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1. Introduction 

A partial t-spread of a projective space P is a collection 5 p of t-dimensional sub- 
spaces of P of the same order with the property that any point of P is contained 
in at most one element of 50. A partial t-spread 5 p of P is said to be a t-spread if 
each point of P is contained in an element of 5P; a partial t-spread which is not a 
spread will be called strictly partial. Partial t-spreads are frequently used for 
constructions of affine planes, nets, and Sperner spaces (see for instance Bruck 
and Bose [5], Barlotti and Cofman [2]). 

The extension of nets to affine planes is related to the following problem: 

When can a partial t-spread 5 ~ of a projective space P be embedded into a larger 
partial t-spread Y '  of P? 
A strictly partial t-spread ~ which cannot be embedded into any partial t-spread 
5 p' of the same projective space as a proper subset will be called a maximal strictly 
partial t-spread (or, shortly a rasp t-spread). Mesner [8] and Bruen [6] have 
proved that if 15 el denotes the cardinality of a rasp 1-spread 5 P of a three-dimen- 
sional projective space of finite order q, then 

q + l /q  + 1 =< [~9~ < q2 --]/~. 

In this paper we shall investigate partial t-spreads in higher dimensional 
finite projective spaces. In Section 3 we shall generalize Mesner's result for rasp 
t-spreads ~ in (2 t + l)-dimensional projective spaces of order q = pa for arbitrary 
prime powers pa and arbitrary integers t by showing that 

<-- q ' 

Although a finite projective space PG(d, q) of dimension d=3  and order q 
cannot contain t-spreads unless d + l ~ 0 ( t + l ) ,  any PG(d,q) contains strictly 
partial t-spreads for l < t < d .  In Section 4 partial t-spreads are considered in 
certain finite projective spaces containing no t-spreads. We give an upper bound 
for the cardinality of partial t-spreads in PG(a(t+ 1), q) and a lower bound for 
the cardinality of rasp t-spreads in PG(a(t + 1)-2,  q) for arbitrary integers a, t 
and arbitrary prime powers q. Examples are provided to illustrate that the bounds 
obtained are the best possible. In particular it is shown that the upper and lower 
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bounds obtained for msp 1-spreads in finite projective spaces of even dimension 
are the best possible. 

I n  Section 5 special classes of partial spreads are described. 
Finally, in Section 6 partial spreads are applied to the construction of partial 

designs by generalizing the well known method for the construction of affine 
planes and Sperner spaces from spreads. Among these partial designs nets and 
partial geometries can be found and characterized. 

2. Definitions and Preliminary Results 

Throughout the following investigations let us denote by PG(d, q) the finite 
desargesian projective space of dimension d and order q. Under a subspace of 
P=PG(d, q) we shall understand a linear subspace of P, i.e. a subspace of the 
same order as P. For our considerations the following definitions and results 
are needed: 

Result 2.1. P=PG(d,q) contains a t-spread if and only if t + l  divides d + l .  
I f  5~ is a t-spread of PG(a(t + 1)-  1, q) then 

a - 1  

i=O 

For the proof of the first statement see Dembowski [-7], p. 29; then the second 
statement follows easily. 

For any two distinct elements V, V' of a partial t-spread 5 P denote by (V, V') 
the subspace of P generated by V and V'. We say that 5 ~ induces a partial spread 
in (V, V') if any element of 5 ~ having a point in common with (V, V') is contained 
in (V, V'). 5 ~ is called geometric (Baer [1]) if for any two distinct elements V, V' 
of 5 P, it induces a partial t-spread in (V, V'). 

Result 2.2 (see Segre [9]). P=PC(d,  q) contains a geometric t-spread if and only 
if t + 1 divides d + 1. 

For a geometric partial t-spread 5 P of P=PG(d, q) let ,~(5 P) be the following 
incidence structure: The points of .~(5 ~) are the elements of ~ the blocks the 
subspaces (V, V') for any two distinct elements V, V' of ~ and incidence in ~(5 p) 
is set-theoretic inclusion. Then the following holds: 

Result 2.3 (see Segre [9]). I f  Y is a geometric t-spread of Pc(a(t + 1)-  1, q), 
then ~(5 P) is a projective space of order qt+l and dimension a - 1 .  

For a generalization of this result see Theorem 5.1. 

Furthermore, let us recall the definition of the quotient geometry of P modulo 
a subspace U (see Dembowski [7], p. 25). If P is a projective space of dimension d 
and order q and if U is a t-dimensional subspace of P, then the quotient geometry 
P/U consists of all subspaces of P containing U. It can be shown that P/U is a 
projective space of dimension d -  t -  1 and order q. 
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Result 2.4 (Bose and Bur ton  [43, Theorem 2). Let 23 be a set of points in P = 
PG(d, q) with the property that 23 "blocks" the t-dimensional subspaces of P (i.e. 
any t-dimensional subspace of P contains at least one point of 23). Then 

123] > qd-t +q~-~- i  + ... + q + 1. 

Equality holds if and only if 23 is the point set of a (d-O-dimensional subspace of P. 

Finally, for the investigations of partial designs in Section 6 we need some 
more  definitions: 

We call a finite incidence structure .3 consisting of a point  set ~ a block set N, 
and incidence relation I a tactical configuration if each block of .3 is incident 
with the same number  k of points and each point  of .~ is incident with the same 
number  r of blocks. 

Let ~ be a finite set with ~ [  = v. We denote by ~(2) the set of all subsets ~//of9 ~ 
which contain exactly two elements. Consider  a par t i t ion 

~4 __-- {A 1 . . . . .  Am ) 

of~(2).  We call d an association scheme on ~ if the following condit ion is satisfied: 

(2.1) Given {P, Q}eAn, the number of R e ~  for which {P, R } e A  i and {Q, R } e A j  
depends only on n, i, j, and not on P and Q. 

We call the A i (i = 1 . . . .  , m) the association classes of d .  
A partial design is a tactical configurat ion ~ = ( . ~ , N , I )  together with an 

association scheme s r  . . . ,  Am} on 9 ~ such that:  

(2.2) Given {P, Q}eAI,  the number [P, Q] of blocks through P and Q depends only 
on ie{1, . . . ,  m}, and not on P, Q. 

An n-fold parallelism (n a positive integer) of an incidence structure .3 = (~, N, I) 
is an equivalence relation ]], among the blocks, satisfying: 

(2.3) To any P e 9  ~ and b e n  there exist exactly n blocks b' eB  such that P I b' [[,, b. 

We call the equivalence classes of tP. the parallel classes of tJ~- An 1-fold paral-  
lelism will be called simply a parallelism II. 

A net is an incidence structure gt = (~, N, I) with ~ + ~ + N such that  

(i) To every point (block) there exist at least two blocks (points) not incident 
with it. 

(ii) ~l admits a parallelism. 

(iii) I f  b is a block not parallel to the block c, then b and c have exactly one point 
in common. 

A partial geometry (Bose [3]) is a tactical configurat ion t~i =(~, N, I) satisfying 
the condit ions:  

(i) Two distina points are incident with at most one common block. 

(ii) I f  P is a point not incident with the block b, there exist exactly l blocks b' 
which are incident with P and have a point in common with b (l a positive integer). 

A partial geometry  with l =  1 is called a 4-gonal configuration. 
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3. An Upper Bound for msp t-Spreads in PG(2 t +  1, q) 

Throughout  this chapter let 5 P be a partial t-spread of P = PG(2 t + 1, q). 
A t-spread of P contains qt+l + 1 elements; hence it is reasonable to call the 

number q~+l + 1 -15~ the deficiency 6 of 
Denote by 93 the set of points in P which are not on elements of 5 P and by ~3 

the set of hyperplanes in P which contain no element of ~ Call the incidence 
structure N (SP):= (93, ~3, E) the residual geometry of 5s By investigating this resid- 
ual geometry ~(5  p) we shall be able to give an upper bound for 15at (Theorem 3.1). 
First we shall prove several lemmas: 

Lemma 3.1. [gA[ = I~l = 6 ( q ' +  --- + q  Jr 1). 

Proof. From the definition of fi it follows that 9.1 contains exactly fi(qt+ ... + 1) 
points. 

P contains 

hi  =q2t+l + . . .  + q +  1 

hyperplanes and any t-dimensional snbspace of P is contained in qt + ... + q + 1 
hyperplanes of P. Furthermore no two elements of ~ are contained in a common 
hyperplane. Hence the number of hyperplanes of P containing one element of Y 
is equal to 

h2 = 15vl (qt + ... + 1)=(qt+l + 1 _3)(qt + ... + 1). 

Therefore: 

1~3[ = hz - h 2 = (~(qt + . . .  + q + 1). 

Lemma 3.2. Let U be a t-dimensional subspace of P. Then U is skew to all 
elements of 5 P (i.e. U is disjoint from all elements of 5 p) if and only if all the 
q~ + ... + q + 1 points of U are contained in 93 or, equivalently all the qt + + q + 1 
hyperplanes through U are elements of ~3. 

Proof Only the second equivalence has to be proved: If U is skew to all elements 
of ~ then all hyperplanes through U are contained in ~3. 

Conversely assume that V~5 a intersects U in a subspace of dimension v>0.  
It follows that 

d i m ( U ,  V) < 2 t ,  

therefore there is a hyperplane H containing U and V Since H contains V, H is not 
a member of ~3. 

Lemma 3.3. Let U be a t-dimensional subspace of P. Then U is incident with the 
same number, say 2 =2(U), of points of 9.1 and hyperplanes of ~3. 

Proof. The statement is trivial for U ~ 5'9; in this case 2 = 0. 
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If Ur  let V1, .. . ,  V, be the elements of J which intersect U nontrivially. 
Denote by v~ >0  the dimension of V~ ~ U. Then U-9,1 contains exactly 

~(q~i+ . . .  +1) 

points. Since dim (U, Vii)= 2 t -  vl, there exist exactly q~+ -.. +q  + 1 hyperplanes 
containing U and V~. Furthermore V~ and V~ are not contained in a common 
hyperplane whenever i:t:j. Hence the number of hyperplanes containing U and 
not contained in ~3 is equal to 

~ (q~'+ .-. +1). 
i = 1  

Since the number of points incident with U is equal to the number of hyperplanes 
through U, Lemma 3.3 is proved. 

Let H be a hyperplane of P containing exactly v elements of ~ where v is 0 or 1. 
Then H intersects the remaining qt+l+ 1--(}--V elements of ~ in pairwise skew 
( t -  1)-dimensional subspaces. Therefore the number h of points of H which are 
contained in an element of s is 

h=v(qt+ ... + l ) + ( q  ' + l + l - 6 - v ) ( q  t-I + ... +1) 

=v qt +q2t + ... +qt+i +qt - l  + ... + q +  1-(~(q'-I  + ... +1). 

Hence we have 

Lemma 3.4. Let H be a hyperplane of P. Then: 
I f  He~3(.c*v =0) then H contains qt +cS(qt-~ + ... + 1) points of 96; 
/f Hq~3(.e:uv = 1) then H contains c~(q~-l + ... + q + l )  points of 9.I. 

Dually it follows 

Lemma 3.5. Let P be a point of P. Then: 
I f  P ~ I  then P is contained in qt + 6(qt-l + ... + 1) hyperplanes of ~3; 
if" Pr then P is contained in (~(qt-1 -t-... q- 1) hyperplanes of ~.  

Now we are ready to state the following theorem: 

Theorem 3.1. Let 5 P be a rasp t-spread of P=PG(2  t +  1, q). Then: 

I~ ]<q  t+l - - l /~ .  

Furthermore: I f  t > 1 then 

[ ~ l < q  t+l - 1 / ~ .  

Proof. Let U be a t-dimensional subspace of P which contains exactly ,~ points 
of 9.1 and is (by Lemma 3.3) contained in exactly 2 hyperplanes of ~3. According to 
Lemma 3.1 there are 

c~(q~+ --. + 1 ) - 2  
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points of 9.1 not in U. From these points 

qt + 6 ( q ~ - i  + .. .  + 1) - ) ,  

lie on each of the 2 hyperplanes of ~3 through U in view of Lemma 3.4. Let x be 
the average number of hyperplanes in ~B containing U and a point P ~ 91 - U. Then: 

[~)(qt + ... + 1)-,~] x-=2Eqt +(~(qt- l  + .. .  + 1 ) - ) J .  

This together with 

x < q  t - l + . . .  +1 

yields the inequality: 

(q~-~+--- + l )  E6(q t + .. .  + l ) -  2 ] >  2Eq' + f ( q  ~-1 + . . .  + 1 ) - 2 ] ,  

which reduces to 

(3.1) [ 2 - 6 ( q ' - ~ + . . . + l ) ] [ 2 - ( q t + . . . + l ) ] > O .  

Since ~ is maximal, U contains fewer than qt + ... + q + 1 points of 91; otherwise 
{ U} w 6 p would be a partial t-spread containing 6~ as a proper subset contradicting 
our assumption on 6(. That is 

,~-(q~+ ... + 1 ) < 0  

which implies together with (3.1) 

(3.2) 2 <=g)(qt-l + .. .  + l ) .  

Let 2ij be the number of points of 9.1 which are in the intersection of the i-th 
and j-th hyperplane of ~3, and let ~ be the average number of the 2~j over the 

3(qt+ ..- + 1) [,5(q t + . . .  + 1 ) -  1] 

ordered pairs (i , j)  for i+ j .  There are 6(q~+ ...  + 1) points of ~I altogether, each 
of which is on 

qZ +,5(q'-~ + ... + 1) 

hyperplanes of ~ (Lemma 3.5). Counting the incidences in two ways we obtain: 

)~ 6(q' + . . .  + 1) [6(q ~ + . . .  + 1 ) -  1] 

= ~(qt + ... + 1) [qt + b(q~- ~ + . . .  + 1)] [qt + 6(qt-~ + . . .  + 1) - 1]. 

5 e is not a spread, hence ~ ~0,  therefore: 

(3.3) ~ [cS(q' + ... + 1) - 1] = [qt + cS(qt- 1 + . . .  + 1)-] [q~ + b(qt-~ + . . .  + 1 ) -  1]. 

The next step is to provide an upper bound for 2. 
Let M: = Hi c~ Hi, where H~ and Hj are the i-th and j-th hyperplanes in ~B for 

i +j. M contains no element of ~. By (3.2) any t-dimensional subspace U contained 
in M is incident with 

2 ( U ) < 6 ( q  ~-~ + . . .  + 1) 
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points of 91. Counting the incident pairs (P, U) where Peg . I teM and U is a 
t-dimensional subspace of M we get: 

R 2 ( U ) - - 2 S  

where 2 (U) is the average number of the 2 (U)'s, R is the number of the t-dimensional 
subspaces of M, and S the number of the t-dimensional subspaces of M through 
a point Q692 c~ M. It is easy to verify that 

R S - 1  = T:=(q 2t-1 + ... + 1)(qt+ ... +1) -1, 

hence 

( 3 . 4 ) ) ~ <  T6(q ~-1 + . . .  + 1). 

Also we remark that: 

(3.5) From t >= l it.follows that T > I ;  /f t > l  then T > I .  

The statements (3.3) and (3.4) imply: 

TS(q t-1 + ... +1)[5(q~+ . . -+ 1 ) -  1] 

=>[qr+b(q ' - 1 + - . .  + l ) ] [q t+6 (q ' -~  + . . .  + 1 ) -  1]. 

By solving this quadratic inequality for ~ and disregarding negative solutions, we 
obtain 

( r -  1) + ] / ( T -  1)2 + 4 ( r  - 1) q~+4 q3, 
(3.6) 5__> 1 

2 q~ 

(3.5) and (3.6) imply: 

6 > 1 / ~ + 1 ,  

moreover for t > 1: 

5 > V ~ + l .  

This finishes the proof of Theorem 3.1. 

Remark. It should be mentioned that this proof is a generalization of the proof 
of Theorem 1 in Mesner [8]. 

4. Partial t-Spreads in Finite Projective Spaces Containing no t-Spreads 

According to Result 21 a finite projective space P of dimension d contains a 
t-spread if and only if 

d - - 1 mod (t + 1). 

In this section we consider partial t-spreads in P = P G ( d ,  q) with 

d ~  - l m o d ( t + l ) .  
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In particular we obtain the best possible upper bound for partial t-spreads in 
PC(d, q) where d - 0  m o d ( t +  1) and the best possible lower bound for maximal 
partial t-spreads in the case d - - 2  mod(t  + 1). A combination of these results 
shows that our upper and lower bounds for maximal partial 1-spreads in finite 
projective spaces of even dimension is the best possible. 

Theorem4.1. L e t  5e be a partial t-spread in P = P G ( a ( t  + 1), q), where a is a 

positive integer. Then: 

a--1 
[Sel < ~ qi(t+l)+l + 1. 

i=1 

P r o o f  Since the number v of points of P is equal to 

v = q a t + a - l - q  a t + a - 1  "t- "'" ~- 1, 

we have 

(4.1) [ S e l < ( q " t + a + ' " + l ) ( q t + ' " + l )  -1 

=q(a-1)(t+l)+l +q(~-  2~t+1~+1 + ... +qt+ a + q + ( q t  + ... + 1)-1. 

Hence: 
15el_-< q(a-1)(t+l)+l -t- "'" +qt+2 + q .  

Let us call the number 

6: = 6(5e): = q(~-1)(,+,)+1 + . . .  + qt+2 + q  _ ]Sel 

the deficiency of ~ Denote by 96 the set of those points in P which are not incident 
with an element o f ~  (Note that ~ and 96 are defined similarly as above in Section 3.) 
By (4.1) we have 

(4.2) lgll =~(q '+  .-- + 1)+ 1. 

Suppose that the statement of Theorem 4.1 is false. Then 5e has deficiency 6 
where 

(4.3) 0 < 6 < q - 2 .  

Suppose that this is the case. We shall show first that there is a hyperplane H of P 
containing at most 6(q ~-1 + ... + 1) points of 96. 

For this denote by x the average number of points of 96 in a hyperplane of P. 
Using (4.2) we get: 

(qat+a + . . .  + 1) x = [c$(q t + . . .  + 1) + 1]  (qat + a -  1 -I- "'" -~ 1). 

It follows that 

x--cS(q t -  ~ + ... + 1)-F 

(4.3) implies 

6qt(q(a-1)(t+l)+ ... + 1)+ qat+,-1 + ... + 1 

6qt(q(a-1)(~+l) + . . .  + 1 ) + q  at+a-1 + ... + 1 

q "  + " + "" + 1 

<1,  
qat +~ + ... + 1 
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hence 

x < 8 ( q ~ - l + . . .  + l ) + l .  

Therefore there must be a hyperplane H of P which contains exactly m points 
of 9-[, where 

(4.4) 0_<m_<6(q t - l + . . . + l ) .  

Now consider a hyperplane H containing m points of 9I where m <  
6 ( q t - l+  ... + 1). Let sri be the number of elements of 6 f whose points are all 
contained in H. Then 

q. t+a-1  + . . .  + q  + 1 = sn(qt + -.. + 1 ) + ( l ~ l -  sri)(q t-1 ' '  + 1 ) + m  

= S  H qt_. b [~cp[ (qt-~ + . . .  + 1)+m. 

Since 

[ ~ l  =q(a-1)(t  +1)+1 + . . .  +q~+2 +q -8, 

it follows that 

qat+a--1 + . . .  + 1 

=S H qt+(q(,--~)(t+l)+1 + ... +qt+ 2 +q__6)(qt-- l  + . . .  + 1)+m. 

From this we deduce that 

q(~-l)(t+l) +q( . -  2)(~+1)+ . . .  nCqt+l -t- 1 = s x q t - - 6 ( q  t-1 + ... + 1)+m. 

Therefore" 

q ( a - 1 ) ( t  +1)_.~_ . . .  +qt+l  + 1 +~5(q ~-' + ..- + 1)--m 
sn  = qt , 

hence 

(4.5) q t l S ( q ' - l - l - . . . + l ) + l - m .  

By (4.4) we know that 

8 (q  t - 1  q- " "  -I- 1)+ 1 - m > O  

and so 

(4.6) ' < 6  t -~+  q =  (q .-. + l ) + l - m .  

According to (4.2) and (4.4) we know that m > 0  and 6 _-< q -  2; therefore 

q t < 6 ( q t - ~  + ... + 1)+ 1 - r n < q  ~ _ ( q t - ~  + . . .  + 1) <qt. 

This contradiction proves Theorem 4.1. 

The next statement shows that Theorem 4.1 is the best possible. We even prove 
a little more: 
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Theorem 4.2. Let P be the PG(a(t + 1) + r, q), where a and r are positive integers 
with 0 < r - - - t - 1 .  Then P contains a maximal partial t-spread 5 ~ with 

a-J ,  

16o1= ~ qi(t+l)+r+l -t- l.  
i=1 

Proof The proof  is given by using induct ion on a. 

For  a -- 1 the assert ion is trivial since clearly PG(t + 1 + r, q) contains a t -dimen- 
sional subspace U. IfS~: = { U}, then 5 p is maximal  since r_< t - 1 and so t + 1 + r < 2 t. 

Consider  now the case a > 1 and assume that  the assert ion of T h e o r e m  4.2 
is true for a - 1 .  

Let  P be embedded  as a subspace in 

S = P G ( 2 [ ( a -  1)( t+  1 ) + r ]  + 1, q). 

27 contains  an ((a - 1) (t + 1) + r)-spread 5 ~'. One can choose 5 P' such that  P contains  
an element, Uo, of 5 p'. By Result  2.1 we know tha t  

(4.7) ]aq~'-{Uo}[=q (a-1)(t+l)+r+l 

Next  we show that  any subspace U ~ 5  P ' -  { Uo} intersects P in a t -dimensional  
subspace. Namely :  

(a) d i m ( U i c ~ P ) = d i m  U i + d i m P - d i m ( U ~ , P >  

> dim U~ + d im P - d im 27 

= ( a - 1 ) ( t + l ) + r + a ( t + l ) + r - 2 [ ( a - 1 ) ( t + l ) + r ] - i  

= t ;  

(b) on the other hand  suppose  that  d i m ( U ~ c ~ P ) > t +  1. Then  it follows: 

dim [(Ui ~ P) n Uo] = dim (U~ c~ P) + d im Uo - d im ((Ui m P), Uo > 

> dim (U~ c~ P) + dim U o - d im P 

> t +  1 + ( a -  1)( t+ 1 ) + r - a ( t  + 1 ) - t -  

-=0.  

This is a contradic t ion  since otherwise U~ and Uo would have a point  in common .  
Let  

~ , = { V i l  V ~ = ~ c ~ P ,  ~ ' - { U o } } .  

Uo has d imension ( a - 1 ) ( t + l ) + r  and hence U o c o n t a i n s - b y  i n d u c t i o n - a  
maximal  part ial  t -spread 5~ 2 with 

(4.8) 15P2] =q(a-2)( '+l)+ r+t + ... + q'+ 2+ r + 1. 

Final ly put  
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By using (4.7) and (4.8) it follows that there are 

a--1 
2 q i ( t+l )+r+l_}_  1 

i=1 
elements in 5~. Any point of P outside Uo is contained in an element of 5~1 and 5O2 
is a maximal partial t-spread of Uo; this implies that 5 ~ is a maximal partial 
t-spread of P. Since 5~ has the required cardinality, Theorem 4.2 is proved. 

Our next aim is to give lower bounds for maximal partial t-spreads in certain 
special cases: 

Theorem4.3. Let 5O be a maximal partial t-spread of P=PG(b( t+  1) -2 ,  q) 
where b is a positive integer. Then: 

b--2 
[5O[> ~ qi(,+l). 

/ = 0  

Proof Since 5 ~ is maximal, the set ~ (Y)  consisting of all points of P which are 
incident with an element of ~,, blocks the t-dimensional subspaces of P. According 
to Result 2.4 we have: 

~(so)[ >=qb(t+l)- 2-t +qb(,+*)- 3-t + ... +q + 1 

= q ( b - 1 ) ( t + l ) - I  + . . .  +q + 1. 

Therefore it is 

15O[ ~q(b - -2 ) ( t+ l )q . . q (b -3 ) ( t+ l )_{_  . . .  q_qt  +1 q_ 1. 

Theorem 4.4. Let P be the PG(a(t + 1)+r,  q) where a and r are positive integers 
with 0 < r <_ t -  1. Then P contains a maximal partial t-spread 5" with 

a--1 
[5O[ = ~ qi(t+l). 

i = 0  

Proof. Let U be a subspace of dimension a(t+ 1 ) - 1  of P. By Result 2.1 the 
space U contains a t-spread 5O with 

a--1 
qi(t  + l ) 

15ol = ~ . 
i = 0  

5 ~ is a maximal partial t-spread of P since any t-dimensional subspace of P 
intersects U. 

Remark. The assertion of Theorem 4.4 for r = t - 1 and a = b - 1 shows that the 
result of Theorem 4.3 is the best possible. 

Some of the partial t-spreads constructed in Theorem 4.4 can be charac- 
terized as follows: 

Theorem 4.5. Let 5O be a maximal partial t-spread of P = PG(h(t + I ) - 2 ,  q) with 

b--2 

i=O 
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Then 5ST is a t-spread of an appropriate ( (b-1) ( t  + 1) -  1)-dimensional subspace U 
of P. 

Proof If 15"01 = q~b- 2)It + 1) + ... + q~ + 1 + 1, then 

~(ST)I =qr 4-q(b-1)(t+l)-2 q_.. .  q_q 4- 1. 

Furthermore since 5"0 is maximal, ~(ST) blocks the t-dimensional subspaces of P. 
From Result2.4 it follows that N(ST) is the point set of an ((b -1 )  (t + l) - l)- 
dimensional subspace U of P. Hence 5 e is a t-spread of U. 

By applying Theorems 4.1-4.5 the following properties of maximal partial 
1-spreads in finite projective spaces of even dimension can be obtained: 

Theorem 4.6. Let 5"0 be a maximal partial 1-spread of P = PG (2 a, q). Then: 

(a) q2a-2 4-q2a-4  4- ...  4-q24- 1 < 15,~ ~ q 2 a - 1 4 - q 2 a -  3 4- ...  _}_q3 4- 1. 

(b) For any positive integer a there are examples 5~t and ST2 of maximal partial 
l-spreads in P such that 

I~,<Pll=qZa-2q-q2a-44- ... 4-q2 4- 1, 

[5~21=q2"-x +q2,-3  + . . .  +q3 +1. 

(c) A maximal partial 1-spread of P has cardinality 

q2O-24-q2,-4+.. .  § 1 

if alld only if" it is an 1-spread of a hyperplane Of P. 

5. On n-Uniform and n-Geometric Partial Spreads 

There is an enormous variety of nonisomorphic partial t-spreads in projective 
spaces and it seems an extremely difficult problem to establish a satisfactory 
classification of these structures. In this section we shall describe two families 
of partial t-spreads satisfying certain additional combinatorial conditions. The 
first class represents a generalization of the geometric t-spreads introduced by 
Baer I-1]. 

Definition. A geometric partial t-spread 5"0 of P is called n-geometric if for any 
two different elements V, V' of 50 the following condition is satisfied: 

(V, V') contains exactly n + 1 elements of 5~. 

The second class is defined as follows: 

Definition. Let ST be a partial t-spread of P. Then ST is called n-uniform if any 
(t + 1)-dimensional subspace of P containing an element of ST intersects exactly 
n (n > 0) additional elements of 5~ in a (necessarily unique) point. 

The following theorems provide us with some insight into the nature of the 
partial spreads defined above. 
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It is possible to show that geometric maximal partial t-spreads are n-geometric. 
We even prove a little more: 

Theorem 5.1. Let 5O be a geometric maximal partial t-spread of P--PG(d, q) 
with d> 2 t + 1. Then the incidence structure .3(5O) defined in Section 2 consists of 
the points and lines of a projective space of dimension at least one. 

Proof It is clear that any two distinct points of .'~(5O) are joined by a unique 
block of .3(5O). Therefore the blocks of ~(5O) are also called lines. 

Next we show that the span of any three non-collinear points of .3(5O) is a 
projective plane. Let U be a subspace of dimension 3 t +2 of P which is generated 
by elements of ~ Let ( I/1, V2) and ( V3, V4) be two different lines of .~3(5O) which 
are contained in U, where V~eso (i= 1, ...,4). Hence: 

dim((V1, V2) r (1/3, V4))>t. 

Since 50 is maximal, ( V1, V2) • ( V3, Vr contains a point Q which is incident with 
an element V0e~ Since 5O is geometric: 

Assume that dim((V1, V 2 ) n ( V 3 , V 4 ) ) > t + I .  The space (V1, V2) contains an 
element V~SO different from V o. Since dim(V~, V 2 ) = 2 t + l ,  V would intersect 
(V1, V2)m(V3, V4) and hence would be contained in (V1, V2)c~(V3, V4). 
Therefore: 

(v, Vo) = ( ~ ,  v2) =(  v1, v~)c~(v3, v~) 

and so 

(v~, v~)=(~ ,  v4). 

This is a contradiction. Therefore any two lines of .~(5O) contained in U intersect 
in an unique point of .3(5O). 

Since 5 ~ is maximal, 5O induces a maximal partial t-spread in any (1/1, I/2). 
It can be checked easily that a maximal partial t-spread of PG(2 t + 1, q) contains 
more than two elements. 

Hence .3(5O) is a projective space of dimension at least one. 

Since in a finite projective space any line is incident with the same number, 
say k + 1, of points, it follows as a corollary that under the assumptions of Theo- 
rem 5.1 5O is n-geometric with n=k. 

In our next statement we characterize the 1-uniform partial t-spreads. 

Theorem 5.2. Let 5O be a partial t-spread of P =PG(d, q). Then 5O is 1-uniform 
if and only if the following conditions hold: 

(i) Any three elements of 5 p generate a (3 t + 2)-dimensional subspace of P, and 
(ii) for any VoESO the set {(Vo, g) lveso-{vo}} is a t-spread of the quotient 

geometry P/V o . 

Proof First let us assume that 50 is a partial 1-uniform t-spread of P. 
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Suppose that an element V0~5 ~ has a point Q in common with (V  1, V2) where 
V~ and 1/2 are two different elements of ~ 1/1 + Vo ~: V2. Then there is a line g of 
(V1, V2) containing Q and intersecting both V1 and V2. Hence there is a ( t+  1)- 
dimensional subspace U containing V1 and intersecting Vo and V 2. Therefore 5 ~ 
cannot be 1-uniform. Hence ( Vo, 1/1, V2) has dimension 3 t + 2. 

The proof of (ii) follows from the fact that any (t + 1)-dimensional subspace 
U through V o ~ 5 ~ intersects exactly one element V~ :t: V0 of ~ hence U is contained 
in exactly one subspace (Vil, Vo) of P. 

On the other hand let 5 ~ be a partial t-spread of P with properties (i) and (ii). 
Let Vo be an element o f ~  Assume that a (t + 1)-dimensional subspace U containing 
V 0 intersects two different elements V~ and V2 of ~ Then 

dim(Vo, V~, V2) < 3 t + 2 .  

This contradiction to (i) shows that n < 1. 
But according to (ii) any (t + 1)-dimensional subspace U containing V o inter- 

sects an additional element of ~ Thus n>  1, hence n =  1 and ~ is 1-uniform. 

Corollary. I f  P = PG(d, q) contains a 1-uniform partial t-spread then 

d - - 1 rood (t + 1). 

Proof In view of (ii) the projective space P/V o contains a t-spread. Hence by 
Result 2.1 : 

dim P/V o - - 1 mod(t  + 1). 

Since dim P/V o = d - (t + 1), it follows that 

dim P -= - 1 mod (t + 1). 

It is easy to verify the following propositions: 

Proposition 5.1. Any t-spread 5 r of P=PG(d ,  q) is n-uniform with n=q ~+~. 

Namely: Let U be a ( t+  1)-dimensional subspace of P containing V ~  Since 
5 P is a spread, any of the qt+l points of U - V  is contained in exactly one element 
of SP-{V}.  

Proposition 5.2. Let 5 p be a n-geometric partial t-spread of P with the property 
that any (t + 1)-dimensional subspace of P containing an element V~5 p intersects at 
least one element V' E5 r  { V}. Then 5 ~ is n-uniform. 

Finally we prove 

Theorem 5.3. Let 5P be a partial t-spread in P=PG(d,q) with d > 3 t + 2 .  I f  5 ~ 
is maximal, geometric, and n-uniform then 5" is a t-spread. 

Proof Step I. For all VE5 ~ the set 

~..  = {(v, v~)l v ~ + ~ -  {v}} 

is a t-spread of P/V. 

Namely: Since 5 f is uniform, any (t + 1)-dimensional subspace U of P contain- 
ing V intersects an element V~e5 ~ - {  V}. Thus any point of P/V is contained in at 



Partial Spreads in Finite Projective Spaces and Partial Designs 225 

least one t-dimensional subspace (V, V~) of P/V. Since 50 is geometric, any point 
of P/Vis contained in at most one subspace (V, V/). Hence ~v is a t-spread of P/V. 

It follows that d = a ( t + l ) - i  (see corollary to Theorem 5.2). One can even 
deduce that 

dim ,~(~) = a - 1. 

By the assumptions of Theorem 5.3 we know that a > 3. 

Step 2. Now we are able to complete the proof of the Theorem using induction 
on a. 

Let a be equal to 3. Then 3(5 P) is a projective plane. Since Sev is a t-spread of 
P/V=PG(2t+I,q)  for any VeJ ,  it follows that through V there are q t + l + l  
different subspaces (V, V//). Hence ,~(~) is a projective plane of order qt+l. There- 
fore: 

I~[ =q2(,+1) +qt+l + 1. 

Since this is the cardinality of a t-spread in PG(3 t + 2, q), ~ is a t-spread. 
Now let us assume that the assertion of the Theorem is true for a -  1 =>3 and 

let 50 be a maximal, geometric, uniform partial t-spread of P=PG(a(t+ 1)-1, q). 
Then: 

dim 3(5~ = a - 1. 

Let ~ '  c ~ be the point set of a hyperplane .3(~') of .~(~). Then - by induction - 
any line (1/1, V2) of-~(~) contained in .3(A e') contains qt+l + 1 points. Therefore 
any line (V, V') of 3 ( ~ )  contains q'+l + 1 points since .~(~) is a projective space. 

Furthermore we know by induction that 

]~9o,[ =q(a-2)(t+l)+ q(a-3)(t +1)_1_ ... +qt+l  + 1. 

Let V be an element of 50 not contained in 50'. Then through V there are 15P'l 
lines each of which containing qt +2 + 1 points. It follows that 

15o[ =q(a-1)~+l) +q<,-z)(t+l) + ... +q~+l + I. 

Since this is the number of elements of a t-spread in PG(a(t+ 1) -1 ,  q), 5 P is a 
t-spread. 

Thus the proof  of Theorem 5.3 is finished. 

The following question remains open: Are there maximal geometric partial 
t-spreads in PG(a(t + 1) -1 ,  q) where a > 3  which are not spreads? 

6. Partial Designs Constructed from Partial Spreads 

Let ~ be a partial t-spread of P=PG(d, q) which is embedded as a subspace in 
Z=PG(D,q) where D>d. Let r be an integer such that r>=t. Then define the 
incidence structure J r = J ( ~ ,  D,d, r) as follows: 

The points of Jr are the points of E not in P; 
the blocks of Jr are the r-dimensional subspaces of 2; intersecting P exactly 

in an element of AP; 
incidence is induced by the incidence of 2;. 

The aim of this section is the study of the incidence structures Jr- 
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Clearly, if ,1 r is nontrivial (i.e. ,I,. contains blocks), then r > t + 1. Furthermore, 
since a block ofa~ intersects P in a t-dimensional subspace, we have that r < D - d + t. 
Hence 

(6.1) t + l ~ - r ~ D - d + t .  

Theorem 6.1. 3,. is a partial design admitting an n-fold parallelism. 

Proof. (1) J~ is a tactical configuration. 

The number of points incident with a block is equal to 

q~ + . . .  + 1 - ( q '  + ... + 1 )=  q,+~(q~-,-1 + . . .  + 1). 

Let V be an element of ~ Consider the quotient geometry H = Z/P. Let P be a 
point of Jr. Then it is easy to see that the number n of blocks of Jr containing P and 
intersecting P in V is equal to the number n of the [ t - ( t +  1)-l-dimensional sub- 
spaces in H = P G ( D - ( t  + 1), q) which contain the point (F, P )  of /7  and do not 
intersect the [ d - ( t  + 1)I-dimensional subspace P of H. Hence the number of the 
blocks in Jr through a point P of& is I~I- n, which is independent of the choice of P. 

Obviously, in view of (6.1) we have: 

(6.2) n > 1 and if r > t + 1, then even n > 1. 

(2) The next step is to define the association classes of Jr- For two arbitrary 
distinct points X, Y of Jr denote by X Y  the line of Z through X and Y. In general, 
there are three association classes As, A2, and A 3 in J,. consisting of the following 
2-sets of points: 

A 1 consists of the 2-sets {X, Y} of points of Jr for which the line X Y  of I; 
intersects P in a point of N(he); 

the class A 2 contains exactly those 2-sets {X, Y} for which the line X Y  inter- 
sects P in a point outside ~(5~); 

finally the elements of A 3 are the 2-sets {X, Y} such that the line X Y  has no 
point in P. 

The properties of a projective space imply that 

d = { A 1 , A 2 , A 3 }  

is an association scheme on the points of J~. Furthermore, given {X, Y}~AI ,  
the number of blocks in J~ through X and Y depends only on i and not on the 
choice of X and Y. Hence J~ is a partial design. 

(3) We define: Two blocks b, c of Jr are called n-fold parallel, b [!nc, if b and c 
intersect P in the same element of 55. 

This is obviously an equivalence relation among the blocks and to any point- 
block pair (P, b) there are exactly n blocks b~ which contain P and are n-fold 
parallel to b. (The integer n is the same as in (1).) 

Theorem 6.2. I f  J,. is the partial design defined as above, then 

(a) J,. admits a parallelism if and only if r = t + 1 ; 

(b) J,. is a net with at least two parallel classes if and only / f D = 2 t + 2  and 
15el>R; 
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(c) J ,  is a net with one parallel class if and only if r = t  + 1 and 15~ = 1. 

Proof (a) The  n u m b e r  n is equal  to 1 if and only if r -~ t + 1. 

(b) First  let us suppose  that  J,. is a net with at least two parallel classes. J ,  
admits  a parallelism, hence - by (a) - r = t + 1. Since the net Jr admits  at least two 
parallel classes, we have JSP[>2 and therefore d > 2 t + l .  N o w  let 1/1 and  V 2 be 
two distinct elements of ~ I t  follows that  D < 2 t + 3, since otherwise there would 
exist two (t + 1)-dimensional subspaces  U,. of 2; - P  with V ~  U~ (i = 1, 2) such that  
U~ n U2 = ~. This is a contradic t ion  to the definition of a net since the nonparal le l  
blocks U1, U2 of J ,  would have no point  in common .  Therefore  it follows: 

2 t + 2 > _ D > d + l > 2 t + 2 ,  

hence 

D = 2 t + 2 .  

On the other hand suppose  that  D = 2  t + 2  and 15Pl _->2. F r o m  I~1 =2 we can 
deduce that  d > 2 t + 1, hence 

D = d + l .  

Then  f rom (6.1) we obta in  that  r = t + 1. Therefore  Jr admits  - b y  (a) - a  paral lel ism 
with at least two parallel classes since rSPl >2 .  

It remains  to show that  any two nonparal le l  blocks UI, U 2 of Jr have exactly 
one po in t  in c o m m o n .  

U s and  U 2 have at  least one point  in c o m m o n :  Since D = 2 t + 2 ,  any two 
(t + 1)-dimensional subspaces of X must  intersect. U~ and U 2 cannot  have a poin t  
of  P in c o m m o n  since U~ and U2 are nonparal lel .  

Assume  that  U~ and U 2 have a line g of s in common .  Then  the line g would 
intersect the hyperp lane  P of 2; in a point  of U~ c~ P and  U 2 c~ P. But this is a 
contradic t ion  to the fact that  //1 and U2 are nonparal lel .  

(c) J ,  has one parallel  class if and only if 15~ = 1. Together  with (a) this shows (c). 

Next  we character ize  the part ial  geometr ies  a m o n g  the J ( ~  D, d, r). 

Theorem 6.3. Let J, be the partial design defined above. Then: 

(a) Any two distinct points of J, are incident with at most one common block 
if and only / f r  = t  + 1; 

(b) J,. is a partial geometry with l>= l if and o n l y / f D = d + l  and 5O is 1-uniform 
with I~  1 ; 

(c) J ,  is a partial geometry with l = 0  if and only/ fr  = t +  1 and 15ol = 1. 

P r o o f  (a) The number  n is equal to 1 if and only if r = t + 1. 

(b) First  let us suppose  that  J,. is a part ial  geomet ry  with l > 1. Then  any  two 
points  of J,. are incident with at most  one c o m m o n  block;  hence by (a) it follows 
that  r = t + l .  Let  V be an element  of 5~. If we assume tha t  D > d + 2  then there 
would exist a (t + 2)-dimensional  subspace W of X intersecting P exactly in V. 
Then  W would conta in  a non- incident  po in t -b lock  pair  (P, U) of Jr" F r o m  the 
cons t ruc t ion  of W it follows that  no block of J ,  containing P intersects U. This is a 
cont radic t ion  to the fact that  J,. is a part ial  geomet ry  with l >  1. 
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It remains to show that 5O is/-uniform. Let V be an element of ~ U a (t + 1)- 
dimensional subspace of P containing V, and M a block of 3~ intersecting P in V. 
Furthermore let P be a point of J, contained in the subspace (U, M)  but not 
contained in M. From the definition of a partial geometry we know that there 
are exactly l blocks N~ of Jr containing P and intersecting M in a (necessarily 
unique) point Qi resp. The line PQi intersects the hyperplane P of Z in a point 
Ti of U (i= 1, ..., l). Each of these points is contained in an element Vi~5O-{V} 
and no two distinct points T~, Tj are contained in the same element Vi~5 P -{V},  
since an element V'e5O-{ V} can intersect U in at most one point. Hence U 
intersects at least I elements of 5 ~ - { V}. But U cannot intersect any other element 
V' of 5 ~  { V} because then there would be one more block b' containing P and 
intersecting b. Hence 5O is /-uniform. 

On the other hand suppose that D = d +  1 and 5O is/-uniform with l____ 1. 
From D = d  + 1 it follows that r =  t + 1. Hence by (a) any two points of Jr 

are incident with at most one common block. Let (P, M) be a non-incident point- 
block pair of J~. Since P is a hyperplane of Z, it follows that (P, M)  intersects 
P in a (t+l)-dimensional subspace U containing V : = M c ~ P e ~  Since 5 ~ is 
/-uniform, U intersects exactly 1 elements V~SO-{V} ( i=1, . . . , / ) .  It follows 
that (P, Vi) are 1 pairwise distinct blocks of Jr containing P and intersecting M. 
Conversely any block N of Jr being incident with P and intersecting M intersects 
P in an element Vii (i = 1, ...,/). Therefore there are exactly l blocks of Jr containing 
P and intersecting M. Hence Jr is a partial geometry with l>  1. 

(c) The number I is equal to 0 if and only if ISO[ = 1. Then the assertion follows 
by using (a). 

Remark. If 5O is a 1-uniform partial t-spread of PG(d, q) then 

Q: =Jt+x : = J ( ~  d +  1, d, t +  1) 

is a 4-gonal configuration. The 4-gonal configurations constructed by Thas 
([10], "Construction 1 ") provide examples for the structures Q. 

If the partial t-spreads 5O in the definition of J(5~, d + 1, d, t + 1) can be embedded 
into t-spreads of P, then the corresponding partial designs can be completed 
to 2- (v ,  k, 1) designs. By applying our Theorem 3.1 on partial t-spreads we can 
state the following sufficient condition for such a completion: 

Theorem6.4. Let J be J ( ~ 2 t + 2 , 2 t + l , t + 1 )  and suppose through any 
point of  J there are 

R > q t + l - ] / ~  

blocks of J. Then J can be completed by adjoining additional blocks to a 

J"-=J(5O', 2 t + 2 ,  2 t +  1, t +  1), 

which is a 2-(q2(t+l), qt+l, 1) design. Actually J' is a translation plane. 

Proof. Theorem 3.1. 
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