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In this paper, we prove that  there exists a schedule for routing any set of packets with edge- 
simple paths, on any network, in 0(c4-d )  steps, where c is the congestion of the paths in the 
network, and d is the length of the longest path. The result has applications to packet routing in 
parallel machines, network emulations, and job-shop scheduling. 

1. I n t r o d u c t i o n  

Packet routing plays a central role in the design of large-scale parallel com- 
puters. Simply stated, packet routing consists of moving packets of data  from one 
location to another in a network. The goal is to move all of the packets to their 
desired locations as quickly as possible, and with as little queuing as possible. The 
packet routing problem has been extensively studied, and we refer the reader to [5] 
for a broader coverage of the topic. 

The method of packet routing considered in this paper  is known as store-and- 
forward routing. In a store-and-forward routing algorithm, packets are viewed as 
atomic objects. At each step, a packet can either wait in a queue or jump from one 
queue to another. 

Figure 1 shows a graph model for store-and-forward routing. The shaded nodes 
labeled 1 through 5 in the figure represent processors or switches, and the edges 
between the nodes represent wires. A packet is depicted by a square box containing 
the label of its destination. The goal is to route the packets from their origins to 
their destinations via a series of synchronized time steps, where at each step at 
most one packet can traverse each edge. 
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Packets wait in three different kinds of queues. Before the routing begins, 
packets are stored at their origins in special initial queues. For e• packets 4 
and 5 are stored in the initial queue at node 1. When a packet traverses an edge, it 
enters the edge queue at the end of that  edge. A packet can traverse an edge only 
if at the beginning of the step the edge queue at the end of that  edge is not full. 
In the example of Figure 1 the edge queues can hold two packets. Upon traversing 
the last edge on its path, a packet is removed from the edge queue and placed in a 
special final queue at its destination. For simplicity, the final queues are not shown 
in Figure 1. Independent of the routing algorithm used, the size of the initial and 
final queues are determined by the particular packet routing problem to be solved. 
Thus, any bound on the maximum queue size required by a routing algorithm refers 
only to the edge queues. 

Fig. 1. A 9'l'(Lpll~ 'model eb~ packet r'o~zti'l~ 9. 

This paper focuses on the problem of timing the movements of the packets 
along their paths. A schedule for a set of packets specifies which move and which 
wait at each time step. Given any underlying network, and any selection of paths 
for the packets, our goal is to produce a schedule for the packets that  minimizes 
the total t ime and the maximum queue size needed to route all the packets to their 
destinations. 

Of course, there is a strong correlation between the time required to route the 
packets and the selection of the paths. In particular, the maximum distance, d, 
traveled by any packet is always a lower bound on the time. We call this distance 
the dilation of the paths. Similarly, the largest number of packets that  must traverse 
a single edge during the entire course of the routing is a lower bound. We call this 
number the congestion, c, of the paths. For example, see Figure 2. 

Given any set of paths with congestion c and dilation d in any network, it is 
straightforward to route all of the packets to their destinations in cd steps using 
queues of size c at each edge. Each packet can be delayed at most c - 1  steps at each 
of at most d edges on the way to its destination (since the queues are big enough 
so that  packets can never be delayed by a full queue in front.) 

In this paper, we show that  there are much bet ter  schedules. We begin in 
Section 2 with a randomized on-line algorithm that  produces a schedule of length 
O(c + dlog(Nd)) using queues of size O(log(Nd)), where N is the total  number 
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Fig. 2. A set o] paths for the packets with dilation d = 3  and congestion c = 3 .  

of packets. This algorithm is close to optimal when c is large. Our main result 
appears in Section 3. It establishes the existence of a schedule using O(c+d) steps 
and constant-size queues at every edge, thereby achieving the naive lower bounds 
for any routing problem. 

The proof of the main result is nonconstructive. However, the result still has 
several applications, as described below. In addition, the result is highly robust in 
the sense that it works for any set of edge-simple paths and any underlying network. 
(A priori, it would be easy to imagine that  there might be some set of paths on 
some network that  required more than ~ ( c +  d) steps or nonconstant queues to 
route all the packets.) Furthermore, the main result can be made constructive 
using the recently discovered algorithmic version of the Lov~sz Local Lemma [1, 21. 
A manuscript describing the algorithm is in preparation [7]. 

If a particular routing problem is to be performed many times over, then the 
time required to compute the optimal schedule once becomes less important.  This 
situation arises in network emulation problems. Typically, a guest network G is 
emulated by a host network H by embedding G into H. (For a more complete 
discussion of emulations and embeddings, see [3].) An embedding maps nodes of G 
to nodes of H,  and edges of G to paths in H.  There are three important measures 
of an embedding: the load, congestion, and dilation. The load of an embedding is 
the maximum number of nodes of G that  are mapped to any one node of H. The 
congestion is the maximum number of paths corresponding to edges of G that  use 
any one edge of H.  The dilation is the length of the longest path. Let l, c, and 
d denote the load, congestion, and dilation of the embedding. Once G has been 
embedded in H,  H can emulate G in a step-by-step fashion. Each node of H first 
emulates the local computations performed by the I (or fewer) nodes mapped to 
it. This takes O(1) time. Then for each packet sent along an edge of G, H sends 
a packet along the corresponding path in the embedding. Using the main result of 
this paper, routing the packets to their destinations takes O(c+d) steps. Thus, H 
can emulate each step of G in O(l+c+d) steps. 

In a related paper, Leighton, Maggs, Ranade, and Rao [6] show how to route 
packets in O(c+ L+ logN) steps using a simple randomized algorithm provided 
that  the underlying network is leveled and has depth L. As a consequence, optimal 
routing algorithms can be derived for most of the networks that are commonly 
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used for parallel computation. Unfortunately, it seems to be difficult to extend 
this result to hold for all networks. In fact, we have considered many simple 
on-line algorithms (including the algorithm presented in [6]), and found routing 
problems for each algorithm that  result in schedules that  use asymptotically more 
than f~(c+ d + l o g N )  steps. Several of these examples are included in Section 4. 

The results of this paper also have applications to job-shop scheduling. In par- 
ticular, consider a scheduling problem with jobs j l , . . - ,  jr, and machines rn l , . . . ,  ms, 
for which each job must be performed on a specified sequence of machines. In our 
application, we assume that  each job occupies each machine that  works on it for 
a unit of time, and that  no machine has to work on any job more than once. Of 
course, the jobs correspond to packets, and the machines correspond to edges in 
the packet routing problem. Hence, we can define the dilation of the scheduling 
problem to be the maximum number of machines that  must work on any job, and 
the congestion to be the maximum number of jobs that  have to be run on any ma- 
chine. As a consequence of our packet routing result, we show that  any scheduling 
problem can be solved in O(c+d) steps. In addition, we will prove that  there is a 
schedule for which each job waits at most O(c+d) steps before it starts running, 
and that  each job waits at most a constant number of steps in between consecutive 
machines. The queue of jobs waiting for any machine will also always be at most 
a constant. These results are optimal, and are substantially bet ter  than previously 
known bounds for this problem [4, 10]. 

Recently some results were proved in [11] for the more general problem of 
job shop scheduling where jobs are not assumed to be unit length and a machine 
may have to work on the same job more than once. They give randomized and 
deterministic algorithms that  produce schedules that  are within a polylogarithmic 
factor of the optimal length for the more general job-shop problem. However, it is 
not known whether there exist schedules of length O(c+d) for this problem. 

This paper  also leaves open the question of whether or not there is an on-line 
algorithm that  can schedule any set of paths in O(c + d) steps using constant- 
size queues. We suspect that  finding such an algorithm (if one exists) will be a 
challenging task. Our negative suspicions are derived from the fact that  we can 
construct eounterexamples to most of the simplest on-line algorithms. In other 
words, for several natural  on-line algorithms we can find paths for N packets 
for which the algorithm will construct a schedule using asymptotically more than 
f~(c+d+logN) steps. Several of the counterexamples are included in Section 4. 

2. An  on-l ine a lgor i thm 

There is a simple randomized on-line algorithm for producing a schedule of 
length O(c+dlog(Nd)) using queues of size O(log(Nd)), where c is the congestion, 
d is the dilation, and N is the number of packets. 

First, each packet is assigned a delay chosen randomly, independently, and 
[ I  c~c l uniformly from the interval t , log(Nd)], where c~ is a constant that  will be specified 

later. A packet that  is assigned a delay of x waits in its initial queue for x t ime 
steps, and then moves on to its final destination without ever stopping. 
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The trouble with this schedule is that  several packets may traverse the same 
edge in ~ single step. t tow~wr, w~ can bound the number of packets that  are likely 
to do so. The probability that  more than log(Nd) packets use a particular edge 9 
at a particular t ime step I is at most 

k=log(Nd)§ 

since at most c different packets pass through g, and for each of these, at most one 
ac possible delays sends it through 9 at step t. This sum is at most of the 

(log(~Vd)) (l~ l~ To bound the probabili ty that  more than log(Nd) 

packets pass through any edge at any t ime step, we multiply this quantity by the 
number of choices for 9, at most Nd, and the number of choices for 1, at most 
d + log(a]~d-----~. Using the inequality (~) _< (ae/b) b for 0 < b < a, and noting that  c _< N,  

we see that  for large enough, but fixed, a,  the product is at most 1/(Nd). Thus, 
with high probability, no more than O(log(Nd))  packets will want to traverse any 
edge at any step of this unconstrained schedule. 

Each step of the unconstrained schedule can be simulated by O(log(Nd)) steps 
of a legitimate schedule. The final schedule requires O ( c +  dlog(Nd)) steps to 
complete the routing, and uses queues of size O(log(Nd)).  

3. A n  O(c+d)-step s c h e d u l e  

In this section, we prove that for any set of packets whose paths are edge- 
simple I and have congestion c and dilation d, there is a schedule of length O(c+d) 
in which at most one packet traverses each edge of the network at each step, and 
at most a constant number of packets wait in each queue at each step. Note that 
there are no restrictions on the size, topology, or degree of the network or on the 
number of packets. 

Our strategy for constructing an efficient schedule is to make a succession of 
refinements to the "greedy" schedule, So, in which each packet moves at every step 
until it reaches its final destination. This initial schedule is as short as possible; its 
length is only d. Unfortunately, as many as c packets may have to use an edge at a 
single time step in So, whereas in the final schedule at most one packet is allowed 
to use an edge at each step. Each refinement will bring us closer to meeting this 
requirement by bounding the congestion within smaller and smaller frames of time. 

The proof uses the Lovs Local Lemma [12, pp. 57 58] at each refinement 
step. Given a set of "bad" events in a probability space, the lemma provides a 
simple inequality which, when satisfied, guarantees that with probability greater 
than zero, no bad event occurs. The inequality relates the probability that each 
bad event occurs with the dependence among them. A set of events AI,..., Am in a 
probability space has dependence at most b if every event is mutually independent 
of some set of m- b- 1 other bad events. The lemma is nonconstructive; for a 

1 An edge-simple path uses no edge more than once. 
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discrete probability space, it shows only that  there exists some elementary outcome 
that  is not in any bad event. 

Lemma 3.1. (Lov~tsz) Let A I , . . . , A m  be a set of "bad" events each occurring with 
probability p with dependence at most b. I f  4pb < 1, then with probability greater 
than zero, no bad event occurs. | 

3.1. A p r e l i m i n a r y  r e s u l t  

Before proving the main result of this section, we show that  there is a schedule 
of length (c + d)2 ~176 that  uses queues of size log(c + d)2 ~176 (c+d)). This 
preliminary result is substantially simpler to prove because of the relaxed bounds 
on the schedule length and queue size. Nevertheless, it illustrates the basic ideas 
necessary to prove the main result. We begin by proving a lemma that  is used in 
the proofs of both the preliminary result and the main result. 

Before proceeding, we need to introduce some notation. A T-frame is a 
sequence of T consecutive time steps. The frame congestion, C, in a T-frame 
is the largest number of packets that  traverse any edge in the frame. The relative 
congestion, R, in a T-frame is the ratio C / T  of the congestion in the frame to the 
size of the frame. 

Lemma 3.2. For any set of packets whose paths are edge-simple and have congestion 
c and dilation d, there is a schedule of length O(c+d)  in which packets never wait 
in edge queues and in which the relative congestion in any frame of size logd or 
greater is at most 1. 

Proof, The proof uses the Lov~sz Local Lemma. The first step is to assign an 
initial delay to each packet. Without  loss of generality, we assume that  c = d. The 
delays are chosen from the range [1,ad], where c~ is a fixed constant that  will be 
determined later. In the resulting schedule, $1, a packet that  is assigned a delay 
of x waits in its initial queue for x steps, then moves on to its destination without 
waiting again until it enters its final queue. The length of $1 is at most (1 + c~)d. 
We use the Lovgsz Local Lemma to show that  if the delays are chosen randomly, 
independently, and uniformly, then with nonzero probabili ty the relative congestion 
in any frame of size logd or greater is at most 1. Thus, such a set of delays must 
exist. 

To apply the Lovgsz Local Lemma, we associate a bad event with each edge. 
The bad event for edge g is that  more than T packets use g in some T-frame, 
for T _> togd. To show that  there is a way of choosing the delays so that  no bad 
event occurs, we need to bound the dependence, b, among the bad events and the 
probability, p, of each individual bad event occurring. 

The dependence calculation is straightforward. Whether  or not a bad event 
occurs depends solely on the delays assigned to the packets that  pass through the 
corresponding edge. Thus, two bad events are independent unless some packet 
passes through both of the corresponding edges. Since at most c packets pass 
through an edge, and each of these packets passes through at most d other edges, 
the dependence, b, of the bad events is at most cd=d 2. 
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Computing the probability of each bad event is a little trickier. Let p be the 
probability of the bad event corresponding to edge g. Then 

p_< 
d 

T = l o g  d 

This expression is derived as follows. Frames of size greater than d cannot have 
relative congestion greater than 1, since the total congestion is only d. Thus, we 
can ignore them. We bound the probability that  any frame has relative congestion 
greater than 1 by summing, over all frame sizes T from logd to d, the probability 
that some T-frame has relative congestion greater than 1. Furthermore, for any 
T, there are at most (1 + c~)d different T-frames and we bound the probability 
that any one of them has relative congestion greater than 1 by summing their 
individual probabilities. The number of packets passing through g in any T-frame 
has a binomial distribution. There are d independent Bernoulli trials, one for each 
packet that uses g. Since at most T of the possible c~d delays will actually send a 
packet through g in the frame, each trial succeeds with probability T/c~d. (Here we 
use the assumption that  the paths are edge-simple.) The probability of more than 
T successes is at most (T d) (T/gd) T. 

For sufficiently large, but fixed, c~ the product 4pb is less than 1, and thus, by 
the Lovs Local Lemma, there is some assignment of delays such that  the relative 
congestion in any frame of size logd or greater is at most 1. | 

Theorem 3.3. For any set of p~ckets whose paths are edge-simple ~nd have con- 
gestion c and dilation d, there is a schedule having length (e +d)2 O(l~ and 
maximum queue size log(c+ d)2~ l~ (e+d)) in which at most one packet traverses 
each edge at each step. 

Proof. For simplicity, we shall assume without loss of generality that c = d, so 
that  the bounds on the length and queue size are d2 O(l~ and (logd)2 O(l~ 
respectively. 

The proof has the following outline. We begin by using Lemma 3.2 to produce 
a schedule $1 in which the number of packets that  use an edge in any log&frame is 
at most log& Next we break the schedule into ( l+a)d/ logd log&frames, as shown 
in Figure 3. Finally, we view each log&frame as a routing problem with dilation 
logd and congestion log& and solve it recursively. 

time step (l+ct)d 

log d 

Fig. 3. Schedule $1. The schedule is derived from the greedy schedule, SO, by assigning an 

initial delay in the range [1,c~d] to each packet. We use the Lovdsz Local Lemma to show that 

within each log d-frame, at most logd packets pass through each edge. 
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Each logd-frame in $1 can be viewed as a separate scheduling problem where 
the origin of a packet is its location at the beginning of the frame, and its destination 
is its location at the end of the frame. If at most logd packets use each edge in a 
log&frame, then the congestion of the problem is logd. The dilation is also logd 
because in logd time steps a packet can move a distance of at most logd. In order 
to schedule each frame independently, a packet that  arrives at its destination before 
the last step in the rescheduled frame is forced to wait there until the next frame 
begins. 

All that  remains is to bound the length of the schedule and the size of the 
queues. The reeursion proceeds to a depth of O(log* d) at which point the frames 
have constant size, and at most a constant number of packets use each edge in each 
frame. The resulting schedule can be converted to one in which at most one packet 
uses each edge in each time step by slowing it down by a constant factor. Since 
the length of the schedule increases by a constant factor during each recursive step, 
the length of the final schedule is d2 O(l~ d). The bound on the queue size follows 
from the observation that  no packet waits at any one spot (other than its origin or 
destination) for more than (logd)20(l~ d) consecutive t ime steps, and in the final 
schedule at most one packet traverses each edge at each time step. | 

3.2. T h e  m a i n  r e s u l t  

Proving that  there is a schedule of length O(c+ d) using constant-size queues 
is more difficult. Removing the 2 O(l~ factor in the length of the schedule 
seems to require delving into second-order terms in the probability calculations, and 
reducing the queue size to a constant mandates greater care in spreading delays out 
over the schedule. 

Theorem 3.4. For any set of packets with edge-simple paths  having congestion c 
and dilation d, there is a schedule having length O(e + d) and constant maximum 
queue size in which at most one packet traverses each edge of the network at each 
step. 

Proof. To make the proof more modular, we bound the frame size and relative 
congestion after each step of the construction in lemmas. These lemmas and their 
proofs are included within the proof of the theorem. We assume without loss of 
generality that  c=d, so tha t  the bound on the length of the schedule is O(d). 

As before, the s t ra tegy is to make a succession of refinements to the greedy 
schedule, So. The first refinement is special. It  transforms So into a schedule Si 
in which the relative congestion in each frame of size log d or more is at most 1. 
Thereafter,  each refinement transforms a schedule Si with relative congestion at 
most r(i) in any frame of size I (i) or greater into a schedule Si+l with relative 
congestion at most )(i+1) in any frame of size I(i+1) or greater, where r(i+1) ~ r ( / )  
and i(/+1) <</(i), as shown in Figure 4. As well shall see, after j refinements, where 
j - - -O(log* d), we obtain a schedule Sj with constant relative congestion in every 
frame of size s or greater, where k0 is some constant. From Sj it is straightforward 
to construct a schedule of length O(c+d) in which at most one packet traverses 
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si I r(,) 

! 

Fig. 4. A refinement step. Each refinement transforms a schedule Si into a slightly longer 
schedule Si+ 1, The frame size is greatly reduced in Si+1, yet the relative congestion within a 

frame remains about the same, i.e., i(i+1) <<i(i) and r(i+1) ~-r(i). 

each edge of the network at each step, and at most a constant number of packets 
wait in each queue at each step. 

At the start, the relative congestion in a d-frame of So is at most 1. We begin 
by using Lemma 3.2 to produce a schedule S1 of length O(d) in which the relative 

congestion is at most r (I) =I in any frame of size i(I)=logd or greater. 
Next, we repeatedly refine the schedule to reduce the frame size. As we shall 

see, the relative congestion r (i+I) and frame size i(i+1) for schedule Si+l are given 
by the recurrences 

and 

r(i+l ) ~ 1 i = 0 
= [ r ( i ) ( l +  O(1)/v/ logIt i))  i > 0 

I(i+l) = / log d i = 0 
log 5 I(i) i > 0 

k 

which have solutions I(J)= O(1) and r (j) =O(1)  for some j ,  where j=O( log*  d). 
We have not explicitly defined the values of r(i) and I(i) for which the recursion 

terminates. However, in several places in the proof that follows we implicitly use 
the fact that  [(i) is sufficiently large that  some inequality holds. The recursion 
terminates when the first of these inequalities fails to hold. When this happens, 
I (i) is bounded from above by some constant. Furthermore, independent of the 
depth of the recursion, r(i) is bounded from above by a constant. 

Throughout  the followingdemmas we make references to quantities such as 
r I  packets o1" log4/  time steps, when in fact r I  and log4I may not be integral. 
Rounding these quantities to integer values when necessary does not affect the 
correctness of the proof. For ease of exposition, we shall henceforth cease to consider 
the issue. 

An important  invariant that we maintain throughout the construction is that  
in schedule &+l  every packet waits at most once every I(i) steps. As a consequence, 
there is a constant kl such that a packet waits at most once every kl steps in Sj, 
which implies both that  the queues in Sj cannot grow larger than a constant and 
that  the total length of Sj is O(d). Schedule Sj almost satisfies the requirement 



176 F. T. LEIGHTON, BRUCE M. MAGGS, SATISH B. RAO 

that  at most one packet traverses each edge in each step. By simulating each step 
of Sj in a constant number of steps we can meet this requirement with only a factor 
of 2 increase in the queue size and a constant factor increase in the schedule length. 

The rest of the proof describes the refinement step in detail. For ease of 
notation, we use I and r in place of I(i) and r(i). 

The first step in the i th refinement is to break schedule Si into blocks of 
213+ 2I  2 -  [ consecutive time steps. Each block is rescheduled independently. 

For each block, each packet is assigned a delay chosen from 1 to I.  We will use 
the Lov&sz Local Lemma to show that  if the delays are chosen randomly, uniformly, 
and independently, then with non-zero probability the resulting schedule will have 
the properties that  we want. 

A packet that  is assigned a delay of x should wait for x steps at the beginning 
of the block. However, in order maintain the invariant that  in schedule Si+l every 

packet waits at most once every I (i) steps, the packet is not delayed for x consecutive 
steps at the beginning of the block, but instead a delay is inserted every I steps 
in the first x I  steps of the block. A packet that  is delayed x steps reaches its 
destination at the end of the block by step 2I  3 + 2/2 - jr + x. 

In order to independently reschedule the next block, the packets must reside 
in exactly the same queues at the end of the rescheduled block that  they did at 
the end of the block of Si. Since some packets arrive early, they must be slowed 
down. Thus, if a packet is assigned delay x, then I - x  delays are inserted in the 
last I ( I - x )  steps of the block, one every I steps. Since every packet experiences a 
total  delay of I ,  the rescheduled block must have length 2I  3 + 2I  2. 

Before the delays for schedule Si+l have been inserted, a packet is delayed at 
most once in each btock of Si, provided that  2/3 + 2 I  2 -  [ < j r ( i - l )  which holds 
as long as I is larger than some constant. Prior to inserting each new delay into 
a block, we check if it is within I steps of the single old delay. If the new delay 
would be too close to the old delay, then it is simply not inserted. The loss of a 
single delay in a block has a negligible effect on the probability calculations in the 
lemmas that  follow. 

The following t~o  lemmas are used several times in the proof of the theorem. 
Lemma 3.5 shows that  if we can bound the relative congestion in frames of size T to 
2 T - 1 ,  then we can bound the relative congestion in all frames of size T or greater. 
Lemma 3.6 bounds %he probability that  too many packets use any particular edge 
g in any small f rame in the center of a block after every packet has been delayed 
for a random number" of steps at the beginning of the block. 

Lemma 3.5. In any schedule, if  the number of packets that use a particular edge g 
in any y-frame is a~)most Ry, for all y between T and 2 T -  1, then the number of 
packets that use g in: any y-frame is at most Ry  for all y > T. 

Proof. Consider a frame of size T ~, where T ~ > 2 T -  1. The first (L T ' / T j  - 1)T steps 
of the frame can b e  broken into T-trames. In each of these frames, at most R T  
packets use g. The remainder of the T t f r a m e  consists of a single y-frame, where 
T < y < 2 T - 1 ,  in which at most Ry  packets use g. | 

Lemma 3,6. Suppose that there are positive constants p, c~1, and c~2, such that in 
a block of size I ~1 or smMler the relative congestion is at most p in frames of size 
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I c~2 or larger. Furthermore, suppose that each packet is assigned a delay chosen 
randomly, independently, and uniformIy from the range [1, I ~2 ] and that ira packet 
is assigned a delay of x, then x de/ays are inserted in the first I ~3 steps of the block 
and I c~2 - x  delays are inserted in the last I ~a steps, where c~3 is aNo a positive 
constant. Then for any constant c~4 there is a ~r such that the probability that more 
than p i T  paekets use any one edge 9 in any frame of size T >_ I1 in-between the 
first and last I as steps in the new block is at most 1/1 ~4, where I1 = l o g 2 I ,  Pl = 
p( l+cr) ,  and <r=O(1)/ lv~I. 

Proof. We begin by computing an upper bound on the probability, Pl, that  more 
than plI1 packets use an edge g in a particular /1-frame. Since a packet may be 
delayed up to I ~2 steps before the frame, any packet that used g in the /1- f rame 
spanning the same steps in the block before the delays were inserted or in the 
I ~2 steps before that frame may use 9 after the delays are inserted. Thus, there 
are at most p(I  ~2 +I1)  packets that can use g in the frame. For each of these, 
the probability that the packet uses g in the frame after being delayed is at most 
(11/I  c~2), provided that the packet's path uses g at most once. Thus, the probability 
Pl that  more than Pil l  packets use g in the frame is bounded by 

p(I a2 q-lI) 

Pl <-- E (P(Ic~2k+ l l ) ) ( I1 / f c~2) Ic (1-  l l / la2)P(I~2+I1)-k  

k=pl I1 

Let Pl =p ( l+c r ) .  We bound the series as follows. The expected number of packets 
that use g in the frame is pI1(1+I1 / I~2) .  For I~ = log2I and or= O(1)/lox/i~,  
Oil (1+~) is larger than the expectation, so the first term in the series is the largest, 
and there are at most p( I  a2 + I 1 )  terms. Applying the inequalities ( l + z )  _< e x, 
l n ( l + z )  _> z - z 2 ~ 2  for 0 < z < 1, and (~) _< (ae/b) b for 0 < b < a to this term, we have 

Pl <_ P( Ic~2 + l l )e  -pI~<r2(1/2.~/2-I1/<r2I~2.211/~I~2) 

For I1 = log 2 1 and ~r = kl / lov/ i~ ,  we can ensure that Pl < 1 / I  k2, for any constant 
k2 > 0 by making constant kl large enough. 

Next we need to bound the probability P2 that more than p111 packets use g 
in any I i-frame of the block. There are at most I al + I a2 /1-frames. Thus P2 <- 
( Ic~a + Ia2 )P l -  By making the constant k2 large enough, we can ensure that P2 -< 
1/ I  ~a , for any constant k3 > 0. 

To bound the relative congestion in frames of size greater than I1, we appeal 
to Lemma 3.5. The calculations for frames of size I 1+  1 through 2 h -  1 are similar 
to those for frames of size/1. There are at most i a l  + ic~2 frames of any one size, 
and /1 frame sizes between/1 and 2 / 1 -  1. By adjusting the constants as before, 
we can guarantee that the probability p that more than p i t  packets use g in any 
T-frame for T between I1 and 2 / 1 -  1 is at most 1 / I  a4 for any constant a4 >0.  | 

Lemma 3.7 shows that by inserting delays at the beginning and end of the 
block we can reduce the frame size in the center of the block while only slightly 
increasing the relative congestion. The bounds proved in Lemma 3.7 are shown in 
Figure 5. 
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Lemma 3.7. There is some way of assigning delays to the packets so that in-between 
the t~rst and last 12 steps of a blo&, the relative congestion in any frame of size 
I1 = l o g 2 I  or greater is at most rl = r ( l + s l ) ,  where el O ( 1 ) / @ ~ I .  

Proofi The proof uses the Lovgsz Local Lemma. With each edge we associate a 
bad event. For edge g, a bad event occurs when more than r l T  packets use 9 in 
any T-frame for T_> I1. To show that no bad event occurs, we need to bound both 
the dependence of the bad events and the probability that an individual bad event 
occurs. 

We first bound the dependence, b. At most r(213 + 2I  2 -  I)  packets use an 
edge in the block. Each of these packets travels through at most 213+212-I  other 
edges in the block. Furthermore, r= r ( i )  =O(1) .  Thus, a bad event depends on b=  
O( I  6) other bad events. 

For any constant a4, we can bound the probability that a bad event occurs b v 
1/I  a4 by applying Lemma 3.6 with p = r, I al > 213+ 2 1 2 -  I ,  I a2 = I,  I a3 = I z, 
Sl = cr = O(1)/lo,/i-~7, and r l  =/)1 = r(1 + or) = r(1 + s3). 

Since a bad event depends on only b = O(I 6) other bad events, we can make 
4pb < 1 by making a4 large enough. By the Lovgsz Local Lemma, there is some 
way of choosing the packet delays so that no bad event occurs. | 

1 12 time step 213+12 213+212 
T * T 

! r 1  ,: 

l a 11 

Fig. 5. Bounds  o'a erame size and r'elative coT~,gest'ion aider ir~.sertzn9 delays into S i. Here 

11=log  2z  and r l = r ( l + O ( 1 ) / ~ ) .  

Inserting delays into the schedule may increase the relative congestion in I-  
frames (or smaller frames) in the 12 steps at the beginning and end of each block. 
In order to bound the relative congestion in small frames in these regions, we first 
move the block boundaries to the centers of the blocks as shown in Figure 6. Now 
each block of size 213+2/2 has a "fuzzy" region of size �89 2 in its center. Lemma 3.8 
shows that after moving the block boundaries, the relative congestion in any frame 
of size 12 or larger in the block is at most r(1 + 2/I) .  We will later insert more 
delays into the schedule and uses Lemmas 3.6 and 3.8 to help bound the relative 
congestion in small frames in the fuzzy region. 

Lemma 3.8. For any choice of delays, after the delays are inserted and the block 
boundaries are moved the relative congestion in any frame of size 12 or greater is 
at most r ( l  + 2/I) .  

Proof. There are two cases to consider. First, consider a T-frame that lies entirely 
in the first half of a block, or entirely in the second half of a block. After the delays 
are inserted, a packet can use an edge in the T-frame only if it used the edge in 
some (T + / ) - f rame  in Si. Thus, at most r (T  + I) packets can use an edge in the 
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T-frame. For T_> 1 2, the relative congestion is at most r (1+1/ I ) .  Second, consider 
a T-frame tha t  spans the center of the block. Suppose that  the frame consists of 
T1 steps before the center and 2172 after, so that  T = T1 + T2. Then a packet can 
use an edge in the T1 steps before the center only if it used the edge in one of the 
last T1 steps before the end of a block in Si. Since T1 may be less than I ,  we can ' t  
bound the relative congestion in the last T1 steps at the end of a block. But we 
know that  at most r (T l+I )  packets used the edge in the last T I + I  steps, and hence 
in the last T1 steps. Similarly, a packet can use an edge in the T2 steps after the 
center only if it used an edge in one of the first T2 steps of a block in Si. Hence, at 
most r ( T 2+I )  packets use the edge in the T2 steps after the center. Since a total  
of at most r(T1 + T2 + 2I) = r (T  + 2I) packets use the edge, for T > 1 2 the relative 
congestion is at most r ( l +  2/1). | 

To reduce the frame size in the fuzzy region, we assign a delay from 1 to 1 2 
to each packet. As before, we will use the Lovgsz Local Lemma to show that  if 
the delays are chosen randomly, independently, and uniformly then with non-zero 
probabili ty the resulting schedule has the properties we want. A packet  with delay 
x waits once every I 3 / x  steps in the I 3 steps before the fuzzy region. In addition, 
a packet with delay x waits once every I 3 / ( I  2 - x )  steps in the last I 3 steps of the 
rescheduled block. Thus, every packet waits for a total  of i2 steps (except we do 
not insert a delay if it is within I steps of an old delay), and the rescheduled block 
now has size 2I  3 + 3I  2. Note that  in the rescheduled block the width of the fuzzy 
region grows by 1 2 time steps; it spans steps 1 3 through i 3 +  3i  2. 

1 13 t ime step I3+212 213+212 ' 
V V V V 

J 
l l 12 

Fi 9. 6. A block after recenterin 9. The "fuzzy region" in the center  o f  the block is shaded. The 

line bisecting the shaded region denotes  the block boundary before recenterin 9. 

We now show that  there is some way of inserting delays into the schedule before 
the fuzzy region that  both reduces the frame size in the fuzzy region and does not 
increase either the frame size or the relative congestion before or after the fuzzy 
region by much. 

Lemma 3.9. There is some way of choosing the packet delays so that between steps 
I l o g 3 I  and 13 and between steps 1 3 +  312 and 2 / 3 +  3 1 2 -  I l o g 3 I ,  the relative 
congestion in any frame of size I 1 or greater is at most r2 = r ( l + c 2 ) ,  where c2 = 
0 ( 1 ) / ~ ,  and so that in the fuzzy region the relative congestion in any frame 
of size I 1 or greater is at most r 3 = r ( l + c 3 ) ,  where c3 = O (1 ) /  lv/i-~I. 

Proof. The proof uses the LovAsz Local Lemma as before. With each edge we 
associate a bad event. For edge g, a bad event occurs 

1. if more than r3 T packets use g in any T-frame between steps 13 and 13 + 312 
(i.e., in the fuzzy region), for any T > I1, or 



180 F. T. LEIGHTON, BRUCE M. MAGGS, SATISH B. RAO 

2. if more than r2T packets use g in any T-frame between steps I l o g 3 I  and 13, 
for any T > I1, or 

3. if more than r2T packets use g in any T-frame between steps 213+312-Ilog3 I 
and 2I  3 + 3I 2, for any T_> I1. 
The calculation for the dependence b is the same as in Lemma 3.7. At most 

O ( I  a) packets pass through each edge g, and each of these packets passes through 
at most O ( I  3) other edges. Hence, b=  O(I6).  

To bound the probability that  a bad event occurs, we consider the three cases 
separately, and sum their individual probabilities of occurrence. 

Since no delays are inserted into the fuzzy region, we can use Lemma 3.6 
to prove that for any constant ks, there is an e3 = 0(i)/Iv/~l such that the 
probability that more than r(l+c3)T packets use g in any T-frame between steps 
[3 and [3 +312 for any T > [i, is at most i/I kS. We apply Lemma 3.6 with p= 
r(1 + 2/I), T OL1 k 2 I3 + 212, I a2 = I2, I aa -= I3, 

5 3 = c r + 2 ( 1 + ~ r ) / I = O ( 1 ) / V / ~ g I ,  r 3 = P 1 = r ( 1 + 2 / I ) ( l + ~ ) = r ( 1 + e 3 ) ,  

and c~4 = ks. 
Before the fuzzy region, the situation is more complex. By the kth step, 0 < 

lr 3, a packet with delay x has waited xk /[  3 times. Thus, the delay of a packet 
at the kth step varies essentially uniformly from 0 to u = k/I.  For u >_ Iog 3 [,  or 
equivalently, k > I log  3 I~ we can show that  the relative congestion in any frame of 
size 11 or greater has not increased much. 

The probability P2 that  more than r211 packets use an edge g in a particular 
I i - f rame is given by 

rffIa+U) ( r l ( I  + u)) 
P2 ~ E 18 ( ] l / ~ t ) s ( 1 -  [1/%)r1(f1+~z)--8" 

8='F2 at1 

Using the same inequalities as in the proof of Lemma 3.6, we have 

P2 --< r1(11 + U)e -rllle~(1/2-e2/2-I1/e~u-211/e2u). 

The calculations for frames of size I1 + 1 through 2[1 - 1 are similar. Thus for 
any constant k6, for h = log  2I ,  u->log 3 I ,  and e2=O(1)/lv/Y~I, the probabili ty P4 
that  more than r ( l + c 2 ) T  packets use 9 in any T-frame between steps I l o g 3 I  and 
[ 3  for any T>I1,  is at most 1/I k6. 

By symmetry,  the probability that  more than r2T packets use g between steps 
213+ 3I  2 -  I log 31 and 213+ 3I  2, for any T > /1 ,  is also at most 1/I k~. 

Thus, the probabili ty that  a bad event occurs for edge g is at most 1/Ik~+2/I k6 . 
Since the dependence is at most O(I6),  by adjusting the constants k5 and k6 we 
can apply the Lov~sz Local Lemma. | 

For steps 0 to I log  3 I ,  we use the following lemma to bound the frame size and 
relative congestion. 
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Lemma 3.10. The relative congestion in any frame of  size I2 or greater between 
steps 0 and f l o g 3 I  is at mos t  r4, where I2 = l o g 4 I  and r 4 = r l ( 1 §  1 / log / ) .  

Proof. The proof is similar to that of Lemma 3.8. | 

We have now completed our transformation of schedule Si into schedule Si+l.  
Let us review the relative congestion and frame sizes in the different parts of a 
block. Between steps 0 and I log3 I ,  the relative congestion in any frame of size 
[2 or greater is at most r4. Between this region and the fuzzy region, the relative 
congestion in any frame of size /1 or greater is at most r2. In the fuzzy region, 
the relative congestion in any frame of size/1 or greater is at most r 3. After the 
fuzzy region, the relative congestion in any frame of size I I or greater is again 
r2, until step 213§ 312- l log 3I, where the relative congestion in any frame of 
size 12 or greater is r4. These bounds are shown in Figure 7. Finally we must 
bound the relative congestion in frames that span the different parts of a block 
(or two different blocks). Since we have bound the relative congestion in blocks 

of size log 4[ or greater, it is safe to say that in the the entire schedule Si+ 1 the 

relative congestion in any frame of size i(i+i)__ log51 or greater is at most r (i+l) -- 
| 

1 I log 31 13 time step 13+312 

r4: I F2 I i :!3!! i !iii!i:!i~~l F2 I re 
12 11 I I 12 

213+312 

Fig. 7. Final bounds on frame size and relative congestion. To reduce the flame size in the 
fuzzy regions: delays are inserted only outside the shaded region. Here I 1 = log 2 I, [2 = log 4 I, 

r 2 :=r(1+O(1)/1~), r 3 =r(1+O(1)/~), a n d  r 4 =rl(l+l/logf)_<r(l+O(1)/~). 

4. C o u n t e r e x a m p l e s  to  on- l ine  a l g o r i t h m s  

This section presents examples where several natural on-line scheduling strate- 
gies do poorly. Based on these examples, we suspect that finding an on-line algo- 
rithm that can schedule any set of paths in O(e+d) steps using constant-size queues 
will be a challenging task. 

4.1. C o u n t e r e x a m p l e  for  r o u t i n g  on  leveled n e t w o r k s  

In the first example, we examine a routing strategy for scheduling packets on 
leveled networks from [6, 8, 9]. A leveled network is a network whose switches can 
be partitioned into sets or levels labeled with integers so that every edge goes from 
a switch in some level i to a switch in the next level i+1.  The depth of the network 
is the maximum distance between two switches. 
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The routing strategy consists of randomly choosing ranks for the packets to be 
routed and using this value as a priority in a very strong manner; all the packets 
that  use a switch must use it in order of rank. Tha t  is, the lowest ranked packet 
that  uses the switch passes through the switch first, then the second lowest ranked 
packet passes through the switch and so on. Notice that  at some point a packet 
with some rank may reach a switch before a packet with a lower rank reaches the 
switch through a different edge. In this case the packet must wait for the lower 
ranked packet to reach and use the switch before it can use the switch. So in 
order for a packet to decide if it can use a switch or not it must somehow know 
what the highest ranked packet that  is going to enter the switch through some 
other edge is. This is achieved through the use of ghost messages. When a packet 
uses an outgoing edge of a switch it sends a ghost message consisting only of the 
packer's rank down all the other edges. These messages serve as a lower bound 
to each of these switches for the rank of any packet coming through this incoming 
edge, and are appropriately forwarded. Finally, end-of-stream (EOS) messages are 
used to indicate that  no more packets will come from a switch. Thus, a packet is 
allowed to go if it is the lowest ranked packet on any incoming edge and it has a 
lower rank than the last ghost that  arrived on incoming edges that  do not have a 
packet and have not recieved an EOS message. This strategy is described in more 
detail in each of [6, 8, 9]. With high probability, it produces a schedule of length 
O ( c + L + l o g N )  using constant-size queues for any set of N packets whose paths 
have congestion c on any bounded-degree leveled network with depth L. For a wide 
variety of networks (both leveled and non-leveled), this algorithm can be used as 
a subroutine to derive a routing algorithm that  delivers all the packets to their 
destinations in O(c+ d+ log N) time, with high probability. 

In our first example, however, we show that  this is not always the case. We 
describe an N-node leveled network in which a set of packets with congestion and 
dilation O(1) requires f~(log2N/loglogN) steps to be delivered using the strategy 
for scheduling packets on leveled networks from [6, 8, 9]. Our example does 
not contradict the previous analysis of the algorithm, since the network has L = 
(~(log 2 N)  levels. However, it shows that  reducing the congestion and dilation below 
the depth of the network does not necessarily improve the running time. 

Observation 4.1. For the leveled network scheduling strategy there is an N-node 
directed acyclic network of degree 3 and a set of paths with congestion c = 3 and 
dilation d = 3 where the expected length of the schedule is f~(log 2 N~ log log N).  

Proof. The network consists of many disjoint copies of the subnetwork pictured in 
Figure 8. For simplicity, we dispense with the initial queues; the packets originate 
in edge queues. The subnetwork is composed of k / l ogk  linear chains of length k, 
where k shall later be shown to be O(logN).  The second node of each linear chain 
is connected to the second to last node of the previous chain by a diagonal edge. 
We assume that  at tile end of each edge there is a queue that  can store 2 packets. 
Initially, the queue into the first node of each chain contains an end-of-stream (EOS) 
signal and one packet, and the queue into the second node contains two packets. A 
packet 's  destination is the last node in the previous chain. Each packet takes the 
diagonal edge to the previous chain and then the last edge in the chain. Thus, the 
length of the longest pa th  is d = 3. However, the depth of this subnetwork or any 
number of disjoint copies of this subnetwork is O(k2/ logs  Tha t  is, there are at 
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least f~(k2/log k) levels in this network. We now proceed by showing that  the time 
for routing can be f t (k2/logk).  

When the ranks r l , . . .  ,r3k/log k of the packets P l , . . . , P 3 k / l o g k  are  chosen so 

that  ri < ri+l for 1 < i < 3k/logk,  packet P3k/logk requires f~(k2/logk) steps to 
reach its destination. The scenario unfolds as follows. Packets Pl and P2 take a 
diagonal edge in the first two steps. These packets cannot advance until the EOS 
reaches the end of the first chain, in step k. Thus P3 remains in the previous queue 
until step k. In the meantime, ghosts with ranks r l ,  r2, and r3, travel down the 
second chain, but packet P3 blocks an EOS signal from traveling down the chain. 
Packets P4 and P5 move out of their chain and must wait for this EOS signal. They 
cannot advance until step 2k. So P6 cannot move out of its chain and let the EOS 
signal behind it through until this step, so P9 cannot move out of its chain until 
step 3k and so on. In this fashion, a delay of k2 / logk  is propagated down to packet 

P3k/ log  k. 

A simple calculation reveals that  the probabili ty that  r i < ri+ 1 for 1 < i < 

3k/log k is 1/20(k). Thus, if we have 2 e(k) copies of the subnetwork, we expect the 
ranks of the packets to be sorted in one of them. For the total  number of nodes in 
the network to be N,  we need k = @ ( l o g N ) .  In this case, we expect some packet to 
be delayed f t ( log2N/loglogN) steps in one copy of the subnetwork. | 

It  is somewhat unfair to say that  the optimal schedule for this example has 
length O(c + d) = O(1), since ghosts and EOS signals must travel a distance of 
O(log N).  However, even if the EOS signals are replaced by packets with equivalent 
ranks, the dilation is only O( logN) ,  and thus the opt imum schedule has length 
O(logJV). 

4.2. C o u n t e r e x a m p l e  for  v a r i o u s  d e t e r m i n i s t i c  s t r a t e g i e s  

The second example is quite general. It shows that  for any deterministic 
strategy that  chooses the order in which packets pass through a switch independent 
of the future paths of the packets, there is a network and a set of paths with 
congestion e and dilation d for which the schedule produced has length at least 
c(d-1)/ log c. This observation covers strategies such as giving priority to the packet 
that  has spent the most (or least) t ime waiting in queues, and giving priority to 
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the packet that  arrives first at a switch, The network is a complete binary tree of 
height d - 1  with an auxiliary edge from the root to an auxiliary node. 

Observation 4.2. For any deterministic strategy that chooses the order in which 
packets pass through a switch independent of the paths that the packets take after 
they pass through the switch, there is a network and a set of paths with congestion 
e and dilation d for which the schedule produced has length c (d -  1)/logc. 

Proof. We construct the example for congestion e and dilation d, E(c,d), recur- 
sively. The base case is the example E(c, l o g c + l ) .  Each of the c leaves sends a 
packet to the auxiliary node, causing congestion c in the auxiliary edge. The net- 
work for E(c,d) contains c copies of the network for E(c,d- logc) ,  as shown in 
Figure 9. First, the auxiliary nodes for these copies are paired up and merged so 
that  there are c/2 auxiliary nodes each with two auxiliary edges into it. Next, the 
auxiliary nodes become the leaves of a complete binary tree of height log c -  1 with 
its own auxiliary node and edge. For each copy of E(c, d - log  c), the deterministic 
scheduling strategy chooses some packet to cross its auxiliary edge last. We extend 
the path of this packet so that  it traverses the auxiliary edge in E(c, d). The dila- 
tion of the new set of paths is d and the congestion c. The length of the schedule, 
T(e,d), is given by the recurrence 

T ( c , d ) > ~ T ( c ' d - l ~ 1 7 6  d > l o g c + l  
- [ l o g c + c  d = l o g c + l  

and has solution T(c,d)> c(d-1)/ logc.  Setting c=  d =  log N in this example gives 
a routing time of 0 (log 2 N/log log N). II 

E(c, d - log c) 

1 . . . . . . . . . . . . . . . . . . . . . . . . . .  C 

E( c, a') 

Fig. 9. Example 2. 

The previous example can be modified to show that  the strategies of sending 
the packet with the farthest distance left to go or the packet with the farthest total 
initial distance to go first can also be made to require ~(cd/logc) time. We simply 
extend the paths of the packets winning at each switch so that  they have total (or 
remaining) distance equal to or greater than the packets that  lose at a switch. 
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4.3. C o u n t e r e x a m p l e  to  a r a n d o m i z e d  s t r a t e g y  

The third example shows that  the natural strategy of assigning priorities to 
the packets at random is not effective either. 

Observation 4.3. For the strategy of assigning each packet a random rank and 
giving priority to the packet with the lowest rank, there is an N-node network with 
diameter 0 (log N~ log log N) and a set of paths with dilation d = 0 (log iV/log log N) 
and congestion c = O(log N/log log N) where the expected length of the schedule is 
ft ((log N~ log log N)3/2). 

Proof. As in Example 1, the network consists of many copies of a subnetwork. 
Each subnetwork is constructed so that  d = c = k/log k. A subnetwork consists of 
a linear chain of length d, with loops of length v/-d between adjacent nodes (see 
Figure 10). The packets are broken into x/-d groups numbered 0 through v/-d- 1 of 
v/-d packets each. The packets in group i use the linear chain for iv/-d steps and then 
use x / d - i  loops as their path. As in the previous example, we assume that  queues 
have unlimited capacity and that  at each step a node can send a single packet. 

d 
A 

g- 

Fig. 10. Example 3. 

If the random ranks are assigned so that  the packets in group i have smaller 
ranks than the packets in groups with larger numbers, then the packets in group 
i delay the packets in group i +  1 by d - ( i +  1)v/-d+i steps. Thus the last packet 
experiences an ft(dv/-d) = O((k/log k) 3/2) delay. 

Once again the ranks of the packets must have a specific order, which can be 
shown to happen with high probability given enough copies of the subnetwork. As 
in Observation 4.1, it is not hard to show this requires k = O(log N). | 

5. A c k n o w l e d g e m e n t s  

Thanks to Nick Pippenger and David Shmoys for pointing out the relationship 
between packet scheduling and job-shop scheduling. 
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