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Abstract. Homeomorphisms of the unit-sphere of states are studied. Generaliz- 
ations of the Piron statement and Wigners' theorem are obtained. It is shown 
that if the semigroup of the unitary operations of quantum theory were 
extended by introducing any non-linear operation, a mobility phenomenon 
would occur consisting of a possibility of moving any two states to any two 
surroundings on the unit sphere. For the resulting "non-linear wave packets" 
the complementarity doctrine would become impossible because of "fluidity" 
of the space of states under the dynamical transformations. 

1. Introduction 

In one of its present day views, the theory of dynamical systems deals with the 
iterations of one single transformation U: ~ • of a certain manifold of states q~. 
Within this line of thought some interesting results have been achieved, such as the 
existence of the "strange attractors," etc. [1-3]. However, the approach based 
merely on one operation means a simplification of a dynamical theory ad extremis. 
The real physical system is submerged in a variable universe; by modifying it, one 
can induce many distinct evolution operations. Hence, a complete dynamical 
theory should deal not with one but with many alternative operations [4-8]. In the 
"multi-operation dynamics" some new questions arise. One of them is: what kind 
of transformations of the manifold of states 4~ can be basically achieved by 
manipulating the operations available? [7-9]. In the dynamical theories of 
quantum mechanical character, the answer is basically known. Here, the evolution 
operations are unitary transformations of the unit sphere in a Hilbert space. 
Provided that there are no superselection rules, all the unitary transformations can 
be principally achieved by employing adequate external fields [7, 10, 11]. A 
qualitatively new phenomenon arises when the idea of multi-operational dynamics 
is associated with non-linear evolution equations. 
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2. Mobility Phenomenon (A Review) 

It might seem that when a little non-linear term is added to the conventional 
quantum mechanical equations of evolution, the resulting theory wilt differ "littte" 
from that based on the unitary operations. However, in a sequence of models, once 
the linearity is lost, a qualitative metamorphosis occurs. 

In the two dimensional analogue of non-linear wave mechanics [8] the 
hypothetical "states" are rays of 2-component complex vectors ~ =  I[~jl]j=~.g 
obeying the evolution equation: 

d 
~&- ;12 = -  ~ 101 ; : l +  VI 172 ;~ +e f(]~1[2)f(i~212) ~ , (2.1) 

where V~, V2 6 R imitate an "external potential" and f ( . )  is a given function. The 
normalization condition conserved by the motion (2.1) is ]~[2+]~2[2=1. By 
introducing the real coordinates x=~1@2+~2~1, Y = i ( ~ 2 - ~ 2 ~ 1 ) ,  z=[~x[ 2 
-[W2[ 2, with 

x2 + yE + zE =([lpl]2 +llP212) 2=1, 

one maps the rays into the points of the unit sphere S in Ra; the orthogonal rays 
being represented by the antipodes of S. Now, when e -- 0 (linear case) the evolution 
operations obtained by integrating (2.1) for all possible time dependent V,, V2 yield 
all the unitary transformations of the ~0-vectors, geometrically represented by the 
rigid rotations of the sphere S. When e 4= 0, the picture suddenly changes. The 
operations defined by (2.1) still allows us to achieve the rigid rotations as the 
limiting cases. However, the semigroup of the evolution operations contains now a 
family of non-linear, distance-changing homeomorphisms of the sphere. This 
family is so rich that there is no limitation for the possibility of changing distances: 
for any two x, yeS,  x4=y, and any two open neighborhoods ~2,O'CS, there are 
evolution operations which simultaneously bring x and y to O and ~2'. In 
particular, any two different points x, y e S, no matter how close, can be separated 
at will, by bringing them to the vicinities of any two antipodes of S (orthogonal 
states). This is what we call a mobility phenomenon. 

An almost exact repetition of this phenomenon has been detected for a different 
two component model: 

idT~ [ O [ l l J 2 [ 2 1 p l + V 1 1 1 I ~ l .  v1, v 2 ~ R ( 2 . 2  ) 
dt ~P2 = -  I~Pll 2 0 ~02 V2 ~/)2 ' " 

Here, the basic conservation law is [lpl]*+[~p2[4=const, suggesting the 
invariant normalization ]lpt]4+[lpx14= 1, and giving a hint that t~pl] 4 and ]~p214 
might play the role of"quantum probabilities". 1) As before, the states are rays. By 

i 
introducing new real coordinates: x=½(~Pi@2+~P2@~), Y=~0PI@2-~Pzq51), 

1 As can be easily seen, Eqs. (2.1) and (2.2) are the analogues of the non-linear wave equations: 
.&p 1 8~ 1 
t-~-= -~A~p+ V*p+ef([~plz)~p and z ~  = -  ~A(llpl%#)+ V% whose conservative integrals are 

~ lwlZd3x and ~ l~pl'*d3x respectively (see [6]) 
Ra 
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Z = 1~3112 - -  11P212 w i t h  x 2 + y2 + Z 2 = it~114 -t- 1t/)2[ 4 ~-- 1, o n e  s e e s  t h a t  t h e  set of states i s  

again a unit sphere in R 3. By looking at (2.2), one sees now that the relation point- 
antipode is motion invariant (due to the invariance of (2.2) under the reflection 
ip 1 ~ - ~2, lP2 ~ q31). However this is the only exception from the general "fluidity" 
of the states: any two states which are not in the point antipode relation can drift 
simultaneously to any two vicinities on S (authors notes, Geneve 1977, 
unpublished). 

The above"mobil i ty phenomenon" is not exclusive tbr two component models. 
The lattice imitations of the wave packets obeying a non-linear analogue of the 
Schr6dinger equation exhibit a similar effect [-8]. For genuine wave functions a 
different but  related effect has been observed by Haag and Bannier [12]. The 
techniques used in [12] were recently applied to a wider class of non-linear wave 
equations [9]. These results suggest that the phenomenon outlined above is not 
accidental. After looking at the examples presented, one can see, in fact, that they 
have a certain common feature: in all of them the semigroup of all dynamical 
operations is not unitary, but it contains the unitary group either as a subgroup or 
as a limiting case. We shall show that this is a decisive circumstance: for any 
essentially non-linear semigroup with that property a similar" phenomenon of 
mobility" must occur. 

3. Limiting and Conservative Distances 

Below, S denotes the unit sphere in a real or complex Hilbert space J/f, 

S = { ~ e ~ :  llwII = 1}, 

and • the projective unit sphere (the set of all unit ray in ~ ) .  The vectors of S will be 
denoted ~p, ~b ..... while the corresponding rays (equivalence classes of vectors) 
{~v},{~b} .... Two rays a =  {~p}, b= {~} will be said to be arthogonal (aA_b) if 
(~v, ~)=0,  For any two rays a, b the angular distance 6(a, b) will be defined by: 

g)(a, b) = arccos I(~P, ~b)l- (3.1) 

As is easily seen, 6(a, b) makes ~ a complete, metrical space with the topology 
equivalent to that induced by the original topology of ~ .  If ~ is real, the angular 
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distance can be also defined for any two vectors ~p, ¢~ E S, as ~,(hc,, ~) = arc cos(~, ¢;) 
and varies in [t3, re]. Obviously, for a = {~p}, b = {~}, &(a, b) = 7(% ~) if 7(t¢, ~)_-<~, 
while 6(a, b) = rc - 70P, ~) if ~(~p, ~) > 3. 

A case of a multi-operational dynamics will now be obtained by taking 4 as the 
manifold of states and by assuming the existence of a certain distinguished 
semigroup G of available dynamical transformations of 4 (the "mobility 
semigroup" [8]). We shall assume that the elements g e G are homeomorphisms of 
4. The topology in G will be introduced as the topology of pointwise convergence 
for the mappings g : 4 ~  4. Simultaneously, by S U (~) we shall denote the group of 
transformations 4 ~ 4  generated by the special unitary transformations of 2/f. 
Motivated by the situation in Quantum Mechanics and by the dynamical models 
of Sect. 2 we assume that G has the following two properties: 

(I) If a, b, a', b' are two pairs of points of 4 such that 6(a, b) = &(a', b'), then 
there is a sequence of transformations g, E G (n = 1,2 . . . .  ) such that g,a---,a' and 
g,b--.b' as n--, oe. [This property holds, in particular, if G 3 S U(4).]  

(II) Time continuity. For every g ~ G there exists a two-parameter family: t, z 
~gt~ E G (t, ~ e [0, 1], t => ~) such that: 1) goo = id, glo = g, 2) gt~g~ = gt~ (t > a > z), 3) 
the application t, ~, x~gt¢x (x e 4, 0 <_~ <_ t< 1) is continuous in the topology of 
[0,1]× [0,1] × 4. 

We shall show that for a semigroup G with the properties I, II, the only 
mechanism which can prevent the mobility phenomenon is the existence of the 
following limiting distances. 

Definition 1. For an homeomorphism g: 4 ~ 4 ,  an angular distance c~ e [0,~] will 
be called limiting from below (non-shrinking) if ~(a, b )=  e ~ 6(ga, gb)> a, and 
limiting from above (non-expanding) if 6(a, b) = ~ ~ ~(ga, gb) < c~ for any a, b e 4. 
The distance c~ will be called limiting from below (above) for the semigroup G if c~ is 
limiting from below (above) for every g ~ G. 

Obviously, for any homeomorphism g, the angle 0 is limiting from below as 
well as from above, while ~ is limiting from above. These limiting distances will be 
called trivial. (However, 3, if limiting from below will be classified as non-trivial.) 
There is the following simple lemma: 

Lemma 1. I f  G is a semigroup of homeomorphisms of q~ with the properties I, II, then 
either the phenomenon of mobility takes place (every two points a 4= b can be brought 
simultaneously to any two open surroundings by elements g ~ G), or G has a non- 
trivial limiting distance on 4. 

Proof. For any a , b ~ 4 ,  a~b ,  denote by A(a,b) the set of all angular distances 
which can be approached by the distances of the transformed pairs ga, gb (g E G). 
Obviously, b(a, b)~ A(a, b). By definition, A(a, b) is a closed subset of [0,~]. 
Furthermore, A(a, b) has the following simple properties: 

(1) If a ' ,b '~4  and &(a',b')EA(a,b), then due to (I) not only the distance 
b(a', b') can be approached by (5(ga, gb) but also the pair a', b' can be approached 
by the pairs ga, gb in the topology of 4 x 4. 

(2) Due to the continuity of the transformations h ~ G, this further implies that 
the distances b(ha', hb') (h ~ G) belong to A(a, b). Hence: 

~(a',b')~ A(a,b) =~ A(a',b')Cd(a,b). 
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As a particular consequence, 6(a', b') = 6(a, b) =~ A(a', b') = A(a, b), and so A(a, b) 
depends only on the distance 6(a, b) and not on the particular choice of the two 
points: A(a, b) =A(6(a, b)). 

Due to the continuity property (II) for any 6 ~ [0,~], A(6) is connected. Hence, 
A(6) has to be a closed interval. Now, there are only two possibilities: 

• For  any fi~(0,~], A(6) coincides with [0,~]. 
g o  There exists a 6, 0 < 6 < ~ ,  such that A(6)#:[0,~]. 
In the first case, consistent with (I), the images of any pair of points can 

approximate any other pair of points, and the phenomenon of mobility occurs. In 
the second case both end points of A(6) are limiting distances for G and one of 
them is non-trivial. [] 

To examine the alternative of the "mobility," one is thus lead to study 
homeomorphisms of the unit spheres which admit limiting distances. The 
significance of the limiting distance varies from the real to the complex cases. If ~ is 
a projective sphere in a real Hilbert space, then any ray a = {x} E 4~ is just a pair of 
unit vectors { x , - x }  C S. The angle e between two rays corresponds to two 
possible angles between the vectors: e and n - e .  If dim o~f > 2, for any mapping 
g ~ G (rays into rays) there are two continuous mappings gl, g2 : S ~ S  (vectors into 
vectors), such that g{x} = {gix} (j = 1, 2). If g has a non-trivial limiting distance, so 
do gl and g2. If d i m ~  = 2 the same holds due to (II). Hence, the question about  the 
homeomorphisms of the projective sphere with limiting distances reduces to a 
structurally simpler problem of homeomorphisms of the vector sphere S. The 
complex case does not admit such reduction, and hence, it must be treated 
separately. In the subsequent study the following general definitions will be 
employed: 

Definition 2. For a mapping g : ~  an angle e is called conservative if it is 
simultaneously limiting from below and from above, i.e., if 6(x,y) 
= e => 6 ( g x ,  g y )  = o:. 

Definition 3. For any point x e ~, where • is a real or complex projective sphere, 
we define the open and closed a-balls (x)~ and [x]~, the a-sphere q)~(x) (e ~ (0, ~)) 
centered at x, and their closed and open exteriors Ix] ~, (x) ~ by: 

(x), = {y e • : 6(x, y) < e}, [x]~= {y ~ • : 6(x, y)__< e}, 
(3.2) 

• ,(x) = {y e • :  ~(x, y) = e}.  

Ix] ~ = ¢\(x) , ,  (x) ~ = int Ix] ~ = ~b\[x]~. (3.3) 

in general, for any subset YC S: 

(Y)~= U (Y),, [Y]~=S\(Y)~. (3.4) 
y~Y 

The corresponding open and closed a-balls (x)~, [x]~, a-spheres S~(x), their 
exteriors Ix] ", (x) ~ for the real euclidean sphere S will be obtained just by 
substituting everywhere S for • and ?; for 6, and rc for ~. Note that 

((Y),)a = (Y)~+a, (3.5) 

YC Z =*. (Y)~c(Z)~. (3.6) 
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Lemma 2. I f  9 : ~ is a homeomorphism, and c~ ~ (0, ~) is a limiting angle, then: 

non-shrinking ~ g(x)~3(gx)~, (3.7) 

c~ non-expanding ~ 9(x)~C (9x)~. (3.8) 

The same holds for the real vector sphere S and limiting angle ~ ~ (0, ~). 

Proof. The proof follows easily from the connectivity of (xL. 

4. A Lemma on Homeomorphisms of the Real Euclidean Spheres 

In an arbitrary (unlimited) metric space, homeomorphisms can exist which admit 
limiting distances, though they conserve none (an example is a conformal mapping 
in ~"). This is not the case of the Hilbertian spheres. Here, one has: 

Lenuna 3. I f  g is a homeomorphism of the unit sphere S in a real HiIbert space, 
admitting a non-trivial limiting angle, then g has also a conservative angle. 

Proof, Consider the set ARC [0, ~z] of all limiting non-shrinking distances of g 
(including the trivial one ~=0) and the set Bg of all non-expanding distances 
(including 0 and 7 0. Note that Ag and B 0 are closed in [0, ~]. Furthermore they have 
the following simple properties: 

(1) Additivity. If ~,//~Ag and ~+fl__<~z, then ~+/ / sAg .  Similarly, ~,//~B~, 
~+//__<:~ ~ ~+/ / sBg .  

(2) Distributivity. If ce ~ Ag, fl E Bg, and ~ > t ,  then ~ -  fl E Ag. 
(3) If 0~, f le  Ag and e + fl c Bg, then e, t ,  e + / / a re  conservative. The same is true 

if e, fleBo, or+tEAR. 

(4) Reflection. 
c~Ao ,  ~__>~ =~ 2(rc-~)~Bg, (4.1) 

f l~Bo, fl>~ ~ 2(~z-fl)~Ag. (4.2) 

The proofs of these properties follow from Lemma 2 and elementary properties 
of the distance on S. As an example we shall motivate (4.1). If ~ ~ A0, then for any 
x ~ S  the open sphere (x), cannot shrink: g(x)~3(Y), (Y=gx). This means that, 
inversely, the closed ball Ix]" with the center at - x  and radius r c - a  cannot 
expand: g[x]~C [2]'. Since x is arbitrary, it means that no sphere with the radius 
rc-ce can expand: its image is always contained in a certain new sphere with the 
radius re-  a. As it is not granted that g maps the center into the center, the radius 
re-  a is not necessarily limiting, but the diameter 2(re- a) is. The proof of (4.2) is 
analogous. 

It turns out that the properties (1-4) restrict strongly the structure of the 
limiting angles. There is: 

(5) Suppose, a > 0 is an element of Ao. Then either a is conservative, or there 
exists a' ~ Ag, 0 < ct' < ~. 

Indeed, in view of the additivity (1) all the multiples n~ < rc belong to Ag. Let n 
be the greatest natural number for which n~ < ~z [and so, (n + 1)~ > ~]. In view of 
the reflection property (3), 2fl = 2(~c- n~) ~ B 0, and n7 < rc < (n + 1)~ ~ 0 < ~c- n~ 
< ~ =~ 0 < 2fl < 2~. Now, there are four possibilities. If 2//= 0 then nc~ = ~c and by 
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2~3 = 2(re- nct) 

/.ct 

3ct 

2~ 

Fig  2 at x ~ non-shrinking 

virtue of (3), e is conservative. If 0 < 2//< e, then c(= e -  2fl is a new element of A o, 
thus confirming (5). If 2fl = e then e ~ B o in view of (1), and e is conservative. Finally, 
if 2/3 > e, the new angle e" s A o is obtained as e ' =  2c~- 2/3, again ascertaining (5). 

The proof of Lemma 3 is now easily concluded. Note, that if 9 admits at least 
one non-trivial angle e e A o u B  o, the A s must contain at least one c~>0. Indeed, 
even if we initially assumed only the existence of a non-trivial fle Bg, 0 < fl < n, 
(4) yields the existence of an angle c~EA o, 0<~<rc .  Now, there are only two 
situations possible. Either among the positive angles e E A s the smallest one exists: 
then it is conservative and the lemma is proved. Or the set A 0 contains positive 
angles, arbitrarily close to zero. In that ease, every angle 7 e(0,~) can be 
approximated from below by finite sums of the elements o f A  o. Since A s is additive 
and closed, every 7 e As, and as a consequence of(3) every angle also belongs to Bg. 
Hence, every angle is conservative. [] 

5. Lemma About the Complex Homeomorphisms 

The complex case requires separate treatment. Given a unit spheres S in a complex 
Hilbert space ~ the "angular balls" {~p e Jt ° : 10p, tpo)l z > c os2 e = const} are 
connected and cannot be reduced to disjoint "vector balls" as in the real case. Yet, 
the projective complex sphere • too admits a construction similar to that of 
L e m m a  3. 

Below we use notation of Definition 3. For any Z C ~, let Z ± be the set of all 
rays orthogonal to Z. Obviously, Z = ~\(Z)~/2. Given any two points a, b e ~, 
a + b, ~ b  = ({a, b}±) ± is the two dimensional projective sub-sphere of ~b spanned by 
a and b. In what follows, a geometric image of the 2-dimensional subspheres is 
essential. It turns our that the rays of ~ b  can be represented as the points of the 
surface of a unit sphere in Na; the orthogonal rays being mapped into the 
antipodes of the sphere, any two rays a, b with 6(a, b)= c~ represented by two 
surface points whose angular distance in Ns is c~=2e. For  any a t  • the 
intersections (a)~n~,b and (a ) 'nq) ,b  then are  represented by the spherical 
surroundings with the radii 2e and rc -2e  centered at a and its antipode a* 
respectively (Fig. 3). 
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o':  o* ¢=> ~oo 
=~ab 

fc~ 1 c~N ~5 

y:26{p,q) 

(a)a.n {aQ' 

Fig, 3 C(p,q] 

Lemma 4. Let G be a semigroup of homeomorphisms of the projective sphere • in a 
complex Hilbert space ~f  , obeying (I) and (II) and admitting a non-trivial limiting 
angle. Then, G has also a non-trivial conservative angle. 

Proof. Consider the subsets Aa C [0, ~] and BG C [0, ~] of all non-shrinking and all 
non-expanding limiting distances of the semigroup G. As before, one shows that 
Aa and BG are closed. By arguments analogous to those of Lemma 3 one shows the 
additivity and distributivity properties (1), (2), (3). A difference lies in property (4). 
Let ~ < ~ < ~, and consider [a] ~ = {x ~ q~ : 6(a, x) > ~}. This subset is now a "closed 
ring" in • containing the hyper-sphere a I. For all a' e a ±, consider the intersections 
[a]~n~,, , .  They are of the form of closed circles in ~aa' centered around the points 
a', as shown on Fig. 4. Thus, [a]" is a sum of the family of disjoint closed circles 
labelled by the elements a '~ a ±. As there is no unique isomorphism between any 
two circles (lying in different ~a,' subspaces), [a] ~ is a fiber bundle of the form of a 
"generalized torus," whose fiber is the circle, and base is the projective sphere a'L. 2) 
If b+a, [b] ~ has again circular intersections with ~baa,, though their sizes are 
varying. Now, put f l = ~ - a  and consider two closed domains [a] ~ and [b] ~ 
(a, b ~ ~). Depending on the angular distance 5(a, b) there are three topological 
situations possible: 

a* 

Fig. 4 a 

2 The boundary of [a] ~ is homeomorphic to a real euclidean sphere 
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. . . . . . .  

Fig. 5 Fig. 6 Fig. 7 

1) 6(a, b) < 2ft. For  each subspace ~. .(a '  e a -L) the common parts [ a ]~c~a ,  and 
[b]'c~2.~, are two intersecting circles. Hence, [a]" and [b] ~ overlap all over the 
base space a ± (Fig. 5). 

2) 6(a, b)=2fl.  The circles defined as [a]~c~.~, and [ b ] ' c ~ . . ,  intersect in all 
~b..,, except the subspace ~.b, where they are merely tangent. The tangency point 
c e~0.b is defined as the only point in [a] 'c~[b]~c~.b, and is topologically 
distinguished (Fig. 6). 

3) 8(a, b) > 2ft. The [a]" and [b] ~ partly split. The base space a ± is now divided 
into two non-empty, disjoint domains: a closed domain 

= {a'e a ± : [a]~c~[b]~c~. ,  =~ 0} 

and an open domain £2 = al \~.  The fibers of [a] ~ and [b] ~ over (2 are disjoint 
circles, while the fibers over ff are tangent or overlapping (Fig. 7). 

Let now e e (¼, ~) be a non-expanding angle of G, and a, b ~ • two points with 
~(a,b)=2f l ,  f i = ~ - a .  The "double torus" [a]~u[b]  ~ is then of type 2) (Fig. 6). 
Suppose, there is a transformation 9 ~ G yielding 6(ga, gb) < 2ft. In agreement with 
the continuity assumption (II) there would exist a two-parameter continuous 
family g t~eG(z<t )  such that goo=id,  g l o = g ,  gt~g~=g~ ( t > a > z ) .  Denote 
gto=gt.  Then consider a closed curve K in [a],c~[b],c~q~,b passing through the 
tangency point [a] 'c~[b] 'c~ab and surrounding one of the circles (a)~c~q~ab, 
(b) ~c~ ¢~b (Fig. 6). As K does not intersect (a)~w(b) ~, the transformed loop Kt = gtK 
may not intersect g,[(a)~w(b) ~] = gt(a)~ugt(b) ~. As ~ is non-expanding, Lemma 2 
implies: 

gt(a)~ C (at),, gt(b)~ C (b,), ~ gt(a) ~ ~ (at) ~ , g,(b) ~ 3 (bt) ~. (at = gta, bt = gtb) 

at(a)~wat(b) ~ ~ (a,)~u(bt) ~ . 

Hence, Kt may not intersect (aO~u(bO% However, this is impossible, since if 
6(9a, gb) = 6(at, b~) < 2fi, the double torus (a~)~w(bt) ~ evolving from its topological 
configuration 2) to I) would have to cut the continuously deformed loop Kt (see 
Appendix.) In view of the contradiction, 6(ga, gb) > 2fl and 2fl is a non-shrinking 
angle of G. The inverse implication ~ ~ AG ~ 2fi e BG can be obtained just by 
applying the already proved result to the semigroup G-1. Once we have the 
analogue of the reflection property (4), the proof of Lemma 4 is finished via the 
property (5), like in the real case. [] 
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5. Mechanism of Rigidity 

In some metrical spaces, the existence of one conservative distance implies that all 
the distances are conserved. This is so for the angle ~ on the projective sphere 4. If 
dim~¢~>__ 4, the orthogonality relation (a =~), via the lattice structure, determines 
all other angles in 4, (henceforth, defining the general transition probability 
between the pure states).This fact is crucial for Piron's philosophy of quantum logic 
[13, 14], and so, we shall call it the "Piron statement." As a consequence, any 
homeomorphism g" ~ - ~  conserving the angle ~ is an isometry. It is our aim to 
show that a similar implication exists for other conservative angles. We shall start 
from the real case. 

Assume for a moment that S is just the 2-dimensional surface of the unit sphere 
in R3. Suppose, a ~= 0, ~, n is a conservative angle. For  any two points x, y 6 S, x + y, 
7(x, y) < rain {2a, 2 ( n -  a)}, consider the pair D~(x, y) of the a-circles passing 
through x and y. They form a lense-shaped figure on S with vertices at x and y. We 
shall call it a diangle xy. 

Consider now three points x, y, z ~ S. 
Then, between the diangles xy and yz a special relation may occur. 

Definition 4. Two diangles xy and yz are vertex tangent at y if each circle of the pair 
D~(x, y) is tangent to one of the circles of D~(y, z) and vice versa (Fig. 8). 

As is easily seen, the diangles xy, yz are vertex-tangent if and only if the points 
x, y, z lie on one great circle and 7(x, y)=7(Y, z). Suppose now, that g : S ~ S  is a 
homeomorphism, for which a is a conservative angle. Then, g must map any 
g-circle onto another a-circle. An a-circle crossing x, y 6 S must be transformed 
onto an a-circle crossing ~ = gx and ~ = gy. Moreover, two tangent a-circles must 
remain tangent. Thus, each diangle is transformed onto a new diangle, and 
moreover, the vertex-tangent diangles remain vertex-tangent. Hence, if x, y, z ~ S 
lie on one great circle and are equally spaced: 7(x, y )=  ~'(y, z)<rain {2a, 2(~-a)}, 
their images must also lie on one great circle and be equally spaced. Now, take any 
n points (n > 2n/rain {2a, 2 ( n -  a)}) dividing any great circle on S into n equal parts. 
They have to be transformed into new n equally spaced points on another great 

circle. This means, that each angle 2Z is conserved. Thus, there are conservative 
n 

FiL 
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angles arbitrarily close to zero. By additivity and closure of Cg= Agc~Bg, every 
angular distance is conserved and g is an isometry. 

The above construction has an immediative extension to any real Hilbert 
space. 

Definition 5. Let S be a unit sphere in a real Hilbert space ~f. For any two points 
x, y e S, x :# y, denote by D,(x, y) the family of all a-spheres on S which cross x and 
y: 

D~(x, y )= {S~(z):7(z, x ) =  of(z, y) = a}. (5.1) 

The families D,(x, y) (x, y e S) owe their structure on the following properties of 
the e-spheres: 

Lemma 5. I f  two a-spheres (0 < a < r 0 are tangent to the same a-sphere at the same 
point, they are identical. 

Lemma 6. I f  g : S ~ S is a homeomorphism of the real unit sphere, and a e [0, ~] is a 
non-trivial conservative angle of g, then g transforms any sphere S~(x) (x e S) exactly 
onto S~(gx), its interior (x)~ onto the interior (gx), and the exterior (x) ~ onto the 
exterior (gx) ~. 

Lemma 7. I f  g is a homeomorphism S ~ S, and e ~ 0, ~, n is a conservative distance on 
S, then each two tangent a-spheres on S are mapped onto two tangent a-spheres. 
Moreover, the tangency point is mapped into the tangency point. 

Lamina 8. For x, y e S ,  x + y ,  7(x,y)<min(2a,  2(rc-a)),  a+~, x and y are the 
unique points contained simultaneously in all the spheres of the family D~(x, y): 

N D,(x, y) = {x, y}. (5.2) 

Definition 6. Let x, y, z e S, x + y + z. Two families D,(c, y) and DE(y, z) will be 
called tangent at y (D,(x, y),,~ D,(y, z)) if every sphere of the family De(x, y) is 
tangent at y to one of the spheres of D~(y, z) and vice versa. 

Lamina 9. For e 4= 0, 5, re, Do(x, y), and D~(y, z) are tangent at y if and only if 
1) x , y , z  lie on great circle in S; 
2) 7(x, y) = 7(Y, z). 

Proof. Suppose first that x, y, z lie on one great circle and 7(x, y ) =  ),(y, z). Then, 
consider the mapping ly, which to any ¢ e S, ~ = 2 y + y ± ,  (y±ly ) ,  assigns ~'=Iy¢ 
= 2 y -  y± (symmetry with respect to y). Obviously, Iy is unitary and conserves the 
distances. Hence it maps a-spheres onto a-spheres. Moreover, I~,y =y ,  Iyx =z, 
Iyz = x. Hence, every a-sphere crossing x and y is transformed into an a-sphere 
crossing y and z and vice versa. This means that ly transforms the family D~(x, y) 
onto D~(y,z) and inversely. Now, Iy has a special property: every a-sphere 
(a+0,~,rc) which passes through y is tangent at y to its/y-image. Hence, the 
mapping Iy arranges the families D~(x, y) and D~(y, z) into the pairs of a-spheres 
tangent at y and so: 

D~(x, y) ~ D~(y, z).  (5.3) 
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Inversely, suppose we know only that (4.3) holds. Then denote ~ = Iyx, and 
apply the reflection Iy to all spheres of the family D~(x, y). One obtains the new 
family D~(y, ~), and due to the properties of Iy: 

D~(x, y) ~ D~(y, ~) . (5.4) 

In view of(4.3) and (4.4) each sphere of D~(y, x) is tangent to one of the a-spheres 
of D~(x, y), and that one, in turn, is tangent to one of the spheres of D,(y, z). By 
Lamina 5, each sphere of the family D~(y, ~ coincides with one of the spheres of 
D~(y, z) and vice versa. Hence, D~(y, 2) = D~(y, z) ~ ('1 D~(y, 2) = 0 D~(y, z), and 
by Lemma 8, {y, ~} = {y, z} => z = ~ = Iyx. Now, due to the properties of Iy, the 
points x, y and z = Iyx lie on one great circle and y(x, y )=  ;~(y, z). [] 

Consider now an arbitrary homeomorphism g ' S ~ S .  Suppose, a +0,~, rc is a 
conservative angle for g. By Lemmas 5-7, g has to transform any two families 
O~(x,y), D~(y,z) onto O~(~,)5) and O~05,~) (Y~=gx, ~=gy,  ~=gz). Moreover, if 
O~(x, y) ~ D,(y, z) then O,(2, y) ~ D~07, f). Hence, each three points x, y, z lying on 
one great circle, and ?(x, y) = ?(y, z) < min {2a, 2(re- ~)}, are transformed into a new 
triple Y,y , i  again on a certain great circle and ?(2,y)=70~,~). By an exact 
repetition of the argument given for IR 3 we have: 

Lemma 10. I f  g : S ~ S  is a homeomorphism of the unit sphere in a real Hilbert space 
ovf, dim J f  > 2, and 9 admits a non-trivial conservative angle ~ + O, ~, n, then 9 is an 
isometry. 

Corollary. The exceptional angles are a =~, when the implication of Lamina 10 holds 
/fdim W > 4 (Piton theorem), and ~ = 7r when it does not hold at all. The exceptional 
dimension is d i rnd l=2 ,  when S is just a unit circle. On the unit circle classes of 
homeomorphisms can be easily constructed which preserve one particular angle while 
changing the others. 

Complex Case. In case of the complex projective sphere q~ the existence of a 
conservative distance has similar consequences. However, the properties of the 
a-spheres on 4~ are no longer so evident. Our notation is as explained by 
Definition 3.5. We shall again study the properties of the families D~(a, b) (for 
a, b ~ ~). One has: 

Lemma 11. Suppose ~ E (0, ~), a + ~, and a, b E qs, b(a, b) < min {2~, 2(~-  a)}. Then 
the intersection of the family D~(a, b) consists exclusively of the pair of points a and b. 
I f  a=l ,  the same holds provided that dimg/f__> 3 (author's notes). 

To generalize the constructions from a real H ,  the concept of tangency has to 
be extended. 

Definition 7. Two a-spheres ~(a) ,  q~(b) (a, b ~ 4~) will be called tangent if0 < c~ __<~ 
and b(a, b) = 2~, and semi-tangent if ~ < a < ~ and 6(a, b) = 2(~-  a). 

The geometric sense of these concepts differs depending on the value of a. If 
0 < a<¼ and b(a, b) = 2e, the surfaces q~,(a) and ~ (b )  possess precisely one point c 
in common: c lies in the smaller arc of the great circle C~b on the middle of distance 
between a and b. The intersections of ~ ( a )  and ~b~(b) with ~,b are two circles on 
~,b, centered at a and b, and tangent at c. The intersections of q~,(a), ~ (b )  with any 
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2-dimensional sub-sphere which does not contain c are either empty or are two 
non-overlapping circles. If e = l ,  the picture changes. Two l-spheres ~/4(a),  
• ~/4(b) are tangent in the sense of Definition 7 if 6(a, b) =~ (a_t_b). By intersecting 
them with the 2-dimensional ~,b-sphere one sees that ~b~/4(a ) and ~/4(b) have the 
whole equatorial circle in ~,b in common. Still, the interiors (a)~/4, (b)~/4 are 
disjoint. Hence, ~/4(a) ,  ~/4(b) are tangent in a traditional sense, though the 
tangency point is not unique. I f l  < e < ~, the conventional tangency of the spheres 
• ,(a), ~ ( b )  becomes impossible. What can occur then is the semi-tangency, 
meaning that the generalized tori [a] ~ and [b] ~ are in the configuration 
represented in Fig. 6. The intersections of ~b~(a), ~ ( b )  with any other ~ , .  # ~ b  are 
now overlapping circles. The point c is topologically distinguished: it is the only 
point of [a]~o[b]" whose every open surrounding ~2 has a non-singleconnected 
intersection ~c~ [(ayw(by].  In what follows, c will be called a semi-tangeney point. 

As the concept of a topologically distinguished point is homeomorphism- 
invariant, one has the following lemma: 

Lemma 12. I f  g : ( b ~  is a homeomorphism of the projective unit sphere q), and 
e ~ (0, ~) is a conservative angle of  g, then every e-sphere ~b,(a) is mapped onto q)~(d) 
( ~ = ga ) , the interior ( a)~ is mapped onto the interior ( ~)~ and the exterior ( a) ~ into the 
exterior (d)% Moreover, the tangent (or semi-tangent) spheres remain tangent 
(semi-tangent) and the tangency (semi-tangency) points are mapped onto the 
tangency points (semi-tangency points). 

We note also the following 

Lemma 13. I f  ~ ( a )  is any e-sphere (e ~ (0, ~)) and c ~ q)~(a), then there is precisely 
one e-sphere tangent (or semi-tangent) to q)~(a) at c. 

We can now apply the previous techniques of describing the triples of points 
via the families D,(a, b). 

Definition 8. Given three points a, c, b ~ ~, a 4= b + c; 

6(a, b), ~(b, c) < min {2e, 2 (~-  e)}, 

the families of the e-spheres D~(a, c) and D,(c, b) will be called tangent at c (D,(a, c) 
,,~ D~(c, b)) if every sphere of the family D~(a, c) is tangent (or semi-tangent) at c to 
one of the spheres of D,(c, b) and vice-versa. 

Lemma 14. The three points a, c, b ~ ~b , with 8(a, c), 6(c, b) < min {2e, 2 (~-  e)}, lie on 
one great circle and are equally spaced: ~(a,c)=3(c,b), if and only if D~(a,c) 
~D~(c, b). Exception: for dim~V{~=2 this holds if a # l .  

Proof. The proof uses the symmetry It. with respect to the point c and 
Lemmas 11-13 exactly as in the real case. 

Suppose now that g : ¢--, ~ is a homeomorphism of ¢ admitting a conservative 
distance c~ e (0, ~). In view of Lemma 12, g must transform any two tangent families 
of e-spheres, D,(a,c)~D~(c,b), into another two tangent families: D~(d, c0 
..~D~(~, b) (d=ga, b=gb, ~=gc). Thus, if the triple a, c, b was equally spaced on a 
certain great circle, so is the transformed triple d, 6, e. If e = ~, this conclusion holds 
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provided that dim ~ > 2. By arguments identical to those for the real case, g must 
conserve any angular distance. Summarizing both real and complex cases we have: 

Theorem I. I f  g is a homeomorphism of the projective sphere cb in a Hilbert space v~f 
over real numbers, with d i m ~  >2, or over the complex numbers, and g admits at 

g.  ~z least one conservative distance ~ ~ O, 4,-i, then g is an isometry. In the real case an 
exceptional angle is ~, for which the conclusion holds only if d i m ~  > 4 (case of 
Piron). In the complex case there are two exceptional angles ct =~ and c~ =~, for 
which the conclusion holds if d i m ~  > 3 and dim A v > 4 respectively. 

The above theorem is in fact an extension of the statement of Piron to e Je z It 2" 

may be also viewed as a generalization of Wigner's theorem, starting that a 
homeomorphism of ~ conserving the norms and angular distances can be 
reduced to either unitary or anti-unitary transformation [15]. Due to Theorem I, 
the same can now be ascertained for a homeomorphism of the unit sphere which 
has only one non-trivial conservative distance. 

6. Theorem of Mobility 

Within assumptions of Lemmas 3 and 4, the appearance of a conservative distance 
on • is a consequence of the existence of a limiting distance, and that one, in turn, is 
the only alternative of the mobility phenomenon. Hence, one arrives at the 
following theorem, which states that for the semigroups with the properties I, II 
"complete fluidity" is the only escape from "complete rigidity." 

Theorem II (Theorem of Mobility). Suppose, G is a semigroup endowed with the 
properties (D and (II) of homeomorphisms of the projective sphere ~ in a real or 
complex Hilbert space Jt ~, dim~>= 4. Then, if G contains some transformations 
which are not isometrics, the phenomenon of mobility takes place: each two points 
a, b ~ ~, a 4= b, can be arbitrarily approached or arbitrarily separated, by operations 
g ~ G bringing them simultaneously to two arbitrary vicinities on ~. 

The exceptions to this theorem exist for d i m ~ = 2 , 3 ,  and are due to the 
limitations of Theorem I. One of exceptional dynamical models, with dim ~ = 2, 
where an incomplete mobility coexists with the conservative angle ~, is represented 
by Eqs. (2.2). However, no such models can be constructed for dim ~ > 3. 

A technical consequence of Theorem II is non-existence of any non-trivial 
continuous function f (a ,b)  ( a , b ~ )  which would be invariant under all 
transformations g s G, thus generalizing the quantum mechanical quantity 
I(~v, ~b)l 2. Some conceptual consequences are also imminent. They parallel the idea 
that the axioms about the nature of a physical system cannot be postulated, 
without consideration of the consistency with the dynamical laws (Haag). One of 
the main axioms characterizing the quantum theory is the impossibility of 
infinitely selective measurements (Dirac), and the related complementarity 
doctrine (Bohr). Simplified ad extremis they just tell that for any two unit vectors 
~v, ~ E ~ ,  representing the states of a microsystem, with I(~, ~)]2 =4 = 0, no measuring 
device can be found which would accept all particles in the state ~ while 
simultaneously rejecting all particles in the state ~b. This is, in fact, the simplest 
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formulation of the uncertainty principle (see our discussions in [6]). Now, due to 
Theorem II, in a non-linear dynamics with the properties (I) and (II), this principle 
must be broken. Given any two states a={~p}, b={~b}, a+b,  an arbitrarily 
selective measurement can be arranged with the help of dynamical separation 
operations assured by Theorem IL It is enough to perform first any dynamical 
operations g • G which brings a and b to vicinities of any two orthogonal states, 
and then to carry out an ordinary quantum mechanical filtering. Hence, in a non- 
linear dynamics with the properties (I) and (II) the "non-linear wave packets" 
acquire some features of classical systems (see also discussions in [8, 12]). 

Appendix 
Proof of  Lemma 4 (Detail). The proof of the impossibility of the transition through 
the sequence of configurations on Fig. 7 ~ 6 ~ 5  requires the construction of 
mappings which provide two-dimensional images of gt[a] ~ and 9,[b] ~. For any 
a E • the sphere • splits into a continuous family of 2-dimensional subspaces ~,,, 
(a" e a') which intersect only at a; we shall refer to them as to "leaves." Each leaf 
~.a, is isomorphic to the sphere in 1~ 3 represented on Fig. 3, with the angular 
distances c~,/~, ... doubled comparing to those on ~, and with a and a' playing the 
role of two opposite "poles." Given b :t = a, the leaf containing b is labelled as: 
~,b = ~,,.(a* e ai). On this leaf the antipode of any point c will be denoted c*. The 
intersection of any leaf ~..,  with [a]" is the closed circle on ~,a, of radius/~= n -  c~ 
centered at a'. The intersections [b]'c~ ~a,, vary. If a '=  a*, q~.c~ [b] ~ is the/~-circle 
centered at b*. If a' =t = a*, ~a,,c~ [b] ~ is a bigger circle, centered at the antipode b~l of 
the point b II obtained as the normalized projection of b = {~o} onto q~,;  its radius 
if' and the distance '7 of the center b~l from a' given by: 

/~' 1 - 2  cos2~_ = 1 2'7 sin2~ - = i -~sln - ,  i ~ c o s  ~, (A.I) 

where I AI2 expressed the norm decrease due to the projection q~ ~(Pll of (p onto ~ . , :  

IA12=l[~otlllZ=l-sinZ~siner(a',a3<1 => ~'<ff, ff'>/ff. (A.2) 

The mapping nab: ~aa,"~tI)ab = ~aa* is nOW defined for any a' • a l ,  a'¢b ± by 
three demands: 1) H.b is an isometry, 2) Haba = a, H~ba'= a*, 3) H.bbtl = c, where c 
is the point of ~.a* lying on the great arcab at the same distance ~' from a as b I1" The 
Hab-pictures of the circles [ a ] ~ n ~ ,  are all identical and coincide with the same 
/~-circle on ~a.* centered at a*. The images of [b]~n~aa, a r e  varying. Yet, if a" is 
close to a*, they fulfill: 

Cl) Intersection Property. For all a, b • • with ~7= 26(a, b) • [/~, 2/ff], there exists 
a common number 60>0 such that the Hab-pictures of all the circles [ b ] ~ c ~ . ,  
with 6(a', a*)<6o contain the same closed circular surrounding U[ff/2] C~.b 
n [b ]  ~, of the radius/~/2, internally tangent to ~.bn[b] ~ at its point of minimal 
distance from a* (authors notes.) In what follows, the open interior of U[/~/2] is 
denoted U(/ff/2). If;7 = 2/~ the circles U[/ff/2] and [a]~c~ ~ab are tangent, and U(ff/2), 
(a)~n~.b are disjoint, and if ~<2/ff, U(ff/2) and (a)~n~.b overlap. 
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Assume now, c~ e (~,~) is a non-expanding angle of 

G ~ g[x]~D[gx] ~ ( x e ~ , g e G ) .  (A.3) 

Then take ao, b o ~  with 3(ao, bo)=2fl, f l=~-o:.  Suppose, g ~ G  yields 
6(gao, gbo)<2fl, and let t, z~gt~ ~ G be a continuous family assured by (II), with 
glo=g. Hence, for at=gtoao, bt=gtobo, the distance 6(at, bt) would decrease 
continuously from 6(%, bo) = 2fl to 3(al, b 0 < 2ft. Let z be the greatest number in 
[0, I] for which 6(a~, be)= 2ft. Put  a = at, b = b e, and h t = gt~. Thus: a t = hta, b~ = h~b 
(t ~ z). There holds: 

(ii) Embedding Property. There is a number/~ > 0 such that if t ~ I-z, z + #) then: 
1) 3(at, b~) ~ (fl, 2fl], and 2) the ht-images of [a]an~ab belong to the leaves ~a~' in 
the vicinity of ~,,b, = ~,~b~, with 6(a', a*) < 6 o. 

Proof. The existence of #~ > 0  such that 

z < t < z + / q  ~ 3(a. bt)~(fl,2fi) 

is due to the continuity of 3(at, bt). Now, there also exist a/ t  z > 0 such that for ~ < t 
< v +/~2 and x e ~.bC~ [a] a the image htx ~ ~b~,., where 3(a', a*) < 3o. Indeed, if no 
such #2 existed, there would be a sequence of numbers t . ~z ,  t. ~ (z, 1), and points 
X n ~ ~ab~[a]  1~ such that h , x .  ~ q~.,,.;~ with 6(a'., at*.) > 30. This would imply that the 
distances between ht.x. and the compact subsets ~'a~.b~c~[a~.] ~ are limited from 
below: 

3(htx., [at,JPC3~a@t) > O" o > 0 ,  (A.4) 

where ao is taken from an elementary calculation (authors notes): 

cos z ao = 1 - sin 2 fl sin 23o. (A.5) 

On the other hand, as #.b is compact, the sequence x. would possess a 
convergent subsequence xk.~Xo e #.~c~ [a] a. After substituting k. for n in (A.4) and 
taking the limit, in view of (II) one should obtain: 3(Xo, [a] ac~#a~) > ao > 0 which is 
impossible, as Xoe [a]ac~q~.b. The existence of ]~2 proved, the required /~ is 
obtained, # = min(/~, kt2). 

Consider now the contour K Ccb, ,~[a]a~[a]~[b] .  (Fig. 6), enclosing the 
open circle (a ) 'n# .b  and crossing the tangency point [ a ] ' c~[b]~b .~ .  Apply 
ht:q~--.#. The points a,b will drift into a,,b, with 3(a,,bt)<2fl ( t>v).  The 
transformed loop htK, in general, may stick out of the new leaf #a,~, = #~.~, but as 
long as t e Jr, z + #], it is embedded in the collection of nearby leaves ~b.~., with 
3(a', a*) < 3o (a' e a{). Then consider Kt = H.,b,(htK) (the image of the deformed 
curve on the leaf #a,~,)- Due to (A.3) and intersection property (i), K, must remain 
outside of the two open circles: (a~)~C~#.,b, and Ut(ff/2) c ( b O ~ # . ~ .  However, if 
3(a. bt)< 2fl, it cannot be, as (at)'c~'l).,b, and Ut(~ff/2) overlap: 

Kt 
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Hence, the assumpt ion  that  6(a, b ) =  2fl, but  6(at, bt)<2fl ( t >  ~) leads to an 
elementary topological  impossibility involving a loop  and two moving  circles on 
the 2-dimensional  surface of  the sphere (Fig. 9). 
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