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Abstract. We develop a Hoare-style proof  system for reasoning about the be- 
haviour of processes that interact via a dynamically evolving communication 
structure. 

1. Introduction 

The goal of this paper is to develop a formal system for reasoning about the cor- 
rectness of a certain class of parallel programs. We shall consider programs written 
in a programming language, which we simply call P. The language P is a simpli- 
fied relative of POOL, a parallel object-oriented language [Ame89]. POOL makes 
use of the structuring mechanisms of  object-oriented programming [Mey88], inte- 
grated with concepts for expressing concurrency: processes and communication. 

A program of our language P describes the behaviour of a whole system 
in terms of its constituents, objects.  These objects have the following important 
properties: First of all, each object has an independent activity of  its own: a local 
process that proceeds in parallel with all the other objects in the system. Second, 
new objects can be created at any point in the program. The identity of  such a 
new object is at first only known to itself and its creator, but from there it can 
be passed on to other objects in the system. Note that this also means that the 
number of processes executing in parallel may increase during the evolution of 
the system. 
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Objects possess some internal data, which they store in variables. The value 
of a variable is either an element of a predefined data type (Int or Bool), or it 
is a reference to another object. The variables of one object are not accessible 
to other objects. The objects can interact only by sending messages. A message 
is transferred synchronously from the sender to the receiver. It contains exactly 
one value; this can be an integer or a boolean, or it can be a reference to an 
object. (This is the only essential difference between P and POOL: in POOL 
communication proceeds by a rendezvous mechanism, where a method, a kind of 
procedure, is invoked in the receiving object in response to a message.) Thus we see 
that a system described by a program in the language P consists of a dynamically 
evolving collection of objects, which are all executing in parallel, and which know 
each other by maintaining and passing around references. This means that the 
communication structure of the processes is determined dynamically, without any 
regular structure imposed on it a priori. This is in contrast to the static structure 
(a fixed number of processes, communicating with statically determined partners) 
in [AFR80] and the tree-like structure in [ZRE85]. 

One of the main proof theoretical problems of such an object-oriented lan- 
guage is how to describe and reason about dynamically evolving pointer structures. 
We want to reason about these structures on an abstraction level that is at least as 
high as that of  the programming language. In more detail, this means the following: 

�9 The only operations on 'pointers' (references to objects) are 

- testing for equality 
- dereferencing (looking at the value of an instance variable of the referenced 

object) 

�9 In a given state of the system, it is only possible to mention the objects that 
exist in that state. Objects that have not (yet) been created do not play a role. 

Strictly speaking, direct dereferencing is not even allowed in the programming 
language, because each object has access to its own instance variables only. 
However, without direct dereferencing it is not clear how to express in the 
assertion language even the most trivial properties of pointer structures. 

The above restrictions have quite severe consequences for the proof system. 
The limited set of operations on pointers implies that first-order logic is too weak 
to express some interesting properties of pointer structures. Therefore we have 
to extend our assertion language to make it more expressive. We will do so by 
allowing the assertion language to reason about finite sequences of objects. (This is 
not uncommon in proof  systems dealing with more data types than integers only 
[TuZ88].) Furthermore we have to define some special substitution operations to 
model aliasing and the creation of new objects. 

To deal with parallelism, the proof theory of partial correctness we shall 
develop uses the concepts of cooperation test, global invariant, bracketed section, 
and auxiliary variables. These concepts have been developed in the proof theory 
of CSP [AFR80], and have been applied to quite a variety of concurrent pro- 
gramming languages [HoR86]. Described very briefly, this proof method applied 
to our language consists of the following elements: 

�9 A local stage. Here we deal with all statements that do not involve com- 
munication or object creation. These statements are proved correct with 
respect to pre- and postconditions in the usual manner of sequential pro- 
grams [Apt81, Bak80, Hoa69]. At this stage, we use assumptions to describe 
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the behaviour of the communication and creation statements. These will be 
verified in the next stage. In this local stage, a local assertion language is used, 
which only talks about the current object in isolation. 

�9 An intermediate stage. In this stage the above assumptions about communi- 
cation and creation statements are verified. Here a global assertion language 
is used, which reasons about all the objects in the system. For each creation 
statement and for each pair of possibly communicating send and receive 
statements it is verified that the specification used in the local proof system is 
consistent with the global behaviour. 

�9 A global stage. Here some properties of the system as a whole can be derived 
from a kind of standard specification that arises from the intermediate stage. 
Again the global assertion language is used. 

We have proved that the proof system is sound and complete with respect 
to a formally defined semantics. Soundness means that everything that can be 
proved using the proof system is indeed true in the semantics. On the other hand, 
completeness means that every true property of a program that can be expressed 
using our assertion language can also be proved formally in the proof system. Due 
to the abstraction level of the assertion language we had to modify considerably 
the standard techniques for proving completeness. 

Our paper is organised as follows: In the following section we describe the 
programming language P; in section 3 we define two assertion languages, the 
local one and the global one. Then, in section 4 we describe the proof system. 
Section 5 presents an example of a correctness proof for a nontrivial program. 
Section 6 presents the semantics of the programming language, of the assertion 
languages, and of the correctness formulas. In section 7 we prove the soundness 
of the proof system and in section 8 we prove completeness. The expressibility 
of the assertion languages is studied in section 9. Finally, in section 10 we draw 
some conclusions. 

2. The Programming Language 

In this section we define the programming language P of which we shall study 
the proof theory. This language is related to CSP [Hoa78], in that it describes a 
number of processes that communicate synchronously by transmitting values to 
each other, but it has the additional possibility of dynamically creating processes 
and manipulating references to processes. It can also be compared to Smalltalk 
[GoR84], since it describes a dynamically evolving collection of objects where each 
has its own private data, but in P each object is provided with an autonomous 
local process and it communicates with other objects simply by exchanging a 
value instead of invoking a method. 

A system, the result of executing a program written in R consists of objects. 
On the one hand these objects have the properties of processes, that is, each of 
them has an internal activity, which runs in parallel with all the other objects 
in the system. On the other hand, objects are in some way like data records: 
they contain some internal data, and they have the ability to act on these data. 
An important characteristic of the objects in the language P is that they can be 
created dynamically: Whenever required during the execution of a program, a 
new object can be called into existence. 

An object stores its internal data in variables (also called instance variables 
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to distinguish them from the other kinds of  variables that we shall need in the 
assertion language). A variable can contain a reference to an object, which can be 
another object, or possibly the object under consideration itself. Alternatively, it 
can contain an element of  a standard, built-in data type, of  which our language P 
contains only integers and booleans. The contents of  a variable can be changed by 
an assignment statement. The variables of  one object cannot be accessed directly 
by other objects. They can only be read and changed by the object to which they 
belong. 

Interaction between objects takes place by sending messages. The language P 
uses a synchronous communication mechanism, that is, the sender and receiver 
of  a message perform the communication at the same time; the one that reaches 
its communication statement first will wait for its partner. The sender of  a 
message must always specify the receiver explicitly. The receiver however, has 
the possibility of  mentioning the sender that it wants to communicate with, but 
it can also omit the indication of its communication partner, in which case it is 
willing to communicate with any sender that sends a message of the correct type. 
A message consists of  a data value, which is transferred from the sender to the 
receiver. This data value can be a reference to an object or it can be an integer 
or boolean. 

In order to describe by a program the unbounded number  of  objects in a 
system, we group them into classes. In the language P all objects have the same 
structure of  variables (each object has its own private variables, but the variables 
of  all objects have the same names and types). The objects in one class however 
additionally execute identical local processes. In this way a class can be considered 
as a blueprint for creating new instances. 

Let us now give a formal definition of the language P. We assume as given a 
set C of class names, with typical element c. By this we mean that symbols like 
c, c', Cl, etc. will range over the set C of class names. The set C U {Int, Bool}, 
with typical element d, we denote by C +. Here Int and Bool denote the types of  
the integers and booleans, respectively. For each d c C + we assume IVard to be 
the set of  instance variables of  type d, with typical elements x and y (we assume 
IVara A IVara, = 0 whenever d ~ d I, so that the type of each variable is uniquely 
determined). Such a variable x E IVard can refer to objects of type d only. The 
set of  all instance variables ([.-Jd IVara) we denote by IVar. 

Definition 2.1. We define the set ExpCd of expressions of  type d in class c, with 
typical element e. An expression e c Exp} can be evaluated by an object of  class 
c and the object to which it refers will be of  type d. 

These expressions are defined as follows: 

e(E Exp,) ":= x i f x  e IVard 
self  if d = c 

nil 

t rue [ f a l se  

n 

el + e2 

if d = Bool 

if d = Int 

if el, e2 6 Exp~a, d = Int 

I el -- e2 if el, e2 E ExpCa,, d = Bool 
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An expression e will be evaluated by a certain object e of  class c. An expression 
of the form x denotes the value of the variable x that belongs to the object e. The 
expression self denotes the object c~ itself. The expression nil denotes no object at 
all. It can be used for every type, including Int and 13001. The symbols true and 
false stand for the corresponding values of type 13001. Every integer n can occur 
as an expression of type Int; it simply denotes itself. We assume that the standard 
arithmetic and comparison operations on integers are available, but we list only 
the operator '+'. We assume that all these operations result in nil whenever an 
error occurs (e.g., division by zero or nil as an operand). Finally, for every type 
we have a test for equality. The expression et -- e2 evaluates to true whenever et 
and ez denote the same object (or both denote no object, viz. nil). Note that in 
the programming language we put a dot over the equality sign ( - )  to distinguish 
it from the equality sign we use in the metalanguage. 

Definition 2.2. We next define the set Statc of statements in class c, with typical 
element S. These statements describe the behaviour of a single object of  class c. 

Statements can be of  the following forms: 

S(E STat  c) ::= x : = e  

I x : =  n e w  

I x!e 

I x?y 
I ?y 

1 Xl ;82 
I if e then St else $2 fi 

I while e do S o d  

An object executes 

if x, e c Exp}  

if x c IVarc, 

if x c IVarc,, e c ExpCd 

if x E IVarc, 

if St, $2 ~ Star c 

i f e  c ExpCBool , S1,S 2 C StaU 

if e E Exp~Bool, S E Stat ~ 

the assignment statement x := e by first evaluating the 
expression e at the right-hand side and then storing the result in its own variable x 
The execution of the new-statement x := new (x E IVarc,) by the object e consists 
of creating a new object/~ of class c t and making the variable x of the creator 
refer to it. The instance variables of  the new object/3 are initialised to nil and/~ 
will immediately start executing its local process. It is not possible to create new 
elements of the standard data types Int and 13001. 

A statement x!e is called an output statement and statements like x?y  and ?y 
are called input statements (in both the statements x!e  and x?y  the variable x 
is required to be of some type c c C). Together they are called I /O statements. 
The execution of  an output statement xt !e by an object c~ is always synchronised 
with the execution of  a corresponding input statement x2?y or ?y by another 
object/~. Such a pair of input and output statements are said to correspond if all 
the following conditions are satisfied: 

�9 The variable xt of  the sending object c~ should refer to the receiving object p 
(therefore necessarily the type of  the variable x] coincides with the class of/~). 

�9 If  the input statement to be executed is of the form x2 ?y, then the variable x2 
of the receiving object /~ should refer to the sending object c~ (again, this 
means that the type of the variable x2 coincides with the class of  e). 

�9 The type of  the expression e in the output statements should coincide with 
the type of  the destination variable y in the input statement. 

If  an object tries to execute a I /O statement, but no other object is trying to 
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execute a corresponding statement yet, it must wait until such a communication 
partner appears. If  two objects are ready to execute corresponding I /O  statements, 
the communication may take place. This means that the value of the expression e 
in the sending object c~ is assigned to the destination variable y in the receiving 
object ft. When an object is ready to execute an input statement ?y there may be 
several objects ready to execute a corresponding output statement. One of them 
is chosen non-deterministically. 

Statements are built up from these atomic statements by means of sequential 
composition, denoted by the semicolon ';', the conditional construct if-then-else-fi 
and the iterative construct while-do-od The meaning of these constructs we shall 
assume to be known. 

Definition 2.3. Finally we define the set Prog of programs, with typical element p, 
as follows: 

p : : =  r  ~-  S l , . . . ,  c .  ~-  S,) 

Here we require that all the class names cb . . . ,  cn are different and that Si E STar c~ 
(1 _< i _< n). Furthermore we require for every variable x occurring in p that its 
type d is among Cl . . . . .  c,,Int, Bool, and that for no variable x of type c, an 
assignment x := new occurs in p. 

A program consists of a finite number of class definitions ci ~ Si, which 
determine the local processes of the instances of the classes Cl,.. . ,  cn. Whenever 
a new object of class c~ is created, it will begin to execute the corresponding 
statement Si. The execution of  a program starts with the creation of a single 
instance of class cn, the root object, which begins executing the statement S~. This 
root object can create other objects in order to establish parallelism. Note that 
no other objects of the root-class can be created. 

Definition 2.4. For an expression e, a statement S and a program p the set of 
instance variables occurring in e, S and p is denoted by IVar(e), IVar(S) and 
IVar(p), respectively. 

2.1. An Example Program 

We illustrate the programming language by giving a program that generates the 
prime numbers up to a certain constant n. The program uses the sieve method of 
Eratosthenes. It consists of two classes. The class G (for 'generator') describes the 
behaviour of the root object, which consists of generating the natural numbers 
from 2 to n and sending them to an object of the other class P. The objects of the 
class P (for 'prime sieve') essentially form a chain of filters. Each of these objects 
remembers the first number it is sent; this will always be a prime. From the 
numbers it receives subsequently, it will simply discard the ones that are divisible 
by its local prime number, and it will send the others to the next P object in the 
chain. 

The class G makes use of two instance variables: f (for 'first') of  type P and 
c (for 'count') of  type Int (note that n is not an instance variable but an integer 
constant). The class P has three instance variables: m ('my prime') and b ('buffer') 
of  type Int and I ('link') of type P. Here is the complete program: 
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(P ~- ?m; 

if m ~ nil 

then I := new; 

?b; 

whi le b ~ nil 

do if m A v b t h e n l ! b f i ;  

?b 

od; 

I ! b  

fi, 

G * -  f : = n e w ;  c : = 2 ;  

w h i l e c _ < n d o f ! c ;  c : = c + ! o d ;  

f !ni l )  

Fig. 1 represents the system in a certain stage of the execution of the program. 

G 

Fig. 1. Objects in the sieve program in a certain stage of the execution 

3. The Assertion Language 

In this section we define two different assertion languages. An assertion describes 
the state of  (a part  of) the system at one specific point during its execution. The 
first assertion language describes the internal state of a single object. This is called 
the local assertion language. It will be used in the local proof  system. The other 
one, the global assertion language, describes a whole system of objects. It will be 
used in the intermediate and global proof  systems. 

For the sake of expressiveness of  the assertion languages we introduce for 
every d c C + a new set LVard of  logical variables of  type d, with typical element 
z. To be able to describe interesting properties of  pointer structures we also 
introduce logical variables ranging over finite sequences of  objects. To do so we 
first introduce for every d E C + the type d* of finite sequences of  objects of  type d. 
We define C* = {d* : d E C +} and take C t = C + U C*, with typical element a. 
Now in addition we assume for every d E C + the set LIZard* of  logical variables 
of  type d*, which range over finite sequences of  elements of  type d. Therefore we 
now have a set LVara of logical variables of  type a for every a ~ C t. For any 
two distinct types a and a I we have that LVara A LVara, = 0, so that the type of 
every logical variable is uniquely determined. 
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3.1.  T h e  L o c a l  A s s e r t i o n  L a n g u a g e  

First we introduce the set of local expressions. 

Definition 3.1. The set LExpCa of  local expressions of type a in class c, with typical 
element l, is defined as follows: 

l(e LExp c) ":= z 

x 

self 

nil 

n 

t rue I false 

M 
11:12 

ll 4- 12 

I 11 -- 12 

if z E LVara 

if x E IVara 

i f a = c  

if a = Int 

if a = Bool 

if 1 E LExpcd,, a = Int 

if 11 E LExp},,  12 E LExP~n t, a = d 

if 11,12 c LExP~nt 

if 11,12 E LExpCd, a -- Bool 

For sequence types the expression nil denotes the empty sequence. The expression 
Ill denotes the length of the sequence I. The expression 11 : 12 denotes the nth 
element of the sequence represented by ll, where n is the integer value of 12 
(if 12 is less than 1 or greater than llll, the result is nil). Note that in the 
boolean expression 11 - 12 the subexpressions I1 and 12 are required to be of some 
simple type d E C +. This restriction is introduced to facilitate the definition of 
the substitution operations modelling aliasing and the creation of objects (see 
definitions 4.3. and 4.5.). 

Definition 3.2. The set LAss c of local assertions in class c, with typical element p, 
is defined as follows: 

p(E LAss c) ::= l i f l  E LExP~oo I 
] -~p if p c LAss c 

I pl Ap2 i fpbp2  E LAss c 

I ~zp i f z E L V a r a ,  a=d ,d* ,  d = Int, Bool, 

and p E LAss c 

A local assertion is built up from boolean local expressions and the usual logical 
connectives. We shall regard other logical connectives (% ~ ,  V) as abbreviations 
for combinations of the above ones. We introduce the following syntactic notions. 
For a local expression ! the set of instance (logical) variables occurring in l 
is denoted by IVar(l) (LVar(1)). Similarly IVar(p) denotes the set of instance 
variables occurring in the local assertion p. The set of logical variables occurring 
free in a local assertion p is denoted by LVar(p). 

An example of a local assertion in the class P of the program at the end of 
section 2 is 

-~(b -- nil) --~ Vi(2 _ i A i _< m --~ ~( i  I b)), 

which we might abbreviate to b @ nil -+ Vi(2 _< i _< m --~ i Xb). Here i is a logical 
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variable of type Int. (Most of  our examples will be in the context of the program 
at the end of section 2.) 

Local expressions l E LExp~ and local assertions p c LAss c are evaluated 
with respect to the local state of an object of class c, determining the values 
of  its instance variables, plus a logical environment, which assigns values to the 
logical variables. Therefore they talk about this single object in isolation. It is 
important to note that we allow only quantification of  logical variables ranging 
over (sequences of) integers and booleans. (By the way, the value nil is not 
included in the range of quantifications.) Quantification over other types would 
require knowledge of  the set of existing objects, which is not available locally. 
This is made formal in lemma 6.7. of  the section 6 on semantics. 

3.2. The Global Assertion Language 

Next we define the global assertion language. 

Definition 3.3. The set GExpa of  global expressions of  type a, with typical element g, 
is defined as follows: 

g(E GExp~) ::= Z 

nil 

n 

t rue ]  false 

g.x 

Jg~ 
gt : g2 

gl + g2 

if z E LVara 

if a = Int 

if a = Bool 

if g c GExp o x E IVara 

if g E GExpd., a = Int 

if gl E GExpd., g2 c GExPlnt, a = d 

if gl, g2 c GEXPln t 

if g then g] else g2 fi 

if g c GExPBool, gl, g2 @ GExp. 

gl -- g2 if gt, g2 C GExPd 

A global expression is evaluated with respect to a complete system of objects 
plus a logical environment. A complete system of objects consists of  a set of 
existing objects together with their local states. The expression g.x denotes the 
value of  the variable x of  the object denoted by g. Note that in this global assertion 
language we must explicitly specify the object of which we want to access the 
internal data. The conditional expression if go then gl else g2 fi is introduced to 
facilitate the handling of aliasing (see definition 4.3). If  the condition is nil, then 
the result of  the conditional expression is nil, too. 

Definition 3.4. The set GAss of  Global assertions, with typical element P, is defined 
as follows: 

P ::= g i f g  c GExpBoo I 

[ P1 AP2 

[ 3zP  
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Global assertions are built up from boolean global expressions and the usual 
logical connectives. Again, other logical connectives are regarded as abbreviations. 
We introduce the following syntactic notions" For a global expression g the set 
of instance (logical) variables occurring in g is denoted by IVar(g) (LVar(g)). 
Similarly IVar(P) denotes the set of instance variables occurring in the global 
assertion P. The set of logical variables occurring free in a global assertion P is 
denoted by LVar(P). 

Quantification over (sequences of) integers and booleans is interpreted as 
usual. However, quantification over (sequences of) objects of some class c is 
interpreted as ranging only over the existing objects of that class, i.e., the objects 
that have been created up to the current point in the execution of the program. 
For example, the assertion 3z true is false in some state iff there are no objects 
of class c in this state, assuming the type of z ~ LVarc. More interestingly, the 
assertion 

Vp 3s(s �9 1 -- g.f A s " Is] -- p A Vi(1 _ i < [sl -+ (s ' i).1 - s " (i + 1))) 

(with p E LVarp and s E LVarp,) expresses that every object of class P is a 
member of the I-linked chain that starts with g.f (where g is the generator object). 

Next we define a transformation of a local expression or assertion to a global 
one. This transformation will be used to verify the assumptions made in the 
local proof system about the I /O and new-statements. These assumptions are 
formulated in the local language. As the reasoning in the cooperation test uses 
the global assertion language we have to transform these assumptions from the 
local language to the global one, 

Definition 3.5. Given a local expression I ~ LExp~ and a global expression g E 
GExpc we define a global expression I $ g. This expression denotes the result of 
evaluating the local expression 1 in the object denoted by the global expression g. 
The definition proceeds by induction on the complexity of the local expression 1: 

l ,~ g = l i f  l = z, nil, n, t rue ,  f a l se  

x S g  = g.x 
self  $ g = g 

(11q-12) +g = (I1 ~g) q-(12 ~g) 

(11 -- /2) + g = (/1 ~, g) -- (12 + g) 

For a local assertion p we define the global assertion p $ g as follows: 

(~p) $ g = (~p $ g) 

( p l A p 2 ) $ g  = (Pl ; g )  A(p2 +g) 
(Bz p) $ g = 3z(p S g) z ~ LVar(g) 

As an example, note that (b 4: nil --+ Vi(2 <_ i _< m --+ i /~ b)) + p is equal to 
p.b 4: nil --+ Vi(2 _< i _< p.m --+ i /p.b) (here p E LVarp). 

3.3. Correctness Formulas 

In this section we define how we specify an object and a complete system of 
objects, using the formalism of Hoare triples. We start with the specification of 
an object. 
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Definition 3.6. We define a local correctness formula to be of the following form: 

{p}S{q} 

where p, q E LAss c and S ~ STaU, for some c. Here the assertion p is called the 
precondition and the assertion q is called the postcondition. The meaning of such 
a correctness formula is described informally as follows: 

Every terminating execution of S by an object of class c starting from a state 
satisfying p will end in a state satisfying q. 

As said before, reasoning about the local correctness of an object will be done 
relative to assumptions concerning those parts of its local process that depend 
on the environment. These parts are called bracketed sections: 

Definition 3.7. A bracketed section is a construct of the form (St ; $2), where $1 
denotes an I /O statement or a new-statement, and in $2 neither 2/O statements 
nor new-statements occur (note that $2 can be composed of several statements 
by means of sequential compositions, conditionals, or loops). 

Next we define intermediate correctness formulas, which describe the be- 
haviour of an object executing a bracketed section containing a new-statement 
or a communication between two objects in terms of its effects on a complete 
system of objects. 

Definition 3.8. An intermediate correctness formula can have one of the following 
two forms: 

�9 {P}(z,S){Q}, where (S) is a bracketed section containing a new-statement, 
with S E STat c, and z E LVarc, for some c. 

�9 {P}(zbS1) I[ (z2,S2){Q}, where, for some types c and c', Zl ~ LVar~ and 
zz c LVarc, are distinct logical variables and (S~) (S1 ~ S TaU) and ($2) 
($2 E STar c') are bracketed sections that contain I /O statements. 

The logical variables z, Zl, and z2 in the above constructs denote the objects 
that are considered to be executing the corresponding statements. More precisely, 
the meaning of the intermediate correctness formula {P}(z, S){Q} is as follows: 

Every terminating execution of the bracketed section S by the object denoted by 
the logical variable z starting in a (global) state satisfying P ends in a (global) 
state satisfying Q. 

The second form of intermediate correctness formula, {P}(zt, $1) II (z2, S;){Q}, 
has the following meaning: 

Every terminating parallel execution of the bracketed section S~ by the object 
denoted by the logical variable zl and of $2 by the object denoted by z2 starting 
in a (global) state satisfying P will end in a (global) state satisfying Q. 

Finally, we have global correctness formulas, which describe a complete sys- 
tem: 

Definition 3.9. A global correctness formula is of the form: 

{P}P{Q} 

Here p describes the local state of the root object. Initially the root object is the 
only existing object, so it is sufficient for the precondition of a complete system to 
describe only its local state. On the other hand, the final state of an execution of 
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a complete system is described by an arbitrary global assertion. We assume that 
the types of the variables occurring in both p and Q are among the standard types 
Int and Bool, and the classes defined by p. The meaning of the global correctness 
formula {p}p{Q} can be rendered as follows: 

If the execution of the program p starts with a root object that satisfies the local 
assertion p, and if moreover this execution terminates, then the final state will 
satisfy the global assertion Q. 

4. The Proof System 

The proof system we present consists of three levels. The first level, called the 
local proof system, allows us to reason about the correctness of a single object. 
Testing the assumptions that are introduced at this first level to deal with I/O 
statements and new-statements, is done at the second level, which is called the 
intermediate proof system. The third level, the global proof system, formalises the 
reasoning about a complete system. 

4.1. The Local Proof System 

The proof system for local correctness formulas is similar to the usual system for 
sequential programs. 
Definition 4.1. The local proof system consists of the following axiom and rules: 

Assignment: 

{p[e/x]}x := e{p} (LASS) 

Sequential composition: 

Conditional: 

Iteration: 

Invariance: 

{p}S,{r}, {r}S2{q} 
{p}sl;s2{q} 

{pAe}Sl{q}, {pA~e}S2{q} 
{p}if e then $1 else $2 fi{q} 

{pAe}S{p} 
{p}while e do S od{p A ~e} 

(LSC) 

(LCOND) 

(LIT) 

{p}S{p} (INV) 

provided that IVar(p) n IVar(S) = O. 
Substitution: 

{p}S{q} (SUB) 
p [l/z]}S {q [l/z]} 

provided that if z E LVar(q) then IVar(1) n IVar(S) = O, where z is a logical 
variable of the same type as the local expression I. 
Conjunction: 

{pl}S{ql}, {p2}S{q2} (CON) 
(Pl Ap2}S{ql A q2} 
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Consequence: 

P ~ Pl, {pl}S{ql},  ql --~ q 
{p}S{q} (LCR) 

The substitution operation [e/x] occurring in the above assignment axiom 
is the ordinary substitution, i.e., literal replacement of every occurrence of  the 
variable x by the expression e. This works because at this level we have no 
aliasing, i.e., it is not possible that different local expressions denote the same 
variable. In the intermediate and global proof  systems we shall have to take 
special measures to deal with aliasing. 

4.2. The Intermediate Proof System 

In this section we present the proof  system for intermediate correctness formulas�9 

4.2.I. The Assignment Axiom 

Definition 4.2. 
form 

The assignment axiom in the intermediate proof  system has the 

{P[e $ z / z . x l } ( z , x  := e){P} (IASS) 

First note that we have to transform the expression e to the global expression 
e ~ z and substitute this latter expression for z.x because we consider the execution 
of the assignment x := e by the object denoted by z. Furthermore we have to pay 
special attention to the substitution [e ~ z/z .x]  because the usual substitution does 
not take into account that there are many different global expressions that may 
denote the same variable z.x. This problem is solved by the following definition. 

Definition 4.3. Given a global expression g, an instance variable x of the same 
type, and a logical variable z E Uc LVarc, we define for any global expression g' 
the substitution g'[g/z.x] by induction on the complexity of  g' as follows�9 

g'[g/z.x] = g' i fg '  = z',n, nil, self, true, false 

(g'.y)[g/z�9 = g'[g/z.x].y if y • x 

(g'.x)[g/z.x] -- if g'[g/z.x] -- z then g else g'[g/z.x].x fi 

(gl -- g2)[g/z.x] = (gl [g/z.x]) ":-  (g2[g/z.X]) 

The omitted cases are defined directly from the application of  the substitution to 
the subexpressions, like the last one. This substitution operation is generalised to 
global assertions in a straightforward manner, with the notation P [g/z.x]. 

As an example, consider the postcondition Vi(1 < i <_ Is[ -0 (s �9 i).x - i) for 
the statement x := y + 1, executed by the object denoted by z. The precondition 
given by the axiom (lASS) is 

V i ( l _ < i _ < [ s ] - - ~ i f s i - z t h e n z . y + l e l s e ( s ' i ) . x f i  '----i). 

The best way to justify definition 4.3. is by comparing it to the ordinary 
substitution [e/x], which is used in the local assignment axiom (LASS). The 
essential property of this substitution is that the substituted expression, evaluated 
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in the state before the assignment, has the same value as the original expression 
in the state after the assignment. Quasi-formally, we could write this as 

Ill [e/x]]] (~r) = I[l~ (cr') 

where o -t is the state that results from executing the assignment x := e in the 
state ~. We could say that the substitution is a way of predicting the value that 
an expression or assertion will have after performing an assignment. 

It is easy to prove that the substitution operation defined in definition 4.3 has 
exactly the same property: 

I[g' [g/z.x]ll  (,~) = I[gt~ (o t) 

and 

where a t is the state that results from a by changing the value of the variable x 
in the object denoted by z to the value [[gll(a) that results from evaluating the 
expression g in the state a. 

The most important aspect of this substitution is certainly the conditional 
expression that turns up when we are dealing with an expression of the form 
g'.x. This is necessary because a certain form of aliasing is possible: After the 
assignment it may be the case that g, refers to the same object as the logical 
variable z, so that g'.x is the same variable as z.x, which has the value ~g]](o). It 
is also possible that, after the assignment, g' does not refer to the object denoted 
by z, so that the value of g'.x does not change. Since we can not decide between 
these possibilities by the form of the expression only, a conditional expression 
is constructed which decides dynamically. It is instructive to note that a similar 
form of aliasing arises in the case of substitution for array variables. 

The notation [./.] may seem overloaded now, but it is always possible to 
determine the required operation from the form of the arguments. 

4.2.2. The Creation of New Objects 

Definition 4.4. We describe the new-statement by the following axiom of the 
intermediate proof system: 

{P [z'/z.x] [new/z']}(z, x := new){P} (NEW) 

where z' does not occur in P. Here [new/z'] denotes another special substitution 
operation which will be explained below. 

This axiom reflects the fact that we can view the execution of the statement 
x := new as consisting of two steps: first the new object is created and temporarily 
stored in the logical variable z t, and then the value of this logical variable z r is 
assigned to the instance variable x of the object denoted by z. The second step 
is dealt with by the substitution [S/z.x] of definition 4.3, which takes care of all 
possible complications of aliasing. 

For the creation of a new object we have to define another substitution 
operation [new/z]. This is complicated by the fact that the newly created object 
does not exist in the state just before its creation, so that in this state we can 
not refer to it. Fortunately, we do need this substitution for all possible global 
expressions, but primarily for assertions, and in an assertion the logical variable z 
can essentially occur in only two contexts: either one of its instance variables is 
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referenced, or it is compared for equality with another expression. In both cases 
we can predict the outcome without having to refer to the new object. 

Definition 4.5. Let z ~ LVar~. For certain global expressions 8 we define 8[new/z] 
by induction on the complexity of g. We only list the interesting cases. 

z '[new/z]  = z' i f z '  C z 

z [new/z] is undefined 

g[new/z] = g if g = n, nil, self, true, false 

(z ' .x)[new/z] = z'.x if z' @ z 

(z.x) [new/z]  = n i l  

(g.y.x) [new/z]  = (g.y) [new/z] .x  

(gl -- g2)[new/z] = gl[new/z] -- g2[new/z] if gl,82 3 ~ z, if ... fi 

(81 -- z)[new/z]  = false if gl ~ z, if ... fi 

(z - -  8 2 ) [ n e w / z ]  - -  f a l s e  i f  g2 =~ z, if . . .  fi 

(z -- z ) [new/z ]  = t r u e  

Here we have ignored the conditional expressions (these can be removed before 
substituting). In all the other cases not listed above, the substitution [new/z] 
can be applied to an expression by applying it to the constituent expressions. In 
this way g[new/z] is defined for all global expressions g except for z itself (and 
for certain conditional expressions). Again it is rather easy to prove that this 
substitution has the desired property'  We have for global expressions g for which 
g[new/z]  is defined 

Jig [new/z]~ (a) = [[gl](a') 

where ~' can be obtained from a by creating a new object (with all its variables 
initialised to nil) and storing it in the variable z. 

Definition 4.6. We define P [new/z] by induction on the complexity of the global 
assertion P, assuming z c LVarc, for some c. 

g[new/z] as in definition 4.5 

(~P) [new/z ]  - :  = (P [new/z ] )  

(P1 A P2)[new/z] = (P l [new/z ]  A P 2 [ n e w / z ] )  

(3z 'P)[new/z]  = 3z ' (P[new/z] )  i f z '  E LVara, a ~ c,c* 

(3z 'P) [new/z]  = 3z ' (P[new/z ] )  V (P [z /z ' ] [ new/z ] )  

if z' ~ LVarc (z' --/: z) 

(3z 'P)[new/z]  = 3z'3z"(Iz't - I z ' l  A P[z" , z / z ' ] [new/z ] )  

if z ~ E LVarc., z" E LVarBoel* 

Here we assume that z" does not occur in P. The substitution [z",z/z'] will be 
defined in definition 4.7. It is important to note that for all boolean expressions 
g the expression g[new/z] is defined. 

The case of quantification over the type c of  the newly created object can be 
explained as follows: Remember that we interpret the result of  the substitution 
in a state in which the object denoted by z does not yet exist. In the first 
part 3z'(P [new/z]) of the substituted formula the bound variable z' thus ranges 
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over all the old objects. In the second part  the object to be created is dealt 
with separately. This is done by first substituting z for z' (expressing that the 
quantified variable z r takes the same value as the variable z) and then applying the 
substitution [new/z] (note that simply applying [new/S] does not give the right 
result in the case that z occurs in P). Together the two parts of  the substituted 
formula express quantification over the whole range of existing objects in the new 
state. 

Let us consider, for example, the statement x := new, to be executed by the 
object indicated by the logical variable z, and the given postcondition 

Vv(v.x (= nil --* v.y "-- 1) 

In order to determine the corresponding precondition given by the axiom (NEW), 
we first apply the substitution [z ' /z .x] ,  which leads to 

Vv(if v - z then z' e lse v.x fi # nil ~ v.y -- 1) 

We can remove the conditional expression by taking the equivalent assertion 

Vv((v - z A z '  -:/= ni l )  V (v 5~ z A v . x  ~ ni l )  --. v.y - 1) 

Now to this we apply the substitution [new/S] (note that we use here the 
V-version of the 9-case of  definition 4.6.), resulting in 

Vv((v ' -  z Atrue)  V (v ~ z Av.x ~ nil) ~ v.y -- 1) 

A ((false A true) V (true A nil ~ nil) --+ nil - -  1) 

which can be simplified to 

Vv(v - z V v . x  ~ nil --~ v.y - -  1) 

It is perhaps instructive to go through the application of the substitution 
[new/S] to the expression z' 4~ nil in some more detail: 

(z' @ n i l ) [ n e w / z ' ]  = 

=( (z '  "-- n i l ) [ n e w / z ' ] )  = 

~ f a l s e  = 

t rue  

So the application of a substitution [new/S] applied to an assertion of the 
form z' - nil consists of  a static evaluation of the assertion: Since a substitution 
[new/S] interprets z' as the new object we know a priori that z' - nil will 
evaluate to false. 

For quantification about  sequences of  objects of  class c, we need a slightly 
more elaborate mechanism. The sequences over which we quantify in the old 
state cannot contain the new object as an element. Therefore we use two sequence 
variables z r E LVarc* and z ~ E L V a r B o o l .  to code one sequence of objects in the 
new state. The idea of the substitution operation [ z ' , z /S ]  is that at the places 
where z" yields true, the value of the coded sequence is the newly created object, 
here denoted by the variable z. Where z" yields false, the value of  the coded 
sequence is the same as the value of z' and where z" delivers nil the sequence also 
yields nil. This is formalised in the following definition. 
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(gl " g2)[ 2 t ' ,Z/z ' ]  

( I z l l ) [ z " , z / z  '] = 

( I g 3 [ z " , z / z  l] = 

The generalization of  the 
tions is straightforward. 

Definition 4.'/. For certain global expressions g we define g[z" ,z / z ' ]  as follows 
(again we list only the interesting cases): 

z' [z", z / z'] is undefined 

~[z",z /z ']  = 2 i f ]  :p z l 

g[z" ,z /z ' ]  = g i f g  = n, nil,self, true, false 

( g . x ) [ z " , z / z ' ]  = g [ z " , z / z ' l . x  

(z I " g ) [ z " , z / z ' ]  = if  z"  " ( g [ z " , z / z l ] )  

t hen  z 

e lse  z' " (g[z",z/z '])  

fi 

g][z" , z / z  ~] " g2[z",z/z ']  if g] @ z' 

I z ' l  

[g[S , z / S ] [  i f g  :~z'  

above to other global expressions and to global asser- 

Again we have the desired property: 

o" ~ P [ n e w / z ]  ~ o " [ = P  

where or' can be obtained from o- by creating a new object (with all its variables 
initialised to nil) and storing it in the variable z. 

We illustrate the last definition by another example of  the use of axiom 
(NEW). Again we take the statement x := new executed by the object in z, 
but this time the postcondition is 3sVp 3i(s : i - p). Applying the substitution 
[zl/z.x] leaves this assertion unchanged, so we can directly apply the substitution 
[new/S].  We calculate in the following few steps (here b E L V a r B o o f ) :  

(3sVpqi ( s  " i - p ) ) [ n e w / z ' ]  

-- 3s 3bBoor  Isl - Ibl A (Vp 3 i ( s  i - p ) )  [b, z ' /s ]  [new/z ' ]  
N 

\ / 

- -  3s 3b Isl - Ibl A (Vp ] / ( i f  b : i t hen  z'  e l se  s �9 i fi - -  p ) )  [ n e w / z ' ]  

( / 

3s 3b Isl - Ibl A Vp 3 i ( b  " i A z '  "-- p )  V ( ~ b  �9 i A s " i - -  p ) )  [ n e w / z ' ]  
/ 

-- 3s 3b Is] - Ibl A Vp 3i((b "i  A fa lse)  V (~b  i A s '  i - -  p ) )  

A ] i ( b  �9 i A t rue )  V ( ~ b  �9 i A fa l se )  

- 3s 3b (Is[ "- Ibl A Vp 3i( -~b"  i A s "  i "-- p) A 3 i (b "  i ) )  

Here = denotes semantic equivalence, which means that the assertions on both 
sides will have the same truth value in every environment. (By the way, in any 
state that can occur in the execution of a P program, the above assertions will be 
true, since there is only a finite number of objects of any class.) 

4.2.3. Communication 

Now we define an axiom and some rules which together describe the communi- 
cation between objects. 
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Definition 4.8. Let zl E LVar~ and z2 E LVarc, be two distinct variables. 
Furthermore let $1 E STar c be of the form x?y or ?y and $2 = xr!e E STat ~' 
such that x E IVarc,, x r E IVarc, and the variable y is of the same type as the 
expression e. Such a pair of  I /O statements are said to match. The following is 
the communication axiom: 

{P[e ~ z2/zl.Yl}(zl,S1) II (z2, S2){P} (COMM) 

Note that the communication is described by a substitution that expresses the 
assignment of e .l z2 to zl.y (definition 4.3.). 

The following two rules show how one can use the information about the 
relationship between the receiver and the sender which must hold for the com- 
munication to take place, that is, the sender must refer to the receiver, and if the 
receiver executes an input statement of the form x ?y, it must refer to the sender. 

Definition 4.9. Let z E LVarc and z' E LVarc, be two distinct variables. Further- 
more let x?y, ?y ~ STatc and x'Ie ~ STat c' be such that both input statements 
match with the output statement. Then we have the following two rules: 

{P A z . x  - -  z '  A z '  # nil A z ' . x '  - -  z A z _z/= nil A R } ( z ,  x ? y )  II (z ' ,  x' !e){Q} (SR1) 
{P}(z,x?y) II (z',x'!e){Q} 

and 
{P A z'.x' "= z A z ~ nil A R}(z, ?y) [1 (z', x' !e){Q} (SR2) 

{P}(z, ?y)II (z',x'!e){Q} 

where R = (z # z') if c = c' and R = true otherwise. 
The following rule describes the independent parallel execution of two objects. 

Definition 4.10. Suppose that $1 E STar C and Sa E STar c' do not contain any I /O 
or new-statements. Furthermore let z E LVarc and z' E LVarc, be two distinct 
variables. Then we have the following rule: 

{P }(z, S1){R}, {e}(z', $2){@} (PAR1) 
{P}(z, S1) II (z',S2){Q} 

Note that this rule models the fact that the parallel execution of two local 
computations can be sequentialised. The next rule takes care of the case where 
the two bracketed sections do contain I /O statements. 

Definition 4.11. Let (S1;$2) E STat c and (S'I;S~) E STat ~' be two bracketed 
sections containing I /O  statements. Furthermore let z E LVarc and z' E LVare 
be two distinct variables. Then we have the rule 

{P}(z, gx) II (z',SI){R}, {R}(z, S2) IL (z',g~){Q} (PAR2) 
{P}(z, St;S2) II (z', SI;S~){Q } 

Finally, the intermediate proof  system contains rules corresponding to the rules 
for sequential composition, the conditional statement, the iterative construct, the 
consequence rule, and the substitution rule of the local proof system. These are 
straightforward modifications, so we only give the iteration rule as an example. 

Definition 4.12. Let whi le e do S od C STatc and z E LVarc. Then we have the 
following rule: 

{P A e $ z}(z, S){Q} (IIT) 
{P}(z,  whi le e do S od){P A ~e ,L z} 
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It is worthwhile to note that the axiom corresponding to the invariance axiom 
is derivable in the intermediate proof system. Furthermore we note that with 
respect to the substitution rule we have to require that the substituted variable is 
different from the variable z which represents the executing object. 

4.3. The Global Proof System 

In this section we describe the global proof  system. Two bracketed sections 
containing I /O  statements are said to match if the corresponding I /O statements 
match. A program p is said to be bracketed if every I /O statement and new- 
statement occurs in a bracketed section. An assumption is defined to be a local 
correctness formula about a bracketed section. Given a set A of assumptions, 
A ~- {p}S{q} denotes the derivability of the local correctness formula {p}S{q} 
from the local proof  system using the assumptions of A as additional axioms. 

It is interesting to note the similarity of the reasoning about I /O  statements 
and new statements in terms of  assumptions with the reasoning about recursive 
procedures. Let X be a procedure variable declared as the sequential program S. 
In [Apt81] we find the following rule for recursive procedures without parameters: 

(p}X{q} k- {p}S{q} 
{p}X{q} 

The idea is to prove the correctness of the procedure call X by assuming that it 
is correct and then prove that the body (S) of X satisfies the same specification. 
Once such a proof  has been given we are allowed to conclude the correctness of 
the call without assumptions. Now one of the main proof-theoretical difference 
between I /O  statements and new statements, on the one hand, and recursive 
procedures, on the other hand, is that the correctness of an I /O  statement (or 
new-statement) can not be inferred from the correctness of the statement in which 
it occurs: The correctness of  an I /O statement (or new-statement) can only be 
inferred from the correctness of the other components of the program. This is 
why the assumptions about I /O statements and new-statements are discharged 
on a different level of the proof system. This intermediate level between local 
reasoning and reasoning about a complete system consists of what is known as 
the cooperation test. 

Definition 4.13. Let p = {cl ~ $1 . . . . .  c, +-- Sn) be bracketed. Furthermore, for 
each i, 1 < i < n, let A i denote a set of  local correctness formulas about the 
bracketed sections occurring in Si such that Ai ]- {p~}S~{qi}. Finally, let I be some 
global assertion, which we shall call the global invariant. Now we say that the 
proofs Ai ~- {p~}S~{qi} cooperate with respect to the global invariant I, notation 
Coop(Aa,..., An, I), if the following conditions are fulfilled: 

1. The invariant I does not contain any instance variable that occurs at the 
left-hand side of an assignment outside a bracketed section. 

2. Let (R) and (R') be two matching bracketed sections such that {p}R{q} C Ai 
(1 < i < n) and {p'}R'{q'} E Aj (1 ~ j _< n). Furthermore let z c LVarc, and 
z' ~ LVa% be two new distinct variables. Then we require 

I- {I A p J, z A p' ~, z'}(z, R) I[ (z', R'){I A q + z A q' + z'} 

3. Let (R) be a bracketed section containing the new-statement x := new, with 
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x E IVarcj, such that {p}R{q} E Ai. Furthermore let z E LVarc, be a new 
variable. Then we require that 

[- {I A p  ~. z } ( z ,R){ I  A q  ~. z} 

and 

A (y - nil) ~ pj 
yelVar(Sj) 

4. The following assertion should hold: 

3z(p, { z A Vz'(z' "-- z) A A (Vzi false)) ~ I 
l<_i<n 

Here zi E LVarc, for 1 < i < n, and z, z r E LVarc~ (z' 4= z). 

The syntactic restriction in clause 1 on occurrences of variables in the global 
invariant I implies the invariance of this assertion over those parts of the program 
that are not contained in a bracketed section. Clauses 2 and 3 imply, among others, 
the invariance of  the global invariant over the bracketed sections. 

This global invariant expresses some invariant properties of the global states 
arising during a computation of p. These properties are invariant in the sense 
that they hold whenever the program counter of every existing object is at a 
location outside a bracketed section. The above method to prove the invariance 
of the global invariant is based on the following semantical property of bracketed 
sections: Every computation of p can be rearranged such that at every time there 
is at most one object executing a bracketed section containing a new-statement, 
and an object is allowed to enter a bracketed section containing a I /O  statement 
only if there is at most one other object executing a bracketed section. 

Clause 2 establishes the cooperation between two arbitrary matching assump- 
tions, where two assumptions are said to match if their corresponding bracketed 
sections contain matching I /O  statements. Note that since there exists only one 
object of class c,, the root-object, we do not have to apply the cooperation test 
between two matching assumptions of the set An. 

Clause 3 discharges assumptions about bracketed sections containing new- 
statements. Additionally the truth of the precondition of the local process of the 
new object is established. 

Clause 4 establishes the truth of the global invariant in the initial state. 
Note that the assertion Vz false expresses that there exist no objects of class c, 
assuming z c LVarc. The assertion Vz ' (S  - z) expresses that there exists precisely 
one object of class cn. 

In the following definitions, let p = (Cl *-- S1 . . . . .  cn ~ Sn). 

Definition 4.14. The program rule of the global proof system has the following 
form: 

Coop(A1 , . . . ,An , I )  Ai 1- {pi}Si{qi}, 1 <_ i <_ n 
{pn}p{I A Al<_i<_n Vzi (qi ~. zi)} (PR) 

Note that in the conclusion of the program rule (PR) we take as precondition 
the precondition of the local process of the root object because initially only this 
object exists. The postcondition consists of a conjunction of the global invariant 
and the assertions Vzi (qi { Zi) (Zi E L V a r J ,  which express that the final local 
state of every object of class ci is characterised by the local assertion q~. 
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Definition 4.15. We have the following consequence rule for programs: 

p ~ p', {p'}p{Q'}, Q' ~ Q 

{P}P{Q} 
(PCR) 

Definition 4.16. Furthermore, we have a rule for auxiliary variables: For a given 
program p and a (global) postcondition Q, let Aux be a set of instance variables, 
which occur only in assignments, such that 

�9 for any assignment x := e occurring in p we have that IVar(e) n Aux ~ 0 
implies that x E Aux, 

�9 the variables of the set Aux do not occur as tests in conditionals, loops, nor 
do they occur in I /O statements or new-statements of p, 

�9 IVar(Q) N Aux = O. 

Let p' be the program that can be obtained from p by deleting all assignments 
to variables belonging to the set Aux. Then we have the following rule: 

{P}P{Q} (AUX) 
{P}p'{Q} 

The rule for auxiliary variables can be explained as follows: To be able to prove 
some properties of a program p' it may be necessary to add a number of extra 
variables and statements to do some bookkeeping. If  these additions satisfy the 
above conditions, we are sure that they do not influence the flow of control of 
the program, and therefore they can be deleted after the proof of  the enlarged 
program p is completed. 

Definition 4.17. Next we have a substitution rule to remove instance variables 
from preconditions: 

{P}P{Q} (S) 
{p[I/x]}p{Q} 

provided the instance variable x does not occur in p or Q. In practice, this rule 
is mainly used for auxiliary variables. 

5. An Example Proof 

As an illustration of the proof system we shall now formally prove a property 
of the program listed at the end of section 2. We want to prove that exactly the 
primes up to n are generated. This amounts to proving the postcondition 

Vi(Prime(i) A i < n ~ 3pp.m -- i) (5.1) 

Here i and p are logical variables ranging over integers and objects of class P, 
respectively. The predicate Prime holds for an integer if and only if it is a 
(positive) prime number. 

To establish this postcondition we first introduce an auxiliary variable v (for 
'valid') of type 13oo1 in class P, which indicates that the value stored in the 
variable b is valid. The variable v is false precisely from the moment that the 
object sends the value of its b variable to its neighbour until the moment that it 
receives a new value for the variable b. Now we take a global invariant I which 
is the conjunction of  the following assertions: 
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11" Vp(p.m 4~ nil --+ Pr ime(p .m) )  

I2: Vp Vp'(p.m (= nil ~ (p' .m - nex tpr (p .m)  ~ p.I - p')) 

I3: VpVp' (p .b  < p' .b --* p.m > p'.m) 

14 : Vp Vp'(p.m -- p'.m ~ p -- pr) 

I5 : gg Vi(Prime(i)  A i < g.c --+ ~p(p.m -- i V p.b -- i)) 

I6: ggVp((p.m 5& nil --* 2 _< p.m < g.c) A (p.b 5 ~ nil ~ 2 < p.b < g.c) 

I7: VpVp ' (p .m (= nil Ap'.b 5 & nil Ap'.v -+ p.m < p'.b) 

I8: Vp(p.m =~ nil Ap.b =7= nil ~ p.m < p.b) 

In the above definition g is a logical variable of type G, so it will always denote 
the root object. The function nextpr  applied to an integer gives the next prime 
number. 

The assertion I2 expresses that successive primes are stored in successive 
P objects in the chain. Assertion 13 states that the prime candidates flow through 
the chain in their natural order. Assertion I4 states that each prime number 
is uniquely represented. Next, assertion I5 states that all the prime numbers 
among the candidates sent are represented or being processed. On the other hand 
assertion 16 essentially expresses that all the numbers which occur in the chain 
have been sent by the generator. Finally, I7 and I8 says that a candidate is always 
greater than any prime number already found: 17 states this globally, but only if 
the variable b containing the candidate is marked as valid by the flag v, and I8 
expresses it locally. 

The easiest way to represent the outcome of the local proof system is by 
means of a p r o o f  outline. This consists of an expanded version of the program: 
the statements concerning auxiliary variables are added, the bracketed sections 
are indicated by angle brackets, and the assertions that play a role in the local 
proof are inserted at the proper places, surrounded by braces. The proof outline 
for our example program is given in Fig. 2. 

Now we have to check the assumptions of the cooperation test. Here we shall 
deal with one pair of I /O statements and one new-statement. We first treat the 
following case: 

{I A ~0 ~ r A 1/) 3 ~, s}(r, ?m) II (s, I t b; v := false){/A ~] + r A (-~v) ,L s} (5.2) 

Here s and r are logical variables of type P denoting the sender and the receiver. 
We prove (5.2) using the rule (PAR2). The following nontrivial premisses are 

needed: 

{ I / k  tip 1 J, r}(s ,  v := fa l se ) { / /k  lpl ,~ r/k (-~v) ~ s} (5.3) 

{I A ~P0 J, r A ~P3 ], s}(r, ?m) II (s, I ! b){I A lpl J, r} (5.4) 

In order to prove (5.3), by the rule (IASS) and the consequence rule, we must 
show that the postcondition, after applying the substitution [false/s.v], is implied 
by the precondition. Now it is clear that I1-I6,  Ia, and ~1 $ r are not changed by 
this substitution, so they are subsumed by the precondition. For the other parts 
we first calculate as follows: 

((-~v) + s ) [ f a l se /s . v ]  = ( -~s .v ) [ fa lse /s .v ]  

= ~ i f  s - -  s t h e n  f a l s e  e l s e  s.v fi 

---= t r u e  
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(P ~-- {~P0 : l - - n i l A m - - n i l A b - - n i l }  

(?m); {~1:1----" nil Ab- - "  ni l} 
if m =~ nil 

then {I -- ni l} 

(I := new);  { t rue} 

(?b; v := true);  

{~2 : v A ( b  =t= nil --* Vi(2 _< i < m --~ i Xb))};  
whi le b @ nil 

d o { v A V i ( 2 _ < i < m ~ i  Xb)} 

i f m  / b  

then {~P3 : v A Vi(2 _< i _< rn ~ i j' b)} 

(I !b;  v := false) 

fi; {~v}  

(?b; v := true) {~P2} 
od; {b -- ni l} 

( l ! b )  {b "-- ni l} 

fi {b -- nil} 

: { t rue} 

(f : = n e w ;  c : = 2 ) ;  { 2 _ < c < m a x ( 2 , n + l ) }  

whi le c _< n 

do {2 _< c _< n} 

( f ! c ; c : = c + l )  

od; {c -- max(2,n + 1)} 

(f !ni l) 

{c -- max(2, n + 1)}) 

Fig. 2. The proof outline for our example program. 

Finally, we observe that I 7 [ f a l s e / s . v ]  is the formula 

VpVp'(p.m ~L nil Ap ' .b  ~ nil A if p' -- s then false else p'.v fi --~ p.m < i f .b) 

and this is clearly implied by I7. 
By the rule (SR2) and the axiom (COMM) the proof  of  the second pre- 

miss (5.4) amounts to establishing the truth of the formula 

I A tpO ], r A 1,0 3 ,], S A s.I "-- r ~ (I  A ID1 ,1. r ) [ s . b / r . m ] .  

Here we only show the following part of this: 

I A~p0 J, r Atp3 ,~ s A s . I  - -  r --* I t [ s . b / r . m ] .  

Now It [s.b/r.m] is the formula 

Vp(if p - r then s.b else p.m fi @ nil ~ P r i m e ( i f  p - r then s.b else p.m fi)), 

which is equivalent to 
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Vp((p @ r -+ (p.m @ nil --* Prime(p.m))) A 

(p -- r ~ (s.b @ nil ~ Prime(s.b))). 

For p @ r we have that  p.m @ nil ~ Prime(p.m) is implied by 11. For  p -- r we 
have to show that I A ~0 $ r A q~3 + s A s.I -- r implies Prime(s.b). Here the main 
point  is that  there exist no primes between s.m and s.b. For  suppose that  i is 
the least prime such that  s.m < i < s.b. Now by Is and I6 there exists a p' such 
that  p'.m - i or p'.b -- i. I f  p!.m "-- i then it follows by 12 that s.I - p'. But, as 
s.I "-- r we have p' - r, so p'.m - nil, which contradicts p'.m - i. Suppose now 
that p'.b -- i. We then have that  p'.b < s.b, so by 13 it follows that  p'.m > s.m. But 
since p'.m is a prime by l t ,  and i is the least prime greater than s.m, it follows that 
p'.m > i - p'.b, which contradicts 18. Therefore there can be no primes between 
s.m and s.b and then ~P3 + s implies that  s.b is a prime number.  

As another  example o f  an assumption for the cooperat ion test, we consider 
the following new-sta tement :  

{I A (I -- nil) J, z}(z, I :=  n e w ) { / A  ~0 ~, z.I} 

Here z is a logical variable ranging over objects o f  class P. By the axiom (NEW) 
the p roof  o f  this correctness formula  amounts  to proving the validity o f  

I A(I -- nil) ,[, z ~ (I A~0  ,L z.I)[z'/z.I][new/z'] 

where z I is another  new logical variable o f  type P. We only show that  I A (I -- 
nil) $ z implies I2[z'/z.[] [new/S] .  Now 12 [S/z.[] is the formula 

VpVp'(p.m @ nil ~ (p':m - nextpr(p.m) ~ if p - z then z' e lse  p.I fi -- p')) 

This is equivalent to 

VpVp'(p.m @ nil --* (p'.m - nextpr(p.m) 

(p -- z ---~ z' -- p') A (p @ z - ,  p.I -- p'))). 

To this formula  we apply the substitution [new/S] ,  which gives us 

VpVp'(p.m ~ nil --* (p'.m - nextpr(p.m) 

(p - z --* fa lse) A (p ~ z ~ p.I -- p'))) 

A Vp(p.m @ nil --* (nil -- nextpr(p.m) ~ (p "--- z ~ true) A (p @ z ~ false))) 

A Vp'(nil @ nil ~ (p'.m -- nextpr(nil) ~ (false ~ false) A (true --* nil -- p'))) 

A (nil @ nil ~ (nil -- nextpr(nil) ~ (false ---, true) A (true ~ false))) 

Note  that  the first conjunct  corresponds to interpreting p and p' as ranging over 
the old objects. The second conjunct  results f rom interpreting p' as the new object, 
the third f rom interpreting p as the new object, and the last f rom taking both  
p and p' as the new object. All conjuncts but the first are trivially true, and we 
can get the first conjunct  f rom I 2 if we can show that  VpVp'(p.m @ nil -~ pqm -- 
nextpr(p.m) ~ p (/= z). Let p @ nil, p' ~ nil, p.m @ nil, p'.m -- nextpr(p.m), and 
p -- z. By I2 we derive that  z.I - p~. But this contradicts the precondit ion z.I - nil. 

The other  parts o f  the coopera t ion test can be dealt with in the same way 
as the above ones. After that  the program rule (PR) can be applied, with the 
following result: 

{true}p'{I Ag .c  -- max(2, n + 1) A Vpp.b -- nil} 
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Here p' is the program with the auxiliary variable v, but by applying the aux- 
iliary variable rule (AUX) the same result can also be obtained for the original 
program p. It is easy to see that the above postcondition implies the desired 
assertion 5.1, so the latter can be obtained by the consequence rule (PCR). 

6. Semantics 

In this section we define in a formal way the semantics of the programming 
language and the assertion languages. First, in section 6.1, we deal with the 
assertion languages on their own. Then, in section 6.2, we give a formal semantics 
to the programming language, making use of transit ion systems.  Finally, section 6.3 
formally defines the notion of  truth of a correctness formula. 

6.1. Semantics of the Assertion Languages 

For every type a E Ct,  we shall let O a denote the set of objects of type a, with 
typical element c~. To be precise, we define O Int = Z and O B~176 = B, whereas 
for every class c E C we just take for O c an arbitrary infinite set disjoint  from 
any other set O d, d :p c. With O~ we shall denote O d u {_1_}, where _1_ is a special 
element not in O d, which will stand for 'undefined', among others the value of 
the expression nil. Now for every type d E C + we let O d" denote the set of  all 
finite sequences of  elements from O~ and we take O~. I = O d'. This means that 
sequences can contain _1_ as a component, but a sequence can never be I itself (as 
an expression of  a sequence type, nil just stands for the empty sequence). The set 
Uc Oc of non-standard objects we denote by O. The set of all objects is denoted 
by D. 

Definition 6.1. The set of functions from a set A to a set B we denote by A ~ B. 
Given a function f E A ~ B, a E A, and b E B, we use the variant  notat ion 
f { b / a }  to denote the function in A --. B that satisfies 

b if a' = a 

f { b / a } ( a ' ) =  f ( a ' )  otherwise. 

We will also use in the sequel the notation (A ~ B)• for the set (A --* B) U {_1_}. 

Definition 6.2. The set L S t a t e  c of local s tates  of objects of class c, with typical 
element 0, is defined by 

L S t a t e  ~ = 0 C x (I  Var  --~ D) 

A local state 0 describes in detail the situation of a single object at a certain 
moment during program execution. The first component determines the identity 
of the object and the values of the instance variables are given by the second 
component where we require that each variable is assigned an object of  its 
corresponding type. 

It will turn out to be convenient to define the function V E IVar  ~ D such 
that V(x) = _L, for every instance variable x. Note that this function V gives the 
values of  the variables of a newly created object: these are all initialised to nil. 
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Definition 6.3. The set GState  of global states, with typical element a, is defined 
as follows: 

GState  = 0 --* ( IVar  ~ D)• 

A global state describes the situation of a complete system of objects at a 
certain moment during program execution. Relative to some global state a an 
object ~ c O can be said to exist  if a(~) :~ _L, i.e. if a(~) is defined. In other words, 
the set {~ I a(~) ~ • represents the set of objects that have been created up to 
this point in the execution of the program. For any existing object ~ the values of 
its instance variables are specified by a(~) (where we require as above that each 
variable is assigned an object corresponding to its type). 

We introduce the following abbreviations: for c E C, the set {~ E O c I a(~) :~ 
l }  of the existing objects of class c, will be abbreviated to a (c), and a (c) u {• to 

a~ ). For d = Int or d = Bool we put a (~) = O ~. 

Definition 6.4. We now define the set L E n v  of logical environments,  with typical 
element co, by 

L E n v  = L V a r  --~ D 

Again, it is required that each variable is assigned an object corresponding to its 
type. 

A logical environment assigns values to logical variables. 

Definition 6.5. The following semantic functions are defined in a straightforward 
manner. We omit most of the detail and only give the most important cases: 

1. The function g c Exp~  ~ L S t a t e  c --* O ~  assigns a value ~[[e]l(0) to the 
expression e in the local state 0. A typical case: g[[self]((e, s)) = c~. 

2. The function Y E L E x p  c ~ L E n v  ~ L S t a t e  c ~ oax gives a value L#[[l]](co)(O) 
to the local expression 1 in the logical environment co and the local state 0. 

3. The function fr c GExPa ~ L E n v  ~ GState  ---, oax gives a value N[[g]l(co)(a) 
to the global expression g in the logical environment co and the global state a. 

4. The function d c L A s s  c ~ L E n v  --* LS ta t e  c ~ B assigns a value d~]](co)(0) 
to the local assertion p in the logical environment co and the local state 0. 
Here the following cases are special: For a boolean expression l we have 

true ifY[[l]l(co)(0) = t r u e  

~r = false if Y[[l]](co)(O) = false or ~ l l l ( c o ) ( O )  = _k 

and, for z c LVara  (with a = d,d*, d = Int, d = Bool), 

true if there is a n ~ E O  a s u c h t h a t  

d[[gz p]](co)(O) = s~C[[p]l(co{~/z})(O) = true 

false otherwise 

Note that at the level of the local assertion language we only have quan- 
tification over (sequences of) integers or booleans and that the range of 
quantification does not  include 2_. 

5. The function sur c GAss  ~ L E n v  ~ GState  ~ B assigns a value ~[[P~(co) (a)  
to the global assertion P in the logical environment co and the global state a. 
The following cases are special: For a boolean expression g we have 
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dlM(co)( ) = 

t r u e  i f  L.~l[g]](co)(~) = t r u e  

f a l s e  i f  s = f a l s e  o r  2,el [g] l (co)(a) = / 

and, for z E LVarcl, 

true if there is a n e 6 ~ I a )  suchtha t  

~r P~(CO)(r = d[P~(co{~/z})(a) = t r u e  

false otherwise 

Note that here d can be any type in C + and that the quantification ranges 
over ~(a), the set of existing objects of type d (which does not include _L). 
Furthermore, we have, assuming z E LVard., 

true if there is an ~ E 0 d• such 

dl[3z P]](co)(~) = that ct(n) E ~ )  for all n E N 
and d[[P~(co{c~/z})(o-) = true 

false otherwise 

For sequence types, quantification ranges over those sequences of which every 
element is either _L or an existing object. 

The values (r of  the global expression g and ~'[[P]](co)(a) of  the 
global assertion P are in fact only meaningful for those co and ~ that are 
consistent and compatible. 

Definition 6.6. We define the global state o to be consistent, for which we use the 
notation OK (o-) iff the value in o- of  a variable of an existing object is either _1_ 
or an existing object itself. Furthermore we define the logical environment co to 
be compatible with the global state o, with the notation OK (co, ~r), iff OK (o-) and, 
additionally, co assigns to every logical variable z of a simple type the value _L 
or an existing object, and to every sequence variable z a sequence of  which each 
element is an existing object or equals • 

The following lemma describes the relation between a local expression (asser- 
tion) and its translation into the global assertion language. 

Lemma 6.7. 
For every local expression I(E LExp c) and local assertion p(E LAssC), logical 
environment co, and global state o-, we have 

~e[l](co)( (~, a(~)) ) = ~r ~ z~(co{~/z} )(~) 

and 

= z i p  

Here c~ E ~(c) and z E LVarc. 

Proof Straightforward induction on the complexity of  I and p. [] 

It is worthwhile to note that the above lemma implies that indeed the value 
of a local expression (assertion) only depends on the local state of the object 
under consideration. Proof-theoretically this is important because it guarantees 
that local assertions are interference free from the execution of  co-existing objects. 

In the sequel we will also use the following notation of the truth of an 
assertion: 



296 

O,o~ ~ p 

for ~r = true, and, similarly, 

~,co ~ P  

for sr = true. 

R America and F. de Boer 

6.2. The  Transit ion Sys tem 

We will describe the internal behaviour  of  an object by means of  a transition 
system. One of  the main problems that  arises is the t reatment  of  communica t ion  
and creation statements, since the execution of  these statements clearly depend 
on the environment  as given by the other  objects running in parallel. A general 
approach to this problem consists in describing communica t ion  and creat ion 
statements in terms of  a local history which records all the communicat ions  
and activations an object has been engaged in. Such a history then provides an 
interface between an object and its environment,  and it will allow, as will be 
shown later, a compositional description of  the behaviour  of  a complete system 
in terms of  the local behaviour  of  its objects. 

Formally, we define a local configuration to be a triple (S, 0, h), where h denotes 
the local history. A history consists of  a sequence of  activation and communication 
records. A pair < e, fl >, with c~,/~ c O, is called an activation record. It records 
the informat ion that  the object e created ft. A triple < e, fl, 7 >,  with e, fl E O• 
is called a communication record. It records the information that  the object 7 is 
sent by c~ to fl, as a special case we also allow communica t ion  records < _1_, fl, 7 > 
which indicate that  the sender is unknown. The empty history will be denoted 
by 2. Given a history h and an activation or communica t ion  record r the history 
resulting from appending r to h will be denoted by h �9 r. To facilitate the 
semantics we introduce the auxiliary statement E, the empty statement, to denote 
termination. The following definition specifies the local transition system. 

Definition 6.8. We define 

�9 (x := e, 0, h) -* (E, 0', h), 
here 0 = (c~,s) and 0 ' =  (c~,s{glel (O)/x}). 

�9 (x := new, 0, h) --, (E, 0', h�9 < c~,/~ >), 
here 0 = (~,s) and 0 ' =  (~,s{~/x}). 

�9 (x!e,O,h) ~ (E,O,h�9 < c~,fl, 7 >), 
here 0 = (c~,s),/Y = s(x) =p I ,  and V = g~e~ (0). 

�9 (?y ,O,h)  ~ ( E , O ' , h � 9  < _l_,fl, v >), 
here 0 = (fl, s) and 0 '=  (fl, s{~,/y}). 

�9 (x?y,O,h) --* (E,O',h�9 < c~,fl, 7 >), 
here 0 = (fl, s), 0' -- (fl, s{v/y}), and c~ = s(x) =/= J_. 

�9 (E;S,O,h) --, (S,O,h). 
(S~, O, h) --* ($2, Or, h') 

($1 ; S, 0, h) --+ ($2; S, 0', h') 
�9 (if e then $1 e l se  $2 fi, 0, h) ---, ($1, 0, h), 

if g~e~ (0) = true. 
�9 (if e then $1 e l se  $2 fi, 0, h) --, ($2, 0, h), 

if g~e~ (0) = false. 
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�9 (whi le e do S od, O,h) --, (S ;wh i le  e do S od, O,h), 
i f  ~e~  (0) = true. 

�9 (whi le e do S od, 0, h) --~ (E, 0, h), 
i f  ~[e~ (0) = false. 

Note that locally the value which is received when executing an input statement 
is chosen arbitrarily (the only restriction being that its type corresponds with the 
one of the input variable), the same holds for the identity of the object created 
by the execution of a new-statement. Furthermore note that in the case of the 
execution of an input statement ?y the identity of the sender is not known locally, 
which is indicated by I .  The reflexive, transitive closure of the transition relation 
--* is denoted by ~*. 

To describe the behaviour of several objects working in parallel we introduce 
the notion of a global configuration: a triple (X,a,h), where X c 0 ~ STat. 
The idea is that X(e) denotes the statement to be executed by e. The history h 
represents the global history of the complete system, as such it is assumed to be 
compatible with the global state a in the following sense: 

Definition 6.9. We define the history h to be compatible with the global state a, 
with the notation OK (a, h) iff OK (a) and 

�9 there exists in o- a unique object, the root-object, for which there are no 
activation records of h witnessing its creation, 

�9 all the (non-standard) objects occurring in h do exist (in a), and, conversely, 
for every existing object (of a) but the root-object there exists exactly one 
activation record witnessing its creation, 

�9 furthermore, for every object (but the root-object) its activities as recorded by 
the history h all occur after its creation, 

�9 finally, we require that in every communication record of h the sender is 
determined, i.e. when < c~,/~, ~; > occurs in h then ~ =/= 2-. 

It is interesting to note that for example an object cannot create itself: since 
< ~, e > records the creation of e by itself, it records an activity of c~ and as such 
is required to occur after itself (every object is created only once) which is clearly 
impossible. 

To define the behaviour of a complete system in terms of the local behaviour 
of its objects we need the following: given a history h and an object c~ the 
subsequence of h consisting of all the records involving e (but for the one which 
records its creation) will be denoted by [h]~. With respect to the definition of 
the semantics of global configurations below it is instructive to point out the 
relationship between a local history h of an object c~ and its corresponding global 
view [ht]~, where h' represents the global history of a complete system: in [h']~ we 
know additionally all the objects which have been involved in a communication 
with e. Formally we have that h _< [h']~, where for any histories hi and h2: 

h~ _< h2 iff 

�9 h t = h 2 = 2 ,  o r  

�9 h i  = h~l�9 < c~,fl >, h2 = h~ �9  < cqfl >, 
with h' 1 <_ h~2, or 

�9 hi = h~o < fl, cq~ >, h2 = h~ �9  < fl',cc, y >, 
with h i _< h~ and if 1~ =p 2_ then/~ = fl'. 
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Definition 6.10. Now we can define the transition relation between global con- 
figurations. 

(X, a, h) ~ (X', a', h') iff for all existing (with respect to # )  objects 

(x(~), G, ha) ~* (x'(~), G, h'~) 

where h~ _< [h]~ and h'~ < [h']~. Furthermore, 0~ = {ct, o-'(~)), and G = (c~, a(a)) if 
o'(~) is defined, that is, 7 exists also in a, and G = {a, V), otherwise. 

The local behaviour of the objects is derived from the local transition system. 
The projection mechanism on the global history guarantees that the choices 
concerning communications as recorded by the local histories agree with each 
other. With respect to the creation of an object we know that indeed a new (not 
yet existing) object is called into existence because the history is assumed to be 
compatible with the global state, so every object but the root-object is created 
exactly once. 

It is instructive to compare the above global transition relation with the 
transition relation between configurations of the form (X, a) as defined along the 
lines as given in [ABK86]" there a transition (X, a) ~ (X I, # )  specifies either a 
local computation step of an object (including the creation of an object) or a 
communication between two objects. We have the following correspondence: 

(X, a) ~* (X', a') iff there exists h and h' such that (X, o-, h) ~ (X', a', h') 

which can be shown by induction on the length of the computation. 
Now we are able to define the meaning of the following programming con- 

structs: S, (z,S), (zl,SO II (z2,$2). 
Definition 6.11. We define 

5e[[Sl](O) = {0'l for some h: (S,0,2) ~* (E,O',h)} 

Definition 6.12. We define 

Jl[(z,S)]l(co)(a) = {#1  for some h, h" ({(c~,S>},o-,h) ~ ({(e,E>},a',h')} 

where co(z) = ~. (Here {(e,E)}, for example, represents X E O --* STat such 
that X(e) = S and X(fi) = E, for fl @ e.) Moreover, we define, for a logical 
environment co such that co(z) = c~ 5a co(Y) = ~', 

~I[(z,S) LI (z',S')ll(co)(~)= 
{a ' l  for some h, h': ({(e,S),{c(,S')},a,h)--* ({(e,E),(ef, E)},a',h')} 

To define the meaning of a program we first introduce the following definitions. 
Definition 6.13. Let p = (cl *-- S1,..., cn *-- S~). Furthermore let X E O --* STat. 
We define 

Inito(X )iff X(~) =Si  i f c~E0% 1 <_i<_n 

= E otherwise 

Next we define 

Finalp(X, a) iff X(:~) = E, for ~ E a ('~), 1 _< i _< n 

The predicate Initp(Finalp) characterises the set of initial (final) configurations 
of p. 

Now we are able to define the meaning of a program. 
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Definition 6.14. The semantics of programs is defined as follows: 

N[[p]](0) = {a I for some h: (X,0,2) ~ (X',a,h)} 

where Initp(X) and Finalp(X', ~'). The local state of the root-object is given by 
0 and as such we assume that all the variables x E 1Vard, where d c C, are 
uninitialised (that is O(x) = • Note that thus 0 can be viewed as a global state 
where only the root-object exists. 

6.3. Truth of Correctness Formulas 

In this section we define formally the truth of the local, intermediate, and global 
correctness formulas, respectively. First we define the truth of local correctness 
formulas. 

Definition 6.15. We define 

{p}S{q} iff Vo),0,0' c 5e[IS]](O) : O,o~ ~ p ~ O',co ~ q 

Next we define the truth of intermediate correctness formulas. 

Definition 6.16. We define 

{P}(z,S){Q} 
iff 

Vco, a ,a 'EJ[[(z,S)]](co)(a):  a, c o ~ P  ~ a',co ~ O  

and 

{p}(z ,S)  II (z',S'){Q} 
iff 

Vo~,a,a' ~ J[I(z,S) II (z',S')ll(o))(a) : a, co ~ P ~ ~',co ~ Q 

Finally, we define the truth of global correctness formulas. 

Definition 6.17. We define 

{p}p{Q} iff Vco, 0,a E ~[[p]](O) : O, co ~ p =~ a',co ~ Q 

7. Soundness 

In this section we prove the soundness of the proof system as presented in 
the previous section. The soundness of the local proof system is proved by 
a straightforward induction on the length of the derivation (see, for example, 
[Apt81]). In the following subsection we discuss the soundness of the intermediate 
proof system. 

7.1. The Intermediate Proof system 

We prove the soundness of the assignment axiom (1ASS) and the axiom (NEW). 
The soundness of the intermediate proof system then follows by a straightforward 
induction argument. To prove the soundness of the assignment axiom (IASS) we 
need the following lemma about the correctness of the corresponding substitution 
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operation. This 1emma states that semantically substituting the expression g' 
for z.x in an assertion (expression) yields the same result when evaluating the 
assertion (expression) in the state where the value of g' is assigned to the variable 
x of the object denoted by z. 

Lemma 7.1. 
For an arbitrary a, o9 such that OK(co, o) we have: 

f#Ig[g'/z.x]l(co)(o) = f~lgl(co)(a') 

and 

~r [g' /z.x]](co)(a) = d[[P]](co)(a') 

where a' = a{f#Ig'l(co)(a)/co(z), x} 

Proof By induction on the complexity o fg  and P. We treat only the case g = ga.x, 
all the other ones following directly from the induction hypothesis. Now: 

~r l g [g ' /z .x]  l (co)(a)  = 

f f l i f  gl[g'/z.x] --z then g' else gl[g'/z.x].x fil(co)(a) 

Suppose that fflgl[g'/z.x]l(co)(a) = co(z). Then we have that fflgl.x](co)(a') = 
a'(fflgll(co)(a'))(x). So by the induction hypothesis we have 

~r = a ' (co(z))(x)  = ,~r 

On the other hand if fflgl[g'/z.x]l(co)(a) --/: co(z) then: 

~ I g l  [g t / z ' x ] ' x l ( co ) (a )  = 

a(Cff~gl [gt /z .x]  ~ (co)(a))(x) = 

o ' (~r  = 

a'(~Clgl l (co)(a ' ))(x)  = 

f f lg l .x l (co) (a ' ) .  

(definition of o') 

(induction hypothesis) 

[] 

The following lemma states the soundness of the axiom (IASS). 

Lemma 7.2. 
We have 

{P[e ~ z/z.x]}(z,x :---- e){P}, 

Proof Let a, co, with OK(o ,a ) ,  such that a , o  ~ P[e J, z/z.x] and a' E J[[(z,x := 
e)~(o)(a). It follows that a' = a{ff[[e ~ z~(o)(a)/o(z),x} (note that by lemma 6.7 
we have ff[[e ~ z]](o)(a) = #[[e]]((~,a(~))), with ~ = co(z)). Thus by the previous 
lemma we conclude a', co ~ P. [] 

To prove the soundness of the axiom describing the new statement we need the 
following lemma which states the correctness of the corresponding substitution 
operation. This lemma states that semantically the substitution [new/z] applied 
to an assertion yields the same result when evaluating the assertion in the state 
resulting from the creation of a new object, interpreting the variable z as the 
newly created object. 
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L e m m a  7.3. 
For  an arb i t ra ry  co, co',a,a', fl c OC\a (c) such that  OK(co, a), a' = a {V / f l } ,  and 
co' = co{fi/z} (z c LVarc), we have for an arb i t ra ry  assert ion P :  

d ~ n  [new/z]  U(co)(a) = d ~ n  ](co')(a'). 

The p r o o f  of  this l emma  proceeds by induct ion on the structure o f  P.  To 
carry  out  this induct ion argument ,  which we trust the interested reader  to be 
able to perform,  we need the following two lemmas.  The  first o f  which is applied 
to the case P = g and the second of  which is applied to the case P = 3zP r, 
z E LVara, a = c,c*. 

L e m m a  7.4. 
For  an arbi t rary  a, co, with OK(co, a), global expression g and logical variable 
z c LVarc such that  g[new/z] is defined we have:  

~ g ~  (co')(a') = f#~g [new/z] ~(co)(a) 

where a '  = a{V / f l } ,  and co' = co{fi/z}, fi E 0 ~ \ a (c). 

Proof Induct ion  on the structure of  g. []  

The  following l e m m a  states that  semantical ly the subst i tut ion [z", z/z'] (z" E 
LVarBool. ,  z E LVarc, and z t E LVarc.) applied to an assert ion (expression) 
yields the same result when updat ing  the sequence denoted by the variable z '  to 
the value of  z at those posi t ions for which the sequence denoted by z" gives the 
value true. 

L e m m a  7.5. 
Let  co, a, e = co(z'),a '  = co(z") such that  la[ = la'[ and OK(co, a) 

Let e" c O ~* such that  

�9 Ir = I~l 

�9 for n E N:  cd(n) = c0(z) if  ~'(n) = t rue  

= c~(n) if ~'(n) = fa lse  

= • if c~'(n) = _1_ 

Let  09' = co{o~"/z'}. Then:  

1. For  every g such that  g[z",z/z ']  is defined: 

~[g[z",z/z']~(co)(a) = ~ M ( c o ' ) ( ~ )  

2. For  every P such that  z" does not  occur  in it: 

d i p  [z", z/z']l(co)(a) = d i p  l(co')(~) 

Proof  Induct ion  on the structure of  g and P. []  

Now we are ready to prove the soundness  of  the ax iom (NEW).  

L e m m a  7.6. 
We have 

{P[z'/z.x][new/z']}(z,x :=  new){P},  

where z E LVarc, and z ~ is a new logical variable of  the same type as x. 
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Proof Let o, co, with OK(a, co), such that a, co ~ P[z'/z.x][new/z'] and a' E 
J[[(z,x := new)ll(co)(a). We have by lemma 7.3 that o",co' ~ P[z'/z.x], where 
co' = co{[3/z'}, and a" = a{V/3},  with /~ = o'(co(z))(x). Now by lemma 7.1 it 
follows that o-', co' ~ P. Finally, as z' does not occur in P we have o-', co ~ P. [] 

7.2. The Global Proof System 

In this subsection we prove the soundness of the global proof system. We will 
prove only the soundness of the rule (PR), the other rules being straightforward 
to deal with. The problem with proving the soundness of the rule (PR) is how to 
interpret the premise A ~ {p}S{q}. We solve this problem by showing that a proof 
A I- {p}S{q} essentially boils down to a finite conjunction of local assertions. 
But first we observe that we may restrict the premise of the rule (PR) without 
loss of generality to local proofs which do not make use of the invariance axiom 
(INV) and the substitution axiom (SUB). This can be argued as follows. Let F -  
denote the local proof system without the axioms (INV) and (SUB). Then for 
any cooperating proofs (with respect to some global invariant I) Ai ]- {pi}Si{qi} 
(1 _< i _< n) it is not difficult to see that there exist proofs A'~ I-- {p~}S~{qi} that 
cooperate as well (with respect to I), with 

A' i ~_ {{p'}R{q'} l {p}R{q} EAi and {p}R{q} I- {p'}R{q'}} 

Note that  a proof {p}R{q} ~ {p'}R{q'}, with R a bracketed section, can only 
involve the assumption {p}R{q}, the invariance axiom, the substitution axiom, 
the conjunction rule, and the consequence rule. 

To show that any local proof A I-- {p}S{q} essentially boils down to a finite 
conjunction of local assertions we first introduce the following. 

Definition 7.7. Given a bracketed program p, R a substatement of p, we define R 
to be stable iff every bracketed section of  p occurs inside or outside of R. 

Next we define After(R, S), where R is a substatement of S, to be the statement 
to be executed when the execution of R has just terminated. On the other hand 
we will define Before(R, S) to be the statement to be executed when the execution 
of R is about to start. 

Definition 7.8. Let R be a substatement of the statement S. We define After(R, S) 
as follows: 

�9 l f R  = S then After(R,S) = E 
�9 I f S=SI ;S2  

then After(R,S) = After(R, S1);S2 if R occurs in S1 

After(R, S) = After(R, S;) if R occurs in $2 

�9 I f  S = if e t h e n  S1 e l s e  5'2 fi 

then After(R,S) = After(R, Sx) if R occurs in S1 

After(R,S) = After(R, S2) otherwise 

�9 I f S  = while e do $1 od then After(R,S) =After(R, S1);S 

Next we define Before(R,S) = R;S', where After(R,S) = E;S'. 
Note that for the above definition to be formally correct we have to assume some 
mechanism which enables one to distinguish between different occurrences of an 
arbitrary statement. We will simply assume such a mechanism to exist. So in the 
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sequel when referring to a statement we in fact will sometimes mean a particular 
occurrence of that statement. 

Now we can state the following lemma which reduces a proof  A t--  {p}S{q} 
to a finite conjunction of local assertions. 

Lemma 7.9. 
Let S be a statement such that every I / O  statement and new statement occurring 
in it is contained in a bracketed section. Furthermore let A be a set of  assumptions 
about  the bracketed sections occurring in S. Then, A t-- {p}S{q} iff there exist 
for every stable substatement R of S local assertions Pre(R) and Post(R)  such 
that: 

�9 {Pre(R)}R{Post(R)}  ~ A, for R a bracketed section 

�9 p --* Pre(S), Post(S) ---> q 
�9 Pre(R) --* Post(R)[e/x],  R = x := e 

�9 Pre(R) --* Pre(Rt),  Post(R1) ---> Pre(R2), and Post(R2) --+ Post(R),  R = R1;R2 
�9 P r e ( R ) A  e ---> Pre(R1), P r e ( R ) A - ~ e  --* Pre(R2), Post(R1) ~ Post(R),  and 

Post(R2) --* Post(R),  R = if e then R1 else  R2 fi 
�9 P r e ( R ) A  e -* Pre(R1), Post(R~) --* Pre(R), and P r e ( R ) A  ~e --* Post(R),  

R = while e do R1 od 

Proof  Straightforward induction on the structure of  S. [] 

The soundness of  the rule (PR) is implied by the following theorem. 

Theorem 7.10. 
Let p = (ca *--- $1 . . . . .  c, *-- Sn) be bracketed and 

Ai = {{Pre(R)}R{Post(R)}  j R a bracketed section occurring in Si} 

be such that the local proofs Ai ~ -  {pi}S~{q~} cooperate with respect to the global 
invariant I .  

Next let (X,0,2) ---> (X ' , a ,h )  be a global computat ion such that Initp(X),  
and for every ~ ~ a (c') (1 < i < n) we have that X'(c0 equals Before(R, Si) or 
After(R,  Si), with R a bracketed section, or X'(c0 = E. Finally, assume that: 
O, co ~ Pn. Then: 

1. a, co ~ I 
2. For e v e r y .  6 o -(c'l (1 < i < n) we have: 

�9 if X ' ( . )  = Before(R, Si) then (., a'(~)), co ~ Pre(R), 
�9 if X ' ( . )  = After(R,  Si) then (~, a ' ( . ) ) ,  co ~ Post(R),  

�9 if X ' ( . )  = E then (., a'(~)), co ~ qi. 

Proof  The proof  proceeds by induction on Ihl, i.e. the length of the history h. 
Ihl = 0 :  

Because 0, co ~ Pn, and by the cooperation test we are given the validity of  

3z,(p,  ~ z,  A Vz',(z', - z,) A A (Vzifalse)) --* I 
l <_i < n  

we have that 0, co ~ I (with 0 viewed as a global state where only the root-object 
exists). Now a agrees with 0 with respect to the variables occurring in I (the 
computat ion consists solely of  a local computat ion of the root-object which does 
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not involve the creation of objects or communications and as such it is guaranteed 
not to affect the instance variables of I), so a, co ~ I. The remaining part of this 
case then proceeds by a straightforward induction on the length of the local 
computation of the root-object using lemma 7.9. 

Next we consider the case Ihl > 0: 
First, let h = h'. < ~, fl >, with ~ E 0% fl E 0% We may assume without loss of 
generality that we can decompose the computation into (X, 0, 2) --, (X", a', h') and 
(X", o-',h') ~ (X', a, h) such that the latter computation starts with the creation 
of fl by e and proceeds with the local computations of ~ and fl. Of  course 
this can be proved formally. However a formal proof being straightforward but 
rather tedious notationally we think we are justified in giving only the following 
informal explanation: Consider the moment of the computation that the object 
is about to enter the bracketed section execution of which consists of the creation 
of ft. From that moment on all objects execute independently from each other, 
which implies that from here on we can sequentialise the local computations in 
an arbitrary way. 

Let for ck E {cl . . . . .  cn}, 7(5 ~ ~,fi) E O ok, X'(7) = X"(7) = Before(R',Sk), 
for some bracketed section R ~. From the induction hypothesis we know that 
(7, a'(7)), co ~ Pre(R'). But a'(7) = a(7), so (7, a(7)), co ~ Pre(R'). Analogously 
for X"(7) = X'(7) = After(R', Sk), E (R' a bracketed section). 

Furthermore it follows by the induction hypothesis (and lemma 6.7) that 

a', co{e/z} ~ (I A nre(R) t z) 

where X"(a) = Before(R, Si), with R the bracketed section which gives rise to the 
creation of  fl by c~. Here z E LVarc, is a fresh variable. We are given that (by the 
soundness of the intermediate proof system) 

{I A nre(R) J, z}(z, n){I A Post(R) t z} 

Let s be the local state of a just after the execution of the bracketed section R. 
We have that 

a'{s/a, Vlfl} E J[[(z, R)]](co{e/z})(a'). 

So we may infer that 

a'{s/a, V /fi}, co{co~z} ~ (I A Post(R) J, z) 

As z does not occur in I and a agrees with #{s/~, V/fi} with respect to the 
variables occurring in I (note that the local computations of a and fl do not 
affect the variables of I) we have that a, co ~ I. 

Since (~,s),co ~ Post(R) and (fi, V),co ~ pj (note that we are given the 
validity of the assertion AxcWar(sj)(x "- nil) ~ pj) we then can proceed by a 
straightforward induction on the length of the local computation of ~ and fl, 
respectively, using lemma 7.9. 

Finally, let h = h'* < c~,fl, 7 >, where, say, e E O%fl E OCJ: Again, we 
may assume without loss of generality that we can decompose the computation 
(X, 0, 2) ~ (X', a, h) into (X, 0, 2) ~ (X", a', h') and (X", a', h') ~ (X', a, h) such 
that the latter computation starts with the communication between a and fi and 
proceeds with the local computations of e and ft. 

For 7 ~ =p c~, fi the desired result follows from the induction hypothesis as in the 
previous case. Let X"(a) = Before(R, Si) and X"(fl) = Before(R', Sj), where R and 
R' are the bracketed sections which give rise to the communication < ct, fl, 7 >. 
By the induction hypothesis it then follows that 
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a',~o ~ I  

(~, #(~)), co ~ Pre(R) and 

(fl, a'(fl)), ~o ~ nre(R') 

Let z E LVarc~,z' E LVar~j be fresh variables. It then follows that 

a', co{~, fl/z, z'} ~ (I A Pre(R) J, z A nre(R') ~ z') 

We are given the validity of the formula 

{I A Pre(R) ~ z A Pre(R') ~ z'} 
(z, R) II (z', n') 

{I A Post(R) ~ z A Post(R') ~ z'} 

Let s and s' be the local states of a and fl just after the execution of  the bracketed 
sections R and R'. It then follows that 

a'{s,s'/~,fl} C J[[(z,R) II (z',R')](co{~,fl/z,z'})(a') 

From this we derive that #{s, s'/a, fi}, co ~ I (so, since the local computations of 
and fl do not affect the variables of 1, we have a, co ~ I), (a, s), co ~ Post (R), 

and (fl, s'}, co ~ Post(R'). Finally, we proceed by a straightforward induction on 
the length of  the local computation of a and fi, respectively, using lemma 7.9. [] 

8. Completeness 

In this section we prove the completeness of the proof system, that is, we prove 
that an arbitrary valid global correctness formula is derivable. We start with an 
outline of the approach followed. Let {p}p{Q} be a valid correctness formula. The 
strongest postcondition of a program p with respect to a precondition p, notation 
SP(p,p), is defined as follows: 

a, co ~ SP(p,p) iff 30 : 0,~o ~ p and a E ~[[p]](0) 

It follows that ~ {p}p{SP(p,p)} and for every valid correctness formula {p}p{Q} 
we have ~ SP(p,p) ~ Q. Thus to prove the derivability of  any valid cor- 
rectness formula {p}p{Q}, it would be sufficient to show the expressibility of 
SP(p,p) and the derivability of  {p}p{SP(p,p)}. We consider the derivability of 
{p}p{SP(p,p). Let p = (cl ~ S1 . . . .  ,c,  ~- S,). Consider the local correctness 
formulas { p i } S i { S P ( p i ,  S i ) } ,  where Pi = Ax6lVar(S~)(  x - -  nil), for 1 _< i < n, p, = p, 
and 

O, co ~ SP(p,S) iff 30' : O' ~ p and 0 E 5e[[S]](O') 

Assuming the derivability of {pi}Si{SP(pi, Si)) the rule (PR) would allow to derive 

{P}P{A Vzi (SP(pi, Si) ~. zi)) 
i 

Thus it would be sufficient to show the validity of AiVzi (SP(pi, Si) ~ zi) 
SP(p,p). Let a, co ~ AiVzi (SP(pi, Si) ~ zi). It follows that for every ~ e o -(c') 
(1 < i < n) there exists a local computation (Si, 0~, 2) ~ (E, (~, o-(~)), h~), where 
0~, co ~ p, if ~ equals the root-object, and 0~ = (a, V), otherwise. However from 
this we cannot conclude that there exists a computation of p resulting in a 
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because the local histories h~ can be incompatible in the sense that there does 
not exist a global history h such that for all existing c~ we have h~ _< [h]~. To be 
able to express this additional information we incorporate the local histories in 
the local state as auxiliary variables. We then introduce a global invariant I to 
express the compatibility of the local histories. 

Given the above outline we will first discuss completeness of the local proof 
system. In the second subsection we introduce local histories in the programming 
language and in the assertion languages. Then we show completeness by showing 
that the proofs of the local correctness formulas {pi}Si{SP(pi, Si)} cooperate 
with respect to the global invariant as informally described above. In section 
9 we discuss the expressibility of the local assertions SP(pi, Si) and the global 
invariant. 

Without loss of  generality we may assume that the sets C and IVar are finite. 

8.1. Completeness of the Local Proof System 

In this subsection we prove the completeness of the local proof system, i.e. the 
derivability of any valid local correctness formula {p}S{q}. Now it is well-known 
that the local proof system is complete for correctness formulas of statements in 
which there occur no I /O  or new-statements. We want to generalise this result to 
arbitrary statements. Since the local proof system only allows one to reason about 
I /O  or new-statements in terms of assumptions, completeness of the local proof 
system amounts to proving the derivability of a valid correctness formula {p}S{q}, 
where every I /O and new-statement of S occurs in a bracketed section, from a 
set of assumptions about the bracketed sections of S. Of course in principle we 
could simply introduce all the valid correctness formulas of bracketed sections as 
assumptions, however since we are interested in constructing proofs we require 
the set of assumptions to be recursive. 

Definition 8.1. Let Pre(R) = A x c i v a r ( X  "-:-- Zx) for any bracketed section R. We 
define Post(R) = SP(Pre(R), R). Here Zx is a logical variable uniquely associated 
with the variable x. 

The variables zx are used to freeze the initial values of their corresponding 
variables x. In section 9 we show how to express in the local assertion language 
the strongest postcondition of a statement R with respect to a precondition p. 
The formula {Pre(R)}R{Post(R)} we call the strongest correctness formula of 
R. Note that we have ~ {Pre(R)}R{Post(R)}, for any R. More interestingly the 
assertion Post(R) describes the semantics of R in the following sense: for any 
local states 0 and 0' we have 0' c 5e[[R~(O) iff 0',o9 ~ Post(R), where co assigns 
to every logical variable zx the value of x in 0. 

Now we have the following completeness result for the local proof system. 

Theorem 8.2. 
Let A denote the set of correctness formulas {Pre(R)}R{Post(R)}, with R a 
bracketed section of S; then we have for any valid formula {p}S{q} 

A {p}S{q} 
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Proof The proof  proceeds by induction on the structure of S. We treat the 
case that S is a bracketed section, all other cases are treated as in the standard 
completeness proof of the local proof  system for statements without I /O  or new- 
statements. Let R be a bracketed section for which the formula {p}R{q} is valid. 
Without loss of  generality we may assume that the variables Zx do not occur in p 
and q (otherwise substitute fresh logical variables for the variables Zx in p and q, 
follow the proof below for the resulting correctness formula, and conclude with 
an application of the substitution rule to return to the original assertions p and 
q). We have the following instance of  the invariance axiom 

{p'}R{p'} 

where p' results from p by substituting every variable x by its corresponding 
variable Zx. By the conjunction rule we derive from {Pre(R)}R{Post(R)} and the 
above instance of the invariance axiom the formula 

{Pre(R) A p'}R{Post(R) A p'} 

Now it is not difficult to check that the validity of the correctness formula {p}R{q} 
implies the validity of the assertion Post(R) A p, ~ q. Thus an application of the 
consequence rule gives the formula 

{Pre(R) A p'}R{q} 

Then we proceed by an application of the (local) substitution rule, substituting 
x for zx, which gives us after a trivial application of the consequence rule our 
desired conclusion: 

{p}R{q} 

It is worthwhile to note that the above proof follows basically the structure of the 
completeness proof  for recursive procedures as described in, for example, [Apt81]. 

[] 

8.2. Histories 

As explained above we want to modify a program p by adding to it assignments 
to so-called history variables, i.e., auxiliary variables which record for every object 
its history, the sequence of  communication records and activation records the 
object has participated in. In order to be able to compute the local history of an 
object we extend our programming language. We do so by introducing instance 
variables ranging over sequences. Thus we have now also for sequence types d* 
a set of instance variables IVard.. We redefine now the set of  expressions Exp,, 
with typical element e. 

Definition 8.3. The new definition for the set of  expression is as follows: 
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e(e Exp,) ':= x if  x ~ IVar~ 

self  if  d = c 

nil 

n 

t r u e l f a l s e  i f d = B o o l  

[el if  e E Exp, . ,  a = Int 

el o e2 if  el,  e2 E ExpCd., a = d* 

(e) if e ~ EXp~d, a = d* 

el + e 2  if  ebe2  C Expcd, d = Int 

el - -  e2 if  el ,  e2 E Exp, ,  a = Bool 

The expression el o e2 denotes  the conca tena t ion  of  the sequences el and  e2. 
The  sequence consis t ing o f  the e lement  e is deno ted  by (e). 

The  set o f  s ta tements  STatc is defined as before.  Ass ignment  s ta tements  now 
add i t iona l ly  m a y  have the form x :=  e (where x, e ~ Exp, . ) .  Programs  are defined 
as before.  

Definition 8.4. The set 

l(E Lexp~)  : :=  

o f  local  expressions LExp]  is ex tended  as follows. 

z if z E LVar ,  

x if  x E lVar ,  

self  if  a = c 

nil 

n if  a = Int 

t r u e l f a l s e  i f a = B o o l  

ll : 12 if 11 c LExp} . ,  12 c LExP~n t, a = d 

Ill if  I E LExp} .  

(1) if  I C LExp~, a = d* 

11 o 12 if  11,12 c LExpCd., a = d* 

11 + 12 if lb 12 C LExP~n t 

11-12 if  11,12 E LExpcd, a = Bool 

Local  asser t ions are defined as before.  
As we do  not  want  to redefine our  subs t i tu t ion  opera t ions  we do  not change  

our  g lobal  asser t ion l anguage  but  for a l lowing ins tance var iables  ranging  over 
finite sequences. As a consequence we have to redefine the defini t ion o f  the 
t r ans fo rma t ion  o f  a local  expression,  local  asser t ion to a g lobal  expression,  g lobal  
assert ion,  respectively.  We do so by viewing the g lobal  expressions (g), gl o g2 
as abbrev ia t ions  in the fol lowing sense: Suppose  the express ion (g) occurs  in 
the asser t ion P .  Let  P '  be such tha t  P'[(g) /z]  = P. Then we can view P as an 
abbrev ia t ion  of  the asser t ion 

3z(Izl - 1 A z  : 1 --  g A P ' )  
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In case an expression of the form gl o g2 occurs in P, let P '  now be such that 
P'[g l  o g2/z]  = P.  Then we can view P as an abbreviation of the assertion 

3z(lzl - I g l ]  + Ig2] A 

Vi(1 < i < ] g l ] - + z  : i  "--gl :i) A 

Vi(lgll] < i < [z] ---* z : i -- g2 : i) A 

P')  

We can define now 1 $ g simply as follows: 

z , [ g  = z 

x ,~ g = g.x  

self ~ g = g 

(0 ~ g = (I ~ g) 

11o12 ,~ g = ll ,~ g o l2 ~, g 

The transformation p ~ g is defined accordingly. 
Note that the resulting assertion, in the case that p contains these newly 

introduced expressions, really is an abbreviation of an assertion. 
Next we show how to extend a given program with auxiliary variables such 

that the resulting program additionally computes the local history of each object. 
Unfortunately we cannot simply represent a history by a sequence variable, since 
sequence variables range over sequences of objects of  a particular type. However 
we can encode a local history using for each class c variables outc, inc, actc E 
IVarc. ,  where outc records the sequence of objects of class c to which an object 
has been sent, in~ records the sequence of objects of class c from which an object 
has been received, and act~ records the sequence of  objects of  class c that have 
been created. Furthermore we need sequence variables for each type d which 
record the values sent, received, respectively. The details are left to the reader. In 
the following we will simply represent the data structure used to encode the local 
history by a 'virtual' sequence variable t which ranges over sequences of objects 
not necessarily of the same type. Updates to the data structure which model the 
updates to the local history corresponding to a communication or activation will 
be represented by the corresponding assignments to the virtual variable t. Thus 
we have the following definition: 

Definition 8.5. First we transform an arbitrary I/O statement and new statement 
into a bracketed section which includes a corresponding update to the local 
history as represented by t: 

x?y => (x?y;t := to (x ,  self, y)) 
x ! e  ~ ( x ! e ; t  : = t o ( s e l f ,  x , e ) )  

?y =~ (?y;t : = t o (n i l ,  self, y)) 
x :-----new ~ (x : = n e w ; t  : = to (se l f ,  nil, x)) 

Note that we model an activation by a communication to an unknown receiver. 
Since in communication records the receiver is always known we thus can retrieve 
from a sequence of objects the corresponding history. For example the sequence 
(e, nil, fl, e',B',7'), where fi' 5~ nil represents the history < c~,fl >, < c(,fl ' ,  7' >. 
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Let for an arbitrary unbracketed statement S the result of applying the above 
transformation, defined by induction on the structure of S, be denoted by [S]. 
Given a program p = (+- S1,..., Cn +--- Sn), we put [p] = (Cl ~ IS1] . . . .  , cn ~ [Sn]). 

8.3. Completeness of the Global Proof System 

After having gone through the preparatory work of the previous subsections 
we are now ready to prove completeness of the global proof system. First we 
observe that the proofs A F {p}S{SP(p, S)}, for any bracketed S and precondition 
p, with A the set of correctness formulas {Pre(R)}e{Post(R)}, R a bracketed 
section of S, do cooperate with respect to the empty global invariant I = true 
(which we leave the involved reader to verify)! So in fact the global invariant 
is only used to strengthen the postcondition of the conclusion of the rule (PR), 
and the proof  obligations of the cooperation test are used to establish the truth 
of the global invariant on termination. In this respect our approach differs from 
the standard completeness proof given in [AFR80] for CSP where the global 
invariant is necessary for the cooperation test. This difference is essentially due 
to the fact that our local correctness proofs A I- {p}S{SP(p,S)} are modular in 
the sense that they can be used in different programs, whereas in [AFR80] the 
local proofs encode information of the specific structure of the program given. In 
a similar way our assumptions are modular too, i.e., they can be used in different 
statements, whereas in [AFR80] the assumptions encode information about the 
specific structure of the entire local statement in which the bracketed sections 
o c c u r .  

We will now give the formal definition of the global invariant I. 

Lemma 8.6. 
There exists a global assertion I such that a, co ~ I iff there exists a global history 
h such that h is compatible with a (formally, OK (a, h)), and for all existing ~ we 
have a(a)(t) < [h]~. 

Proof See section 9. [] 

We next show that the proofs A F {p}[S]{SP(p, [S])}, for any (unbracketed) 
statement S (such that no sequence variables occur in S) and precondition p, 
with A the set of formulas {Pre(R)}R{Post(R)}, R a bracketed section of [S], 
cooperate with respect to the global invariant I as defined as above. Actually, 
it only requires a straightforward 'unravelling' of the definitions to see that the 
cooperation test holds trivially. 

First we show how to discharge assumptions about bracketed sections con- 
taining a new-statement. 

Lemma 8.7. 
Let R = x := new; t := t o (self, nil, x) be a bracketed section occurring in [S] 
(S E STatC), then: 

~- {I A Pre(R) $ z}(z,R){I A Post(R) ~ z} 

where z r LVarc is a new variable. 

Proof By the axioms (IASS) and (NEW) it suffices to show that: 

I A Pre(R) $ z ~ (I A Post(R) $ z)[z.t o (z, nil, z.x)/z.t][z'/z.x][new/z'] 



Reasoning about Dynamically Evolving Process Structures 311 

where z r c LVar~j is a new variable. It is worthwhile to notice that the substitution 
[z.t o (z, nil, z.x)/z. t]  actually represents a corresponding multiple substitution to 
the sequence variables used to encode the local history. 

Let a, co ~ I A Pre(R) $ z and # c J[[(z,R)~(co)(a). It is easy to check that 
a',co ~ I. Furthermore from a' E J[[(z,R)]](co)(a) it follows that (c<,a'(c~)) E 
5P[[R]]((c~,a(e))), where c~ = co(z). From a, co ~ Pre(R) ~ z we subsequently infer 
by lemma 6.7 that (c~,a(c@,co ~ Pre(R). By the definition of Post(R) we thus 
derive that (~, a'(~)), co ~ Post(R),  or, in other words, a', co ~ Post(R) J, z. 

Summarizing we have 

a', co ~ (I A Post(R) J. z), 

from which in turn it is not difficult to derive by an application of the lemmas 
7.1 and 7.3 that: 

a, co ~ (I A Post(R)  J, z)[z.t o (z, nil, z .x)][z ' /z .x][new/z ']  

[] 

Next we show how to discharge assumptions about matching bracketed sec- 
tions. 

Lemma 8.8. 
For two arbitrary matching bracketed sections R1 and R2, occurring in, say, 
[S~], [$2] ($1 E STat~,S2 E STat~'), we have: 

{I A Pre(Rt)  J. z A Pre(R2) J. z'} 

f- (z, R1) II (S,  R2) 

{I A Post(R1) ~ z A Post(R2) ~ z'} 

where z E LVarc, S E LVarc, are two new distinct variables. 

Proof  We prove the following case, the other ones are treated in a similar way: 
Let R1 = x!e; t  := to (self, x,e), R2 = ? y ; t  := to  (nil, self, y), and c ~ c'. Let [in], 
[out] abbreviate the substitution [z'.t o (nil, z I, z'. y ) / z'.t] and [z.t o (z, z.x, e J, z ) / z.t], 
respectively. (As above, note that actually these substitutions represent multiple 
substitutions to the sequence variables used to encode the local history). 

By the axioms (COMM) and (IASS), the rules (SR2), (PAR1) and (PAR2) it 
suffices to show that: 

Let 

I A Pre(R1) ~, z A Pre(R2) ~, z' A z.x = z I A z.x ~ nil 

(I A Post(Rt)  $ z A Post(R2) ~ z')[in] [out] [e ; z/z' .y].  

a, co ~ (I A Pre(R1) ~ z A Pre(R2) ~, z I A z.x = z I A z.x ~ nil) 

and 

# c Ygf(z, RI) II (z',R2)~(co)(~) 

(note that such 0 -I exists because a, co ~ z.x = z l A  z.x ~= nil). Furthermore 
let c~ = co(z) and fl = co(S). It is easy to check that a',co ~ I. From a' E 
J[[(z, Rt)  ]r (z1,R2)](co)(a) it follows that (e,a'(e)) E 5P[[Rd]((e,a(c@) and 
([3, a'(fi)) E 5P[[R2]]((fl, a([3))). From a, co ~ Pre(R1) $ z A Pre(R2) $ z' it follows 
by lemma 6.7 that (e, a(c~)), co ~ Pre(e l )  and (fl, o-'(fi)),co ~ Pre(e2). By the 



312 R America and F. de Boer 

definition of Post(R1) (Post(R2)) we then infer that (~,#(cQ),co ~ Post(R1) 
((fl, a'(fl)},o) ~ Post(R2)), that is (by lemma 6.7), a',co ~ Post(R1) ~. z A 
Post(R2) J, z'. 

Summarizing we have 

a',c9 ~ (I APost (n l )  ~ z APost(R2) ~ S). 

From this in turn we derive by applying lemma 7.1 that 

a, co ~ (I A Post(Rl) ~ z A Post(R2) J, z')[in][out][e ~ z/z'.y]. 

[] 

We are now ready for the completeness theorem. 

Theorem 8.9. 
Every valid correctness formula {p}p{Q} in which there occur no sequence vari- 
ables, is derivable: 

{p}p{Q}. 
Proof Let {p}p{Q} be a valid correctness formula, with p = (Cl ~ St . . . .  , c, 
S,). It is not so difficult to see that we may assume without loss of gen- 
erality that C = {Cl,.. . ,c,} (note that by definition only variables of type 
d ~ {cl . . . .  ,c,,[nt, Bool} are allowed to occur in p and Q). By lemma 8.2 we 
have 

A~ I- {pi}[Si]{SP(pi, [Si])}. 

where Ai denotes the set of formulas {Pre(R)}R{Post(g)}, R a bracketed section 
of [Si]. furthermore, Pn = pA(t  "- nil), and for 1 < i < n we have Pi = AxE:Var(X - 
nil). Note that the precondition Pn of the root-object additionally initialises the 
local history. 

It is not difficult to prove that 

3z(pn ~ z A Vz'(z - Z) A A .z; false)) --~ I. 
l<_i<n 

(Here z,z '  ~ LVarc~ and z~ ~ LVar(,, are new variables. From this and the lemmas 
8.7 and 8.8 it follows that Coop(A1 . . . .  , An, I). Thus an application of the program 
rule (PR) gives the derivability of the formula 

{Pn} [P] {I A A Vzi (SP(pi, [S/l) ~ z/)} 
l<_i<_n 

Next we prove 

I A A Vzi (SP(pi, [S/])) --* Q 
l<_i<_n 

Let the antecedent of  the implication be true with respect to some logical 
environment co and some global state a. For c~ ~ a (c') we have that (~, a(c@, ~o 
SP(pi, [S:i]) implies the existence of a local computation 

(S[, 0~, 2) ---~* (E, (~, a(c@, h~) 

for some local history h~, where 0~, o~ ~ p,, if e equals the root-object, and 
0~ = (c~, V}, otherwise. Since a, co ~ I there exists a global history h such that 
for any existing object ~ we have h~ -- a(cQ(t) <_ [h]~. It then follows from the 
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definition of the semantics of global configurations that (X, 0, 2) ~ (X', o, h), for 
some 0 such that 0, co N Pn, where Init(X) and Final[pl(X',a ). In other words 
a E N[[p]]](0). Now the validity of the formula {p}p{Q} implies the validity of 
{p,}[p]{Q}, from which we conclude a, c0 ~ Q. 

By the consequence rule we thus have 

~- {p,}[p]{Q} 

Applying the substitution rule (S) (substituting nil for t) then gives us, after an 
trivial application of the consequence rule, 

t- {p} [p] {Q} 

An application of the rule (AUX) then finishes the proof. [] 

9. Expressibility 

In this section we discuss how to express in the local assertion language the 
strongest postcondition of a statement S with respect to a precondition p, as 
defined in the section on the completeness of the proof system. The expressibility 
of the global invariant I is straightforward albeit rather tedious, and is left to the 
reader to check. We assume throughout this section the sets C and IVar to be 
finite. This section presupposes some knowledge of general coding techniques to 
arithmetise the semantics of programs and assertions (see, for example, [TuZ88]). 

The problem of expressing the strongest postcondition of a statement S with 
respect to a precondition p essentially boils down to showing how to express the 
semantics of a statement S. One of the main difficulties arises from the absence 
of general quantification in the local assertion language: we cannot store directly 
a local computation in logical variables (we have only quantification of logical 
variables ranging over integers and booleans in the local assertion language). 
Instead we have to arithmetise local computations. To this end we fix for an 
arbitrary d an injection [ ]d ~ O~ ~ N such that [l]d = 0. Given these coding 
functions we can use standard coding techniques ([TuZ88]) to encode a state, a 
local configuration, and a sequence of local configurations. From such a code of 
a computation sequence then we can extract the code of the last state by some 
appropriate arithmetical operation, but then the problem arises how to express 
that this code corresponds with the code of a given local state. This problem arises 
because we cannot represent the coding functions [ ]c, c ~ C, more precisely we 
cannot assume the existence of a local assertion [x]c - fx(n), where x ~ IVarc and 
n E LVarln t, such that 0,co ~ [x]~ - f x ( n )  iff [O(x)]c equals the encoded value of 
x retrieved from the code co(n) of the local state 0 by some arithmetical operation 
fx. To see this we first introduce the notion of an object-space isomorphism (osi): 

Definit ion 9.1. An object-space isomorphism (osi) is a family of functions f = 
(fd)a~c+, where fd c O 2 ~ O~ is a bijection, fd(_l_) = 5_ and fd, for d = Int, 13oo1, 
is the identity mapping. 

We have the following lemma which states that the assertion language cannot 
distinguish isomorphic states: 

Lemma 9.2. 
For any local state 0, logical environment co, local assertion p, and osi f we have: 

O, co ~ p iff f(O),f(co) ~ p 
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(Here f(O) and f(co) are defined in the obvious way). 
It should be clear that the above lemma implies that the coding functions [ ]c 

cannot be represented in the assertion language. 
However we can formulate a local assertion p(n) such that whenever 0, co 

p(n) then there exists an object-space isomorphism between 0 and 0', where 0' is 
encoded by co(n). The basic idea is that instead of trying to relate immediately 
a local state and its code we introduce for each pair of variables x and y, of 
any type different from Int and Bool, the local assertion x - y ~ fx(n) - fy(n), 
where fx and fy denote the representation of  some arithmetical operation which 
extracts from the integer value of n the encoded values of x and y, respectively. 
For the standard types Int and Bool on the other hand it is not difficult to see 
that we may assume the representability of the corresponding coding functions 
as indicated above. Let Icode(n) be the conjunction of all these assertions then 
we can show that whenever 0, co ~ Icode(n) then there exists an osi f such that 
f(O) = 0', where 0' is encoded by n. 

The following theorem then justifies that indeed it is sufficient to establish an 
object-space isomorphism. 

Theorem 9.3. 
Let the object-space isomorphism f be given. Then whenever 

(S,O,h) ~* (S',O',h') 

we have 

(S, f(O), f(h)) ~* (S', f(O'), f(h')) 

(Here f(h) denotes the history resulting from the pointwise application of f to 
h.) 

10. Conclusion 

We have developed a proof system for the partial correctness of programs of a 
parallel language with dynamic process creation. The basic ingredients for dealing 
with parallelism in this proof system are the same as in a proof system for CSP 
[AFR80], but they have been enhanced considerably to deal with the present, 
much more powerful programming language. One of the main problems we solved 
is how to reason about the dynamically evolving pointer structures that can arise 
during the execution of a program. 

We have proved that the system is sound and complete. Our completeness 
proof differs considerably from the usual completeness proofs for proof systems 
based on the same methodology. One of the main difference consists of that 
our completeness proof is based on a compositional semantics. An interesting 
consequence of this is that one of the key ideas of the standard completeness 
proof, namely the merging lemma ([Apt83]) which states that under certain con- 
ditions local computations can be 'merged' into a global computation, in our 
approach derives immediately from the compositionality of the underlying se- 
mantics. Another striking difference consists in the definition of the specifications 
of the components of a system. Whereas usually these specifications are based 
on assertions which code computation sequences, our local proofs are based on 
the more abstract notion of the strongest postcondition. In this way we obtain a 
modular completeness proof in the sense that the specifications of the components 
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can be used in the context of any complete system of processes. Finally, a last 
interesting difference concerns our observation that local specifications based on 
the expressibility of the strongest postcondition do pass the cooperation test with 
the empty global invariant. In our approach a global invariant is only used to 
strengthen the conjunction of the strongest postconditions of the components, 
in order to imply any valid postcondition of the complete system. For this we 
showed that it is sufficient for the global invariant to express compatibility of the 
local computations in terms of the local histories. 

Summarizing, our completeness proof can be characterised as being structured 
along the lines of the compositional proof theories for extensions of CSP as 
developed, for example, in [ZRE85]. Here the general reasoning pattern is not 
only based on states, as in our case, but also on traces (communication histories). 
Thus one is inclined to conclude that the so-called non-compositional proof 
method itself allows as a special case compositional reasoning! 

We have already mentioned that our language and our proof techniques can 
be considered as very powerful extensions to CSP [Hoa78, AFR80, Apt83]. A 
different kind of extension, where processes can split themselves recursively into 
subprocesses, is dealt with in the above-mentioned [ZRE85], for example. In 
[Mel91], a language similar to ours is tackled with trace-based reasoning. The 
problem of dynamic pointer structures however is not dealt with explicitly. 

Interesting future topics are extensions of the proof system to reason about 
properties other than partial correctness, for example, absence of deadlock. An- 
other issue concerns the relation between the kind of language we studied and 
Milner's ~z-calculus. 
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