) = ½, then Re 7(0 = ½ and Im ]1(0 becomes 
- co in finite time. 

We proved 

Theorem 2.1. Solutions of the system (2.1) with initial data of the Jbrm 

z(0) = ]11(0)Zo, co(0) = ]12(O>o, 

with ]11(0), ]12(0) complex numbers are given by 

z(t)  = ~l(t)Zo, co(t) = ]12(t)Wo, 
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with 7l(t), 72(t) solvin9 (2.6). I f  

R /'72(0)'~ t 

then these solutions blow up infinite time. 
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3. Explicit Solutions of  the Vortex Patch Evolution Equation 

The Kirchhoff ellipses are well known exact solutions of the Euler equations (I-4]). 
In this section we recover these solutions in the context of the vortex patch evolution 
equation. We obtain a parametric representation of the Kirchhoff ellipses as a 
superposition of e i~ and e-  ~ modes. The coefficients of e ~ and e-i~ obey simple 
ordinary differential equations which we integrate easily. 

The equation of evolution of vortex patches written in a frame of reference 
co-rotating with the unit circle is 

Oz 1 1 L'~log z(t , ,~--z(t ,  fl) Oz . . . . .  
~-[( t ,a)=~((i+H)z)( t ,a)+~-~ Jo ZotCt jSz~)  ) ~( t , l~)af l ,  (3.1) 

with Zo(C0 = e ~ the unit circle and H the Hilbert transform 

1 2 n  / / ~  __  /~\ c°t t=- =)lIn)dn (3.2) 

Because of the identity 

(i + H)z o = 0, (3.3) 

it is easily seen that z o is a steady solution of (3.1). The explicit Kirchhoffsolutions 
are obtained by seeking z(t, c 0 of the form 

z(t, c 0 = (1 + ~1(t))d ~ + ~_ l(t)e - ~  (3.4) 

with functions (l(t), ~_ l(t) to be determined. 
We compute the integral term in (3.1). The quotient 

z ( t ,  c<) - z ( t ,  ~) 
- 1 + 6(t, a, fl) (3.5) 

Zo(~) - Zo(/7) 

is given by 

6(t, a, fi) = (1(0 -- ~- l(t) e-~e-ia.  

We use the expansion of the logarithm 

Raising 5(t, a, fl) to a power k we obtain from (3.6), 

(5(t, e, fl))~ = (l(t) k - (k~l(t) k- 1(_ l(t)e-~)e-i~ + . . . .  

(3.6) 

(3.7) 

(3.8) 
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The only nonzero contribution to the integral 

1 2~ / k ~z 
~-~ Jo R e ~ ( - 1 )  k+~ ~(6(t,c¢fl)) )-jfi(t, fi)dfl 

comes from the second term in (3.8). We obtain 

1 2~ c~z 
2 ~ !  log]l + 6(t,e, fl)l ffl (t, fl)dfl 

i 
= k~1 2 (1 + (1(0)( -- 1)k((dt)) k- 1(_ dt)e-i, 

+ ~ i t 2 1~-1( 1)k-lei~ ~ I ( - ~ (  )1 G ( t ) )  - O 

k = l  z; 

Thus 

~1 ~ljo og z(t,e)-z(t, f l ) ~  ~fi0z {t," ~)~" - 2i [(-l(t)J21 + (1(0 ei~-{(-l(t)e-'L (3.9) 

Adding the linear term we deduce that z(t, c¢) given by the ansatz (3.4) is a solution 
of (3.1) if the coefficients (1(0, (-~(t) satisfy the equations 

i I(-112 

(3.10) 
i 

The system (3.10) is readily integrated. We obtain 

i 1(_i(0)1 2 t]ei~ ~ . z(t,e)=(l+(~(0))exp ~]1+(~(0)] 2 ; +(_l(0)e:'e-'% (3.11) 

These are the Kirchhoff solutions in a frame co-rotating with the unit circle. It is 
easily seen that (3.11) represents ellipses. In the original frame of reference the unit 
circle rotates with angular velocity equal to - 1/2. We obtain the solutions in that 
frame of reference by multiplying by e -~-t. 

4. Nearly Circular Vortex Patches: The Linear Approximate Equation 

The linear stability of circular vortex patches is well known in the hydrodynamical 
context (I-4]). We compute here explicitly the linearized operator and the general 
solutions to the linear approximate equation in the framework of the equation of 
evolution of vortex patches 

We consider a smooth periodic function of period 2re and expand it in a Fourier 
series 

((e)= ~ (je ij~. (4.1) 
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If the function ff is small (in Wt'°°(S ~) for instance) then the expression 

1 2,~ z(~)--z(fl) 8z,,~, 
e(z)(~) = ~ ! log Zo~j z~-~) ? ~ t ~ d f l  

for z(e) = e *~ + ~(e) can be computed integrating term by term in the series 

~ ( _ i ) k + t l  1 2~'~[Re(((_(e)-~(fi) y ) ] S z  
~=~ - k ~  o L \\Zo(=) z~)  -@(~)d~. 

Retaining only the first order terms in ( we obtain the expression 

i ~ R  ( : ( : ~ ) - ( ( f l ) ~ e  i~dB 
Z~o¢) = ~ ! o \ ~o(~) 7o@ / - 

This expression can be obtained, of course, by formally differentiating E(z) at Zo 
in the direction ft. 

Now, with (4.1) we have 

eiJ~ _ elJfl 
((~)-((f l)  = ~ ( i ~  ei~ • 

8(~,/~) : Zo(~) - Zo@ ~= - ~o 

We introduce the notation 

Thus 

eiJC L _ eUI 1 

Qj(a, t)  - ei ~ _ ei ~ . (4.2) 

6(~,/~) = ~ (~QM, I~)- 
j ~  -Go 

Now, for Qj(a, t)  we have the obvious formulae: 

Qo(e, f l )=0,  Ql(a, fl)= 1 
j - 1  

Qj(cx, fl) = E e i ( j -1  -l)~eil ~ 
l=O 

I][-1 

/ = 0  

Integrating we obtain 

i Re (6(~, fl))d p dr = ~ (~e ij~ + 
2n o j=-~  

This means that 

f o r j > 2  

fo r j  = - 1. 

(4.3) 

(4.4) 

i - -  i - 1  
E'~o(0 = ~ 2  + ~ j ~  ~ ((-a-j - ~j) ei~L (4.6) 

On the other hand the Fourier representation of the linear operator ½(i + H) is 

i - 1  ~ (i + H)~ = ~ {o + i ~ ~jeUL (4.7) 
j ~  -0o 
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Adding we obtain 

i o _ ,, 

(i + H)( + E'~o(0 = 5 ~ (~j + ~2-j) eu% (4.8) 
~ j =  --O0 

Let us consider the expression 

1 2~ 
N ( z ) ( ~ ) = ~  ! log lz (~) -z ( f l ) ]~ ( f l )d f l  i + ~ z(~). 

As mentioned in the introduction, because of the fact that 

8z 1 
! log lZo(~ ) - Zo(fl) t ~ dfl = ~ (/-/z)(~), 

we have 
U(z) = ½(i + H)z + E(z). 

Thus the Gateaux derivative of N(z) at z = Zo is 

N'~o(0 = ½(i + H)~ + Go(0, 

and is given by (4.8). 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

Note the very remarkable fact that although N(z), E(z) are not continuous or 
even defined in a L z neighbourhood of Zo their Gateaux derivatives are bounded 
linear operators in L 2. 

The equation of evolution of vortex patches is 

dz 
dt - N(z) (4.13) 

with N(z) given in (4.9). It is a meaningful equation in a neighborhood of z o in 
the Sobolev space H2(S 1) = W2'°($1). The linear approximate equation (lineariza- 

d( _ N,o(0 tion) around z o is ~ -  i.e., 

i ~ R e ( ( ( t ' ~ ) - ( ( t ' f l ) ) e i P d f l .  (4.14) 

It makes sense if ~ is a L2(S 1) valued function. 

Theorem 4,1. (i) The Gateaux derivative N'~o at z o = e i~ of the functional 

2 ~  OZ d i 1 ! log l z(e)- z(fl) l~( f l )  fl N(z)(~) = ~ z(~) + 

is a bounded, diagonalizable linear operator in L2($1). lts spectrum consists of the 
two numbers 0 and i/2. (ii) The linear approximate equation 

d~ _ N,o(~ ) 
Z -  

is equivalent to the uncoupled infinite collection of ordinary differential equations 
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{ ~2= 0 and 

( 2 - j  = 0 

• i 
( j=~(~ j+~2- j )  f o r j=O,  - 1, --2,.. . .  (4.15) 

The explicit solutions of the linear approximate equation 
oo 

((t,~)= ~ ~j(t)e u~ 

with ~j(t) 9iven by 

{~tt)  = ~i0) for j  >= 1 
(4.16) 

(j(t) = - (~_j(O) + ((j(0) + (% _j(O))e ½t, for j < 0 

show that ( = czo, ceC, are Lyapunov stable solutions. 

Proof. A complete set of eigenfunctions for N'~ o is, in view of (4.8), (4.12), the 
collection e ii~, j < 0 for the eigenvalue i/2 and e i', e ~k'- e i(2-k)~, k ~ 2 for the 
eigenvalue 0. The proof of (ii) follows from (4.8), (4.12) by straightforward 
computation. 

5. Area Preserving Equations 

The area of a vortex patch is conserved in time; this follows from well known 
properties of solutions of incompressible Euler equations. 

Moreover, in [7] a result of nonlinear stability of nearly circular vortex patches 
in the sense of the area is proven. In this section we formulate the area in terms 
of the Fourier expansion of the boundary of a vortex patch. We proceed to describe 
a hierarchy of equations which preserve area and approximate the vortex patch 
evolution equation. The first of these equations is shown to possess invariant 
manifolds of arbitrarily large finite dimension. 

If the boundary F of a domain in C is described parametrically by 

F = {z ~CI z = z(~), c~e [0, 2~] }, 

where the smooth periodic curve z(e) runs through F counterclockwise as c¢ 
increases, then the area of the domain is given by 

7t =12. I& \ 
2 (5.1) 

We normalize .d such that the area of the unit circle is one, A = (1/~)7: 
1 2g  / / ~ Z  "~ 

A(z) = ~ -  ! Im t~-£ (e),(e)) de. (5.2) 

If the Fourier series of the function z is 

z(~)= ~ zje i~=, (5.3) 
j =  ~- oo 
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it follows that 

A(z)= ~ jlzj[ 2. (5.4) 
j=-oo  

Note that A is not positive definite. Negative area can occur (for instance through 
change of orientation such as in the case of e-  ~'). The area functional is well defined 
for functions zeH1/2(S1). One can rewrite (5.4) as 

A(z) = ~ j(lzjl 2 - tz_j lz) .  (5.5) 
j= l  

One is reminded, when one looks at (5.5), of the formula for the helicity of an 
incompressible three dimensional flow expressed in terms of its Beltrami decompo- 
sition ([2]). We note that, as long as there are only positive or only negative 
modes present, the conservation of the area implies boundedness of the H1/2(S 1) 
norm (if zo is bounded) 

"ZI1/2=(j=~_cJj'[zj'2+[Zo'2) 1/2. (5.6) 

But if both negative and positive modes are present then area conservation does 
not prevent growth of the H 1/2 norm. Of course, higher order norms can grow in 
either case. 

Now we are going to present the proof of conservation of area in the context 
of the vortex patch evolution equation. From this proof it will be clear how to 
approximate the vortex patch evolution equation in a way that preserves area. 

Let z(t, ~) be a solution of the vortex patch equation 

-&Oz 21 ~1 2~ z(_!,~)- z(t, _ Zo(fl) 88~fl (t, fl)dfl" (t, ~) = ((i + tI)z)(t, ~) + ! log (5.7) 

Then A(z(t,.)) evolves according to 

2 L ~ I 0~ 0z d A(z(t"))= ! m(~(t,~)-?-~(t,c~))d~. 

Using the fact that H ~ is selfadjoint we deduce 
O~ 

~ A(z(t,.)) ~ 2= cl 

Oz 8i + ~ n  21 2r~ Zr~! ! l o g  'z(t,e)- z(t, Zo(") i m ( ~ ( t ,  / 

Because of the periodicity of z(t, ~) we have 

dA(z(t,. ) ) = 2n2n 2~ ! l o g  [z(t, e) - z(t, z ~  Im ( (?z (t\-~" cd,-fffi, (t fi) ) de dfi. (5.8) 

Now, the expression log [(z(t, c~) - z(t, fl))/(Zo(e ) - Zo(fl))[ is symmetric in e, fi 
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while the expression Im (Sz/8e(t, e)3UOfi(t, fi)) is antisymmetric. The integral must 
vanish. We have actually proven the following general observation: 

Proposition 5.1. Let the smooth periodic function z(t, ~) solve an equation of the type 

8z 1 ~ K(G fi, z(t, o O, z(t, Oz ~-i(t,a)= ((i + H)(z))(t,a) +-~ o fl))-~(t, fl)dfl, (5.9) 

where the kernel K(a, fl, zl, z2) is real valued and symmetric: K(~,fi, zt, z2)= 
K(fl, ~, z 2, zl). Then the area of the region enclosed by the curve z(t, .) is conserved: 

A(z(t,')) = A(z(0,')). (5.10) 

Let us emphasize that the linear term and the integral term in the right-hand 
side of (5.9) preserve area separately. 

If one wants to build approximate equations for the vortex patch equation 
one can use either the form (5.7) of the equation or the original form, in which 
the term 

1 2~ 
= ! - zo( )l 

is not pulled out. We prefer the form (5.7) because we concentrate on nearly circular 
vortex patches. But one can use any fixed function ~o(C0 instead of Zo(C0 = e i" as 
a prototype vortex patch and write 

log l z(t, oO -- z(t, fl) 1 = log I fro(a) -- Zo(fi) I + log z(t, ~) Z z(t, fl) 
e o ( ~ )  - ~ o ( / ~ )  " 

Then in the expansion 

l tz(t, 0 0 - -  Z(t, ~) = Re ~ (--1)k+l ~ ((Z -- 'O)(00- (Z --'O)(/~))k 
og ~ Zo(fl) k=~ ~ Zzo(fi) J 

one can stop at some level n; the approximating kernels 

K"(a'fl'zl'z2)=l°g'z°(°O-~°(fi)l+Re k=l ~ (-- l)k+* 1 ( k  Zo'~Z1--Z2z"O(fl) 1 )k 

give rise to area preserving equations. 
Thus, for arbitrary initial datum fro(e) one can approximate for short times 

the vortex patch equation (1.1) by an area preserving equation. 

8z (") 1 2~ OZ(n) 
& ( t , ~ ) = ~  ! logl~o(~)-~o(3)l-~-(t, 3) 

, 1 +111 + t ~  = ( - - )  ~ ! e ~  ~o(~ j~ f f~  ) - - i  - ~ ( t ,  fl)dfl, 

z(")(0, c0 = ~o(CO. (5.11) 
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After integrating for short time in (5.11) one can replace 2o(a ) by z(")(t, c0 and 
repeat the procedure. One obtains thus a method of approximating the vortex 
patch equation by nonlinear integro-differential equations with kernels with known 
singularities and with exact conservation of area. 

Let us return now to the nearly circular vortex patches. 
Using the notation 

z( t ,  ~) - z ( t ,  8)  
6(t, a, 8) = 1, (5.12) 

Zo(~) - z0(8) 

we can write the n th equation in the hierarchy of area preserving equations as 

1 1 2~ k~Z 
~Z =½((i+ H)z)(t, Ct)+k~=a(_ t)k+l ! Re(b(t, cgfl) )_~(t, fl)dfl (t, ~) 

(5.~3) 

The first of these equations is 

8z 1 1 2~ & 
-~(t, ~) = ~((i + H)z)(t, oO + ~ ! Re(~(t, ~, 8 ) ) ~ ( t ,  8)d8. (5.14) 

Introducing 

z( t ,  ~) - Zo(~) = ~(t, ~). 
Eq. (5.14) becomes 

8~ (t,a)=½((i+ H)~)(t,~) " 1 ~ _  {((t ,a)-~(t ,  fl)'~ ~ , 

(5.15) 

Note that (5.15) differs from the linear approximate equation (4.14) by the quadratic 
term 

1 2.~Re/'~(t,~ ) -~ ( t ,  fl)~ 8~ 

In general, the n th equation (5.13) equals the n th order Taylor expansion 
equation plus the (n + 1) th order correction term 

1 1 2~ 8~"/t , 
( -  1)"+*n~- ~ ! Re(6"(t, c t , 8 ) )~ ,  8)d8. 

Thus the equations obtained by expanding the nonlinear term in Taylor series 
and turncating at some order n need an n + 1 order correction term in order to 
become area preserving. In particular, the linear approximate equation (4.14) is 
not area preserving. This can also be checked on the explicit solutions (4.16). 

In the remainder of this section we will investigate the equation (5.15). 
First we state the well posedness (local existence) result. 

Proposition 5.2. Let s > ~. Assume ~(O)~H~(S~). Then there exists a unique solution 
((t) of Eq. (5.15) with initial datum ~(0), for It[ < To with T o dependin9 on the norm 
of ~(0) in H*(S1). 
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The proof of Proposition 5.2 follows using standard techniques and the 
following 

Lemma 5.3. Let f and g be smooth complex valued periodic functions of period 2rc. Let 
b(f, g) be defined by 

. . . . .  

b(f,g)(a)=~-~n ! Re \Zo(a) : z ~ ) ) ~ t p ) a  #. (5.16) 

Then, for every s > 0 

II b(f, g)I1~ ~ c~Cg] [I f I1~ 
with 

1 a'g(oOe_iJ~do~ ' ]lfll = ( I fo l  2 + [g] -- IJl Igjl, g j :  ~~ ! s 
j =  - ct3 

In particular, if s > 

Proof. Let us set 

and develop 

and 

Now 

IJ b(f ,  g)I1~ < ~s II g I1~ II f H s- 

c = b(f, g) 

f (~>= ~ f ie  ij', g(~)= ~, g,e ~" 
j = - c o  j =  - m  

c(a)= ~ c y  j~. 

(5.17) 

IJl2Slfjl2) x/2. 
j =  - o o  

(5.18) 

f(a) f (fl) 
- Z f~Qj(~, ~) 

Zo(CO- Zo(/3) j = - ~  

with Qj(e,/7) given in (4.2). With some amount of work we arrive at the expressions 
for cs: 

i ~ i ~ (k+j--1)gk+j_lf  k, for j ~ - - I  cj-- ~ (j+ 1--k)gj+l_kfk+~k +1 
k ~ - c ~  = - -  " 

i oo 
Co = 2 k~l ((1 -- k)g 1 -gA + (k - t)g k_ ~fk), and 

i -J i 
Q-=--~k=~ (j÷k--1)gj+k_lfk+~k__~+a(j÷__ 1--k)gj+,_kfk, for j=>l. 

(5.19) 

The important property of these expressions is that in each of the sums 
appearing in (5.19) the range of summation in the dummy variable k is included in 
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the tail 

Ikl>=Fjl. 
In order to prove the estimate we proceed by duality: we prove that for every 

sequence of numbers d i such that £ I djl2 = 1, we have the estimate 
j =  - o o  

j=~-oo [jlSlcj[ [dj] + 1%1 Idol < cs[lfl[~[g]. 

In each expression for cj we majorize [cj[ by the corresponding sum of absolute 
values. To exemplify let us take one of the expressions and use [j[ __<[k[ in it: 

-1  j 
IJlSldjl ~ I ( j + l - k ) l l g j + z - g l l L I  

j =  - o o  k = - o o  

< Iklqfkl[j+l-k[lgj+l-kl Idj[ 
j co k oo 

(s ) = I/I Ig~l [kl~l/kl [all+k-l] 
/ = 1  k oo 

The other terms are dealt with in an entirely similar way. This concludes the 
proof of the lemma. 

The expression (5.19) can be used to derive the equivalent form of the Eq. (5.15) 
written as an infinite system of ordinary differential equations for the coefficients 

2~  

~j = 1/2re S ~(t, cQe-U~de: 
0 

i J 
(j = x(~j + ~2-j) - 2 k ~  ~ (j + 1 - k)~j+ 1 - k ~  

i ~ (k+j--1)~k+j-x~-~, for j__<--l, 
-]- 2 k =  _ j +  I 

i i ~ " ~  
~o :~ ( (o  +~2)+~k~= (1--k):~-g(k+2k~= ( k -  1):k-~(k and 

~i-- 2gi -J ( j + k  i =j~.+ ~oo -- (j+l--k)(j+l-k~k, for j > l .  =_ 1)~j+~_~-~ + ~ 1 = 

(5.20) 

The remark that the range of the dummy variable k is, for each j, included in 
the tail Ikl ~ [JI, which was used in the proof of Lemma 5.3 indicates that the 
nonlinearity in Eq. (5.15) has a very special nature: there is no cascade of "energy" 
from large scales to small scales. More precisely, if the initial datum ((0) has Fourier 
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coefficients of finite support: 

~j(0)=0 for l j l > n + l ,  n > 0  

then the solution if(t, e) has Fourier coefficients with the same property 

~j(t)=O for Tjl=>n+l,  t ~ .  

Theorem 5.4. For each nonegative integer n the linear manifolds 

M.={~eH~(SI)[~I=O for ] j ]>=n+l}  

are invariant for Eq. (5.15). On them (5.15) reduces to the ordinary differential system 
of 2n + 1 complex equations obtained from (5.20) by setting ~j = O for [Jl >- n + 1. 

Proof. We consider the expression T(t)= ~ [~j(t)[ 2. As long as the solution 
[/l>n ~1 

of (5.15) starting from ~(O)~H~(S 1) c~ M. is smooth, we derive an a priori, Gronwall 
type inequality 

T(t) < T(O) exp k(t) 

with k(t) depending on the solution. Since T(0)= 0 we obtain T(t)= 0, for short 
times first but then we can repeat the argument, for any time, as long as the 
solution is finite. 

In particular, for n = 1 we obtain the system 

= 2  - * - ~ ¢ - 1 ¢ 1  

i 
~o =$¢0 

~1 --21~-1I ~. 

Ignoring ~o(t)= e~t~o we have the system 

I" 
~1 --½l~-~J ~ 

(5.21) 
i i ~-~ =g~-~ - g~-l~. 

Compare (5.21) to the exact system (3.10) governing the evolution of the Kirchhoff 
solutions. The system (5.21) conserves the area 

A --[1 + ~112 - I~-1[  2 = I1 + ~,(0)l 2 - I ~ -  l(0)l 2. 

From the first equation of(5.21) and conservation of area we obtain the equation 

= 2 [Iz,[ ~ -Iz,(0)I  ~ + I~_ 1(0)1 ~] 

for zl = 1 + ~,. From this equation we deduce that Re zl = Re ~1(0) and that Im zz = 
Im ~i blows up in finite time provided (Im (~ 1 (0)))2 < ] ~ _ 1 (0)] 2 
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Theorem 5.5. There exist initial data of arbitrarily small H~(S 1) norm for all s >= 0 
such that the solution 0f(5.15) with those initial data becomes infinite in all H ~ spaces 
in finite time. 

Equation (5.15) provides for short times as good an approximation of the 
vortex patch equation as the linear approximate equation (4.14) does. It has the 
advantage over the latter that it is area preserving. However, Eq. (5.15) predicts 
blow up in the pure modes - 1, 1 while the vortex patch equation has the Kirchhoff 
solutions in those modes. 

6. Nearly Circular Vortex Patches: The Quadratic Approximate Equation 

In this section we derive an equation which constitutes the second order 
approximation, in the vicinity of the unit circular vortex patch, of the vortex patch 
evolution equation. We will discuss a few exact explicit solutions of this equation. 

We write the solution of the equation of evolution of vortex patches (1.13) as 

z(t, ~) = ~0(c¢) + ~(t, c0 

with Zo(C¢ ) = e ~. Using the fact that 

(i + H)z o : O, 

we obtain from (1.13) the equation for the evolution of (: 

(t, c 0 = ½((i + H)~)(t, ~) + j log 1 + 

(6.1) 

We expand the logarithm in the series (3.7). Discarding powers of ~ of order 3 and 
higher we deduce from (6.1) the quadratic approximate equation 

1 ~ _  / ~(t, ~) - ~(t, ~) ~ ~(Zo + 0 

l i ~ R e ( ( ~ ~ ~ ) ) z ) ~ ( f l ) d  ft. (6.2) 

Note that Eq. (6.2) differs from (5.15) by the quadratic term 

2 8Zo 
lrc i" Re((~(t '  c0 -  "~(t' f l ) ) z 0 ( ~ )  - Zo(fi) )~ff(fi)dfi. 

Proposition 6.1. Assume ((0) belongs to H~(S a) with s > 3. Then there exists a unique 
solution ~(t) of(6.2) havin9 ~(0) as initial datum for It] < To. The positive number T o 
depends on the norm of ~(O) in H~(S1). 

We will not give the proof of Proposition 6.1 here. It is similar to that of 
Proposition 5.2, Lemma 5.3, Introducing the Fourier series representation 

~(t, c0= ~ ~j(tle ~, 
j = - c e  

we obtain the following infinite system of ordinary differential equations, 
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equivalent to (6.2): 

i - i - -  i 
~j = ~ (~j + (2 -j) -- ~ ffl (2 - j  + 2k = ~+1 (k + j -- 1)~ k +~_ ~-k 

i oo i - j+ l  
+~k=~+4(k+j--3)~a--k--,~k--~k~=2 (k(a-k-,, for j_-<--I  

i o __  

i -J i -J 
~j= ~k=~_m(jovk--1)~j+k-l~k °f''2k__~oo(1--j--k)C3-k-j~k, 

for j > l .  (6.3) 

Comparing to (5.20) we note that the term 

- ~(t, ~) ~ & o  . . . . . . .  1 2f= Re((ff( t '  a ) 7 Z o ~  ) ) f f f f , p )ap  
4rt ~ \ \  Zo(a ) 

added several new terms to (5.20), some of which cancelled existing terms in (5.20); 
all but one of these new terms still possess the property that the dummy variable 
k is restricted to the tail ]k[ _-> ]Jl. 

The exceptional term 

i -k~* ~-k(-3 -k-j 

appears in the equations for the coefficients (j with j < - 1. Although it is a lower 
order term in some sense (no large coefficients depending on k are involved) its 
presence precludes the invariance of the manifolds M.  (see Proposition 5.4) for n > 4. 

The remainder of this section is devoted to a few exact solutions of (6.2). 
First we study the solutions of the form 

~(t, ~) = ~l(t)e '~ + (_ ,(t)e -i=. (6.4) 

Substituting in (6.2) or (6.3) we see that the structure (6.4) is preserved by the 
equation provided that the coefficients (1(0, if- l(t) satisfy the system 

~1 t~- ,I  2 
(6.5) 

C-, ¢-1. 

This system is an approximation, up to cubic terms, of the system (3.10) governing 
the evolution of the exact Kirchhoff solutions. Actually the second equation in 
(6.5) is identical with that in (3.10). The solutions to (6.5) do not blow up in contrast 
to the solutions to (5.21), the area preserving approximation. The solutions to (6.5) 
are 

~(t, oO = ( ~t(O, + ~]~l(O)[2t)eia + ~_ l(O)e(~/2)te -i=. (6.6) 
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Comparing e ~ + ((t, 5) to the exact Kirchhoff solution with the same initial data 
given in (3.11) 

z(t, 5) = (1 + ( l(O) )e(i/2)((- l(°)12/ll +(l(°)[2)t ei~ 4:- ~_ a (O)e(i/Z)t e-i~ ' 

we obtain that 

le i~ + ((t, 5) - z(t, 5)] = O(eZt), (6.7) 

where e is the size of the disturbances (1(0), ~-1(0). Thus the solutions to the 
quadratic approximate equation (6.2) yield approximate vortex patches which are 
good long time approximations to the known exact solutions (3.11). They are in 
better agreement with the Kirchhoff solutions over long times than the solutions 
of the area preserving equations (5.15), (5.21). 

Somewhat surprising is the fact that the ansatz 

~(t, 5)= (l(t)ei~ + (_,,(t)e -im~ (6.8) 

for m = 2 is also consistent with the quadratic approximate equation (6.2). The 
system we obtain for the coefficients (1, ~-,, is 

im 12 

i (6.9) 

Therefore we proved 

Proposition 6.2. For every m > 1 the functions 

imt 2 *a ~(m)(t, 5)=(( l (0)+~]~_m(0) '  )e" +~_m(O)elt/2e -i'~a (6.10) 

are solutions of(6.2). 
The family ~(") shows that Eq. (6.3) cannot be well posed in H~(S ~) for s < ½. 

However, for s > ½ one has 

tl ~")(t, .)lis < ,f2 II (<m)(0)[Is + ~22 ]l (~"~(0)]l 2/2. 

The space H1/2(S~) plays naturally a special role: it is both a critical Sobolev 
imbedding space and the space which provides natural sufficient conditions for 
the area functional A(() (see (5.4)) to be defined. 

As we mentioned earlier the linear manifolds M, for n > 4 are not invariant 
for Eq. (6.2) (in contrast to Eq. (5.t5)). However M3, M 2 and M 1 are invariant. 

Proposition 6.3. The 7 complex dimensional linear manifold 

{¢ ~ je ij~, C} M3= eHI(Sl)I~= ~ ~je 
. = _  j 3 
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is invariant for (6.2). On it the equation reduces to the system of  7 complex ordinary 
differential equations obtained fi'om (6.3) by settin9 (i = O f  or IJl ~ 4, 

1 i -  2 
£3  

i 
- 

z i -  i - i - 2  
( 21 

i i -  i - - i - -  
Co + 

i 
¢1 = 2 1 1 ~ - 1 1  z + 2 1 ( - z [  2 + 31~-3[ 2] + ~ ( - 1 ~ 3  

t i -  - 

(3 = 2 ~ _ ~ - -  3 + 2 { _ 3 ~  3. (6.11) 

N o t e  tha t  se t t ing (o = {2 = ( - 2  = {3 = ( - 3  = 0 we get the sys tem (6.5) as a n  
i n v a r i a n t  subsys t e m of  (6.11), se t t ing ~z = (3 = { - 3  = (o = ( - 1  = 0 we get (6.9) for 

m = 2 a n d  set t ing (o = ( -  1 = (2 = ~ -2  = {3 = 0 we get (6.9) for m = 3. The  i n v a r i a n c e  
of M 2 follows by  obse rv ing  tha t  se t t ing (3 = ( - 3  = 0, we o b t a i n  a n  i n v a r i a n t  

s ubs ys t em of  (6.11). 
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