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Abstract. When enough matter is condensed in a small region, gravitational 
effects will be strong enough to cause collapse and a black hole will be formed. 
We formulate and prove here such a statement in the language of general 
relativity. (This is Theorem 2 of this paper.) 

The main result of this paper is that for an asymptotically flat initial data set, with 
the mass density large on a large region, there is an apparent horizon (and a 
closed trapped surface) in the initial data. It was shown by Penrose [2] and 
Hawking [-t] that under physically reasonable assumptions, the existence of a 
closed trapped surface implies that the spacetime which evolves from the initial 
data contains a black hole. Simple examples show that the mass density can be 
large on a set of arbitrarily large diameter without the existence of an apparent 
horizon in the initial data. Therefore, the notion of a "large region" must be 
suitably defined. We formulate a notion which measures more than one direction 
in £2. 

Definition. Let F be a simple closed curve in O which bounds a disk in (2. We let 
Nr(F ) denote the set of points within a distance r of F. Define the H-radius of f2 
with respect to F by 

Rad(f2,F)=sup{r:dist(F, O0)>r, F does not bound a disk in Nr(F)}. 

We define the H-radius of ~2, denoted Rad(~), by 

Rad(~?) = sup {Rad(f2, I +) :F as above}. 

Remark t. Note that if f2 were a ball of radius R in IR 3, then Rad(f2) =R/2 ;  on the 
other hand if f2 is the cross product of S2(R) with an interval ( - L ,  L), then 

Rad(~2) = min {~- ,  L}. 
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Remark 2. One can alternatively replace homotopy by homology in the above 
definition and define a homology radius of (2 with respect to a curve (or family of 
curves). 

Now suppose (N, g, P) is an initial data set. We define #, J~ by 

pk ij 

where R is the scalar curvature of the Riemannian metric g and P~j is the second 
fundamental form of N in the space-time. Our first result deals with the case of a 
maximal initial data set. 

Theorem 1. Suppose Tr(P) = ~ gi:Pij-O. I f  f2 is any open set in N such that for some 
t, J 

number A > 0 we have 1~ >-_ A on g2, then we have the inequality 

2~ 
Rad(f2) N ~/~ ~/~. 

Remark 3. There is no requirement that N be asymptotically flat in Theorem 1. 
The result is purely local. 

Theorem 1 will be an immediate consequence of the following result. 

Proposition 1. Suppose N is a three dimensional Riemannian manifold and f2 C N is a 
bounded region such that the first Dirichlet eigenvalue on ~ of the operator - A + ~R F-" 

is at least A. Then Rad(f2)__< V ~  ~z 

Proof Let f >  0 be the first Dirichlet eigenfunction of - A +½R on ~2. Thus we have 

A f + ( 2 - ½ R ) f = O ,  2 > A .  (1) 

Let ~ be any positive number less than Rad(~?), and let F be a curve such that 
Rad (~, F ) >  ~. Without loss of generality we may assume N is a complete manifold 
and f > 0  is defined on N;  no requirement is made on N,-~Q. For any disk Z 
spanning F, define A:(Z) by 

A:(Z) = S fda ,  da = area element. 
2 

Let Z be an immersed disk in N with ~Z = F such that Z minimizes Af(Z). Since 
minimizes A f, it has nonnegative second variation of A:. This implies, by a 
calculation, that the first Dirichlet eigenvalue of the operator L given below is 
nonnegative on Z 

L(cp) = -- [ A~o + f - 1  Vp. Vf + (½R- f -  1ANf - ~K + f -  lzlf)qo], 

where A, V are taken on N and we have used A N t o  denote the three-dimensional 
Laplace operator;  K is twice the usual Gauss curvature of 22. Substituting (1) into 
this expression, we get on NosY2, 

L(9)--- - [Acp + f-iV~o. Vf + (2 -½K + f -  1Af),p]. 
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Let g > 0 on 2; be the first eigenfunction of L. Thus g satisfies the inequality 

Ag+ f - l V f .  Vg+gf - lA f  +(2-½K)g<O. (2) 

Since Rad(f2,F)>~, there is a point x~Zc~?No(F). Consider curves y lying in Z 
which connect x to F = 02;, and define I[7] by 

I[?] = S f.q ds,  

where ds is arclength along 7. Let ? be a curve which minimizes I(7) over all curves 
from x to F. By replacing F by a terminal segment of ? if necessary, we construct a 
curve ? connecting a point 2;~c?N~(F) to F which minimizes I and is contained in 
No(F ) . In particular, we have 

Length(y) = ~ ds > e. (3) 

The fact that ? has nonnegative second variation for I implies, by a calculation, 
that the operator L o on ? has nonnegative first eigenvalue 

[d2~p + f_  l dlp df + g_ l dtp dg 
L°~P = - k~s 2 d-~ d~ ds ds 

/ 
+ ~ ' ~ + g - ~ L g + f - ~ s 2  +g ~s 2 + f -  g- ds 

Combining this with (2) and letting h(s) denote the first eigenfunction of L o on 
[0, /] , /=Length(?) ,  we then have h >0 and 

h-lh,, + f - l f , ,  +g- lg,, + h - l f - l h , f ,  +h-lg-lh 'g,  + f - l  g-l f '9 '  + )~O 

d 
on [0,/-j, where we use primes to denote d-d~" Let (p be any function vanishing at 

s =0  and s=  l, and multiply both sides of the above inequality by ~02, and integrate 
by parts to get 

o ~(~ss logfgh) ~o 2 +2q)Z}sS i { l  (h_Z(h,)2 + f_2(f,)2 +g_2(f)2)qo2 + l d 2 

l 

<=2!q)~o'dlogfgkds, (4) 

where we have done a rearrangement on the left. The following inequality is easily 
checked 

2 p~o ~slogfqh 3 ,2 , d < ~ ((p) + [First two terms of (4)]. (5) 

Thus we finally get 

t t 

f  °2ds S 2ds, 
0 0 
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which implies the operator 

This clearly implies 

d 2 2 2 has nonnegative first eigenvalue on [0, l]. 
ds 2 3 

By (3) and the fact that 0 is any number tess than Rad(g2), we get the conclusion of 
Proposition 1. 

Proof of Theorem l. Theorem 1 is essentially the case of Proposition t with the 
function f constant. (Note that A < # < ½R.) We then observe that the coefficient of 
(~,)2 in (5) can be improved to -+3, which then gives the conclusion of Theorem t. 

Our main theorem will rely on the following existence result which was proved 
in [4]. 

Proposition 2. Suppose £2 t CN is a bounded region. Assume that H~ denotes the 
mean curvature of Og21 taken relative to the inward normal. Assume that on OY21 the 
inequality H 1 >lTrml(P)l holds at each point. Here Tr0m(P ) refers to the trace 
relative to the induced metric on ~(21 of the restriction of P to ~21. I f  Q1 contains no 
apparent horizons, then there is a unique solution f on Y21 to the equation 

i,j=l 1 +lVfl2] (L j -PO)=O" (6t 

Remark 4. In our convention the unit bail in IR 3 has boundary of positive mean 
curvature relative to the inward normal. If N is asymptotically flat and f2, is the 
interior of a large ball, then the boundary condition assumed in Proposition 2 is 
satisfied. 

We now state our main theorem. 

Theorem 2. Let g2 C N be a bounded region on which the inequality # -  tJI >= A holds. 
Assume either that N is asymptotically flat or, more generally, that g2 < g2t, where f2~ 

as in Proposition 1. I f  Rad(g2) > V 2  is _ _ _  ]//~, then N (respectively Q1) contains an 

apparent horizon Z, that is a closed two sphere satisfyin9 Hz= _+Trz(P). [In 
particular, there is a closed (future or past) trapped surface.] Moreover, any such 

2zc 
apparent horizon Z lying entirely within Y2 has diameter at most ]/~ l/A" Any such 

2re 
intersecting aO has the property that Y2~Z lies everywhere within a distance - -  / V5 
of a~. 

Proof By Proposition 2, if such an apparent horizon does not exist, then (6) is 
solvable on ~21. If such a solution f o f ( 6 )  exists, then by inequality (2.29) of [4] we 
have on £2 

A ~ ½/~- Z (h~+- p~+)2 + Z D~(h~+ - P~+), 
i i 
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where/~ denotes the scalar curvature of  N with metric ~ given by gi~ = glj + f J j ,  and 
the other terms are defined in [3]. This inequality easily implies that  for q~ 
vanishing on 0f2 we have 

a S  o2Zi<__ 1 -  (~R~o +]Oq)[2)~ -. 

In other words, the first Dirichlet eigenvalue of  the operator  - J  +½/~ is at least A. 

Since the metric ~8 is larger than g, it follows that Rad(f2) is greater than T ~  
v -  

relative to both  # and ~. This is a contradict ion to Proposi t ion 1. Therefore no 
solution f to (6) can exist on ~1, and an apparent  horizon 2; exists in f2~. The 
statements about  the diameter of  ~ follow also from Proposi t ion 1 because such 
have the proper ty  (see [5]) that  the operator  -A+~Kx has first eigenvalue at 
least A, and hence any curve ? which minimizes the functional I [7 ]  considered in 

2re 
Proposi t ion 1 cannot  have a segment longer than - -  lying within f2. This 

completes the p roof  of Theorem 2. 

Note. In [4], we mentioned the classification of asymptotically flat space which 
satisfies the local energy condition. We should point  out  that  in the classification 
ment ioned there, we assume the initial data  set does not  contain any apparent  
horizon. In this regard, we have proved that  a compact  three-dimensional 
manifold which admits a metric with positive scalar curvature is diffeomorphic to 
the connected sum of copies of  S 2 x S ~ and copies of  three dimensional manifolds 
with finite fundamental  group. 
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