
COmlNATORICA
Akad6miai Kiad6 - Springer-Verlag

CONBINATOmCA 14 (2) (1994) 167 186

P A C K E T R O U T I N G A N D J O B - S H O P S C H E D U L I N G IN

O (C O N G E S T I O N + D I L A T I O N) S T E P S

F. T. LEIGHTON, BRUCE M. MAGGS, and SATISH B. RAO

Received January 2, 1991

Revised October 30, 1993

In this paper, we prove that there exists a schedule for routing any set of packets with edge-
simple paths, on any network, in 0(c4-d) steps, where c is the congestion of the paths in the
network, and d is the length of the longest path. The result has applications to packet routing in
parallel machines, network emulations, and job-shop scheduling.

1. I n t r o d u c t i o n

Packet routing plays a central role in the design of large-scale parallel com-
puters. Simply stated, packet routing consists of moving packets of data from one
location to another in a network. The goal is to move all of the packets to their
desired locations as quickly as possible, and with as little queuing as possible. The
packet routing problem has been extensively studied, and we refer the reader to [5]
for a broader coverage of the topic.

The method of packet routing considered in this paper is known as store-and-
forward routing. In a store-and-forward routing algorithm, packets are viewed as
atomic objects. At each step, a packet can either wait in a queue or jump from one
queue to another.

Figure 1 shows a graph model for store-and-forward routing. The shaded nodes
labeled 1 through 5 in the figure represent processors or switches, and the edges
between the nodes represent wires. A packet is depicted by a square box containing
the label of its destination. The goal is to route the packets from their origins to
their destinations via a series of synchronized time steps, where at each step at
most one packet can traverse each edge.

This research was conducted while the authors were at MIT. Support was provided by the
Defense Advanced Research Projects Agency under Contract N00014 87-K-825, the Office of
Naval Research under Contract N00014-86 K 0593, the Air Force under Contract OSR 86-0076,
and the Army under Contract DAAL-03 86 K-0171. Tom Leighton is supported by an NSF
Presidential Young Investigator Award with matching funds provided by IBM.

AMS subject classification code (1991): 68 M 20, 68 M 10, 68 M 07

168 F. T. L E I G H T O N , B R U C E M. M A G G S , SATISH B. R A O

Packets wait in three different kinds of queues. Before the routing begins,
packets are stored at their origins in special initial queues. For e• packets 4
and 5 are stored in the initial queue at node 1. When a packet traverses an edge, it
enters the edge queue at the end of that edge. A packet can traverse an edge only
if at the beginning of the step the edge queue at the end of that edge is not full.
In the example of Figure 1 the edge queues can hold two packets. Upon traversing
the last edge on its path, a packet is removed from the edge queue and placed in a
special final queue at its destination. For simplicity, the final queues are not shown
in Figure 1. Independent of the routing algorithm used, the size of the initial and
final queues are determined by the particular packet routing problem to be solved.
Thus, any bound on the maximum queue size required by a routing algorithm refers
only to the edge queues.

Fig. 1. A 9'l'(Lpll~ 'model eb~ packet r'o~zti'l~ 9.

This paper focuses on the problem of timing the movements of the packets
along their paths. A schedule for a set of packets specifies which move and which
wait at each time step. Given any underlying network, and any selection of paths
for the packets, our goal is to produce a schedule for the packets that minimizes
the total t ime and the maximum queue size needed to route all the packets to their
destinations.

Of course, there is a strong correlation between the time required to route the
packets and the selection of the paths. In particular, the maximum distance, d,
traveled by any packet is always a lower bound on the time. We call this distance
the dilation of the paths. Similarly, the largest number of packets that must traverse
a single edge during the entire course of the routing is a lower bound. We call this
number the congestion, c, of the paths. For example, see Figure 2.

Given any set of paths with congestion c and dilation d in any network, it is
straightforward to route all of the packets to their destinations in cd steps using
queues of size c at each edge. Each packet can be delayed at most c - 1 steps at each
of at most d edges on the way to its destination (since the queues are big enough
so that packets can never be delayed by a full queue in front.)

In this paper, we show that there are much bet ter schedules. We begin in
Section 2 with a randomized on-line algorithm that produces a schedule of length
O(c + dlog(Nd)) using queues of size O(log(Nd)), where N is the total number

PACKET ROUTING 169

Fig. 2. A set o] paths for the packets with dilation d = 3 and congestion c = 3 .

of packets. This algorithm is close to optimal when c is large. Our main result
appears in Section 3. It establishes the existence of a schedule using O(c+d) steps
and constant-size queues at every edge, thereby achieving the naive lower bounds
for any routing problem.

The proof of the main result is nonconstructive. However, the result still has
several applications, as described below. In addition, the result is highly robust in
the sense that it works for any set of edge-simple paths and any underlying network.
(A priori, it would be easy to imagine that there might be some set of paths on
some network that required more than ~ (c + d) steps or nonconstant queues to
route all the packets.) Furthermore, the main result can be made constructive
using the recently discovered algorithmic version of the Lov~sz Local Lemma [1, 21.
A manuscript describing the algorithm is in preparation [7].

If a particular routing problem is to be performed many times over, then the
time required to compute the optimal schedule once becomes less important. This
situation arises in network emulation problems. Typically, a guest network G is
emulated by a host network H by embedding G into H. (For a more complete
discussion of emulations and embeddings, see [3].) An embedding maps nodes of G
to nodes of H, and edges of G to paths in H. There are three important measures
of an embedding: the load, congestion, and dilation. The load of an embedding is
the maximum number of nodes of G that are mapped to any one node of H. The
congestion is the maximum number of paths corresponding to edges of G that use
any one edge of H. The dilation is the length of the longest path. Let l, c, and
d denote the load, congestion, and dilation of the embedding. Once G has been
embedded in H, H can emulate G in a step-by-step fashion. Each node of H first
emulates the local computations performed by the I (or fewer) nodes mapped to
it. This takes O(1) time. Then for each packet sent along an edge of G, H sends
a packet along the corresponding path in the embedding. Using the main result of
this paper, routing the packets to their destinations takes O(c+d) steps. Thus, H
can emulate each step of G in O(l+c+d) steps.

In a related paper, Leighton, Maggs, Ranade, and Rao [6] show how to route
packets in O(c+ L+ logN) steps using a simple randomized algorithm provided
that the underlying network is leveled and has depth L. As a consequence, optimal
routing algorithms can be derived for most of the networks that are commonly

170 F. T. L E I G H T O N , B R U C E M. M A G G S , SATISH B. R A O

used for parallel computation. Unfortunately, it seems to be difficult to extend
this result to hold for all networks. In fact, we have considered many simple
on-line algorithms (including the algorithm presented in [6]), and found routing
problems for each algorithm that result in schedules that use asymptotically more
than f~(c+ d + l o g N) steps. Several of these examples are included in Section 4.

The results of this paper also have applications to job-shop scheduling. In par-
ticular, consider a scheduling problem with jobs j l , . . - , jr, and machines rn l , . . . , ms,
for which each job must be performed on a specified sequence of machines. In our
application, we assume that each job occupies each machine that works on it for
a unit of time, and that no machine has to work on any job more than once. Of
course, the jobs correspond to packets, and the machines correspond to edges in
the packet routing problem. Hence, we can define the dilation of the scheduling
problem to be the maximum number of machines that must work on any job, and
the congestion to be the maximum number of jobs that have to be run on any ma-
chine. As a consequence of our packet routing result, we show that any scheduling
problem can be solved in O(c+d) steps. In addition, we will prove that there is a
schedule for which each job waits at most O(c+d) steps before it starts running,
and that each job waits at most a constant number of steps in between consecutive
machines. The queue of jobs waiting for any machine will also always be at most
a constant. These results are optimal, and are substantially bet ter than previously
known bounds for this problem [4, 10].

Recently some results were proved in [11] for the more general problem of
job shop scheduling where jobs are not assumed to be unit length and a machine
may have to work on the same job more than once. They give randomized and
deterministic algorithms that produce schedules that are within a polylogarithmic
factor of the optimal length for the more general job-shop problem. However, it is
not known whether there exist schedules of length O(c+d) for this problem.

This paper also leaves open the question of whether or not there is an on-line
algorithm that can schedule any set of paths in O(c + d) steps using constant-
size queues. We suspect that finding such an algorithm (if one exists) will be a
challenging task. Our negative suspicions are derived from the fact that we can
construct eounterexamples to most of the simplest on-line algorithms. In other
words, for several natural on-line algorithms we can find paths for N packets
for which the algorithm will construct a schedule using asymptotically more than
f~(c+d+logN) steps. Several of the counterexamples are included in Section 4.

2. An on-l ine a lgor i thm

There is a simple randomized on-line algorithm for producing a schedule of
length O(c+dlog(Nd)) using queues of size O(log(Nd)), where c is the congestion,
d is the dilation, and N is the number of packets.

First, each packet is assigned a delay chosen randomly, independently, and
[I c~c l uniformly from the interval t , log(Nd)], where c~ is a constant that will be specified

later. A packet that is assigned a delay of x waits in its initial queue for x t ime
steps, and then moves on to its final destination without ever stopping.

PACKET ROUTING 171

The trouble with this schedule is that several packets may traverse the same
edge in ~ single step. t tow~wr, w~ can bound the number of packets that are likely
to do so. The probability that more than log(Nd) packets use a particular edge 9
at a particular t ime step I is at most

k=log(Nd)§

since at most c different packets pass through g, and for each of these, at most one
ac possible delays sends it through 9 at step t. This sum is at most of the

(log(~Vd)) (l~ l~ To bound the probabili ty that more than log(Nd)

packets pass through any edge at any t ime step, we multiply this quantity by the
number of choices for 9, at most Nd, and the number of choices for 1, at most
d + log(a]~d-----~. Using the inequality (~) _< (ae/b) b for 0 < b < a, and noting that c _< N,

we see that for large enough, but fixed, a, the product is at most 1/(Nd). Thus,
with high probability, no more than O(log(Nd)) packets will want to traverse any
edge at any step of this unconstrained schedule.

Each step of the unconstrained schedule can be simulated by O(log(Nd)) steps
of a legitimate schedule. The final schedule requires O (c + dlog(Nd)) steps to
complete the routing, and uses queues of size O(log(Nd)).

3. A n O(c+d)-step s c h e d u l e

In this section, we prove that for any set of packets whose paths are edge-
simple I and have congestion c and dilation d, there is a schedule of length O(c+d)
in which at most one packet traverses each edge of the network at each step, and
at most a constant number of packets wait in each queue at each step. Note that
there are no restrictions on the size, topology, or degree of the network or on the
number of packets.

Our strategy for constructing an efficient schedule is to make a succession of
refinements to the "greedy" schedule, So, in which each packet moves at every step
until it reaches its final destination. This initial schedule is as short as possible; its
length is only d. Unfortunately, as many as c packets may have to use an edge at a
single time step in So, whereas in the final schedule at most one packet is allowed
to use an edge at each step. Each refinement will bring us closer to meeting this
requirement by bounding the congestion within smaller and smaller frames of time.

The proof uses the Lovs Local Lemma [12, pp. 57 58] at each refinement
step. Given a set of "bad" events in a probability space, the lemma provides a
simple inequality which, when satisfied, guarantees that with probability greater
than zero, no bad event occurs. The inequality relates the probability that each
bad event occurs with the dependence among them. A set of events AI,..., Am in a
probability space has dependence at most b if every event is mutually independent
of some set of m- b- 1 other bad events. The lemma is nonconstructive; for a

1 An edge-simple path uses no edge more than once.

172 F. T. L E I G H T O N , B R U C E M. M A G G S , SATISH B. R A O

discrete probability space, it shows only that there exists some elementary outcome
that is not in any bad event.

Lemma 3.1. (Lov~tsz) Let A I , . . . , A m be a set of "bad" events each occurring with
probability p with dependence at most b. I f 4pb < 1, then with probability greater
than zero, no bad event occurs. |

3.1. A p r e l i m i n a r y r e s u l t

Before proving the main result of this section, we show that there is a schedule
of length (c + d)2 ~176 that uses queues of size log(c + d)2 ~176 (c+d)). This
preliminary result is substantially simpler to prove because of the relaxed bounds
on the schedule length and queue size. Nevertheless, it illustrates the basic ideas
necessary to prove the main result. We begin by proving a lemma that is used in
the proofs of both the preliminary result and the main result.

Before proceeding, we need to introduce some notation. A T-frame is a
sequence of T consecutive time steps. The frame congestion, C, in a T-frame
is the largest number of packets that traverse any edge in the frame. The relative
congestion, R, in a T-frame is the ratio C / T of the congestion in the frame to the
size of the frame.

Lemma 3.2. For any set of packets whose paths are edge-simple and have congestion
c and dilation d, there is a schedule of length O(c+d) in which packets never wait
in edge queues and in which the relative congestion in any frame of size logd or
greater is at most 1.

Proof, The proof uses the Lov~sz Local Lemma. The first step is to assign an
initial delay to each packet. Without loss of generality, we assume that c = d. The
delays are chosen from the range [1,ad], where c~ is a fixed constant that will be
determined later. In the resulting schedule, $1, a packet that is assigned a delay
of x waits in its initial queue for x steps, then moves on to its destination without
waiting again until it enters its final queue. The length of $1 is at most (1 + c~)d.
We use the Lovgsz Local Lemma to show that if the delays are chosen randomly,
independently, and uniformly, then with nonzero probabili ty the relative congestion
in any frame of size logd or greater is at most 1. Thus, such a set of delays must
exist.

To apply the Lovgsz Local Lemma, we associate a bad event with each edge.
The bad event for edge g is that more than T packets use g in some T-frame,
for T _> togd. To show that there is a way of choosing the delays so that no bad
event occurs, we need to bound the dependence, b, among the bad events and the
probability, p, of each individual bad event occurring.

The dependence calculation is straightforward. Whether or not a bad event
occurs depends solely on the delays assigned to the packets that pass through the
corresponding edge. Thus, two bad events are independent unless some packet
passes through both of the corresponding edges. Since at most c packets pass
through an edge, and each of these packets passes through at most d other edges,
the dependence, b, of the bad events is at most cd=d 2.

PACKET ROUTING 173

Computing the probability of each bad event is a little trickier. Let p be the
probability of the bad event corresponding to edge g. Then

p_<
d

T = l o g d

This expression is derived as follows. Frames of size greater than d cannot have
relative congestion greater than 1, since the total congestion is only d. Thus, we
can ignore them. We bound the probability that any frame has relative congestion
greater than 1 by summing, over all frame sizes T from logd to d, the probability
that some T-frame has relative congestion greater than 1. Furthermore, for any
T, there are at most (1 + c~)d different T-frames and we bound the probability
that any one of them has relative congestion greater than 1 by summing their
individual probabilities. The number of packets passing through g in any T-frame
has a binomial distribution. There are d independent Bernoulli trials, one for each
packet that uses g. Since at most T of the possible c~d delays will actually send a
packet through g in the frame, each trial succeeds with probability T/c~d. (Here we
use the assumption that the paths are edge-simple.) The probability of more than
T successes is at most (T d) (T/gd) T.

For sufficiently large, but fixed, c~ the product 4pb is less than 1, and thus, by
the Lovs Local Lemma, there is some assignment of delays such that the relative
congestion in any frame of size logd or greater is at most 1. |

Theorem 3.3. For any set of p~ckets whose paths are edge-simple ~nd have con-
gestion c and dilation d, there is a schedule having length (e +d)2 O(l~ and
maximum queue size log(c+ d)2~ l~ (e+d)) in which at most one packet traverses
each edge at each step.

Proof. For simplicity, we shall assume without loss of generality that c = d, so
that the bounds on the length and queue size are d2 O(l~ and (logd)2 O(l~
respectively.

The proof has the following outline. We begin by using Lemma 3.2 to produce
a schedule $1 in which the number of packets that use an edge in any log&frame is
at most log& Next we break the schedule into (l+a)d/ logd log&frames, as shown
in Figure 3. Finally, we view each log&frame as a routing problem with dilation
logd and congestion log& and solve it recursively.

time step (l+ct)d

log d

Fig. 3. Schedule $1. The schedule is derived from the greedy schedule, SO, by assigning an

initial delay in the range [1,c~d] to each packet. We use the Lovdsz Local Lemma to show that

within each log d-frame, at most logd packets pass through each edge.

174 F. T. LEIGHTON, BRUCE M. MAGGS, SATISH B. RAO

Each logd-frame in $1 can be viewed as a separate scheduling problem where
the origin of a packet is its location at the beginning of the frame, and its destination
is its location at the end of the frame. If at most logd packets use each edge in a
log&frame, then the congestion of the problem is logd. The dilation is also logd
because in logd time steps a packet can move a distance of at most logd. In order
to schedule each frame independently, a packet that arrives at its destination before
the last step in the rescheduled frame is forced to wait there until the next frame
begins.

All that remains is to bound the length of the schedule and the size of the
queues. The reeursion proceeds to a depth of O(log* d) at which point the frames
have constant size, and at most a constant number of packets use each edge in each
frame. The resulting schedule can be converted to one in which at most one packet
uses each edge in each time step by slowing it down by a constant factor. Since
the length of the schedule increases by a constant factor during each recursive step,
the length of the final schedule is d2 O(l~ d). The bound on the queue size follows
from the observation that no packet waits at any one spot (other than its origin or
destination) for more than (logd)20(l~ d) consecutive t ime steps, and in the final
schedule at most one packet traverses each edge at each time step. |

3.2. T h e m a i n r e s u l t

Proving that there is a schedule of length O(c+ d) using constant-size queues
is more difficult. Removing the 2 O(l~ factor in the length of the schedule
seems to require delving into second-order terms in the probability calculations, and
reducing the queue size to a constant mandates greater care in spreading delays out
over the schedule.

Theorem 3.4. For any set of packets with edge-simple paths having congestion c
and dilation d, there is a schedule having length O(e + d) and constant maximum
queue size in which at most one packet traverses each edge of the network at each
step.

Proof. To make the proof more modular, we bound the frame size and relative
congestion after each step of the construction in lemmas. These lemmas and their
proofs are included within the proof of the theorem. We assume without loss of
generality that c=d, so tha t the bound on the length of the schedule is O(d).

As before, the s t ra tegy is to make a succession of refinements to the greedy
schedule, So. The first refinement is special. It transforms So into a schedule Si
in which the relative congestion in each frame of size log d or more is at most 1.
Thereafter, each refinement transforms a schedule Si with relative congestion at
most r(i) in any frame of size I (i) or greater into a schedule Si+l with relative
congestion at most)(i+1) in any frame of size I(i+1) or greater, where r(i+1) ~ r (/)
and i(/+1) <</(i), as shown in Figure 4. As well shall see, after j refinements, where
j - - -O(log* d), we obtain a schedule Sj with constant relative congestion in every
frame of size s or greater, where k0 is some constant. From Sj it is straightforward
to construct a schedule of length O(c+d) in which at most one packet traverses

PACKET ROUTING 175

si I r(,)

!

Fig. 4. A refinement step. Each refinement transforms a schedule Si into a slightly longer
schedule Si+ 1, The frame size is greatly reduced in Si+1, yet the relative congestion within a

frame remains about the same, i.e., i(i+1) <<i(i) and r(i+1) ~-r(i).

each edge of the network at each step, and at most a constant number of packets
wait in each queue at each step.

At the start, the relative congestion in a d-frame of So is at most 1. We begin
by using Lemma 3.2 to produce a schedule S1 of length O(d) in which the relative

congestion is at most r (I) =I in any frame of size i(I)=logd or greater.
Next, we repeatedly refine the schedule to reduce the frame size. As we shall

see, the relative congestion r (i+I) and frame size i(i+1) for schedule Si+l are given
by the recurrences

and

r(i+l) ~ 1 i = 0
= [r (i) (l + O(1)/v/ logIt i)) i > 0

I(i+l) = / log d i = 0
log 5 I(i) i > 0

k

which have solutions I(J)= O(1) and r (j) =O(1) for some j , where j=O(log* d).
We have not explicitly defined the values of r(i) and I(i) for which the recursion

terminates. However, in several places in the proof that follows we implicitly use
the fact that [(i) is sufficiently large that some inequality holds. The recursion
terminates when the first of these inequalities fails to hold. When this happens,
I (i) is bounded from above by some constant. Furthermore, independent of the
depth of the recursion, r(i) is bounded from above by a constant.

Throughout the followingdemmas we make references to quantities such as
r I packets o1" log4/ time steps, when in fact r I and log4I may not be integral.
Rounding these quantities to integer values when necessary does not affect the
correctness of the proof. For ease of exposition, we shall henceforth cease to consider
the issue.

An important invariant that we maintain throughout the construction is that
in schedule &+l every packet waits at most once every I(i) steps. As a consequence,
there is a constant kl such that a packet waits at most once every kl steps in Sj,
which implies both that the queues in Sj cannot grow larger than a constant and
that the total length of Sj is O(d). Schedule Sj almost satisfies the requirement

176 F. T. LEIGHTON, BRUCE M. MAGGS, SATISH B. RAO

that at most one packet traverses each edge in each step. By simulating each step
of Sj in a constant number of steps we can meet this requirement with only a factor
of 2 increase in the queue size and a constant factor increase in the schedule length.

The rest of the proof describes the refinement step in detail. For ease of
notation, we use I and r in place of I(i) and r(i).

The first step in the i th refinement is to break schedule Si into blocks of
213+ 2I 2 - [consecutive time steps. Each block is rescheduled independently.

For each block, each packet is assigned a delay chosen from 1 to I. We will use
the Lov&sz Local Lemma to show that if the delays are chosen randomly, uniformly,
and independently, then with non-zero probability the resulting schedule will have
the properties that we want.

A packet that is assigned a delay of x should wait for x steps at the beginning
of the block. However, in order maintain the invariant that in schedule Si+l every

packet waits at most once every I (i) steps, the packet is not delayed for x consecutive
steps at the beginning of the block, but instead a delay is inserted every I steps
in the first x I steps of the block. A packet that is delayed x steps reaches its
destination at the end of the block by step 2I 3 + 2/2 - jr + x.

In order to independently reschedule the next block, the packets must reside
in exactly the same queues at the end of the rescheduled block that they did at
the end of the block of Si. Since some packets arrive early, they must be slowed
down. Thus, if a packet is assigned delay x, then I - x delays are inserted in the
last I (I - x) steps of the block, one every I steps. Since every packet experiences a
total delay of I , the rescheduled block must have length 2I 3 + 2I 2.

Before the delays for schedule Si+l have been inserted, a packet is delayed at
most once in each btock of Si, provided that 2/3 + 2 I 2 - [< j r (i - l) which holds
as long as I is larger than some constant. Prior to inserting each new delay into
a block, we check if it is within I steps of the single old delay. If the new delay
would be too close to the old delay, then it is simply not inserted. The loss of a
single delay in a block has a negligible effect on the probability calculations in the
lemmas that follow.

The following t~o lemmas are used several times in the proof of the theorem.
Lemma 3.5 shows that if we can bound the relative congestion in frames of size T to
2 T - 1 , then we can bound the relative congestion in all frames of size T or greater.
Lemma 3.6 bounds %he probability that too many packets use any particular edge
g in any small f rame in the center of a block after every packet has been delayed
for a random number" of steps at the beginning of the block.

Lemma 3.5. In any schedule, if the number of packets that use a particular edge g
in any y-frame is a~)most Ry, for all y between T and 2 T - 1, then the number of
packets that use g in: any y-frame is at most Ry for all y > T.

Proof. Consider a frame of size T ~, where T ~ > 2 T - 1. The first (L T ' / T j - 1)T steps
of the frame can b e broken into T-trames. In each of these frames, at most R T
packets use g. The remainder of the T t f r a m e consists of a single y-frame, where
T < y < 2 T - 1 , in which at most Ry packets use g. |

Lemma 3,6. Suppose that there are positive constants p, c~1, and c~2, such that in
a block of size I ~1 or smMler the relative congestion is at most p in frames of size

P A C K E T R O U T I N G 177

I c~2 or larger. Furthermore, suppose that each packet is assigned a delay chosen
randomly, independently, and uniformIy from the range [1, I ~2] and that ira packet
is assigned a delay of x, then x de/ays are inserted in the first I ~3 steps of the block
and I c~2 - x delays are inserted in the last I ~a steps, where c~3 is aNo a positive
constant. Then for any constant c~4 there is a ~r such that the probability that more
than p i T paekets use any one edge 9 in any frame of size T >_ I1 in-between the
first and last I as steps in the new block is at most 1/1 ~4, where I1 = l o g 2 I , Pl =
p(l+cr) , and <r=O(1)/ lv~I.

Proof. We begin by computing an upper bound on the probability, Pl, that more
than plI1 packets use an edge g in a particular /1-frame. Since a packet may be
delayed up to I ~2 steps before the frame, any packet that used g in the /1- f rame
spanning the same steps in the block before the delays were inserted or in the
I ~2 steps before that frame may use 9 after the delays are inserted. Thus, there
are at most p(I ~2 +I1) packets that can use g in the frame. For each of these,
the probability that the packet uses g in the frame after being delayed is at most
(11/I c~2), provided that the packet's path uses g at most once. Thus, the probability
Pl that more than Pil l packets use g in the frame is bounded by

p(I a2 q-lI)

Pl <-- E (P(Ic~2k+ l l)) (I1 / f c~2) Ic (1- l l / la2)P(I~2+I1)-k

k=pl I1

Let Pl =p (l+c r) . We bound the series as follows. The expected number of packets
that use g in the frame is pI1(1+I1 / I~2) . For I~ = log2I and or= O(1)/lox/i~,
Oil (1+~) is larger than the expectation, so the first term in the series is the largest,
and there are at most p(I a2 + I 1) terms. Applying the inequalities (l + z) _< e x,
l n (l + z) _> z - z 2 ~ 2 for 0 < z < 1, and (~) _< (ae/b) b for 0 < b < a to this term, we have

Pl <_ P(Ic~2 + l l)e -pI~<r2(1/2.~/2-I1/<r2I~2.211/~I~2)

For I1 = log 2 1 and ~r = kl / lov/ i~ , we can ensure that Pl < 1 / I k2, for any constant
k2 > 0 by making constant kl large enough.

Next we need to bound the probability P2 that more than p111 packets use g
in any I i-frame of the block. There are at most I al + I a2 /1-frames. Thus P2 <-
(Ic~a + Ia2)P l - By making the constant k2 large enough, we can ensure that P2 -<
1/ I ~a , for any constant k3 > 0.

To bound the relative congestion in frames of size greater than I1, we appeal
to Lemma 3.5. The calculations for frames of size I 1+ 1 through 2 h - 1 are similar
to those for frames of size/1. There are at most i a l + ic~2 frames of any one size,
and /1 frame sizes between/1 and 2 / 1 - 1. By adjusting the constants as before,
we can guarantee that the probability p that more than p i t packets use g in any
T-frame for T between I1 and 2 / 1 - 1 is at most 1 / I a4 for any constant a4 >0. |

Lemma 3.7 shows that by inserting delays at the beginning and end of the
block we can reduce the frame size in the center of the block while only slightly
increasing the relative congestion. The bounds proved in Lemma 3.7 are shown in
Figure 5.

178 F. T. LEIGHTON, BRUCE M. MAGGS, SATISH B. I~AO

Lemma 3.7. There is some way of assigning delays to the packets so that in-between
the t~rst and last 12 steps of a blo&, the relative congestion in any frame of size
I1 = l o g 2 I or greater is at most rl = r (l + s l) , where el O (1) / @ ~ I .

Proofi The proof uses the Lovgsz Local Lemma. With each edge we associate a
bad event. For edge g, a bad event occurs when more than r l T packets use 9 in
any T-frame for T_> I1. To show that no bad event occurs, we need to bound both
the dependence of the bad events and the probability that an individual bad event
occurs.

We first bound the dependence, b. At most r(213 + 2I 2 - I) packets use an
edge in the block. Each of these packets travels through at most 213+212-I other
edges in the block. Furthermore, r= r (i) =O(1) . Thus, a bad event depends on b=
O(I 6) other bad events.

For any constant a4, we can bound the probability that a bad event occurs b v
1/I a4 by applying Lemma 3.6 with p = r, I al > 213+ 2 1 2 - I , I a2 = I, I a3 = I z,
Sl = cr = O(1)/lo,/i-~7, and r l =/)1 = r(1 + or) = r(1 + s3).

Since a bad event depends on only b = O(I 6) other bad events, we can make
4pb < 1 by making a4 large enough. By the Lovgsz Local Lemma, there is some
way of choosing the packet delays so that no bad event occurs. |

1 12 time step 213+12 213+212
T * T

! r 1 ,:

l a 11

Fig. 5. Bounds o'a erame size and r'elative coT~,gest'ion aider ir~.sertzn9 delays into S i. Here

11=log 2z and r l = r (l + O (1) / ~) .

Inserting delays into the schedule may increase the relative congestion in I-
frames (or smaller frames) in the 12 steps at the beginning and end of each block.
In order to bound the relative congestion in small frames in these regions, we first
move the block boundaries to the centers of the blocks as shown in Figure 6. Now
each block of size 213+2/2 has a "fuzzy" region of size �89 2 in its center. Lemma 3.8
shows that after moving the block boundaries, the relative congestion in any frame
of size 12 or larger in the block is at most r(1 + 2/I) . We will later insert more
delays into the schedule and uses Lemmas 3.6 and 3.8 to help bound the relative
congestion in small frames in the fuzzy region.

Lemma 3.8. For any choice of delays, after the delays are inserted and the block
boundaries are moved the relative congestion in any frame of size 12 or greater is
at most r (l + 2/I) .

Proof. There are two cases to consider. First, consider a T-frame that lies entirely
in the first half of a block, or entirely in the second half of a block. After the delays
are inserted, a packet can use an edge in the T-frame only if it used the edge in
some (T + /) - f rame in Si. Thus, at most r (T + I) packets can use an edge in the

P A C K E T R O U T I N G 179

T-frame. For T_> 1 2, the relative congestion is at most r (1+1/ I) . Second, consider
a T-frame tha t spans the center of the block. Suppose that the frame consists of
T1 steps before the center and 2172 after, so that T = T1 + T2. Then a packet can
use an edge in the T1 steps before the center only if it used the edge in one of the
last T1 steps before the end of a block in Si. Since T1 may be less than I , we can ' t
bound the relative congestion in the last T1 steps at the end of a block. But we
know that at most r (T l+I) packets used the edge in the last T I + I steps, and hence
in the last T1 steps. Similarly, a packet can use an edge in the T2 steps after the
center only if it used an edge in one of the first T2 steps of a block in Si. Hence, at
most r (T 2+I) packets use the edge in the T2 steps after the center. Since a total
of at most r(T1 + T2 + 2I) = r (T + 2I) packets use the edge, for T > 1 2 the relative
congestion is at most r (l + 2/1). |

To reduce the frame size in the fuzzy region, we assign a delay from 1 to 1 2
to each packet. As before, we will use the Lovgsz Local Lemma to show that if
the delays are chosen randomly, independently, and uniformly then with non-zero
probabili ty the resulting schedule has the properties we want. A packet with delay
x waits once every I 3 / x steps in the I 3 steps before the fuzzy region. In addition,
a packet with delay x waits once every I 3 / (I 2 - x) steps in the last I 3 steps of the
rescheduled block. Thus, every packet waits for a total of i2 steps (except we do
not insert a delay if it is within I steps of an old delay), and the rescheduled block
now has size 2I 3 + 3I 2. Note that in the rescheduled block the width of the fuzzy
region grows by 1 2 time steps; it spans steps 1 3 through i 3 + 3i 2.

1 13 t ime step I3+212 213+212 '
V V V V

J
l l 12

Fi 9. 6. A block after recenterin 9. The "fuzzy region" in the center o f the block is shaded. The

line bisecting the shaded region denotes the block boundary before recenterin 9.

We now show that there is some way of inserting delays into the schedule before
the fuzzy region that both reduces the frame size in the fuzzy region and does not
increase either the frame size or the relative congestion before or after the fuzzy
region by much.

Lemma 3.9. There is some way of choosing the packet delays so that between steps
I l o g 3 I and 13 and between steps 1 3 + 312 and 2 / 3 + 3 1 2 - I l o g 3 I , the relative
congestion in any frame of size I 1 or greater is at most r2 = r (l + c 2) , where c2 =
0 (1) / ~ , and so that in the fuzzy region the relative congestion in any frame
of size I 1 or greater is at most r 3 = r (l + c 3) , where c3 = O (1) / lv/i-~I.

Proof. The proof uses the LovAsz Local Lemma as before. With each edge we
associate a bad event. For edge g, a bad event occurs

1. if more than r3 T packets use g in any T-frame between steps 13 and 13 + 312
(i.e., in the fuzzy region), for any T > I1, or

180 F. T. LEIGHTON, BRUCE M. MAGGS, SATISH B. RAO

2. if more than r2T packets use g in any T-frame between steps I l o g 3 I and 13,
for any T > I1, or

3. if more than r2T packets use g in any T-frame between steps 213+312-Ilog3 I
and 2I 3 + 3I 2, for any T_> I1.
The calculation for the dependence b is the same as in Lemma 3.7. At most

O (I a) packets pass through each edge g, and each of these packets passes through
at most O (I 3) other edges. Hence, b= O(I6).

To bound the probability that a bad event occurs, we consider the three cases
separately, and sum their individual probabilities of occurrence.

Since no delays are inserted into the fuzzy region, we can use Lemma 3.6
to prove that for any constant ks, there is an e3 = 0(i)/Iv/~l such that the
probability that more than r(l+c3)T packets use g in any T-frame between steps
[3 and [3 +312 for any T > [i, is at most i/I kS. We apply Lemma 3.6 with p=
r(1 + 2/I), T OL1 k 2 I3 + 212, I a2 = I2, I aa -= I3,

5 3 = c r + 2 (1 + ~ r) / I = O (1) / V / ~ g I , r 3 = P 1 = r (1 + 2 / I) (l + ~) = r (1 + e 3) ,

and c~4 = ks.
Before the fuzzy region, the situation is more complex. By the kth step, 0 <

lr 3, a packet with delay x has waited xk /[3 times. Thus, the delay of a packet
at the kth step varies essentially uniformly from 0 to u = k/I. For u >_ Iog 3 [, or
equivalently, k > I log 3 I~ we can show that the relative congestion in any frame of
size 11 or greater has not increased much.

The probability P2 that more than r211 packets use an edge g in a particular
I i - f rame is given by

rffIa+U) (r l (I + u))
P2 ~ E 18 (] l / ~ t) s (1 - [1/%)r1(f1+~z)--8"

8='F2 at1

Using the same inequalities as in the proof of Lemma 3.6, we have

P2 --< r1(11 + U)e -rllle~(1/2-e2/2-I1/e~u-211/e2u).

The calculations for frames of size I1 + 1 through 2[1 - 1 are similar. Thus for
any constant k6, for h = log 2I , u->log 3 I , and e2=O(1)/lv/Y~I, the probabili ty P4
that more than r (l + c 2) T packets use 9 in any T-frame between steps I l o g 3 I and
[3 for any T>I1, is at most 1/I k6.

By symmetry, the probability that more than r2T packets use g between steps
213+ 3I 2 - I log 31 and 213+ 3I 2, for any T > /1 , is also at most 1/I k~.

Thus, the probabili ty that a bad event occurs for edge g is at most 1/Ik~+2/I k6 .
Since the dependence is at most O(I6), by adjusting the constants k5 and k6 we
can apply the Lov~sz Local Lemma. |

For steps 0 to I log 3 I , we use the following lemma to bound the frame size and
relative congestion.

PACKET ROUTING 181

Lemma 3.10. The relative congestion in any frame of size I2 or greater between
steps 0 and f l o g 3 I is at mos t r4, where I2 = l o g 4 I and r 4 = r l (1 § 1 / log /) .

Proof. The proof is similar to that of Lemma 3.8. |

We have now completed our transformation of schedule Si into schedule Si+l.
Let us review the relative congestion and frame sizes in the different parts of a
block. Between steps 0 and I log3 I , the relative congestion in any frame of size
[2 or greater is at most r4. Between this region and the fuzzy region, the relative
congestion in any frame of size /1 or greater is at most r2. In the fuzzy region,
the relative congestion in any frame of size/1 or greater is at most r 3. After the
fuzzy region, the relative congestion in any frame of size I I or greater is again
r2, until step 213§ 312- l log 3I, where the relative congestion in any frame of
size 12 or greater is r4. These bounds are shown in Figure 7. Finally we must
bound the relative congestion in frames that span the different parts of a block
(or two different blocks). Since we have bound the relative congestion in blocks

of size log 4[or greater, it is safe to say that in the the entire schedule Si+ 1 the

relative congestion in any frame of size i(i+i)__ log51 or greater is at most r (i+l) --
|

1 I log 31 13 time step 13+312

r4: I F2 I i :!3!! i !iii!i:!i~~l F2 I re
12 11 I I 12

213+312

Fig. 7. Final bounds on frame size and relative congestion. To reduce the flame size in the
fuzzy regions: delays are inserted only outside the shaded region. Here I 1 = log 2 I, [2 = log 4 I,

r 2 :=r(1+O(1)/1~), r 3 =r(1+O(1)/~), a n d r 4 =rl(l+l/logf)_<r(l+O(1)/~).

4. C o u n t e r e x a m p l e s to on- l ine a l g o r i t h m s

This section presents examples where several natural on-line scheduling strate-
gies do poorly. Based on these examples, we suspect that finding an on-line algo-
rithm that can schedule any set of paths in O(e+d) steps using constant-size queues
will be a challenging task.

4.1. C o u n t e r e x a m p l e for r o u t i n g on leveled n e t w o r k s

In the first example, we examine a routing strategy for scheduling packets on
leveled networks from [6, 8, 9]. A leveled network is a network whose switches can
be partitioned into sets or levels labeled with integers so that every edge goes from
a switch in some level i to a switch in the next level i+1. The depth of the network
is the maximum distance between two switches.

182 F. T. LEIGHTON, BRUCE M. MAGGS, SATISH B. RAO

The routing strategy consists of randomly choosing ranks for the packets to be
routed and using this value as a priority in a very strong manner; all the packets
that use a switch must use it in order of rank. Tha t is, the lowest ranked packet
that uses the switch passes through the switch first, then the second lowest ranked
packet passes through the switch and so on. Notice that at some point a packet
with some rank may reach a switch before a packet with a lower rank reaches the
switch through a different edge. In this case the packet must wait for the lower
ranked packet to reach and use the switch before it can use the switch. So in
order for a packet to decide if it can use a switch or not it must somehow know
what the highest ranked packet that is going to enter the switch through some
other edge is. This is achieved through the use of ghost messages. When a packet
uses an outgoing edge of a switch it sends a ghost message consisting only of the
packer's rank down all the other edges. These messages serve as a lower bound
to each of these switches for the rank of any packet coming through this incoming
edge, and are appropriately forwarded. Finally, end-of-stream (EOS) messages are
used to indicate that no more packets will come from a switch. Thus, a packet is
allowed to go if it is the lowest ranked packet on any incoming edge and it has a
lower rank than the last ghost that arrived on incoming edges that do not have a
packet and have not recieved an EOS message. This strategy is described in more
detail in each of [6, 8, 9]. With high probability, it produces a schedule of length
O (c + L + l o g N) using constant-size queues for any set of N packets whose paths
have congestion c on any bounded-degree leveled network with depth L. For a wide
variety of networks (both leveled and non-leveled), this algorithm can be used as
a subroutine to derive a routing algorithm that delivers all the packets to their
destinations in O(c+ d+ log N) time, with high probability.

In our first example, however, we show that this is not always the case. We
describe an N-node leveled network in which a set of packets with congestion and
dilation O(1) requires f~(log2N/loglogN) steps to be delivered using the strategy
for scheduling packets on leveled networks from [6, 8, 9]. Our example does
not contradict the previous analysis of the algorithm, since the network has L =
(~(log 2 N) levels. However, it shows that reducing the congestion and dilation below
the depth of the network does not necessarily improve the running time.

Observation 4.1. For the leveled network scheduling strategy there is an N-node
directed acyclic network of degree 3 and a set of paths with congestion c = 3 and
dilation d = 3 where the expected length of the schedule is f~(log 2 N~ log log N).

Proof. The network consists of many disjoint copies of the subnetwork pictured in
Figure 8. For simplicity, we dispense with the initial queues; the packets originate
in edge queues. The subnetwork is composed of k / l ogk linear chains of length k,
where k shall later be shown to be O(logN). The second node of each linear chain
is connected to the second to last node of the previous chain by a diagonal edge.
We assume that at tile end of each edge there is a queue that can store 2 packets.
Initially, the queue into the first node of each chain contains an end-of-stream (EOS)
signal and one packet, and the queue into the second node contains two packets. A
packet 's destination is the last node in the previous chain. Each packet takes the
diagonal edge to the previous chain and then the last edge in the chain. Thus, the
length of the longest pa th is d = 3. However, the depth of this subnetwork or any
number of disjoint copies of this subnetwork is O(k2/ logs Tha t is, there are at

k/log k

PACKET ROUTING

k

Eos p > --=-: I

.

Fig. 8. Example 1.

183

least f~(k2/log k) levels in this network. We now proceed by showing that the time
for routing can be f t (k2/logk).

When the ranks r l , . . . ,r3k/log k of the packets P l , . . . , P 3 k / l o g k are chosen so

that ri < ri+l for 1 < i < 3k/logk, packet P3k/logk requires f~(k2/logk) steps to
reach its destination. The scenario unfolds as follows. Packets Pl and P2 take a
diagonal edge in the first two steps. These packets cannot advance until the EOS
reaches the end of the first chain, in step k. Thus P3 remains in the previous queue
until step k. In the meantime, ghosts with ranks r l , r2, and r3, travel down the
second chain, but packet P3 blocks an EOS signal from traveling down the chain.
Packets P4 and P5 move out of their chain and must wait for this EOS signal. They
cannot advance until step 2k. So P6 cannot move out of its chain and let the EOS
signal behind it through until this step, so P9 cannot move out of its chain until
step 3k and so on. In this fashion, a delay of k2 / logk is propagated down to packet

P3k/ log k.

A simple calculation reveals that the probabili ty that r i < ri+ 1 for 1 < i <

3k/log k is 1/20(k). Thus, if we have 2 e(k) copies of the subnetwork, we expect the
ranks of the packets to be sorted in one of them. For the total number of nodes in
the network to be N, we need k = @ (l o g N) . In this case, we expect some packet to
be delayed f t (log2N/loglogN) steps in one copy of the subnetwork. |

It is somewhat unfair to say that the optimal schedule for this example has
length O(c + d) = O(1), since ghosts and EOS signals must travel a distance of
O(log N). However, even if the EOS signals are replaced by packets with equivalent
ranks, the dilation is only O(logN) , and thus the opt imum schedule has length
O(logJV).

4.2. C o u n t e r e x a m p l e for v a r i o u s d e t e r m i n i s t i c s t r a t e g i e s

The second example is quite general. It shows that for any deterministic
strategy that chooses the order in which packets pass through a switch independent
of the future paths of the packets, there is a network and a set of paths with
congestion e and dilation d for which the schedule produced has length at least
c(d-1)/ log c. This observation covers strategies such as giving priority to the packet
that has spent the most (or least) t ime waiting in queues, and giving priority to

184 F. T. LEIGHTON, BRUCE M. MAGGS, SATISH B. RAO

the packet that arrives first at a switch, The network is a complete binary tree of
height d - 1 with an auxiliary edge from the root to an auxiliary node.

Observation 4.2. For any deterministic strategy that chooses the order in which
packets pass through a switch independent of the paths that the packets take after
they pass through the switch, there is a network and a set of paths with congestion
e and dilation d for which the schedule produced has length c (d - 1)/logc.

Proof. We construct the example for congestion e and dilation d, E(c,d), recur-
sively. The base case is the example E(c, l o g c + l) . Each of the c leaves sends a
packet to the auxiliary node, causing congestion c in the auxiliary edge. The net-
work for E(c,d) contains c copies of the network for E(c,d- logc) , as shown in
Figure 9. First, the auxiliary nodes for these copies are paired up and merged so
that there are c/2 auxiliary nodes each with two auxiliary edges into it. Next, the
auxiliary nodes become the leaves of a complete binary tree of height log c - 1 with
its own auxiliary node and edge. For each copy of E(c, d - log c), the deterministic
scheduling strategy chooses some packet to cross its auxiliary edge last. We extend
the path of this packet so that it traverses the auxiliary edge in E(c, d). The dila-
tion of the new set of paths is d and the congestion c. The length of the schedule,
T(e,d), is given by the recurrence

T (c , d) > ~ T (c ' d - l ~ 1 7 6 d > l o g c + l
- [l o g c + c d = l o g c + l

and has solution T(c,d)> c(d-1)/ logc. Setting c= d = log N in this example gives
a routing time of 0 (log 2 N/log log N). II

E(c, d - log c)

1 . C

E(c, a')

Fig. 9. Example 2.

The previous example can be modified to show that the strategies of sending
the packet with the farthest distance left to go or the packet with the farthest total
initial distance to go first can also be made to require ~(cd/logc) time. We simply
extend the paths of the packets winning at each switch so that they have total (or
remaining) distance equal to or greater than the packets that lose at a switch.

P A C K E T R O U T I N G 185

4.3. C o u n t e r e x a m p l e to a r a n d o m i z e d s t r a t e g y

The third example shows that the natural strategy of assigning priorities to
the packets at random is not effective either.

Observation 4.3. For the strategy of assigning each packet a random rank and
giving priority to the packet with the lowest rank, there is an N-node network with
diameter 0 (log N~ log log N) and a set of paths with dilation d = 0 (log iV/log log N)
and congestion c = O(log N/log log N) where the expected length of the schedule is
ft ((log N~ log log N)3/2).

Proof. As in Example 1, the network consists of many copies of a subnetwork.
Each subnetwork is constructed so that d = c = k/log k. A subnetwork consists of
a linear chain of length d, with loops of length v/-d between adjacent nodes (see
Figure 10). The packets are broken into x/-d groups numbered 0 through v/-d- 1 of
v/-d packets each. The packets in group i use the linear chain for iv/-d steps and then
use x / d - i loops as their path. As in the previous example, we assume that queues
have unlimited capacity and that at each step a node can send a single packet.

d
A

g-

Fig. 10. Example 3.

If the random ranks are assigned so that the packets in group i have smaller
ranks than the packets in groups with larger numbers, then the packets in group
i delay the packets in group i + 1 by d - (i + 1)v/-d+i steps. Thus the last packet
experiences an ft(dv/-d) = O((k/log k) 3/2) delay.

Once again the ranks of the packets must have a specific order, which can be
shown to happen with high probability given enough copies of the subnetwork. As
in Observation 4.1, it is not hard to show this requires k = O(log N). |

5. A c k n o w l e d g e m e n t s

Thanks to Nick Pippenger and David Shmoys for pointing out the relationship
between packet scheduling and job-shop scheduling.

186 F. T. LEIGHTON, BRUCE M. MAGGS, SATISH B. RAO: PACKET ROUTING

R e f e r e n c e s

[1] N. ALON: A parallel algorithmic version of the Local Lemma. In Proceedings of the
32nd Annual Symposium on Foundations of Computer Science (1991), 586-593.

[2] J. BECK: An algorithmic approach to the Lovgsz Local Lemma I. Random Structures
and Algorithms, to appear.

[3] R. KOCH, T. LEIGHTON, B. MAGGS, S. RAO~ and A. ROSENBERG: Work-preserving
emulations of fixed-connection networks. Ifl Proceedings of the 21st Annual A CM
Symposium on Theory of Computing May 1989, 227-240.

[4] E. L. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY NAN, and D. B. SHMOYS:
Sequencing and scheduling: Algorithms and complexity. Technical Report
BS-R8909, Centre for Mathematics and Computer Science, Amsterdam, The
Netherlands, June 1989.

[5] F. T. LEIGHTON: Introduction to Parallel Algorithms and Architectures: Arrays �9
Trees �9 Hypercubes. Morgan Kaufmann, San Mateo, CA, 1992.

[6] F. T. LEIGHTON, B. M. MAGGS, A. G. RANADE, and S. B. RAO: Randomized
routing and sorting on fixed-connection networks, Journal of Algorithms, to
appear.

[7] T. LEIGHTON, B. MAGGS, and S. RAO: Fast algorithms for finding O(congestion +
dilation) packet routing schedules. Manuscript in preparation.

[81 T. LEIGHTON, B. MAGGS, and S. RAO: Universal packet routing algorithms. In Pro-
ceedings of the 29th Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, October 1988, 256-271.

[9] A. G. RANADE: How to emulate shared memory. In Proceedings of the 28th An-
nual Symposium on Foundations of Computer Science, IEEE Computer Society
Press, October 1987, 185-194.

[10] S. V. SEVAST'YANOV: Bounding algorithm for routing problem with arbi trary paths
and alternate servers. Kibernetiha 22(6) (1986), 74 79. Translation in Cyber-
netics 22 773-780.

[11] D. B. SHMOYS, C. STEIN, and J. WEIN: Improved approximation algorithms for shop
scheduling problems. In Proceedings of the 2nd Annual A CM S IAM Symposium
on Discrete Algorithms January 1991, 148-157.

[12] J. SPENCER: Ten Lectures on the Probabilistic Method. SIAM, Philadelphia, PA,
1987.

F. T. Le ighton

Mathematics Department and
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, U.S.A.
ftl@math, mit. edu

Sat i sh B. Rao

NEC Research Institute
Independence Way

Princeton, NJ 08540, U.S.A.
sat ish@research, nj . nec. com

Bruce M. Maggs

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.
bmm@cs, cmu. edu

