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We show that if a graph of v vertices can be drawn in the plane so that every edge crosses 
at most k > 0  others, then its number of edges cannot exceed 4.108V"kv. For k<4,  we establish a 
better bound, (kq-3) (v-2) ,  which is tight for k-= 1 and 2. We apply these estimates to improve 
a result of Ajtai et al. and Leighton, providing a general lower bound for the crossing number of 
a graph in terms of its number of vertices and edges. 

1. I n t r o d u c t i o n  

Given a simple graph G, let v(G) and e(G) denote its number of vertices 
and edges, respectively. We say that  G is drawn in the plane if its vertices are 
represented by distinct points of the plane and its edges are represented by Jordan 
arcs connecting the corresponding point pairs but not passing through any other 
vertex. Throughout this paper, we only consider drawings with the property tha t  
any two arcs have at most one point in common. This is either a common endpoint 
or a common interior point where the two arcs properly cross each other. We will 
not make any notational distinction between vertices of G and the corresponding 
points in the plane, or between edges of G and the corresponding Jordan arcs. 

We address the following question. What  is the maximum number of edges 
that  a simple graph of v vertices can have if it can be drawn in the plane so that  
every edge crosses at most k others? For k -  0, i.e. for planar graphs, the answer 
is 3 v - 6 .  Our first theorem generalizes this result to k < 4. The case k = 1 has been 
discovered independently by Bernd G/irtner, Torsten Thiele, and G/inter Ziegler 
(personal communication). 
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Theorem 1. Let G be a simple graph drawn in the plane so that every edge is 
crossed by at most k others. I f  0 < k < 4, then we have 

e ( a )  Z (k + - 2). 

For k = 0, 1, 2, the above bound cannot be improved (see Remark  2.3 at the 
end of the next section.) 

The crossing number cr(G) of a graph G is the minimum number of crossing 
pairs of edges, over all drawings of G in the plane. 

Ajtai et al. [1] and, independently, Leighton [4] obtained a general lower bound 
for the crossing number of a graph, which found marly applications in combinatorial  
geometry and in VLSI design (see [5], [6], [8]). Our next result, whose proof is based 
on Theorem 1, improves the bound of Ajtai et al. by roughly a factor of 2. 

Theorem 2. The crossing number of any simple graph G satisfies 

1 e3(G) 2 e3(G) 
cr(G) > 0.9v(G) > 0.0 9 ~  - 0.9v(G). 

- 33.75 v2(G) v - ~ )  

Theorem 3. Let G be a simple graph drawn in the plane so that every edge is 
crossed by at most k others, for some h _> 1. Then we have 

e(G) < ~ v ( G )  ~ 4.108V~v(G). 

Theorems 2 and 3 do not remain true if we replace the constants 0.029 and 
4.108 by 0.06 and 1.92, respectively (see Remarks 3.2 and 3.3). 

In the last section, we use the ideas of Sz6kely [8] to deduce some consequences 
of Theorem 2. 

2. P r o o f  of  T h e o r e m  1 

First we need a lemma for multigraphs, i.e., for graphs that  may have multiple 
edges. In a drawing of a multigraph, any two non-disjoint edges either share only 
endpoints or have precisely one point in common, at which they properly cross. 

Let M be a multigraph drawn in the plane so that  every edge crosses at most 
k other edges. Let M / be a sub-multigraph of M with the largest number of edges 
such that  in the drawing of M I (inherited from the drawing of M),  no two edges 

cross each other. We say that  M I is a maximum plane sub-multigraph of M, and 
its faces will be denoted by ~ 1 , ~ 2 , . . . , ~ m .  Let I(~il denote the number of edges 

of M ~ along the boundary of ~i,  where every edge whose both sides belong to the 
interior of ~i is counted twice. I t  follows from the maximali ty  of M ~ that  every 
edge e of M which does not belong to M / (in short eE M - M  I) crosses at least one 

edge of M ~. The closed portion between an endpoint of e and the nearest crossing 
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of e with an edge of M '  is called a half-edge. Thus, every edge of M -  M '  contains 
two half-edges. Every half-edge lies in a face ~ and intersects at most k -  1 other 
half-edges and an edge of ~5 i (not counting the incidences at the vertices of M). 
Let h(~i)  denote the number of half-edges in ~i- 

Lemma 2.1. Let 0 < k < 4 and let M be a multigraph drawn in the plane so that 
every edge crosses at most k others. Let M I be a maximum plane sub-multigraph 
of M,  and let q~ denote a face with IqsI -- s _> 3 sides in M I, whose boundary is 
connected. 

Then the number of half-edges in �9 satisfies 

h(~) _< ( s -  2 ) ( k +  1) - 1. 

Proof. We proceed by induction on s. First, let s = 3 and denote the vertices of q~ 
by A , B ,  and C. Let a,b, and c denote the number of half-edges in ~i emanating 
from A , B ,  and C, respectively. We have to show that a + b + c ,  the total number 
of half-edges in q~, is at most k. For k = 0 ,  there is nothing to prove. We check the 
cases k = 1,2, 3,4, separately. 

�9 k = l :  If  a = b = c = O ,  we are done. Assume without loss of generality that a >  1. 
But then a = 1, because all half-edges in ~5 emanating from A intersect the edge BC.  
Since any half-edge in ~5 emanating from B or C would create another intersection 
on the half-edge starting from A, we obtain b = c = 0. Hence, a § b + c = 1. 

�9 k = 2 :  Suppose without loss of generality that a > 1. Clearly, a < 2. If a = 1, 
the unique half-edge in �9 emanating from A intersects all half-edges coming from 
B and C. So 1 -t- b + c = a + b § c < 2. If a = 2, any half-edge from B would intersect 
both half-edges emanating from A and the edge AC, which is impossible. Hence, 
b=O. Similarly, c=0 ,  and a + b + c = 2 .  

�9 k = 3: Just like before, we can exclude all cases when a + b + c  > 3, except for 
the case a = b = 2 and c = 0. Now let e I and e 2 denote the edges containing the 
two half-edges in ~ emanating from A. Both of them intersect the two half-edges 
starting from B and the edge BC.  So they cannot cross any other edge. Removing 
B C  from M I and adding el and e2, we would obtain a larger plane sub-multigraph 
of M, contradicting the maximality of M I. 

�9 k = 4 :  We can again exclude all cases when a + b + c > 4, with the exception of 
the case a = 2 ,  b=3,  c=0 .  As before, let e I and e 2 denote the edges containing the 
two half-edges in ~p emanating from A. Now both el and e2 are intersected by the 
three half-edges emanating from B and by the edge BC.  Hence, there are no other 
edges crossing them, and the number of edges of M ~ can be increased by replacing 
B C  with el and e2. Contradiction. 

Now let s > 3, and suppose that the lemma has already been proved for faces 
with fewer than s sides. Let A 1 , A 2 , . . , , A s  denote the sequence of vertices of ~, 
listed in clockwise order. In this sequence, the same vertex may occur several times 
(as many times as it is visited during a full clockwise tour around the boundary of 
�9 ). For simplicity, let A o = A s  and As+I=A1 .  
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We call an open arc empty if it does not intersect any half-edge in ~. 

Case 1. Assume that  there is a half-edge e=AiE in ~, where E is an interior point 
of the side AjAj+I, and either 

(i) the arc Aj E C AjAj+I is empty and i ~ j -  1, or 

(ii) the arc EAj+I C AjAj+I is empty and ir  
By symmetry, we can suppose that  e satisfies (i). 

Apply to M the following transformations. 

(1) Delete all edges of M except the edges belonging to the boundary of ~. 

(2) Add all half-edges lying in ~). 

(3) Without introducing any crossing, replace each side f of ~, which is encountered 
twice when we trace the boundary of ~, by two parallel edges, f l  and f2, running 
very close to f .  Every half-edge originally ending at f will now have an endpoint 

either on f l  or on f2. The resulting cell will be denoted by ~. Clearly, we have 

I l=lr 
(4) Extend every half-edge g ending at a side f of the boundary o f ~  to an edge, gt, 

by adding a short arc and a new vertex beyond f ,  outside q~. Add some pairwise 

disjoint short edges outside ~,  which cross only the extra arc, so that  gt determines 
precisely k crossings. 

The resulting multigraph drawing, M, obviously satisfies the following prop- 
erties. 

(a) ~ is a cell of some maximum plane sub-multigraph ~ l  C M. 

(b) The number of half-edges of M lying in �9 is the same as the number of half- 
edges of M lying in ~. 

(c) Every edge of M crosses at most k other edges. 

By (b), it is sufficient to bound h(~5), the number of half-edges of M within ~. 

For simplicity, let e also denote the half-edge of M, which corresponds to the 
half-edge e =  AlE of M. Let El ,  E2, . . . ,  El denote the intersection points of e with 

the half-edges el, e2, . . . ,  el (resp.) in M, emanating from Aj, such that  E1 is nearest 
to A i. 

Let Me denote the multigraph drawing obtained from M by replacing the edge 
of M containing e with a new edge e l =  AiAj running very close to e between A i 
and E1 and very close to el between E1 and Aj. (e I must not cross el and the 

boundary of r I f / = 0 ,  set E1 = E  and el =AjAj+I.) 

Since AjE was empty in M, every edge of M,  which crosses e I, also crosses e. 

Thus, Me also satisfies the condition that  each of its edges crosses at most k others. 

Clearly, MllJ  e I is a maximum plane sub-multigraph of Me, in which e I divides 
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into two faces ~/ and ~ "  with s t and s" sides, respectively, where 3 _< s t, s" < s, 
J+s '=s+2.  

With the exception of e, every half-edge of M,  which lies in ~,  corresponds to 

a half-edge of Me lying either in ~/  ~ , .  or in By the induction hypothesis, 

h(~) = h(-~) 

= h(-~t)+h(~tt)+l <_ ( J - 2 ) ( k + l ) - 1 + ( s ' - 2 ) ( k + 1 ) - 1 + l  = ( s - 2 ) ( k + l ) - l ,  

as required. 

�9 E . A  j+ 1 

A j.1 El 

Ai 

A 

Ao 

Case 1 Case 2 

Figure 1 

Case 2. Assume that there is no half-edge in �9 that  satisfies the condition of Case 1. 

Then, for any non-empty side AiAi+l of ~, the half-edge a/+_l (resp. a~-+2 ) 

whose intersection with AiAi+l is closest to Ai (resp. closest to Ai+I) starts at the 
vertex Ai_ 1 (resp. Ai+2). 

Since any side of (I) intersects at most k half-edges, if there are two empty sides 
of ~p, then h((I)) < ( s - 2 ) k  _~ ( s - 2 ) ( k + l ) - 1 .  So we can suppose that  (I) has at 
most one empty side. Since s > 3, there are three consecutive non-empty sides, say, 
A1A2, A2A3, and A3A4. 

Then al + must intersect no +, a2 +, a3, and the side A2A3. Similarly, a 4 must 
- a + a + intersect a 5 , 3,  2,  and the side A2A3. This is clearly impossible if k = 1 , 2  or 3. 

For k = 4, let el and e2 denote the edges of M containing a + and a4,  
respectively. Both of these edges cross three half-edges and the side A2A3 of ~5, so 
neither of them can cross any further edges. Removing the edge A2A3 from M t and 
adding el and e2, we would obtain a plane sub-multigraph of M, whose number of 
edges is larger than the number of edges of M I. This contradicts the maximality 
of M/, completing the proof of Lemma 2.1. | 
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For any face �9 with at  least 3 sides, let t(~p) denote  the  number  of t r iangles in 
a t r iangula t ion of ~.  

L e m m a  2.2. Let  �9 be any face of  M t with I~[ ~ 3 sides. Then the number  of  
half-edges of  �9 satis~es 

h(~)  <__ t ( ~ ) k  + I~[ - 3. 

Proof .  I f  the  bounda ry  of if) is connected,  then  t (~ )  = Iff~] - 2. Hence, by L e m m a  
2.1, h(~) < ( l ~ l - 2 ) ( k + l ) -  l = t ( ~ ) k + l ~ l -  3. 

For any face (P, the number  of half-edges in ff~ is a t  most  I~lk, because every 
side of �9 intersects at  most  k half-edges. If  the  bounda ry  of ~ is not  connected,  
then  t ( ~ ) > l ~  I. Therefore,  in this case, we have h (~)  < l ~ l k < t ( ~ ) k + l ~ l - 3 .  ! 

Now we are ready to prove Theo rem 1. Suppose t h a t  a s imple graph  G is 
drawn in the  plane with a t  most  k crossings on each edge. Let  G t be  a m a x i m u m  
plane subgraph  of G. Denote  the faces of G ~ by ~1,~2, . . . f f~m. To t r i angula te  ff~i~ 
we need at  least [ff~i1-3 edges. Therefore,  

m 

e(G') ~ 3v - 6 -  ~ ( l ~ i l  - 3). 
i=-1 

Every  edge of G - G  t gives rise to two half-edges. So, L e m m a  2.2 yields t ha t  

m 

e ( c -  c ' )  _< ~ 
i=1 

Summing  up the last two inequalities and noticing t ha t  the  to ta l  numbe r  of 
tr iangles satisfies ~ i  t (~ i )  = 2v(G) - 4, we obta in  

1 m 

e(a)  < 3v(c)  - 6 + ~ Z (t(~i)k - ( l ~ l  - 3)) 
i=1 

_< 3v(a) - 6 + (v(a) - 2)k = (k + 3)(~(a) - 2), 

which completes  the proof  of Theorem 1. 

R e m a r k  2.3. For k = 0, the bound  e < 3 v -  6 is t ight  for any t r iangula t ion.  

For k = 1, the bound e ___ 4v - 8 obtained,  is also tight,  provided t ha t  v 7__ 12. 
Firs t  we show tha t  for every v ___ 12 there is a p lanar  graph  with v vertices,  all of 
whose faces are quadri laterals ,  and no two faces share more  t han  one edge. Indeed,  
Figure 2 i l lustrates t ha t  such graphs  exist for v = 8,13,14,15. Once we have an 
example  G with v vertices, we Can construct  another  one with  v § 4 vertices,  by 
replacing some face of G by the 8-point example  in Figure 2. Notice t h a t  if we add 
bo th  diagonals of each face (including the  external  face), then  we obta in  a graph  
with 4 v -  8 edges such t ha t  along each edge there  is at  mos t  one crossing. 
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Figure 2 

For k = 2, the bound e _< 5 v -  10 is sharp for all v > 50 such that  v - 2 
(rood 3). For simplicity, we only exhibit a construction for v --- 5 (mod 15). First 
we construct a planar graph whose faces are pentagons and two faces have at most 
one edge in common. For v = 20, such a graph is shown in Figure 3. The number of 
vertices of such an example G can be increased by 15, by replacing some face of G 
with the graph depicted in Figure 3. Notice that  if we add all 5 diagonals of each 
face to G, then we obtain a graph with v vertices and 5 v - 1 0  edges, in which every 
edge crosses at most 2 others. 

Figure 3 

3. P r o o f s  of  T h e o r e m s  2 a n d  3 

In this section, we slightly improve the best known general lower bound on the 
crossing number of a graph, due to Ajtai et al. [1] and Leighton [4]. Our proof is 
based on the following consequence of Theorem 1. 

Corollary 3.1. The crossing number of any simple graph G with at least 3 vertices 
satisfies 

cr(G) _> 5e(a) - 25v(G) + 50. 
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Proof. If e(G) < 3v(G) - 6, then the statement is void. Assume e(G) > 3v(G) - 6. 
It follows from Theorem 1 that if e (G)>  (k+3)(v(G)-2), then G has an edge 

crossed by at least k + 1 other edges (k < 4). Deleting such an edge, we obtain by 
induction on e(G) that the number of crossings is at least 

4 

[e(C) - (k + 3 ) ( ~ ( c )  - 2)] = he(C) - 2 5 ~ ( c )  + 5 0  
k=0 

Proof  of Theorem 2. Let G be a simple graph drawn in the plane with cr(G) 
crossings, and suppose that  e(G)> 7.hv(G). 

Construct a random subgraph G / C_ G by selecting each vertex of G inde- 
pendently with probability p = 7.hv(G)/c(G) < 1, and letting G' be the sub- 

graph induced by the selected vertices. The expected number of vertices of G ~, 

E[v(G')]=pv(G). Similarly, E[e(G')] =p2e(G). The expected number of crossings 

in the drawing of G I inherited from G is p4cr(G), and the expected value of the 

crossing number of G / is even smaller. 

By Corollary 3.1, c r (G ' )>  5e (G ' ) -25v(G ' )  for every G ~. Taking expectations, 

p4cr(a) ~ E[cr(G')] >_ 5E[e(G')] - 25E[v(G')] = 5p2e(G) - 2Spy(G). 

This implies that 

1 e3(G) 
(1) cr(C) > 3~.75 v2(c) ' 

whenever e(G) > 7.hv(G). In fact, using Corollary 3.1 in the range e(G) < 7.hv(G), 
it is easy to check that the slightly weaker inequality 

1 ea(C) 
cr(a) > 33.75v2(a) 0.9v(a) 

is valid for every simple graph G. II 

Proof  of Theorem 3. For k < 4, the result is weaker than the bounds given in 
Theorem 1. 

So let k > 4, and consider a drawing of G such that  every edge crosses at most 
k others. Let C denote the number of crossings in this drawing. If e(G)<7.hv(G), 
then there is nothing to prove. If e(G) > 7.hv(G), then using the stronger form (1) 
of Theorem 2, we obtain 

1 e3(a)  ~(a)k  
33.75 v2(G ~ )  <- cr(G) < C < 2 

Consequently, 

c(G) _< ~ ~ v ( c )  m 
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i!< ii !i i i 

Figure 

Remark 3.2. The bound given in Theorem 2 is asymptotically tight, apart  from 
the values of the constants. The best construction we found is the following. 

Let v<<e<<v 2. Let V(G) be a set of v points arranged in a slightly perturbed 

unit square grid of size v ~  • v/-v, so that the points are in general position. Let 

d :  X/~e/~rv, so that d27r:  2e/v. 
Connect two points by a straight-line segment if and only if their distance is 

at most d. Then v(G)=v, e(G)~vd2~r/2=e. 
To count the number of crossings in G, let S(a)= {(x, y)11 < x, y < a}, and for 

any two segments (Ul, us), (vl,v2), (Ul, u2) | (vl, v2) means that  the two segments 
cross each other. Then the number of crossings in G is 

ii{ -- g (Ul, ~2, Vl, V2) e IV(G)] 4 1 

[I~i-~2 II_<a 

i 

f = 27rvd6 (1 + o(1)). 1 dv2dvldu2dul 
27 

l[v~-v2ll<d 
(~l,u2)| 

Thus, 

16 e 3 e 3 
cr(G) _< vd6(1 + o(1)) ~ 27~2 v2 ~ . 0 6 ~ .  

J. Spencer [7] showed that  the limit 

v 2 
c = lim ~-ff min cr(G) 

fV(a)l=v,lE(a)l=e 

exists, as v -4oc  and v<<e<<v 2. By our results, .06>c>.029.  
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Remark  3.3. The bound obtained in Theorem 3 is also asymptotically tight. Con- 

sider the same construction as in Remark 3.2, but now set d =  ~ ( 1 - o ( 1 ) ) ,  as 
k tends to infinity. Just like above, it can be shown tha t  no edge crosses more than 
k other edges. The number of edges 

Thus, we have 

e ( G ) =  v ( G ) ~ - ( 1 -  o(1) ) = v(G)x/k . . .~  rc . 

1.92(1 - o(1))V~v(G) < maxe (G)  < 4.108x/kv(G), 

where the maximum is taken over all simple graphs with v(G) vertices tha t  have a 
drawing with at most k crossings per edge. 

4. T h r e e  f u r t h e r  a p p l i c a t i o n s  

Using Sz6kely's method (see [8]) and Theorem 2, we can improve the coefficient 
of the main term in the Szemer6di-Trotter theorem [9], [2]. 

Theorem 4.1. Given m points and n lines in the Euclidean plane, the number of 
incidences between them is at most 2.57m2/3n 2/3 + m + n. 

Proof. We can assume that  every line and every point is involved in at least one 
incidence, and that  n > m ,  by duality. Since the s tatement  is clearly true for r n = l  
we have to check it only for m > 2. Define a graph G drawn in the plane such tha t  
the vertex set of G is the given set of m points, and join two points with an edge 
drawn as a straight line segment if the two points are consecutive along one of the 
lines. Let I denote the total  number of incidences between the given m points and 
n lines. Then v ( G ) = m  and e ( G ) = I - n .  Since every edge belongs to one of the n 

lines, cr(G) < (~). Applying Theorem 2 to G, we obtain tha t  

33.751 ( •  n) a - < c r ( O )  < - - " 

Using that  n > m > 2, some calculation shows that  

I - n _< ~/i6.875m2n 2 + 30.375,~ a _< ~ n 2 / a r n  2/3 + m. 

Therefore, 

"I < 2.57m2/3n 2/a + m + n. | 

Remark  4.2. As ErdSs pointed out fifty years ago, the order of magnitude of the 
bound in Theorem 4.1 cannot be improved. To see this, one can take n points 
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arranged in a unit square grid of size v ~ x  x/~ and consider the m most "populous" 
lines. 

More precisely, for any fixed 1 > e > 0, take all lines which contain at least cx/-n 
of the points. Then, for the number of lines m we have 

1 / e  
1/~ 1/~ 6v~ 

s < r  r = l  r = l  
( r , s )= l  

Here r denotes Euler's function and we used the formula ~N _  1 r  3N2/Tr 2 

(see e. g. [3]). By similar calculations, for the number of incidences I we get 

I ~ 4 n ~ - ~  ~ (1 -rse2)=4n~-~r162162  3n 
7r2~ 2 �9 

r = l  s < r  r----1 r = l  
( r , s )= l  

Comparing the last two expressions, we obtain 

I ~ cn2/3m 2/3 with c = ~ 0.42. 

We can also generalize Theorem 2 for multigraphs with bounded edge- 
multiplicity, improving the constant in Sz6kely's result [8]. 

Theorem 4.3. Let G be a multigraph with maximum edge-multiplicity m. Then 

1 ca(G) _ 0.9m2v(a).  
cr(G) > 33.75 mv2(G) 

Proof. Define a random simple subgraph G / of G as follows. For each pair of vertices 
v], v2 of G, let el,  e2,. . ,  ek be the edges connecting them. With probability 1-k/m,  
G / will not contain any edge between vl and v2. With probability k/m, G ~ contains 
precisely one such edge, and the probability that  this edge is ei is 1/m (1 < i < k). 

Applying Theorem 2 to G ~ and taking expectations, the result follows. II 

Remark 4.4. Let G be a graph drawn in the plane. A subset of the edges of G is 
said to form a plane subgraph of G, if it contains no two crossing edges. Let Fn 
denote the maximum number of plane subgraphs of a graph with n vertices. 

Ajtai et al. [1] used their general lower bound for crossing numbers to obtain 
that /~n < 1013n. 

Using our results, we can improve this estimate. Let Fn(m) stand for the 
maximum number of plane subgraphs that  a graph of n vertices and m edges drawn 
in the plane can have. By (1), if m>7 .5n ,  then there is an edge e of G crossing at 
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~rt 2 
least ~ other  edges. The  number  of plane subgraphs  t h a t  do not  contain  e, 

is at  mos t  F n ( m -  1), while the  number  of those which do contain  e cannot  exceed 

Fn(L- - 16.875n2 J). Therefore,  

Fn(m) <_ F n ( m - 1 )  + Fn ( [ m  

Similarly, by Theo rem 1 we have 

Clearly, 

16.8-~n 2 if m >_ 7.5n. 

Fn(m) < Fn(m - 1) + Fn(m - 6) if 

Fn(m) < Fn(m - 1) + Fn(m - 5) if 

Fn(m) < Fn(rn - 1) + Fn(m - 4) if 

Fn(m) < Fn(m - 1) + Fn(m - 3) if 

Fn(m) <_ Fn(m - 1) + Fn(rn - 2) if 

Fn(m) ~ 23n if m __5 3n. 

Using these inequalities, we get t ha t  

m > 7n, 

m > 6n, 

m > 5n, 

m ~ 4n, 

r n >  3n. 
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