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Abstract. We use methods of constructive field theory to generalize index 
theory to an infinite-dimensional setting. We study a family of Dirac operators 
Q on loop space. These operators arise in the context of supersymmetric non- 
linear quantum field models with HamiltonJans H = Q2 In these models Q is 
self-adjoint and Fredholm. A natural grading operator F exists such that 
FQ + QF = 0. We study Q + = P _ QP +, where P_+ = ½ (1 ___ F) are the orthogonal 
projections onto the eigenspaces of F. We calculate the index/(Q+) for Wess- 
Zumino models defined by a superpotential V(q~). Here V is a polynomial of 
degree n > 2. We establish that i(Q+)= n - 1  = degaV. In particular, the field 
theory models have unbroken supersymmetry, and (for n>3) they have 
degenerate vacua. We believe that this is the first index theorem for a Dirac 
operator that couples infinitely many degrees of freedom. 

I. Introduction 

In this paper we present index theory for a family of Dirac operators on loop space. 
Since loop space is infinite-dimensional, the mathematical framework requires 
careful analysis. Each Dirac operator Q which we study will be associated with a 
stochastic process over loop space. The most interesting such processes are non- 
Gaussian. Our mathematical presentation relies on methods of constructive 
quantum field theory [1] to define and study the infinite-dimensional processes. 
We proceed by several steps: 

1. We define a family of Dirac operators Q and appeal to a companion paper 
for mathematical existence theorems [2]. 

2. For each such Q, we introduce a family Q(tc), 0 < tc < 0% which interpolates 
between Q-Q(o~)  and Q(0)= Qo + Qi, o. Here Qo is associated with a Gaussian 
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process on loop space and Q~,o is associated with a non-Gaussian process in a 
finite-dimensional space. 

3. We prove that Q(~:) is Fredholm for 0<  x_< m, and we show that the 
deformation from Q(oo) to Q(0) is a homotopy. 

4. By this method we reduce the index theory for Q to index theory for Q(0). 
5. We compute the index of Q(0). 
The examples we study are motivated by supersymmetric quantum field theory 

[3-5]. In another paper, we have established the existence of nonlinear supersym- 
metric interactions in a cylindrical space-time [2]. These models are known in the 
(formal) physics literature as N =  2 Wess-Zumino quantum fields. The Hamil- 
tonians for the models have the form H = QZ, where Q is a self-adjoint operator. 

The operators H and Q are unbounded operators on the Fock space 
~f  = ~¢fb ® ~f: over the circle (one torus) T 1. Here ~ and ~f: are the bosonic and 
fermionic Fock spaces. The Atiyah-Singer framework to study the index of the 
Dirac operator Q requires the introduction of a grading operator F on the Hilbert 
space 3¢f I-6]. A natural grading of ~f  is given by F = ( - 1 )  N:, where N: is the 
fermionic particle number operator [3]. The operator F is self-adjoint and 
unitary, so ~(f splits as an orthogonal sum of eigenspaces ~ of F, 

= ~ +  ®~_. (I.1) 

Let P± denote the orthogonat projections onto ~f±. 
A supersymmetric quantum theory is defined by a quadruple (~¢f, H, Q, F), 

where ~ is a Hilbert space and H, Q, F are linear self-adjoint transformations on 
~gf. The grading operator F is unitary and satisfies 

QF + FQ = 0 0.2) 

from which we conclude P +_ QP_+ = 0. Thus in terms of the decomposition (I. 1), the 
operators Q and H = Q2 have representations 

 00) .3, 
where Q+ :W+ ~ f _  is the adjoint of Q_. In our examples, Q+ will be Fredholm, 
namely it will be closed and have a closed range, with a finite-dimensional kernel 
and cokernel. Define 

n ± = dim Ker Q ±. (I.4) 

We study the Atiyah-Singer index of Q, namely 

i(Q +)=n+ - n _  (1.5) 

for Q given by the Wess-Zumino potential V(q~). Such a V is a holomorphic 
function of q~ ~ C taken here to be a polynomial of degree n > 2, 

V(cp)= ½m~p2+ ~ ajcp j= ½m~o2+p(~o), (1.6) 
j=3  

with m > 0 and with an @ 0 ifn => 3. It is a remarkable fact that with this structure the 
field theory defined by Q is finite - all ultraviolet infinites cancel and no 
renormalization is necessary. We establish this by nonperturbative methods in [2]. 
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We prove here: 
i) The value of the index is determined by the degree of OV, 

i(Q +) = n -  1. (I.7) 

ii) The index has an integral representation 

i(O +) = e.[r2) det3 (1 - K) e x p ( -  sO) d#c , (I.8) 

where d#c is a Gaussian measure on the space of distributions N'(T z) on the two- 
torus, where the determinant is a regularized Fredholm determinant, and where ~¢ 
is a function on @'(T z) which depends on V. 

In particular, (I.7) proves that the ground state energy E of H is identically zero. 
Furthermore, the ground state is degenerate if n ~ 3. Since E = 0, supersymmetry is 
unbroken for all these finite volume models. In spite of the fact that for n > 3 the 
field theory has multiple ground states; the model has a single "phase." In other 
words, the model is uniquely specified by the parameters {m, aj} of V. 

We conjecture that the same phenomena illustrated here persist in the infinite 
volume limit for a subspace of the parameter space {m, a~}; we are investigating 
that question. This appears incompatible with the standard Wightman axioms for 
quantum fields [7]. In that framework one assumes a unique vacuum, or else the 
existence of a superselection rule which yields a direct integral decomposition into 
theories with a unique vacuum. In our case, the Wightman framework needs to be 
generalized to include the possibilities of the issues raised here. 

II. Dirac Operators on Loop Space 

The Hilbert space ~ of our model is a tensor product of the bosonic Hilbert space 
~b  and the fermionic Hilbert space ~y,  namely Ae = ~ @ ~ .  In both cases we 
assume that the one particle space is built over the circle (one torus) T 1 of length f. 

IL l .  The Bosonic Fock Space 

The one particle space of the complex scalar field is 

W = L2(T1)OL2(T 1) =- W+ • W_. 

The Fock space ~ is a symmetric tensor algebra over W with the natural inner 
product yielding on the n-fold tensor product [If®.-- ® f  II = II f [i", f e  W. In the 
Fourier space (momentum representation) we define annihilation operators a + (p) 
on W_+ so that a+O~=0,  f2~=(1,0, ...,0, ...), and 

[a_+ (p), a +_(q)] : [a _+ (p), a ~(q)] = [a+ (p), a* (q)] = 0 ,  
(H.1) 

[a_+ (p), a* (q)] = 6pq, 

p e ~1 = ~ Z  and 6pq is the Kronecker delta. The time zero field is defined where 
by t ,  

q~(x) = (2E)- I/z E ~o(p)- 1/Z(a*(p) + a_(--p))e -ipx, 01.2) 
p ~  
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where co(p)=(p 2 +m2) l/z, and m>0.  The canonical momentum is 

re(x) = i(2d)- 1/2 ~ co(P)i/Z(a.(p )_  a+(-p))e -ip~ . 

The scalar field satisfies the commutation relations 

[q~(x), (p(y)] = [~r(x), rc(y)] = [-~*(x), q~(y)] = 0, 

= - y), 

where 6(x-y)  is the Dirac measure. 
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(II.3) 

(II.4) 

11.2. The Schrrdinger Representation (Loop Space) 

Another, unitarily equivalent, representation of ~ is given by the Schrrdinger (or 
loop space) representation. Let N(T 1) denote the space of smooth maps (loops) 
from T a to t12, with the topology defined by uniform convergence of each 
derivative. Let N'(T 1) denote the topological dual, i.e., the space of complex 

1 t 1 distributions on T . Let d#Ge denote the Gaussian measure on N ( T )  with mean 
zero and covariance Ge=(-d2/dxZ+m2) -~/2. It is then well known that 
Jfb_~LZ(N'(T~),dl~t), see e.g. [,,1]. Under this isomorphism q~(x) becomes a 
multiplication operator, and ~(x) becomes - ir/rq~(x), where 6/rq~(x) is the Frechet 
derivative. 

11.3. The Fermionic Fock Space 

The fermionic Fock space ~ y  is the anti-symmetric tensor algebra over 
L2(T1)OL2(T1). The annihilation operators are be(P), p s  ~1, and they satisfy 

{b±(p), be(q) } = {b ±(p), b:~(q)} = {b±(p), b*(q)} = 0, 
{b ±(p), b*+(q)} = 6vq, (11.5) 

where { .,. } is the anti-commutator. The time zero Fermi fields are defined by 

~P 1 (x) = (2d) - 1/2 • co(p) - 1/2(v( - p) b* (p) + v(p) b + ( - p)) e-  i.x, 
pe~'l 

( 1 1 . 6 )  

~p2(x) =(2f ) -  1/2 Z l co(p)- 1/Z(v(p ) b*_(p)- v ( -  p) b +(- p))e -ipx, 

where v(p)=(co(p)+p) 1/z. Let ~l(x)-~p~(x), Vp2(x)--tp~(x), corresponding to 

tb = ~P* (~ 10)- Then 

{~pu(x), ~p~(y)} = 0, #, v = 1, 2, 

{vp,(x), W~,(Y)} = O, # = 1, 2, (II.7) 

l ( x ) ,  v 2 ( y ) }  = = 

Relations (II.7) mean that t~(f)-= r~ ~p.(x)f(x) dx and ~v(f)-= r~ 1 Cgu(x)f(x) dx, for 

f e I2(T1), generate an infinite dimensional Clifford algebra. It also follows from 
(II.7) that ~p.(f) is a bounded operator and Iltpu(f)]l = [[fllL~- 
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11.4. The Operators N~ 

For 0 < z < 1 we define the operators 

N~,b= E E °9(P)~a*(p)aj~P), 
J= -+ P~" (11.8) 

N,.I= E ,~r°)(P)~b*(p)bj{P), 
j=+ 

on dense subspaces of ~ and Yff, respectively. Let 

N, = N~, b (~ I~e e + Iavb ® N,, y 

be defined on ~¢g. Clearly the number operator is N=No and the free field 
Hamiltonian is Ho = N1. For  0 < z  < 1 these N, operators interpolate between N 
and Ho. It clearly causes no confusion to suppress the tensor products with I. 

Let us also introduce the involution 

F = exp(izNy) (I1.9) 

on J/t ~, where Ny = No,y is the fermionic number operator. F induces a grading on 
~ ,  as described in the Introduction. 

Proposition II.1. For z, fl > 0 the operators e x p ( -  flN,, b) and e x p ( -  flN~,y) are trace 
class and 

Trleb(exp(-flN~.b)) = I~ (t--exp(--flc°(P)~)) -z ,  (I1.10) 

Travs(exp(-- flN~.i) ) = . ~ ,  (1 + e x p ( -  flog(p)0) z , (ILl 1) 

Trje~(rexp(-flN,,i))= .17I (1-exp(-fl°o(P)*)) z. (II.12) 

Remark. As a corollary to (II.10) and (II.12) we obtain the following identity 

Tr~e (F e x p ( -  fiNe) ) = 1, 

valid for z, fl > O. 

Proof. Let ~b(P,J), P ~ ~l , j  = + ,  be the subspace o f ~ b  spanned by polynomials in 
the creation operator a*(p) applied to the ground state £2 b. Then 

~gb~ @ ~(P ,J )  (II.13) 
P,J 

and 

Tr~eb(exp(-- fiNe, b)) = H. Trav~(p,i)(exp(- ~o(P) ~ a~(P) ai(P)). 
P , J  

The spectrum of a*(p)ajLo) consists of the eigenvalues Z+,  each with multiplicity 
one. Thus 

Trav~(p, ~)(exp( - ~o(p) ~ a*(p) aj~)) = (1 - e x p ( -  fl~ofp)~))-l, 

which proves (11.10). 
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We have 

Jt°f ~ A. ~'f(P,J) , (11.14) 
P,J 

and observe that the spectrum of b'~(p) bj(p) is {0, t}. The proof of (II.l 1) and (II.I 2) 
follows. 

11.5. The Cutoff Interaction 

Let V be given by (I.6). The supercharge Q is defined as a bilinear form on Jg. 

1 ~rl dx~p~(n-~lq)*-iOV(q)))+~P2(rc*-Ol~°-i~V(q))*)+h'c" (11.15) 

where h.c. denotes hermitian conjugate. The domain ~0  of Q we choose consists of 
Fock states with finite number of particles and N(T1)-valued wave functions. 
Notice that Q has the structure of a Dirac operator on an infinite dimensional 
manifold [loop space ~(T~)] with circle action. The terms 01q) and 0~q~* are 
generators of the circle action q~(x)~q)(x + y), y e r 1. Also (OV(q~), OV(q~)*) is the 
connection of a flat bundle over @(T1). Defining (II.15) as an operator on ovf 
requires careful definition of its domain. We first smooth the form Q, and then we 
exhibit cancellation of local (ultraviolet) singularities. Finally we justify removing 
the smoothing. 

We use the following smooth approximation to the periodic Dirac measure 

Z~(x) = K Z )~(K(x- nC)), (I1.16) 
ne2g 

where x > 0  and where Z satisfies six conditions: 0<ZeSe(IR), 2 (x )=x( -x ) ,  
I)~(x)ds=t, ~(p)>O, supp)~C[-1 ,1] ,  and )?(p)>0 for 1P1<I/2. We define regu- 
larized (cutoff) fields by convoluting with )/~ on T t, 

The regularized supercharge Q(~c) is defined as a bilinear form on 9f ,  

Q(~) = Qo + Q,.~ , (II.17) 

where 

and 

1 
Qo = Y 2-~- T[ dx ~Pa (re -- 01 (p * -- iraqi) + ~2(rc* -- ~71 q~ - imp*) + h.c., 01.18) 

i 
Q~.,~= V~ ~r dx~pl(?P(qo,~)+~2aP(%~)*+h.c., (II.19) 

where P(q~) is the sum of the j >__ 3 terms in (1.6). 

Proposition 11.2. The form Q(x) defines a symmetric operator with domain ~o, such 
that (as a form) its square equals 

H(K) = Q(K)2 = Ho + ST, dx(mq~* OP(q~)--(~51tpl) ~ a2P(go~) + h.c.) 

+ ~r~ dxlOP(q)~)t2" (II.20) 
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Here - _ 1 - - (tpuWu)~ = ~ (~,~,~pu + Futpu,~). Thus H(rc) extends uniquely to a symmetric 
operator with domain ~o. 

Proof. The form Qo uniquely defines an operator Qo on ~o. Furthermore, 
Q~ = Ho. In fact, we have the explicit representation: 

= dx H0(x) ,  

where 

Ho(x ) = l i ra  {Irc~(x)l 2 + 10 l~Or(X)l 2 - q -  mZ[fpr(X)[ 2 + 1/3r(X ) (i]) 101 - -  m) lp~(x)}, 

and where ~ = . The Wick ordering constants of the bosonic and 

fermionic parts cancel identically in the sum, and we can also write 

Ho(x) = :lit(x)[ 2 + 10 ~0(x)l 2 _~ m2ko(x)lZ: + :~(x) (iT 101 - m) W(x): 

= Ho, b(X) + Ho, y(x), 

where Ho,b(X) and Ho,y(x) are the densities for Ho,b and Ho,s, respectively. The 
remaining terms in Q(~c) 2 are well behaved on ~o x ~o. Elementary but lengthy 
application of the commutation and anti-commutation relations yields (II.20). In 
fact, each term in (11.20) defines an operator on No, so H(x) is a symmetric operator 
on that domain. 

II.6. The Zero Momentum Mode 

Set 

~o  = ~ -  1/2~(0),  ~;~, o = l -  " z ~ ( 0 ) ,  

where ~b(p)=# -1/2 ~ dx~o(x)e ipx. Define 
T 1 

Q(0) = Qo + Qi, o ,  

where 

(IL21) 

(II.22) 

i 
Q,, o = ~ E(~p t, o 0P(cpo) + tp2, o 0P(cPo)*) + b.c.. (I1.23) 

We also set H(0) = Q(0) 2. Here H(0) is the Hamiltonian of a theory where the only 
interacting mode is the zero mode. 

11.7. The Cutoff Removed 

In this subsection we formulate two results of a technical character, which we 
prove in a separate paper [2]. 

Theorem IL3. (i) The operators QO¢) and HO¢) are essentially self-adjoint on the 
domain ~o for all 0 < t¢ < m. 

(ii) The resolvents of their closures converge in the operator norm as t¢~oo to 
the resolvents of  self-adjoint operators Q and H respectively. 
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(iii) Define Q(oo)=Q, H(oo)=H. The mappings ~c~Resolvent(Q(x)) and 
x ~  Resolvent(H(x)) are continuous in the operator norm for O< tc < oo. 

Remark. The theorem suggests that ~c~Q(x) is a homotopy interpolating between 
the field theory supercharge Q and the degenerate supercharge Q(0) which involves 
only one interacting mode. We demonstrate this fact in Theorem II.6. 

Theorem 11.4. Let z E(0, 1) be fixed. There exist constants (>0 ,  C < oo such that 

~N~ = n(x) + C (II.24) 

uniformly in 0 <_ x < ~ .  

Since N~ has a compact resolvent for z > 0, this crucial estimate yields 

Corollary II.5, The resolvents of H(~c) and Q(tc), 0 < x < Go, are compact. 

11.8. The Index 

Recall that a densely-defined, closed operator is called Fredholm if its range is 
closed, and its kernel and its cokernel are finite-dimensional. Let Fred(W+, W_) 
denote the set of Fredholm operators from W+ to W_, and let Q+_(~c)=P~Q(x)P+ 
(cf. Sect. I). 

Theorem 11.6. For O<_~c<_oo, Q+(~c)eFred(~(~+,Jf_). The index i(Q+(~)) is con- 
stant for 0 <- x <_ oo. 

Proof. By Corollary II.5, the resolvent of Q(~c) is compact. Thus the kernel of Q(x) 
is finite-dimensional. Using (I.3), Ker(Q(x))=Ker(Q+(~c))(~Ker(Q_(~c)), so 
dim Ker(Q _+(to)) < oo. Furthermore, 

(QO¢) + i)- i Q(ic) = i - i(QOc) + i)- I. 

Since (Q(t¢) + i)- 1 is compact, standard results of functional analysis imply that the 
range of Q(r¢) is closed. This implies that the range of Q+(x) is closed, and so 
Q+0c) e Fred(W+, W_). Since ~c~ Resolvent(Q(~:)) is norm-continuous, 
Theorem IV.5.17 of [8] implies that i(Q+(x)) is locally constant (and thus 
constant). 

Proposition IL7. For 0 <_ tc <_ oo, e -#m~) is trace class, and 

i(Q ÷ (tc)) = Tr (Fe- ,m~)). (II.25) 

where Tr denotes the trace on Y:b®2/f:. 

Proof. Formula (II.25) is the well-known heat kernel representation of the index, 
see e.g. [9]. The only nontrivial statement is that exp( -  fiH(~:)) is trace class. This 
follows from Proposition II.1 and the comparison estimate (II.24). 

HI. Computation of the Index 

In the preceding section we showed that the estimates of [2] are sufficient to 
establish a homotopy between Q(~) and Q(0) with i(Q÷(~)) constant. Here we 
evaluate i(Q + (0)). 
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Theorem III.1 (index theorem). Let V(q~)=½mfp2 + p(q~) be a polynomial of the 
form (I.6), and let Q be the corresponding supercharge. Then i(Q + )= n -1 .  

Proof. By Theorem 11.6, we need only consider the case x = 0. Decompose the 
Fock space as an orthogonal sum ~=o¢go@~4~0~, where ~0 is the subspace 
spanned by the zero-momentum modes. According to this decomposition, the free 
supercharge Qo can be written 

Qo = Q~ , 

where the zero modes contribute 

Q°° = 1-~ ((~*(0) + v~,(O)) ~(0) + (732(0) + t~z(O))/t*(O) 
g 

+ im(o(O) (~(0)--  ~b l(0)) + im~9*(O) (~2(0)-- ~b2(0)) ) . (III.2) 

Introduce new variables z = ~b(0) and 

~t 1 = __ 1 (b* (0) + b + (0) - b_ (0) + b* (0)), 

~v 2 = - ½(b*_(O)- b+(O) + b_(O) + b* (0)), 

Then we verify 

~2 = ~ * ,  

77 1 = ~ , , .  
(III.3) 

{~u, 7/,} =0 ,  # , v = l , 2 ,  

{ 7/u, ~u} = 0, /~ = 1, 2, (III.4) 

{~'1, ~ 2 }  = { ~ 2 ,  ~ 1 }  = 1.  

In terms of these variables 

QO = i~ l( O/ Oz ) + i Tz(a/63;~ ) q_ i Ttl mz_  i~ 2m5. (111.5) 

The operator Qi, 0 can also be expressed as an operator on 3((0, namely 

Qi. 0 = i~1/2 ~ l a P(f-  1[2Z)  - -  i~ 1/2 ~20P(v : -  1 / 2 2 ) * .  

Therefore 

Q°o + Q,,o = i ~ l ( ~ / 0 z )  + i~'2(~1~) 
3r i~l/2ttll~V(#- 1 / 2 Z )  - -  ig1/z~20V(#- 1 / 2 z ) * .  (III.6) 

Comparing (111.6) with Sect. 4 of [10], we find that Q°+Qi, o is exactly the 
supercharge of our model of holomorphic quantum mechanics. In addition, we 
verify by explicit calculation that F [ ~o is identical to the operator ? = ?o? 17273 in 

o+  formula (4.3) of [103. Thus the index calculation for (Qo Q,,o)+ reduces to the 
calculation of [i0],  where we established n + = n - 1, n _ = 0. On the full Fock space 

Q(O)=(Q°+Qi.o O)  
o Q+" 

Clearly Q~ has a unique ground state which is an element of A:+ ; it has no ground 
state in i f_ .  This completes the proof of the theorem. 
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Remark. Since n+0c) are not homotopy invariants, this argument does not suffice 
to conclude that n_(~)=0 ("vanishing theorem") for K>0. We conjecture that 
n_(tc)=0 holds for all ~c>0, 

IV. Path Integrals and the Index 

In this section we establish Feynman-Kac representations for the trace states 
defined by the heat kernels of our Hamiltonian. These states are also called "finite 
temperature" states since they correspond to Gibbs states in quantum statistical 
mechanics with inverse temperatures ft. These representations complement the 
Feynman-Kac representation of the vacuum functional established in [2], and the 
latter are recovered in the limit fl-~ ~ .  Special cases of these representations were 
derived in [11] and also in the formal physics literature. 

The special feature of the finite temperature states is the fact that the underlying 
Gaussian functional integrals are replaced by Gaussian integrals with boundary 
conditions in time. In this way the cylinder is replaced by a torus with period fl in 
the time direction. The bosonic integral has periodic boundary conditions with 
period ft. For the fermionic integral, however, there are two different cases. The 
pure trace state is represented by antiperiodic boundary conditions in the time 
direction. The graded (super) trace, on the other hand, gives rise to periodic 
boundary conditions in the time direction. Our study requires both types of states: 
the pure trace to establish regularity estimates and the super trace to represent the 
index. 

IV.1. Path Integral Representation of the Index 

We define the "finite temperature" free states: 

( .  } ~,b = { Tr ~e~ (exp( -  flHo,b)) } - ~ Trleb(" exp(-- flH0,b)), 

( .  }~k)¢ = {Traes(F k exp (-- flHo, f))} -~ Trjes( • F k exp ( -  flHo, f)), k=O, 1, 

(IV.2) 
with F given by (II.9). Here ffk denotes F to the power zero or one. We set 
C e ~ = ( - A + m 2 )  -1, where A is the Laplace operator on the torus 
T'2'=N2/fZ x fizZ,. In other words, Ce,~ has periodic boundary conditions with 
period E in the space direction and period fl in the time direction. Let 

=iyo~00 + i°/fOl be the Euclidean Dirac operator on T 2, where the Euclidean 
Dirac matrices y~ are 

o') 
We set S~,~ = ( 0  +m)-  1 as the periodic Green's function of the Dirac operator. 

By 0 we denote the Dirac operator on the torus twisted in the time direction by 
re. This twisting is interpreted as introducing boundary conditions for the Dirac 
operator which are anti-periodic in the time direction. Functions in the domain of 
g satisfy 

f ( x  o + fl, xl) = --f(xo, x 0 . (IV.3) 
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Thus we actually replace the period fi of the torus in the time direction by a period 
2fl, and we impose (IV.3). We define S/, ¢ = (D + m)-1 as the antiperiodic Green's 
function in the time direction and periodic in the space direction. Finally, let 
~ ( T  ~) denote the Sobolev space of order e over T 1, namely the completion of 
~ ( T  l) in the norm tlfll~= II(-A + m2)~/2f]lL 2- 

Lemma IV.1. Let s ~ t. Then 
(i) The finite temperature free bosonic state is given by a Gaussian measure with 

the periodic covariance Ce, e" 

(e-*~°,~o(f) e-(t-')n°,~tp*(g)et~°,~)e,b 

=Ce,~(f®a,,g®a,), for f,  g e J f _ , ( T * ) .  (IV.4) 

(ii) The finite temperature graded (super) free fermionic state is given by a 
Gaussian fermionic state with covariance Se, e. 

(e-* '° ,~pu(f)  e -  ('- *)n°,~,~(g)em°,*5(1,) 

=(Se, e)uv(f®5,,g®6,), for f,  geSCLm(T*).  (IV.5) 

(iii) The finite temperature (ungraded) free fermionie state is given by a 
Gaussian fermionic state with covariance ~e,e. 

( e - " ° . ~ p , ( f )  e-  ('-')n°'~,(g)e'no,~>~°)f 

=(S<a),,~(f®6~,g®g~), for f , g ~ _ a / 2 ( T ~ ) .  (IV.6) 

Proof. It is sufficient to check that the covariance operators (IV.4-6) are correct, as 
the free, finite-temperature states are well known to be Gaussian with mean zero. 
(i). We represent ~fb as (II.13). Straightforward calculations show that 

TP t ,~* [nhr~-ctHo b(P,J),~ [nho-- ( f l -~r)Ho b(P,j)~ x~gb(p,j)~+_~l.,lr... ' ~ + k F ) c  • 

= (1 - exp( - rico(p)))- 2 exp( - (fl - o-) co(p)), 

and 
T~ ~ ( n ] , ~ - t x H o , b ( p , j ) , ~  ( r~h ,~- ( f l -g )Ho  b(P,J)'l 

x,g~b(p,j)~++kl-']~ ~++_~lIJ ~- ' ] 

= (1  - e x p (  - 2 e x p (  - . c o ( p ) ) ,  

where a = t - s  and Ho,b(p,j)= co(p)a*(p)aj(p). The left-hand side of (IV.4) can be 
thus written as 

y~ f(p) ~(p) (2co(p))-' (1 - exp (-/~co(p)))- 1 (exp ( -  o-co(p)) + exp ( -  ( f l -  a) co(p))) 

= Z Z 
neZ p~-I 

= z z T 1 e.o+°,,EdE 
,~z p~:~ -oo E2 +p2 +m 2 

= Ce, p( f®6 ,, g®6,). 

(ii) and (iii). We use (II.14). A calculation shows that 

Trays(p, j) (Fp k, jb * (p) e - ,no, f(p, J)b _+ (p) e - (p - ~) no, f(p, j)) 

= ( -  1) k e x p ( -  ( f i -  a) co(0)), 
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and 

y .  i r k  l,~ (n '~ , ,~-aHo,  y(P,J)la* [ n ] , ~ - ( f l - a ) H o , y ( P , j ) ~  
~ a~ ~(p, j )  ~ p, j~" +_ ~t ']  ~ ~" +_ key  ~ 

= exp ( -  o-o)(p)), 

where Fp.~ = exp(ircb~(p)b~(p)), and the proof of (IV.5) and (IV.6) now follows as in 
the bosonic case. 

We introduce the following notation. For • ~ ~'(T2), set 

A(~) c~'~ - e,~ , -  ~ dx(l~P(4),:)12 +m4~SP(~,~)* +mq)* ~P(q?,~)), f (IV.7) 

where 

• dXo, xl) = I dxi V(Xo, xi))C~(xl - xi) ,  
T 1 

and where Z~ is given by (ILl 6). Let K¢e~, ~(~) be the operator whose integral kernel is 

K(~) t ~  ,, ~, , (x ,  y )  = -~ ~, dz , ( [St ,  ~(x - z) ~ 2 p ( ~ ( z ) )  z d z l  - y l) 

+ St, p(x- z) Zdz~- Y0 a2P(~(Y))] A + 

+ [St, ~(x - z) a2P(@~(z)) * ZdZl - yl) 

+ St,~(x - z) ZdZx - y~) O2P(Ody)) *] A _), (IV.S) 

whereA+= (10 00)andA_= (00 ~) are the chiral projection, and where the time 

component ofz is z 0 =Y0, i.e., z =(Y0, z0, Propositions ILl, II.7, Lemma IV.I, and 
standard approximation arguments (see, e.g., 1-1 1-1 3, 2]) yield a Feynman-Kac 
formula based on the Gaussian measure d#c~,~ with mean zero and covariance 
Ct,#. 

Theorem IV.2. The index i(Q+(~c)), 0< to<o  o, has the following path integral 
representation 

i(Q+(~c))= ~ d#ce.~(O)det(1-K(e~)a(fb))exp(-A(~,)~(q~)), (IV.9) 
~ ' ( T  2) 

where det means Fredholm determinant, 

Remark 1. A formal version of (IV.9) was given in [4]. 

Remark 2. By means of Theorem II.6, i(Q + (~:)) is independent of to and it is equal to 
i(Q+). The right-hand side of (IV.9) also has a limit as ~ - ~ ,  but in this limit 
divergences cancel between the Fredholm determinant and A(e~. Using the results 
of [2], we obtain the following representation of i(Q+): 

i(Q+) = ~,[T~)d#ce,~(~)det3(1 - K~,t~(~)) exp ( -  o/t,~(~)), (IV.10) 

where det, is the regularized Fredholm determinant, and where K:,~(~) 
lim K ~) rq~ ~¢t, t~(~) = lim [Ate~(~) + Tr(Kte~,~(~)) + 1Tr (K(e~,~(~)2)]. The repre- / , /~ ~, /~ 

sentation (IV.l 0) has the property that both det 3 ( I -  Kt, p(~)) and e x p ( -  d r ,  ~(~)) 
exist. 
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IV.2. Path Integral Computation of the Index 

Below we present an alternative proof of Theorem III.1 which is based on the path 
integral representation of the index. The advantage of this method is, however, that 
it is quite general and may be applied to situations in which a direct computation 
of the index is impossible. 

From Theorems II.6 and IV.2, we infer that we can set ~ = 0 in (IV.9) to obtain 

- -  ~, fl\ ~' ,U i(Q+)= e.~r2)d#ce,,(~)det(l K(°)tm~exp(-ate°~(~)) (IV.11) 

We have under Fourier transform the isomorphism 

d#ce ,~  (~ dlt(-a2/axg+v~+m~)-l. 
p l ~ T I  

Using this tensor product representation and the fact that ~ = o(P)= f-1/2Jvo, we 
conclude that the integral (IV.I 1) can be expressed as an integral with respect to 
the Pl = 0  factor d#t_d2/ex~+m~)-,. Let 

1 
Z ~(Po, O) e-iv°~°, 

where T a is here a circle of length fl, and let 

Ap(¢o)  = d {l P( o)l + + m ¢ *  • 

Also let 

Kp(~o) (x, y) = f -  1St~(x - z) O2V(~bo(z))A + + f -  1S~(x-- z) 02V(q)o(Z))*A _, 

where S~ = (i";o~O0 + m)- 1 Then (IV.t 1) takes the form 

dl~(_d~/d~+m2)-~(~o)det(1--K~(~bo))exp(--A~(~o) ). (IV.12) 
~ ' ( T  1) 

We infer from Proposition II.7 that the right-hand side of (IV.9) [and, 
therefore, also (IV. 12)] is independent of fl > 0, and thus (IV. 12) is equal to its fl + 0 
limit. This limit was evaluated in Theorem 2.2 of [14], and it was found to be equal 
to d e g O V = n - I .  This proves Theorem III.1. 

Remark. It is possible to compute (IV.9) without resorting to the results of [14]. 
Using Euclidean invariance, we show that the representation (IV.10) is indepen- 
dent of L We rotate the coordinates by the angle 7~/2, and use the fact that the right- 
hand side of (IV.10) is invariant under such a rotation. In this manner we exchange 
the roles of t ~ and fl; from the independence of fl we infer that i(Q +) is independent 
of~. We set now f = fl = e, and let e tend to zero in (IV.9). In this limit only the zero 
momentum modes contribute to the function space integral. We have carried 
through the argument to justify this dominance, as formally proposed in [5], 
though we omit the details. The zero momentum modes contribute 

i(Q + ) = 2/~ [a 2 V [ 2  exp ( -- [~ V[ 2) dz d~ = n - 1, 
7g 

namely the degree of QV, as claimed. 
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