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We prove that  for every constant 5 > 0 the chromatic number of the random graph G(n,p) 
with p----n-l~ 2-5 is asymptotically almost surely concentrated in two consecutive values. This 
implies that  for any f l< 1/2 and any integer valued function r(n)<_ O(n fl) there exists a function 
p(n) such that the chromatic number of G(n,p(n)) is precisely r(n) asymptotically almost surely. 

1. I n t r o d u c t i o n  

Let G(n,p) denote the random graph on n labeled vertices in which every 
edge is chosen randomly and independently with probability p=p(n). We say that  
G(n,p) has a property A asymptotically almost surely (a.a.s.) if the probability it 
satisfies A tends to 1 as n tends to infinity. 

One of the most interesting early discoveries in the study of random graphs is 
that  of the fact that many natural graph invariants are highly concentrated. One 
of the first striking results of this type was proved by Matula [9] and strengthened 
by various researchers; for fixed values of p almost all graphs G(n,p) have the same 
clique number. The proof of this result is not difficult, and is based on the second 
moment method. 

In this paper we study the concentration of the chromatic number of the 
random graph G(n,p). This parameter is far more complicated than the clique 
number, and its asymptotic behavior is much less understood, despite the results of 
Bollobs [3] and Luczak [7] that  provide an asymptotic formula for its expectation. 
Shamir and Spencer [10] proved that there is always a choice of an interval I--I(n,p) 
of length roughly v/-n, such that the chromatic number of G(n,p) lies, asymptotically 
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almost surely, in I .  More surprisingly, they proved that  for every constant a > 1/2, 

if p = n - a  then the chromatic number of G(n,p) is asymptotically almost surely 
concentrated in some fixed number of values. Tha t  is, there exists a function 
t = t(n,p) and a constant s = s(a) which is at most the smallest integer strictly 
larger than (2a+1) / (2a -1 ) ,  such that  a.a.s, t ~ x ( G ( n , p ) )  <t+s .  A further step in 
this direction was made by Luczak [8] who showed tha t  if a > 5/6, then x(G(n,p))  
is a.a.s, two point concentrated. It  is not difficult to see that  the two point width 
of the concentration interval is best possible for a general p. Additional results on 
this problem were given in [6]. 

Here we extend the two point concentration result of Luczak by proving the 
following result which shows that  the bound of [10] for s (a)  mentioned above can, 
in fact, be improved to 1 for M1 a > 1/2. 

Theorem 1.1. For every positive constants e,6 there exists an integer no =n0(e ,5)  

such that for every n > no and probability p = n -  1/2-5 there is an integer t = t (n,p, e) 
such that 

Pr[t ~ x(G(n,p))  ~ t + 1] ~ 1 - c .  

In other words, for every constant a > 1/2 the chromatic number of G(n,p) 

with p = n  - a  takes a.a.s, one of two consecutive values. 

The above result and its proof imply the following. 

Proposit ion 1.2. For every fixed ~ < 1/2, e > 0 and every integer valued function 

r(n) satisfying" 1 <_ r(n) <_ n t3, there exists an no and a function p(n) such that the 
chromatic number of G(n,p(n) ) is precisely r(n) with probability at least 1 - e for 
all n > no. 

Therefore, for such values of p(n), almost all graphs G(n,p(n))  have the same 
chromatic number! 

Our proof uses a martingale approach much in the spirit of the papers of 
Shamir and Spencer [10] and of Luczak [8], combined with additional probabilistic 
and combinatorial arguments. The presentation of the basic ideas follows closely 
that  of [2], Chapter 7. 

The rest of this paper is organized as follows. In the next section we prove 
several technical lemmas required for the proof of the main result. This proof is 
presented in Section 3. The finM Section 4 contains a discussion of some related 
questions and open problems. 

2. P r e l i m i n a r i e s  

The proof of Theorem 1.1 requires several preparations. We assume, whenever 
this is needed, that  the number of vertices n is sufficiently large. Relying on the 

result of Luczak, we may assume that,  say, 6_< 3/8. Denote d = n p =  n 1/2-5. In the 
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course of the proof floor and ceiling signs are occasionally omit ted for the sake of 
convenience. 

In the proof we apply some simple properties of the concept of k-choosability 
(see, e.g., [1], or [5], pp. 18-21). A graph G = (V,E) is called k-choosable if for 
every family of lists {S(v) c__ Z, ]S(v) L = k; v E V} there exists a proper vertex-coloring 
f:V--+ Z of G such that  f (v )  E S(v) for every v E V. Clearly, the k-ehoosability of a 
graph G implies its k-eolorability, but the converse is not true in general. A graph 
is d-degenerate if every subgraph of it contains a vertex of degree at most d. The 
following is a simple, well known fact (c.f., e.g., [1]): 

Proposit ion 2.1. Every d-degenerate graph is (d + 1)-choosable. | 

In the proof of our main result we need the following simple though somewhat 
technical lemma. 

Lemma 2.2. 

�9 (i) For every 5 > 0 there exists a constant r = r(5) > 0 such that for every C > O, 

a.a.s, every i <_ Cyr~ vertices of the random graph C(n,p) with p = n -1/2-~ 
span less than ri edges. Therefore, any subgraph of this graph induced by a 
subset Vo C V of size [Vo[ <_ Cv/-~, is 2r-choosable. 

�9 (ii) Let 571 /5 .  Then for every constant C>O, a.a.s, every i<_Cn 1-~ vertices 

of the random graph G(n,p) with p = n  -1/2-~ span less than in 1/10 edges. 

�9 (iii) The random graph C(n,p) with p = n- l~  2-~, 0 < 5 <_ 3/8, has a.a.s, the 
following properties: 

1. Every vertex v6  V(C) has degree at most 3d=3np; 
2. x(G) >_d/2Inn; 
3. I f  h>_ 1/6, then the number of paths of length three (edges) between any two 

(not necessarily distinct) vertices of G is at most lnn; i f  0 < 5 < 1/6, then 
the number of paths of length three between any two vertices of G is at most 
d 3 In n/n.  

Proof. (i) Fix r = [1].  Then the probability of existence of a subset V0 C Y violating 

the assertion of the lemma is at most 

z 
i=r i=r 

i-=v 

ov~a 
1 i 

= E [ O(1)rn~-hr] =o(1 ) .  
i=r 
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The additional claim about the choosability now follows from Proposition 2.1. 

(ii) The probability of existence of a subset V0 c V violating the claim of the lemma 
is at most 

i=2 \ in76/  i=2 

O(1) ~. O (1)__~/ nra , pnlO 
\ nT-d / 

Cnl-~ ] 

i=2 \ nT6 / 

-< E O(1)n O(1)n~ -25 n 10 = o(1). 

i=2 

(iii) 1. Indeed, 

['n -- l'~ 3 d [ en "~ 3d 3d ( e n d )  3d 
> ad] < n t  ad ) P  -< p = = o(1). 

(iii) 2. The probability that G has an independent set of size s = 2nlnn/d is at 
most 

( : ) ( 1 - p ) ( ~ )  _< [ O ( 1 ) l @ n e - P - ~ ] s =  [O(1)l@n 1 ] - -  

2 n l n n  
d 

=o(1). 

Therefore the chromatic number of G is a.a.s, at least n/(2nlnn/d)=d/21nn; 
(iii) 3. Let us first show that for every 5 > 0 a.a.s, any two vertices of the random 

graph G(n,p) with p = n -1/2-5 are connected by less than co = [2/5] paths of 
length two. The probability that  this is not so can be bounded from above by 

( ~ ) ( n - 2 )  co <-n2[O(1)np2]S~176176 

Therefore a.a.s, every edge e = (Wl, w2) of G(n,p) participates in at most co paths of 
length three between any two vertices u, v E g(G). Indeed, if {wl, w2} N {u, v} = ~, 
then there are only two potential paths of length three from u to v, containing 
(wl,w2), i.e., the paths UWlW2V and uW2WlV. If, say, wl = u ,  w2 7~v, then every 
path of length three from u to v starting with e corresponds to a path of length two 
between w2 and v, and the number of such paths is a.a.s, bounded from above by 
co. We conclude that a.a.s, every path of length three between any pair of vertices 
u,v has an edge in common with at most 3c0 other such paths. 

Now, let Xu,v be the number of paths of length three between u and v, then 
a.a.s, the number of edge disjoint paths of length three between u and v is at least 
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Xu,v/(3co + 1). (This can be seen by defining an auxiliary graph A whose vertices 
correspond to the paths of length three between u and v and whose edges connect 
paths sharing an edge in G(n,p). This graph has maximum degree at most 3c0 
and therefore is (3c0 + 1)-colorable, thus it has an independent set of size at least 
Xu,v/(3co + 1)). Hence we get that Pr[Xu,v >_ l] is asymptotically at most the 
probability that  the number of edge disjoint paths of length three between u and v 
is at least lo=l/(3co + 1). The latter probability is at most 

(1) (lno) 2lo!p 31~ 

(first choose l0 neighbors of u and l0 neighbors of v, then fix a bijection between 
the vertices of the chosen sets, and then require all 310 edges of the chosen paths 
to be present in G(n,p)). 

The probability in (1) is at most 

O(1)~-  lp 3 = O ( 1 ) - - - ~  

T a k i n g / = I n n  for the case n2p3<_ 1 (5>_1/6) or l=n2p31nn=d31nn/n for the case 

n2p 3 >_ 1 (5 <__ 1/6), we get Pr[Xu,v _> l] = o(n-2) .  II 

Our final preliminary lemma utilizes the idea used in the paper [8] of Luczak 
(who attributes it to Frieze). . . 

Lemma 2.3. For every e0 > 0 define t = t(n,p, co) to be the least integer for which 

(2) Pr[x(G ) <<_ t] >_ eo. 

Let X be the random variable whose value is the minimum number of vertices that 
have to be deleted from V(G) to get a t-colorable graph. Let, further, A be defined 
by e -A2/2 --~s then 

Proof. By the definition of t 

(3) 

P [x > 2Av ] < �9 

Pr[x(G) < t] < eO. 

It is easy to see that  the random variable X satisfies the vertex Lipschitz condition, 
that  is, if two graphs G and G ~ differ from each other only in edges containing 
some fixed vertex v, then IX(G) -  X(G')I _< 1. Therefore by considering the vertex 
exposure martingale on G(n,p) as in, e.g., [2], Chapter 7, and by letting t t = E X ,  
we conclude that for every A > 0 

A 2 A 2 
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In particular, since for our choice of A, e -A2/2 =c0, it follows that these tail events 
both have probability less than c0. On the other hand, Pr[X = 0] > co, hence we 

derive from the first inequality that #_< Av~. Therefore, by the second inequality, 

Pr[X >_ 2;w ] < co. I 

Denoting c = 2A, we summarize the above arguments as follows: with probabili ty 
at least 1 - ~  the random graph G=G(n,p)= (V, E) has all the properties s tated in 

Lemma 2.2, satisfies x(G)>_t and also contains a subset U0 C Y of size IUol <_ c v ~  
such that  G[V \ U0] is t-colorable. Note also that  by Lemma 2.2, part  (iii) 2, 
t> d/21nn. 

3. T h e  p r o o f  of  t h e  m a i n  r e s u l t  

Having finished all the necessary preparations, we are now ready to complete 
the proof of Theorem 1.1. In view of the last paragraph of the previous section it 
suffices to prove the following deterministic statement.  

Proposit ion 3.1. Let G= (V, E) be a graph on n vertices satisfying all properties in 
the assertions of Lemma 2.2. Suppose, further, that x(G) >_ t > d/21nn and there 

is a subset U0 C V of size I U0I < Cv~ such that G[V \ U0] is t-colorable. Then G is 
(t + 1)-colorable. 

We prove this (fully deterministic) proposition using probabilistic techniques. 

As the first stage of the proof we find a s u b s e t  U C V of size [U I = O(v/-~) 
including U0, such that  every vertex v E V \ U  has at  most 10r neighbors in U, with 
r from Lemma 2.2. A similar idea plays a crucial role in the proof of Luczak. (Note 
that  the number 10 can be easily reduced, and we make no a t tempt  to optimize the 
multiplicative constants here and in what follows.) To find U as above, s tart  with 
U =  U0, and as long as there exists a vertex v E V \  U having at least 10r neighbors 
in U, join it to U and update  U by defining U:=-UU{v}. This process stops with 

IUI <_ 2 c v ~  because otherwise we would get a subset U C V of size ]U[ = [2ev/-n-], 

containing at least lOrcx/~ edges, thus contradicting the assertion of Lemma 2.2, 
part (i). 

Let U = {ul , . . .  ,uk} with k = O(v/-~). Note tha t  by Lemma 2.2, part  (i), the 
subgraph G[U] is 2r-choosable. For every i, 1 < i < k, put N(ui) = {v E V \ V : 

(v,ui) E E(G)} and let N(U) denote the union N(U) = Uki=lN(ui). Define an 
auxiliary graph H,  whose vertex set W is a disjoint union of k sets W I , . . . , W k ,  
where IWil = IN(ui)l. For each veriex v E N(U) and each neighborhood N(ui) in 
which it participates there is a vertex in Wi corresponding to v. For every edge 
(v,w) E E(G) with v,w E N(U) and for each copy of v and each copy of w in W, 
there is an edge in H between these two copies. Note that  since every v E N(U) 
has at most 10r neighbors in U, there are at most 10r copies of v in H and thus 
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each edge in G yields at most (10r) 2 edges in H.  Note also that  by our choice of 
H each stable set in H corresponds to a stable set in N(U). 

Let f :  Y \ V ~ {1, . . . ,  t} be a fixed proper t-coloring of the subgraph G[V \ U]. 
Then f induces a t-coloring fl:W-+ { 1, . . . ,  t} of the vertices of H in a natural  way. 

The crucial idea is as follows. For every 1 < i < k we aim to recolor 2r color 
classes in N(ui) (or equivalently, in Wi) by a fresh color t §  thus making 2r colors 
available for ui for a coloring of G[U]. We need to show that  such a recoloring is 
possible, that  is, 2r color classes for each vertex ui can be chosen in such a way 
that  their union is a stable set in G. Once this task is accomplished, we would be 
able to color G[U] using the lists of available colors for each u E U and exploiting 
the fact that  G[U] is 2r-choosable. 

Let us first consider the case 5 1/5. In this case we apply an argument  similar 
to the one in the proof of Proposition 5.3 in [2], Chapter  5. For each 1 <i<k choose 
randomly and independently 2r numbers from {1, . . . , t}  without repetitions, and 
denote the chosen set by Ii. We claim that  with positive probabili ty the subset 

W0 = [_J/k-1 {w E Wi: if(w) EIi} is stable in H. This will imply that  the subset of 

vertices of N(U) with at least one copy in W0 is also stable, thus making 2r colors 
available for each vertex u C U. To prove this claim, we use the Lovs Local Lemma 
(c.f., e.g., [2], Chapter 5). Consider an edge e = (w],w2) e E(H) with Wl e Wil 
and w2 E Wi2 (where possibly il  = i2). Denote by Ae the event (f(wl) C Ill and 
f(w2) E Ii2), that  is, "the colors of both wl in Wil and w2 in Wi~ are chosen". The 

probabili ty of Ae is at most (2r/t) 2 = O(ln 2 n/d2). Also, Ae is mutually independent 

of all other events A e, but those for which e / • (Wil U Wi2) ~ O. By the assertion of 

Lemma 2.2, part  (iii) 1, for every 1 <i < k IN(ui)l =O(d)=o(v/-n) and therefore by 
the assertion of Lemma 2.2, part  (i), the number of edges spanned by N(ui) and 
thus by Wi is O(d). Also, by Lemma 2.2, part  (iii) 3, the number of edges between 

N(ui) and N(uj) is at most inn for 5>_1/6 and is at most d31nn/n for 0 < 5 < 1 / 6 ,  
implying that  the number of edges between any two color classes in H is at most 

(10r)21nn = O(lnn) for 5 > 1/6 and is at most (lOr)2d31nn/n = O(d31nn/n) for 
0 < 5 < 1/6. Therefore, for every part  Wi the number of edges of H incident 

with Wi is at most O(d)+k.O(lnn)= O(nl/21nn) for 5 _> 1/6 and is at most 

O(d) + k. O(d31nn/n) = O(d3tnn/n 1/2) for O < 5 < 1/6. Returning to the "bad" 

event Ae we see that  it is mutually independent of all but O(nl/21nn) events A e, 
for the case 5 >_ 1/6 and of all but O(d 3 lnn/n 1/2) events A e, for 0 < 5 < 1/6. Hence 

in both  cases (since d_> n 2/5) 

(4) Pr[Ae]" I{e' :  e' A (Wi~ t2 Wi2) # 0}1 = o(1). 

Therefore, applying the symmetric version of the Lovs Local Lemma (see, e.g., 
[2], Chapter  5, Corollary 1.2), we get the desired result. 

Now we treat  the case 5 > 1/5. For this case the Local Lemma cannot be 
applied directly since the estimate (4) is not necessarily valid. Therefore we use a 
different approach. 
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For every s_< k subsets l/Vii,..., Wi~, their union, according to the assertion of 

Lemma 2.2, part  (iii) 1, has m < s.3d=O(n 1-~) vertices and thus, by the assertion 

of Lemma 2.2 (ii), spans at most (lOr)2mn ~/~~ edges in H.  Therefore there exists 

a subset Wi~, connected by at most 2(lOr)2mnZ/l~ 1/t~ edges to the rest 
of the subsets. This implies that  the vertices Ul , . . . , uk  can be reordered in such a 

way that  for every 1 < i <_ k there are O(dn 1/1~ edges from Wi to Ui,<i wi,. We 
assume in the sequel that  u l , . . . , u  k are indeed ordered to satisfy this restriction. 

Now, we choose sequentially for every i from 1 to k a set Ji of 21nn+2r  colors 
from {1,... ,t} at random without repetitions. Each set Ji is chosen from the set of 
colors available for i, where a color j is available for i, if the corresponding color class 
in Wi has no connections with color classes having been chosen for previous indices. 
More formally, j is available for i if there does not exist an edge (wl ,w2)E E(H) 
with Wl E Wi, fr(wi) =j, w~ ~ W i, for some i p < i aud f'(w~) C Jr 

Denote by xi, l<_i<_k, the probability that  for some i' _<i while choosing the 
set Ji '  there are less than t/2 colors available for i'. Clearly, if xk < 1, then there 
exists a family {Ji :1 < i < k, IJ~l = 2 1 n n + 2 r }  for which there are no edges between 
the corresponding color classes of distinct subsets Wi,, Wi. Once such a family 
is indeed found, for every 1 < i < k we delete from di those colors for which the 
corresponding color class in W i is incident with some edge inside Wi. By Lemma 
2.2, part  (iii) 3, every ui participates in at most lnn triangles, hence the number of 
edges spanned by Wi is at most lnn. Therefore, after this deletion we get a family 

{//:  1 < i < k, II/l_> 2r} for which the union U~_l {w c w i :  f '(w) EIi} is stable in H,  
and can complete the proof as before. 

In order to estimate zi, 1 < i < s note first that  Xl = 0. Also, according to 

our reordering of the sets Wi, for each 1 < i < k there are at most O(dn 1/1~ edges 

from Wi to the previous parts Wi, , i ~ < i. By Lemma 2.2, part  (iii) 3, there are 
O(lnn) edges between W i, and Wi, therefore each color chosen to be included in 
3i, causes O(lnn) colors to become unavailable for i. The probabili ty of each color 
to be chosen into Ji' is at most 21nn+2r  divided by the number of available colors 
for i ~ at the moment  of choosing Ji'. Hence, 

O(lnn) \ g 

<_ xi-1  + 

d 

< x i - l +  O(1)nTgln 4 n  
- -  d 

1 
e - n  1-o 

< xi--1 ~- 
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(the next to last inequality uses the assertion of Lemma 2.2, par t  (iii) 2, while the 

last inequality uses the assumption that  5 < 3/8 and thus d=np > nl/S). 

Therefore x k <_ ke -nl/1~ < <  1, establishing the desired result. This completes 
the proof of the proposition and hence also the proof of Theorem 1.1. | 

P roof  of Proposit ion 1.2. Let p(n) be a real so that  the probabili ty that  the 
chromatic number of G(n,p(n)) is strictly smaller than r(n) is precisely e/2 (such a 
p(n) clearly exists by continuity, as for every fixed n the above probabili ty is simply 
a polynomial in p). By Theorem 1.1 (and the fact that  from its proof it follows that  
no@,5) can be uniformly bounded for all 5>50),  there exists an n 0 = n 0 ( ~ , e )  such 
that  if n > no the chromatic number of G(n,p(n)) is one of two consecutive values 
with probability that  exceeds 1 -  c/2. I t  follows that  these two consecutive values 
must be r(n)-1 and r(n), and the desired result follows, since the probabili ty that  
the chromatic number is r(n)-1 is at most e/2. | 

,4. C o n c l u d i n g  r e m a r k s  a n d  o p e n  p r o b l e m s  

�9 By continuity, for any n, any e < 1/2 and any two consecutive integers t, t + l  < n 
there are values of the probability p such that  the chromatic number of G(n,p) 
is at most t with probability at least e and at least t + 1 with probabili ty at 
least e. Therefore, the two-point concentration result is optimal. It  seems that  
for most values of the probability p in the range covered by Theorem 1.1 the 
chromatic number is in fact concentrated in one point; this is certainly the case 
for some values of p, as shown in Proposition 1.2. It  would be interesting to 
decide if indeed, in an appropriately defined sense, a one point concentration 
is more typical in this range than a two-point concentration, and this question 
remains open. 

�9 The problem of determining or estimating the correct behavior of the concen- 
trat ion of the chromatic number of the random graphs G(n,p) for values of p 

that  exceed n - 1 / 2 - ~  remains open, and seems to be very interesting. The case 
p = 1/2 is of particular interest. It  seems plausible tha t  there is some fixed 
# > 0 so that  for infinitely many values of n there is no interval I(n) of length 
smaller than nV so that  the chromatic number of G(n,1/2) is in I(n) a.a.s. 
I t  is also possible, however, that  this is indeed the case, and yet for any such 
tt > 0 there are infinitely many values of n for which such an interval does ex- 
ist. Although there are some heuristic arguments that  suggest that  both  these 
statements may well hold simultaneously, we are unable to prove any of them. 

�9 The arguments in our proof of Theorem 1.1 imply the following result about  the 
non-uniqueness of optimal vertex colorings of random graphs. Suppose e > 0, 
c~ > 1/2, p = n  - ~  and t - - t ( n , p ,  e) is the least integer for which the probabili ty 
that  the chromatic number of G = G(n,p) is at most t, exceeds e. Suppose, 
further, tha t  the above mentioned probabili ty is not greater than, say, 1 -  c. 
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Then, if n is sufficiently large (as a function of e and a) ,  the probabili ty that  G 
has (much) more than one proper ( t+ l ) -ver tex  coloring exceeds 1 - e /10 .  Note 
that  this implies that  with probability greater than c/2 the chromatic number 
of G is t +  1 and it has many proper ( t +  1)-vertex colorings. 

�9 For values of p(n) which are very close to 1 (e.g.~ p(n) = 1 -  1/(10n)),  there 

is no interval of length smaller than ~(x/'n) for which the chromatic number 
of G(n,p(n)) lies in the interval a.a,s. This follows from some simple facts 
about the distribution of the size of the largest matching in the complement of 
G(n,p(n)). Thus the concentration result of [10] mentioned in the introduction 
cannot be improved in general, but it will be interesting to decide how close 
to the t ruth it is for values of p up to 1/2. 

�9 The problem of understanding the correct concentration of the chromatic num- 
bet  of the random graph is equivalent to that  of understanding the concentra- 
tion of the minimum number of cliques that  cover all its vertices, since such 
a covering by cliques corresponds to a coloring of the complement. A related 
quantity is the clique cover number of a graph G, denoted cc(G), which is the 
minimum number of cliques required to cover all its edges. Frieze and Reed [4] 

proved that  this quantity, for G(n,p) for fixed values of p, is, a.a.s., O(n2 / ln  2 n). 
For this quantity, we have an argmnent that  shows that  for some values of p 
between, say, 0.001 and 0.999, it is not concentrated in any interval of length 

n~ In 2 n. (It is not difficult to see that  this is tight, up to a logarithmic factor.) 
This argument does not seem to provide any information for the concentration 
of the chromatic number, but since it is simple and applies to any graph in- 
variant whose expectation changes considerably for G(n,p) as p changes from 
e to 1 - e we close this paper  with a sketch of this proof. The idea is that  if 
p=p(n) is bounded away from 0 and 1, say, e < p  < l - e ,  then there is a positive 
5 = 5(e), such that  any family of graphs on n vertices whose total  probabili ty is 
at least 1 - 5  in G(n,p(n)) has probability at least 25 in G(n,p(n)+ 1/n). This 
implies that  if for every edge probability p = p(n) between e and 1 - e there 
is an interval Ip, for which the probability that  ce(G(n,p)) lies in Ip is larger 
than 1 -  5, then for values of p between e and 1 -  e, Ip must intersect [p+l/~. 

Since the mid-point of the interval Ie differs from that  of I I - e  by f~(n2/log 2 n) 
(as follows from the proof in [4]), the desired result follows. 
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