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Abstract. We prove that the scaling limit for a large class of weak V(Vdp) 
perturbations of the free massless lattice field q~ is Gaussian with the covariance 
c(V)(-  A)- 1. The correlations as well as c(V) are analytic in V In particular the 
Mayer series for the dipole gas is convergent for small activity. 

1. Introduction 

The authors have been pursuing a program to gain a rigorous control of 
asymptotically free (AF) models of statistical mechanics and quantum field theory. 
This paper finishes such an analysis for infrared (IR) AF models, such as the dipole 
gas, (Vq~) 4 model and related ones. We show that their correlations become those 
of a free massless field at long distances: the canonical scaling limit is shown to be 
the massless Gaussian Euclidean field with a definite field strength renormaliza- 
tion. 

In a previous paper [1] the authors studied the renormalizafion group (RG) 
trajectory of the Hamiltonian in a general space of Hamiltonians. This analysis is 
now applied to the study of the correlations. The results of the present paper may 
also be interpreted as setting up rigorously the RG in a space of Gibbs states of 
certain critical (masstess) theories and showing the convergence of its iterations to 
the state given by the massless Gaussian fixed point, in the sense of convergence of 
correlations. We, however, state our results only pragmatically, as a result about 
scaling limits and IR properties of the correlations. 

When [1] was finished we obtained [2] where infrared behavior of the weakly 
coupled (V~b) 4 model was controlled by means of a phase-ceU expansion. Both 
methods are similar as they are based on an analysis of contributions of different 
momenta on different scales of distances. In [2] different momentum scales are 
entangled in the expansion whereas we analyze the contribution of one momen- 
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turn scale in a general inductive step. The price paid for greater conceptual clarity 
is that we have to consider iterations of much more general class than the starting 
V(V(b) of interest. But in turn the results are quite model-independent (they apply 
e.g. to the dipole gas and to the (F~b) 4 at the same time). 

One should also mention here a series of papers ([3] and references therein) 
which apply correlation inequalities to study the infrared behavior of massless 
models. This method gives results for any values of the coupling but is more model 
dependent and provides less understanding of the physics of the system. The future 
lies probably in applying the RG ideas together with the correlation inequalities 
(see e.g. an attempt in [4]). 

Let us describe now the models that we consider, together with our results. The 
reader is recommended to have a look into [1] for more details and motivations. 
We state the results only for local potentials. Remark 2 below concerns the non- 
local ones fitting our scheme. 

Let A be a periodic cube (IAI=L Na) in Ze and ~b x, xeA,  the field with 
covariance Goa, the inverse of 

(Go))x, = ( - AA)x, + L -  Na~ (1) 

(the infrared regulator ~ makes G O well defined), where A A is the lattice periodic 
Laplacian. For each such A, let there be given a function VA(Z) of the vector field 
Z,x, # =  1, ..., d, xeA ,  on A. Define the finite volume state 

1 
( - - )vA = ~-:S - -  exp [ -  Va(Vdp)]d#~oa(C~), (2) 

where d#Go~ is the Gaussian measure with covariance Goa and 
Y =  ~expE-  Va]d#~o~ is assumed to be non-zero. We shall also use the notation 
(--)~e~, where the Hamiltonian YfA(~b)=½(~b, Goai~b)+ l~(V~b). Denote the ther- 
modynamic limit (TDL) A ~ Z  a, ~ 0  of ( - - ) v ~  by ( - - ) v  whenever it exists 
(V= { VA}) (convergence here means the convergence of correlation functions). We 
define the scaling limit of ( - - ) v  as follows. Let x 1 ....  ,xu~lR a be different points 
with x~eL-NZ a for some N. Define 

G(xi, ..., xm) = lim L z qSL,x~ (3) 
n~oo \ i =  1 

whenever it exists. {G(xi, ...,xm) } give the scaling limit of ( - - )v -  

The Main Result. Let d > 3 and 

VA(Z) = ~, v(z.,,), (4) 
x e A  

with v(z) being a function invariant under rotations by multiples of ~ of Z and under 
reflections in coordinate planes, vanishing together with the second derivatives at 
zero, even and analytic in Z for ]Imz,[ <B. Moreover, we assume that 

(a) for Iz.I < B, Iv(z)l < r/, 
(b) for IlmzuI<B, texpE-v(z)]l_-<exp[~cl)~2t] with Fcl<O(1)<~. Then for 

B> B o and q<t/o, 
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(A) the TDL ( - - ) v - - - ( - - ) v  exists and the scaling limit is given by the massless 
gaussian field on IR d with the covariance c(v)-1(_ Ac )- 1, dc being the continuum 
Laplacian. 

(B) In particular, the two-point function satisfies 

((oxdp,}v=c(v)-l(-A)~y 1 + 0 ( 1 +  d(x;)a_ 2 + e). (5) 

(C) c(v)~) and (I-Idp~,}v~ are analytic in 2e ~ if v). is a family analytic in 2 in some 
region ~ ,  satisfying there the above requirements uniformly in 2. 

Remarks. 1. The functions 

v(Vq~) = 2 ~ (V,q~) 4 (the anharmonic crystal), (6) 
// 

and 

1 _2, V q~2 (the dipole gas in the v(V~)=2F~(1-~ t .  J -cos(0V.~)) sine-Gordon representation), (7) 
# 

satisfy our conditions for ,~ positive and small and for 121 small or lel small 
respectively. In particular for the dipole gas the perturbation expansion in powers 
of 2 (the Mayer expansion) converges for small 121. In fact let v be any invariant 
even function, vanishing together with the second derivative at zero, analytic in 
some strip around the reals with e -~ bounded by some Gaussian. Then v(;t¢) 
satisfies our conditions for 2 small. 

2. We may also consider non-local V's corresponding to the Boltzmann 
factors given by the formula (3.3) of [1], with the properties described in Sect. 4 
therein, see also (2.14) below and what follows it. These V's constitute a class 
invariant under the RG. To be able to pass to the thermodynamic limit one has to 
take g~x and VAy (being respectively the large field and the small field data) 
possessing infinite volume limits (note that they are functions of ~b with finite 
support, X and Y respectively). 

The organization of the rest of the paper is as follows : 
In Sect. 2 we review the block spin formalism and the main results of [1] 

concerning the effective Hamiltonians. 
Sections 3-5 are devoted to a careful study of the two-point function where the 

main ideas of our method are seen without unnecessary notational complications. 
Finally, Sect. 6 shows how the argument may be applied to a general 

correlation: as an example we show that the scaling limit of the four-point 
function is Gaussian. 

2. The Block-Spin Transformation 

Let us consider a correlation function 

(1) 
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The idea of the RG is to  compute (1) by successively integrating out fluctuations of 
short range. Explicitly, we introduce block spins 4~, x e  L-1Ac~2U: 

d+2 
2 (2) 

lYv,] < L/2 

and define NJg, the renormalized Hamiltonian, (we drop the subscript A) by 

exp [ - ~ ( ~ b  i)] = const ~ exp [ - YY(~b)] 6(q~ 1 _ C(a)Dc~. (3) 

For the correlation function (1), we get 

( F )  ~ e = ( S F )  e ~  =. . .  = ( S"F)  e.ae , (4) 

n < N, where 

(SF)(q5 1) = ~ F(~b) exp [ -  ~,Ug(q~)]6(q~ 1 _ C~)D~/S  exp [ - ~¢~(~b)] 6(q~ 1 - C~)D~. (5) 

Iterating N times we are finally left with the zero mode integral: 

( F )  ~ e = ~ SN F((oN)d#L2NC(CbN) . (6) 

In [1] we controlled N"W, showing that (in the A .z 2~d limit) it converges (in a 
sense specified below) to a Gaussian fixed point. The purpose of this paper is to 
control the iterations of S, given this information about N"W. 

Let us briefly recapitulate the main points and results of the analysis of [1]. 
Consider iterations of the form (1.4). It has been shown that one can introduce 
"scaling fields" ~p~, z e L-1A, related in an approximately local manner to ~b 1, and 
fluctuation fields Z~, x e A \ L Z  d, so that N W  is given by the following integration 
over Z 

exp [ - ~W(q~ 1)]D~b 1 = const d#a,(q~ 1) ~ exp [ - VA(L- d/2 VIt)[_,...~ VMoZ)]d#1 (Z),  
(7) 

with M°y an (approximately) local kernel, x e A ,  yeA\L77 d, and G 1 being a new 
covariance for the unperturbed part, 

G 1 = CGo C+ . (8) 

Next one separates from the integral in (7) a "marginal" quadratic piece 
proportional to (~bl I G~ - a~b 1) (except for the zero mode contribution) and absorbs it 
to d#G~(q~ ) turning the latter into d#~,(~b). The whole process may be iterated giving 

exp [ _  ~ ,+  l~(~b,+ 1)]D~b,+ 1 =constd#c~,c+(~,+ 1) 

- S exp [ - V ' ( L -  d/2 Vtp,z+_ 1,. + VM'Z")] d#~,(Z") 

= const exp [ -  V" + l(V~p"+ 1)]d#c.+,(~b"+ I), (9) 

where G,+I coincides with ~,+1~"- ~ c ,  + 1 Go(C +)" + ~ = c,+11 G, + i on the subspace 
orthogonal to constants and with G,+ 1 on constants and 

vn+ I(v~Dn+ 1) = V n + l  ( V ,,,n+J']-I-l,l~ ,~---~( VV't/~ n+ l  ,Kn+ 1Vv1pn+ 1) 
( lO) 

1(0) = = 0 ,  
6~6Z 

( M " = d ' Q l ~ y  2 in the notation of [1]). 
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The following results were proven for the functions and kernels of (9) and (10), 
uniformly in the volume A. The initial V ° is assumed to be given by (1.4) with v as 
described in Sect. 1. Given a (real) configuration )~"= V~p" which is uniquely 
determined by the n th block spin q~"---C"~b, we introduce a region of large fields, 
D,(V~p"), as the smallest union of blocks of the lattice with spacing L N° (see [1], 
Sect. 3) satisfying 

117~7,t < (no + n) ~ exp [czd(z, z')] (11) 

for each zCD,(Vtp"). Here e is taken small and v>½d2+ 1. 
The following sets of(complex) vector fields )~" on any X C L-"A (X, D unions of 

LN°-lattice blocks) were introduced in [1] : 

Jg.(Z)={z":l)~"u~l<(no+n)~,lV~z"u~l<Cl(no+n) ~+d if z+L-"e~eX}, (12) 
and 

B.(D,X,a)= U (vlp"lx +aYf,(x))" (13) 
Dn(VWn)C D 

It was shown that e x p [ - V " ]  is analytic on Bn(L-"A,L-"A, 1 ) and has, for 
)~ = V~p"+)~ with D,(Vv2")CO, ~ ~,(L-"A), a representation 

Z rlg  ( )exp[- z (14) 
{Xj} j YnXj=O 

with Xj disjoint, uXj3 D, X j, Y being unions of LN°-blocks. The functions g~D and 
V~r depend only on Znlx or Z"Iy respectively and satisfy the following analyticity 
requirements and bounds inherited from our assumptions on v: 

(1.) 9"x ° is an even analytic function on B,(D,X, 1). IfXj are disjoint and DlnD 
= ~. Dc~Xj, then for Z"= Vv2"+2" (on B,), 

J 

~]Xj 

Here ]XI denotes the number of LN°-blocks in X. 5e(X) is the length of the shortest 
tree on the centers of the LN°-blocks building X and possibly other (continuum) 
points. 

~,(K, Z")= (~ dz + ~K da(z)) IZznl2" (16) 

(2.) ~ is even, analytic on 2W,(Y) with 

[ ~1 < 6"°+" exp [ -  2~v(Y)] ,  0 < 6 < 1 .  (17) 

vanishes together with its second derivatives at Z = 0. 
(3,) 

II K"ll L~(C~ × CJ~) < C6"° +" exp[--  2c~d([S] 1, [2] a)] (18) 

for unit squares []  ~, []  2- 
(4) The infinite volume limit for c, exists. Moreover, since 

tc.+1-c.1<C6 "°+", 
the infinite volume c. tends to c(v) when n--* oo. 
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In  the next  sections we shall make  inductive assumpt ions  abou t  S'F,  similar to 
the above  ones, and  shall i terate them much  in the same way as we proceeded 
in [1]. 

3. The Two Point Function: A Representation for the Block Spin Correlations 

Let us start  by inserting the block spin decompos i t ion  

d - 2  

o (x" = L - " x )  (1) : 

to (2.1), getting 

, \~J~I \ s / s¢ ,  (2) 
J C I  

where we use the nota t ion  

n = I ]  (3) 
j e J  

Integrat ing out  Z °, we obta in  f rom (2) [see also (2.5)] 

I Jr 1 o S F =  ~ 7  ?.])j<ZI\J>ZO , (4) 
J 

where, in general, we define 

( f ( Z ' ) > z ,  = ~ f (Z")  exp [ -  V' (L -d /2V~[ - , .  + V z ' ) ] d # ~ ( Z " ) / ( f  - 1). (5) 

First  let us consider the two point  function. In this case (2) reads 

2 1 1 1 o 1 / z  ° z ° \ \ G ~ z = < ~ b ~ ¢ ~ ) ~ e = < y  ~p~l~v ~+7~v~I<z~>z0+ ( <:~ 2 )+ . ,  ~, x ~ / z o / ~ e .  (6) 

Let us in t roduce the following nota t ions  

k - ~ (7) <z~>z~-  Gk+ 1, i, 

Z k Z k \ kk x~ ~ /  z~ = Gk.~ l, 12 , (8) 

k ~ (k > l) (9) <zx~Gk, i>zk = G~l+ l, ij 

GA+I,B=<G,AB)z, ( A = k ,  kl, B = i ,  ij, n < N - N o ) ,  (10) 

and  finally 

G A - / G  A \ (11) 
N , B - -  \ N - ; ' t o ,  B / ~ N - N o , ~  f "  

I terat ing (6), we obta in  

N - N o -  1 N-No-2  N-No-  1 
G x l x 2  = E . 2 k f ,  kk '/ UN, 12 + 2 2 . l + k [ r ,  kl - -  kl y tuN, 12~-Gm21) 

k,=,o l=o k=l+l 
_~ ~ , 2 ( N -  No) / ~,~N- No ~ , , N -  No 

N - N o -  1 
QY 2 ~,N--No+k/t,,N--No ~k + (1 ¢:~ 2)>~N- ~o~¢. (12) 

/ \ t V x N  1 - No(.$N - N o ,  2 
k = O  

Thus, we only need to control  the i terations of  < - - ) z  ( - S )  on the various 
functions just  introduced. Let G. denote  any of the objects G A B n < N -  N o. No te  
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that G n is a function of Vp" only (not of tp n) and can be extended naturally to 
vector fields )/'. Let 

Gn(ig n) = G.(0)+ Gn(zn). (13) 

Of course, G.ki = Gkn.i, since Gk..i is odd. 
We shall assume (inductively in n, k +  1-< n<_N-No) that G n e x p [ - l ~ ]  is 

analytic on ~(L" hA, L-"A, 1) and that for Z'~ ~(D, L- 'A,  1), 

G n e x p [ -  V] = ~ ljI 0)~ U/~.Y~ exp [ - ~ Wr], (14) 
{ X  j } ,  (go,} Y c ~ X j  = o 

where X j, Y~ are disjoint (built from LN°-blocks), Xjc~D is, for each j, a non-empty 
union of connected components (c.c.) of D, uXj3D. Moreover, the set of points 

x~ C {x], x~} involved in G, (i.e. G~s ) satisfies x~ C (uXj )~ (u  Y~). For D = 0, 1~.0)~ 
J 

does not occur, for X j ~ x j  =0, gxj-"l) = gx~."°/Shy doe  s not occur in (14), if Yc~xj=0. 
Thus we see that for G,k,~ there is at most one F in (14), whereas for Gknl~j there may 
be as many as two. ~.~ and F,y ~ implicity carry the indices k (or kl), i, (/j). Namely 
for G~R we have FAsr, etc. Equation (t4) is an analogue of (2.14) for the 
(unnormalized) block spin correlations. In analogy with (ln) and (2~) of Sect. 2, 
OnOx and Fnr possess the following properties, to be shown inductively. 

(an) -no gx are analytic on N,(D,X, 1). They are even ifXc~x~ is even. Otherwise 
they are odd. Equation (2.15) holds, if all or some of g ~  are replaced by ~o.  

(B,) /Snr are analytic on 23fn(Y) and vanish at )~"=0. F,,~r are odd and Fk, l~jr 
are even. On 2S, (Y ) they satisfy the bounds 

d - g  
~k IF,.~rI<L ~ ("-k)$zn°+~exp[--2aLf(Y)], (t5) 

and 

d - ~  

/Su -<L ~ (z"-k'-t)6"°+Zexp[-2c~°(Y)] n i j Y  - -  

where 6--61/3. 
We will also trace the change of Gn(0 ) with n. 
(Cn) 

I n  

constructions (see the beginning of Sect. 4 of [ l l )  are chosen appropriately. 

(16) 

{6.~+I,,~(o)- k, (2"-k-')g.o+,  .+1  . +  G,,ij(O)I<CL 2 exp[_c~d(xl ,x z i)]. (17) 

(15)-(17) e > 0  may be chosen arbitrarily small if the parameters of our 

4. The Cluster Expansion 

Here we shall show how, given (2.13) for one value of n, we may recover it for n+  1. 
Since the initial steps that we take are analogous to those of [1], Sect. 3, we refer 
directly to this paper. Suppressing n and replacing n + 1 by the prime, we have the 
following recursion : 

- -  - - d / 2  I G'0() exp [ - V'(X')] - ~ G(L ZL-1, + Vz) exp [ -- V(L - a/2ZL .I. + Vz)] d#c- ~(Z) 
• exp [ W'(0) + ½-62 W'(Z')]. (1) 
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Upon insertion of (3.13), this gives 

6G(O) = G'(O)- G(O) = ~ G(Vz) exp [ -  V(Vz)]d#~-,(Z) exp [ W'(0)], 

and 

G'0() exp [ - V'0()] = ~ G(Z) exp [ - V(Z)] d#~- ~(Z) exp [ W'(0) + ½62 W'0()] 

(2) 

- ~ G(Vz) exp [ - V(Vz)]  d#~-, (Z)  exp [ W'(0)] exp [ - ~z'(Z')], 
(3) 

where 

)~ = L -  d/z)( L -1. + Vz. (4) 

Using (2.14) as an input, we obtain an analogoue of (3.15) and (3.16) of [ 1 ]  : 

G()O exp [ - V(Z)] d#~-~(Z) = ~ i c ~ ( X j ,  Ya, Y,, YI~ ; )~) 1 ~(Z)d#~-, (Z), 
~, {X j}, {Ya}, {Y~}, {Y/~} ( 5 )  

where 

J&(.--) = 1~ 0XDj()0 1] Fyo(Z) 1~ (exp [-- Vy,(Z)] -- i) 1~ (exp [ -  1~2 V¥ ~0¢)] _ 1) 
j a ~t fl 

- ~ exp [ -  Va()()] 1-[ exp [ -  ½62 Va00]. (6) 
aCx 

Now (5) is decoupled as in [1], Sect. 3, leading to an analogue of (3.24) therein: 

S G e x p [ - - V ] d p _ l =  1~ exp[- -w]]  • I~D~ .  (7) 
AC D" {)~g} 

X~ are disjoint, w32~ has to contain D'~ {x~,}. Equation (7) is an expression of the 
type of a polymer-gas unnormalized correlation function with polymer densities 

~D'(z') = Z ~ I] S(O,)~L~c(Xj, Y~, Y~, Y~;X ~) 
P,{Xj},{Y~},{Y~},{Ys},{Uv} 7 

• lo(Zr~)d#c_~(ZL2)/ • exp[-w~()()] .  (8) 
Iac2\D" 

tn (8) ~'L2 is like ~ of (6) except that X j, Y~, Y~, Yp C LY and A's in the products are 
taken from Lg. The restrictions on the sums in (8) are as in (3.25) of [1], Y~ playing 
the same role as Y~ and Y~. The only additional restriction is that (uXj )u (~  Y~) has 
to contain x~c~LX. Notice that if x~+lc~X =0, then ~ ' - - ~ ' .  

Now put 

g~,' 2 HO~'~I~(exp[W~(°)+½62w~'~] - 1 )  
{X~},{Y~}inX" ~ 

• e x p  (9) 

as in (3.30) of [1]. Note again that if x~ + ~ c~X' = 0, then -,e' w' gx' = 9x'. For the odd case 
"+ ~ in X'), O'xD," will be the final ~x°, ' already. Define also g~ ,  by (9) (one x] + 1 or x 2 

with the restriction wX~ 3X%D'4:0  replaced by X % D  = 0 and x] +1 or x~ +a ~X'. 
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Equation (7) may be rewritten as 

I ~ exp [ - V]d& , exp [ W'(0) + ½~2 W'] 

= ~ l-[gx~'[IgB~)aexp[ - ~', Vr,], (10) 
(x)},(X~} j Y % X ) =  o 

g'c~X'=O 

, , ~+ 1 lies in (wX))u(X'~). Again there is no where X~, X~ are disjoint, wX)3  D' and xj 

l~ gx~" if D'= 0 and n o  [I uB,Xa"A~" if X~ +1 lies inside wX). 
j 

The last factor on the right-hand side of (10) is obtained by exponentiation of 
the polymer sum outisde (wXi)w(uX,) ,  see Sect. 3 of [1]. 

In the next step of our expansion, we shallinclude e x p [ -  Y'~x) ~=0 V~,] into 

Y" c~(uXb) # 0 

this factor applying the Mayer expansion to the compensating one: 

f ~ exp [ - V] d&-, exp [ W'(0) + ½~2 W'] 

[ lgx)  llgB~xalZl(exp[V;~'=]--l)exp -- 2 1/},, (11) 

where Y~ c~X) = 0 and Y~ c~(wX;) # O. Introduce 

F'ikr '= 2 g'~c'[[(exp[~'Ya]--l), (12) 
x ' ,  0%} 

where X ' u ( u  Y~)= Y', X ' ~ Y : # O ,  and 

F I k l  - -  &l u r -  2 l ] ( exp [~ '~a ] - l )+  F, ,k ,, gux'~gjx'~ l-[(expEV~a]- 1) (13) g i j X '  
X', {Y~,} a X~, X~, {Y~} 

where the restrictions on the first sum are as in (12) and in the second one we 
assume that X' 1 wX'z w( wX; ) = Y', X'  1 c~X 2 = O, (X' 1 w X  2)c~ Y # 0 and Y' is connected 
with respect to X'p X~ and Y~. 

Note that F'i k, are odd and Fr,kZ ,k --Ur are even. In fact F~r, wit1 be equal to the 
~tk final Fiy,. With this notation, (11) becomes 

5 ( J e x p [ - V ] d # ,  *exp[W'(O)+½a2W'] = ~, I -Igx~I]Fyaexp - 2 " , 
{Xj},{Yb} j a Y ' n X j =  0 

(14) 

with the restrictions on the sums analogous to those of (10). 
The last step in our expansion is to extract a constant 

Substituting (14) and (2.14) to (2) and (3), we obtain 

a6(O) = ~ F},(O), (15) 
y, 

and 

-,D' , [ ] G' exp [ -  V'] = E H gx'j 1-[ Fra exp - Z ~z~, 
(x)l,{Y~,} j ~ r '  c~x)= o 

- Y 2 Y Pl,]. 
{X~/} Yi j g' a x ' j = O  

term from G'. 

(16) 
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Set 

~,k __ ,k (17) Fiy, -- F i r ,  

5,kz _ ~-,kz _ p ,k~ (0~  ( 1 8 )  ijY" - -  ~ i j Y "  - - i j Y ' \  J 

~tD' - -  -PD' 
9x' - gx' , (19) 

ifX'  does not contain both ~q,'"+~ and x 2"+~, and otherwise 

~fD' --,D" ~D" ,kt 0 ex gx' =gx" ~ (20) v~a] - 1), - H g x ) F i m (  ) l~(  P [ -  ~' 
{X)I,Y],{Y;} j ¢~ 

where X) are disjoint, u X ) 3 X % D ' ,  Y ' r -~ )=  0 and X' is connected with respect to 
Xj, Y~, and Y~. Substitution of (17)-(20) to (16) gives 

 Ox 'H   exp I- Y, 
IX)}, {YM Y' nX) = O 

which is (3.13) for n+  1. 
One may also show inductively that for D 1 3 D (compare (3.6) of [1]) 

~nD1 x~ 2 [ I  g}D I-[/?nY~ [ I  <exp [ -- ~'Y=] -- 1), (22) 
{Xj},{Ya},{Y~} j ~ = 

whereX2, Y~ are disjoint, ( w X j ) r ~ D = X I ~ I )  2 ~ C X I \ ~ X  j andX 1 is connected with 
respect to Xj, Y~, Y~, and c.c. ofD r Again F,y~, appears when XI\k,)X j contains x] 
or x~. The proof (22) is deferred to the Appendix. 

5. The Estimates 

The essential feature of the RG transformation which allows inductive proof of 
(A~)-(C~) is the scaling of fields (by L -(d-2)/z and of distances (by L- l ) .  These 
scalings give rise to contractive properties of the RG. 

We assume (Am) and (Bn), k + 1 < n < N - N o, and start with ~ '  as given by (4.8). 
We may follows word by word the analysis of Sect. 5 of [1]. Namely, gF have the 
same bounds as gx D and the bounds on/?~y (although weaker than those for 
e x p [ -  I / r ] -  1 are sufficient to produce (5.42), (5.48), and (5.49) of [1]. This settles 
the O'c'O?*0 case. Consider the O ' ~ J f = 0  one (we put ~ ' = ~  then). For t5+0 
terms of (4.8), we obtain immediately the bound 

exp [ - O((n o + n)2)] exp [ - 8c~£°(X)] G- t;?1 (1) 

due to small probability of large Z, see Sect. 5 of [1]. Take now/5 = 0. Call )~ small 
if ~ l  < 2 d and &o()~) is minimal for given ~[. J( will be called big if it is not small. 
For big J~ there is enough contractive strength coming from the resclaing of the 
distances to extract the bound 

J d-~ L -  -T-(n + 1 - k)~2n0 + k exp [ -- 8e£~(J()] G - Ixl for the odd case, (2) 

I(0x)p=o, . . . .  I= < [ / L _ d ~ . + ~ _ ~  0~ + 
6 "° % x p [ -  8~£f(X)]G-txt for the even case. 
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For J~ small, the only dangerous term in (4.8) is the one with no Y~, Y~, no 
s-derivatives and a single Y~ with ~I=IY~I and ~(2g)=Sf(Y~) (there is only one 
such Y~ containing x], x~ or both for a given Jr). This term is, up to a contribution 
suppressed by O((n o + n)~+a6"°+"), 

F~j~o(z°)lo(ZL~)d~c-,(ZL~). (3) 

Let us consider the odd case first. To use more efficiently the contraction 
coming from the rescaling of the fields, write 

"~'Y(z°)=d~=at -~ o --k o Fiy(t Z ) q- Fir(Z ). (4) 
0 

The first term is linear in Z °. Notice that the function t~l~ky(tZ °) has the Taylor 
series at zero starting with t 3 and for Z'e 2~(, + ~()f) and ZLX in the support of 10, it 
is analytic for It[ <¼L a/2, say, and bounded there by twice the right-hand side of 
(3.15). Hence, at t = l ,  IFkr(z°)l<2(3La/2)-3.right-hand side of (3.15) by the 
maximum principle. The first term on the right-hand side of (4) contributes to (3), 

L-d/2~t=O ~k , Fiy(tZL-,.) J l~(ZL£)dla c- ~(ZLfc), (5) 

which is bounded by 

L-d/2(1 +(n O-.t-n)- ~)*L 2 (n-k)$2no + k e x p [ _ 2 a L f ( J f ) ] .  (6) 

The contribution of the second one is bounded by 

d - - , s  

2(¼La/2)-3L 2 ("-k>32"°+kexp[--2a£P(X)], (7) 

both for Z'~2Yf,+ 10(). Combining (6) and (7), we conclude that in the odd case 

_!+i d - ~  -k 
I(3)]=<L 2 8 L 2 (")32,o+kexp[_2aS¢()~)  ] 

on 23f',+ 1(Jr) for L and n o big. 
In the even case we proceed cimilarly writing 

dd@2 t= 1 
~kl 0 - -  ~kl 0 ~kl 0 Fijr(% )-- Fijy(t% )+ FiflZ ). 

(8) 

(9) 

The first term contributes a term quadratic in Z' bounded on 2Y.+ l(Jf) by 

d - ~  --  - l  

L-a(1 +(n o+n) -  1)2VL T (2~ k )~no+Zexp[_2~y(7~)], (10) 

and a constant term bounded by, say, 

d - e  
~L-aL 2 (2"-k-0~.O+lexp[_2e~(J~)] (Ii) 
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(we recall that VMZLx is small on the support of 1 o). =kZ Fij Y contributes to (3) a term 
bounded by 

d - - e  

2(3L'I/2)-4L 2 (2n-k-l)~no+lexp[__20~a~(X)]. (12) 

Altogether we obtain in the even case: 

}(3)-(3)Iz,=o]<Z-a+~/4Z a2z~ (2"-k-Z)6"°+lexp[--2~(X)], (13) 

and (3)Ix,= 0 also satisfies this bound. 
The contributions to 0~?, for Jf small, other than (3) always gain some small 

factors and we may absorb them into (8) and (13) by increasing ~. 
Summarizing, for Z'e 2X.+ l(J(), 

f d - e  + _ 

1@~1 < IL 7"lk)Nz"°+kexp]--8~&P(X)]G -Ixl fo rXb ig ,  (14) 

~L ~ a~ ("+ l-k) $2"°+k exp[-- Zo:~LPO~)] forXsmal l  

in the odd case and 

l~x-~t~.=ol < L-~--(2"+2-k-°6"°+texp[-8~Sf(J()]G-I~?l for2  big, (15) 
=I e d - e  

[L ~ 2 (2"+2-k-l)6"°+lexp[--2eL~°(Jf)] f o r 2  small 

in the even case. ~?lz'-o also satisfies (15). 
Having bounded ~-~', QO' and their products, we proceed as in Sect. 5 of [1] to X 

obtain the bound of the type (2.15) for .~ff"s with D'c'ug'~O and their products 
among themselves and with #ff"s except that the constant E is increased, g~A x and 
/?~A r are bounded immediately with the use of (14), (15) and their definitions (4.9), 
(4.12), (4.13), (4.17), and (4.18). As a result we obtain (3.15) and (3.16) with n 
replaced by n + 1 and 

d - - e  + 

IFijy(0)i'u =<L ~ (2. 2-k-1)$.O+lexp[_20~Sf(y) ]. (16) 

Now, using (4.19), (4.20), and (16) we obtain (2.15) for n+  1 with some or all g~' 
replaced by gx~' and E by a big constant. Finally, the constant is brought down to 

E by the use of (4.22) as in Sect. 5 of [1]. This ends the proof of (An+ 1) and (Bn+ 1), 
given (An) and (Bn). (D,+ 1) follows from (4.15) and (16). 

To show that (A,)-(C,) hold for all n, k + 1 --- n-< N -  N 0, we have to start the 
induction. For the first step [see (3.7)-(3.9)] theprocedure is exactly the same as for 
the next ones, except that for (3.7) we need to decouple the M kernels in the 
z~r=(MZ)x ? as we did for the VM kernels (see (3.17) in [1]). We only have to 
check, that sufficiently small factors arise in (4.8). For G~+I i one may always 

v + d  n o + k  " s ' ~ k I  extract an O((n o + k) 6 ) factor, since ~,~ z 1 o(Z)dl~c-,(Z) = 0. For G k + 1,i j, k > l, 
F~,iY provide the necessary small contributions (to control the combinatorics we 
use one 6"° factor). Moreover (still for k > l) 

d - - e  I 
i G k t  - ( k -  ) ~  + k+I,i~(O)I<CL 2 6"°+'exp[-c~d(x] 1,x~+l)]. (17) 
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kk kk has extra O((n o + k)~6 "°+k) factor in all other Finally consider Gk+ 1, 12. Fk+ ~, ~ 2Y 
terms except the one given by (here k +~ k + Y = A I u A z u x  1 ~ x  2 , A t blocks) 

Fkk, o = ~ ~ Z.Z~ 1 o (Z)d#~-~(Z) (M)~ . (M)~  k+ l ,12Y- -  
U~ZI1, VEZI 2 

= + O(e ))(M)x~.(M)~3... (18) 
u, v 

~kk satisfies our claims and Thus Fk+ l,12 g 

kk - -  kk 0 - 1 Gk + 1.12(O) -- 2 f k  + 1.12Y( ) = Ck 2 ( M ) ~ . ( M ) ~ .  
Y u 

- e d ( x  1 ,x 2 )]). (19) Since + O($.o+k exp[ k+l k+l 

~ (M)~.(M)r. = J ~ y  (20) 
u 

( ~  is the free covariance of zk), we obtain 

d--e  k I 
iGkt - - 1 ~ "  < 2 ( -- ) ~ n o + l  k+l  k+ k+l,ij(O)--6ktCk ,Ykxfx,~l=CL 6 exp[_c~d(xl ,x 2 1)]. (21) 

In order to control Gxr , as given by (3.12), we still have to estimate the 
expectations (--)~,- , ,oae appearing there and in (3.11). Notice that 

1 (--)e~,_~o~e= ~ - ~  - -  e x p [ -  n-No N-no n-no V~ (V~p )d#~ n Uo(~b )]. (22) 

Both in the numerator and in the denominator we consider separately q~n-no such 
that n - ~ o  n -  no  _ D u _  no(V~p ) = A (large fields) and O~_ uo(V~p ) - 0  (small fields). 

For large fields the integrands are easily bounded (with use of (A~_no)) by 

const exp[O(~c)!dz(V~pUz-n°) z] (1 + ~ (qSn-n°)2). (23) 

The latter is integrable with respect to d#e~_ ~. o, since 

( ~ ) N - n ° [ G N 1 N o ( p N - n ° ) = C N _ N o  ! (17tpN--N°)2"] -L2(N-NO)~L-NOd(x~A ~bx~-n°) 2 (24) 

(take ¢ > L -  2n). Moreover, using (7) of Appendix 3 in [1], we may extract from its 
integral an exp [ -  0( (% + N -  No) 2~-a2)] factor (2v - d 2 > 1 !). 

For small field integral, we use the small field bounds of (Bn_no). The constant 
contribution to G kt N-no,j, bounded with the use of (21) and (Dn) goes through the 
expectation (--)~N-No~e- The results are 

N - N o  d - ~  
~k~ -16 J,, < C  ~ L ~ (2n-k-~)~"°+Zexp[--~d(x]+X "+ 
I"lNij - -  Ck kl kxkxka - -  , X 2  1)] 

n = k  

d - e  k - I  
< C L  -i ~ ~o+l [1  + k k -d+~ _ d ( x l ,  x 2 ) ]  , ( 2 5 )  

N - n o  N - N o  [(~Px~- ~,o~P ~f - ~o) ~ - ~'o Jel = C, (26) 

,,,n-no ,~k . (27) ~'~g-No~'N-No, i).~ . . . .  ,,el < C L  2 (n--k)~2no +k 
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Substituting (25)--(27) to (3.12), we obtain 

N - N ° - I ~ 1 2 k ~  - k kC - 1  N - N o - - 1  N - N o - 1  
G~y- _ _  2 E ~ , ~  ~_c Y E ¢ +~L~-~(~-~' 

k=O /=0  k=l  

3"° + ~(1 + d(x~,- ~"-~+~ • .x,2) ) + C7 2N 

N - N o -  1 

k=0 

< C$.O(1 + d ( X l  ' x 2  ) -  e + 2 -~ + C ~ , 2 N  (28) 
Now 

n - n o -  1 n - N o -  1 
E ,u2koT" ~ -  1 - -  C -  1 ,2k~'- r ~'k~x~k - -n-No ~ Y ~'kx~,~ 

k=O k=O 

N - N o -  1 

- E ,,2kj;, t~-1  _ c~-')  (29) [ kx~x~,t~N - No 
k=0 

The first term on the right-hand side of (29) differs from c- ~ times the free two- N-  No 
point function G °. x. by c~! N~7 2 ( N -  N°)(tJ)~z~-~#olpxNN--N°o)~... , which is smaller than 
C72N, compare (26) ~. The second one is ~ bouncted, wx~:ti~°the use of (2.t9) and 
[~-k~y]<=Cexp[--~lx--y[] (see [1]) by 

N-no- I 
C Z 72kS"°+kexp[--ed(x],x~)]<C6"°( 1 k k -e+2-~ + d(x~, x2) ) . (30) 

k=0 

Summarizing, 

IGx~ - c[~lNoG°x] <= C6"°(1 + d(x~, x2))- a+ 2-,  + C72N. (31) 

As far as the thermodynamic limit is concerned, it is straightforward to prove 

~A ,D ~ ,  and converge (for by induction that O)D and F,B Y, as well as gx and K ~, % 
n + 1 the volume dependence enters only through gx~'D, F,,y,A gx"°, ~ ,  52V~, c, and 
the kernels M"; all our estimates are uniform in volume). As a consequence, also 
G~ has the limit when N ~  oe (G~_No(0) does since 6G,(O) converge and fulfill (C.); 
the contribution of ~kz to G~ goes down with N by virtue of(Bn) ). As a N-  no 

consequence of (3.12), Gx~x2 has the thermodynamic limit. Since c N_ NO "N_ ~ o~;' C(V), 

(31) becomes for the infinite volume quantities 

laxly2 - c ( ~ ) -  ~ o  x~l--< c 6 . o ( 1  + d(x~,  x ~ ) ) -  ~ + ~ -~ (3 2) 

This gives (1.5). 
The analyticity of the infinite volume limit in v also follows via a straightfor- 

ward inductive argument 

6. The  Genera l  Corre la t ions  

It is now rather straightforward to generalize the above analysis to a general 
correlation function. In this section we will explain first the idea for the general 
case and then carry out the analysis in more detail for the 4-point function. 
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Thus consider iterating (3.2) and (3.4) for a general (~Pi)Je: 

Jicl 

, . 21J2 ] . / , t , 2  v l d ~ l / Z  1 . /Z  0 \ "x k 

J 2 c I  J 1 C I \ J 2  

t l I  

p = l  N - N o > n i > n i > . . . > n p  {lj}f 
part ,  of I 

~,(N- No)IJI / ,,,N- No II\JI .\ + Z "  \'rs Z Z ZO({nj},{Ij} 
O # : J c I  p = l  n l  > . . ,  > n p  { l j}  ] / ~ h r  No~e~a ~ 

where 
- 1 / ~ n l t Y l l z n l  ~ n l - n 2 -  l < ^ p 2 [ J 2 l z ~ S n 2 - n 3 -  1 G({nj}, {Ij}) = S N- No-.~ \ ,  J <  

s n v -  l - n p -  l /,vnpldpl,.znpX \ 
• " " \ [  ~ J p / Z n p / Z n p  I ' • " > Z r ~ t  " 

Thus, to start with, let us analyze 

O) 

(2) 

_ (i__[] x k )  (3) (Zi)zk= z~ z~ 

(we will often suppress the index k below)• Expanding, as in the case of the two 
point function, and gathering clusters around D' and the x~ + l's, we obtain the 
analogue of (4.14): 

( Z , ) z e x p [ - V ' ] =  ~ ~ H.~xD'I-IF~ exp[ - ~ ~,] ,  (4) 
{x)} {rM Y ' • x ) =  

where the X), I~ are disjoint, X'-uX',gD', X)c~D'=wc.c.D'4=O and 
' w Y _ '  - - , , - , o  , ~  , o '  xx = ux~ + 1 cX u(  ~). ' - Again, lfXj~xx= O, gx) =gx'~, and there is no j-product if 

D ' = 0  and no a-one if x'ICX', and of course x'~nY,,4:O. In order to control the 
iterations of (4) (after applying S to it or to ~+~ times it) we need to take out the 
constant parts of F} j s  which would not contract in the iteration. We repeat the 
analysis (4.15)-(4.21) for the expansion (4)• For this purpose, denote explicitly in (4) 

--D, I the dependence of ~ and F on I : gx , F~ (we drop also the primes now). Consider, 
for some fixed iE1 (we often identify below i and x~) 

~ ,,v J} [_  2[  2 F~J}(O)t E H~]D; '\(';, Ft. exp 2 Vr], (5) 
j * i \ Y ~ i w j  ]{XI},{Y~} 1 YnX=O j 

which is a term we will subtract from (4); it equals 

(ziZj)z(O)(zr\{ij}) z exp [ - V]. (6) 
j * i  

Expand now exp [ - ~  ~'r] in (5), gather disjoint clusters and resum; (5) becomes 

[IgD'Z'i~ Fl'~exp[ ~ l/y], (7) 

with 
@,.= ~ ~ rlo~m~Vl~.,r\{iJilqFx\llJiVlf~..~,r_ gr ] - 1 )  (8) 

j :  {Ij}c X {ij}c YC X {Xz}, {Y~r} a 
{Y~) 

I , i  
- r  ~ ,  1 l - t o  , (9) 

j:{ij}c ~" {ij}c YC 17" {I%}disj, 
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where {X1}, { Y.} in (8) are disjoint, Yj-df 1 = 0 and X is connected with respect to Y, 
X l, Y~ and Y~ and Y in (9) with respect to Y,, Y.. Also note that in (7) only one ~ or F 
is not ~.;1 or Ft  r~, namely the one for which ieX~ or Y.. 

The idea now is as follows, Subtracting (5) from (4) amounts to subtracting a 
"gaussian" contribution: ~ ( -  ~%i for ie Y will be 0(5"°+k); (5) will be the main 
contribution to (4). We now apply S to the difference, which again is of the same 

k + p  k + p  • form (see (10) below). We repeat this until there are x m 4 = x. in a common small 
Z Th6fi we need to subtract F~(0), as is evident from Sect. 5 ; the F r with Y small 
will not contract in our scheme (in fact the estimates would blow up). If other such 
pairs exist, we need to subtract them too. Thus, in more detail, fix i and write 

( z i )  z e x p [ -  ~:j = ~ (z~zj)z(O)(zi\{u}) z e x p [ -  

Yx~ l~I/?~'/exp[ - ~ ~/r], (10) -[" Z /IiI ~D'I ' i  
{Xz}, {Y,r} Y c~Xz = 0 

with 
#D.I.i_ =D,I =D,1,i (11) 

X - -  gX - -  fiX , 

F I ,  i _ p l  is, I , i  (12) y - -  - - y - -  ~ y  • 

Let us consider the estimation of the ~ and the F. Consider F~, first. Since the main 
contribution for it is given by 

FZy, o = ~ ~, I-I S(eJ,)zznLrlo(ZLy)dl*c-'(ZLr), (13) 
{07} 

we get easily the bound 

IVXrl < Cliff  I expE-  2e~(Y)] ,  (14) 

where Ciinn depends on the number of points, IIc~Yl, in I~Y. Similarily ~x 'I 
satisfies the bound (2.15) with a multiplicative constant Cl~nx I as in (14). For p~,i 
we claim that the bound 

t/3~, i I < Clt~rl~,o +k exp[-- 2~St~(Y)~ (15) 

holds. To prove this, note, that it suffices to consider (9) with F~, replaced by F s Y, 0 
(given by (13)) as well as F~ replaced by F I the error being bounded by (15). Y,O, 
Moreover, we may omit 1 o in (13), again with the error bounded by (15). This 
reduces F~ to F~, o, given by 

ffl _ ~ ~_, F I  ff{U} (16) 
Y , O - -  I I Y~j,O, 

{<i j)} {Yij}3 {i j} 

with Y connected with respect to Yu, {(iJ>} running through the pairings of 1. 
Equation (16) follows from (13) since we have a gaussian integral left as 1 o ~ 1. But 
(15) for F's replaced by ff's is straightforward. 

Consider finally ~ '  i,i. By (8), (11), (14) and the corresponding bound for ~ '1 '  ~, 
#D,X,~x also satisfies (2.15)~ with some multiplicative constant Clxni P which we now 
take the same for ~, F, F and #. For being able to iterate the bounds for ~, we need 
the "cocycle" property, analogous to (4.22) for g. Namely, for D'D D 

l l gx ,  l~P~ '~H(exp[  - !~,=]-1) (17) 
{Xj},{Y~},{Y~} j ,r 
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with X j, Y disjoint, Yc-O(j = 0 and X connected with respect to X j, Y, Y and c.c. of 
D'. This follows from the corresponding one for ~: (proved as for II] =2, see 
Appendix) 

0xv; ' ' =  2 1~ 9x°;.~ l-I F{'~s ~ (exp [ - ~ j ]  - 1  ) (18) 
{X jk}, {Y~j}, {Y~,j} 

which, when inserted to (8), yields (17) for ~x v''I'i, and then by (11) for O~ ''I'i. 
Equation (10) is the starting point for the iteration. The main (only) contribution 
in the scaling limit will be given by the first term. We shall assume, inductively 
in II], that we can cope with it. 

Thus we wish to address the iteration of the second term of (10), namely, the 
application of S to it or to zj times it as we are advised to do by (1) and (2). 
Consider first case. Denote 

He-r '= 2 H 0xD;"' 1~/7-}~ e x p [ -  • Vr]- (19) 

The expansion described in Sect. 4 may be applied to (19), giving 

H'e-P'=S(H)exp[ - p q ,  = ~ItY'FI='D"I'iyx, [I F'*'i exp [ - r .  ~ V~]." (20) 

We claim the ~', F' satisfy the bounds 

-' * ~ -  L-N°'e(X)a with n-+n+l (21) (a) 9x the same as ~-- vx , , 

(13) '*" fo rYb ig ,  (22) I f  r I~Cix~yl a L No~e(r )exp[_2~(y)  ] i¢ 

(v) expC-2= (g)]{a°]+ }for small, (23) 

{~,]+k} forYsmal l ,  (24) 
(5) '~" ,x,, IF r - Fr  (0)1 < CI~rlL -¢a-~) exp [ -  2 ~ ( Y ) ]  I ~  Y even, 

, ~ fg,o+k} for Y small, 
IF~"I<--CI'~rlL-2(e-~)exp[-2e£P(Y)]t 1 . Ic~Y odd. (~) (25) 

In fact, (21)-(25) will hold provided we choose the constants (C,) properly (see 
below). Consider e.g. ([3). 

The leading term, i.e. no R, (e -p  - 1) etc. factors in the cluster integral, is 

£ ~_ I 1-[ S(07) YI F*r'~lo(ZLr)d#(Ztr) • (26) 
{Y~} {v~} 

The G factor (recall from [1]; G may be chosen big) arises as before from the 
contraction of space. The only difference with our previous analysis is the 
constants Cliff  1. Let us choose (C,) so rapidly increasing in n that 

1]Cl,~t=<(l+e)Cffl forall I ~ I .  (27) 
{Ie~} part. of .r 

This is possible of course. Now the bound (22) and similarly all the others follow 
by an analysis similar to that for the two point function. (We may extract the 

1 G - ~ ( x )  in (e) from the redefinition of ~c and contraction as in ([3): see [1]). 
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The terms (7) in (20) are of course not satisfactory since they expand: we need to 
subtract them. Let for some j there be several k in a common small Yj containing 
them. 

Denote Ij=I~ Yj and write 

2 1-[ -,o', ;,i VI F,I, i exp [ - 2 rl = F~]' ~(0) ~ I-] gXt I 1 e~ ~Z' " " gXI'--/D I\Ij,  i 
l a 

VIF'I\I~'iexp[ - ~VY]+Z.,liux," ~llTv'D'I'i'jFl[;'l'i'Jex~r--~lZY]ll r~ VL / ,  (28) 
"1 I g~ 

17 l 

where of course ~,D,I\~j,i are obtained from applying S to (19) with I replaced by 
I\Ij, and if iq#I\Ij, the/-index is superfluous. Again (28) is derived by first writing 
the first term on the right-hand side as 

2 H ~]'x D' ' I ' i ' j  I-[ F}I',, i ' j  e x p [ -  2 Vr], (29) 

with e.g. 

F,X, i,j _ V F'I~, qO ~ VI ~,;\xj, i (30) y - - / ,  y j  t ; 1 1  Y~ 
17 

(Y~ disjoint, Y connected with respect to Yj, Y~). There is again only one term in the 
products in (29) different from the ~', F' on the left-hand side in (28), namely, the 
one withX t (or Y~) containing Yj (if Ys~X=0, then ~,D,~,~,~_~,D,I\;j,i_Z,O,I,i. ~ X - -  X - - ~ X  

similarly for F's). This is why we may define the new ~, F on the right-hand side of 
(28) in the second term. The point of (28) is that 

l ~ ' I ' i ' J - - F ' L i - -  l:"l~'i(O "~ r2'IJ'i Ig'r-'i'i(O't (31) yj  - -  yj  ~ y j  ~ / = z y y  - - ~ y j  ~ I 

which by (24) has now contracted. 
Equation (28) will now be repeated to the second term on its right-hand side 

until all (3')-type F's are subtracted (the first terms on the right-hand side are 
treated inductively). There might be many such subtractions and they contribute 
new terms to the ~ ,  ~' F r. These may be bounded using the G-factors in (~) and (13)" 
the more contributions to .qx or F}, the bigger X or Y has to be. The reader may 
easily convince himself that after all the subtractions we have obtained 

H' exp [ -  ~' ~,O', I ~,Z V ] = Z I~ 9x~ l-I Fy exp [ -  Z Vy3, (32) 

where we suppress the i, j, etc., such that .~x D''~ satisfies (2.15) with the constant 
Cl;~x I, and denoting by ~#(J) the biggest number of disconnected blocks in x k+ ~, 

f.gno + k) 

<=Cii~yiL-~a-~)exp[-2o~(Y)]{~"] +k} for Ysmall, Ic~Yeven. (33) 

The iteration may proceed now. For S(zjH) w e  may derive an analogous 
expansion as for H, now with 0x D'x'~J, ~f,l~a. Similar bounds follow for them (with 
suitable (C,)) and then applications of S are controlled as before. There are a finite 
number of steps when zs are added and after a finite number of steps all x k+p are in 
the same block, whence the iteration is as that of the two-point function. To see 
how this process may be carried through in detail to prove the triviality of the 
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scaling limit, let us restrict ourselves to the four-point  function. To  extend this 
analysis to a general correlat ion is just  a ma t t e r  of  bookkeeping.  

Thus  take III = 4  in (1) and consider the first t e rm;  the second one will turn  out  
to vanish as N ~  oo. Take  the p = 1 te rm first. This is given by 

N--No- -  1 
1 n n 

~4"<SN-N°-"- <z~.. .z~>z.>a,,-~,oS e .  (34) 
n = O  

By (10) we m a y  write 

4 
n n n n - ~ + ~  # '~+~ (zn,l...Zn~)z,,exp[--l/~+l]= ~ (z~,,;z~,y)z,,(O)(z~,rz~)zne +H,+le -  

~=~ ('35) 

U ,+  i e -#"+l  = Z l~.0]~ 1-[ F~ exp [ -  ~r+ 1], (36) 

where we suppress I, i. 

We already know how to control  the first te rm from the analysis of  the two- 
poin t  function [see (5.25), (5.19)1: 

(SU-U°-"-~/z" z" " " -c21~-  + O ( $ " ° + " ( 1 +  " " -a+~ \ x;, xUz,/e~,-Uoge- J,~r,x? d(Xk, Xt) ) ), (37) 

I(z"~,;z"~y)z.(O ) -  c 2 l~-,~rxy I < C$ "° +" exp [ -  c~d(x"~ + a, x,2+ 1)1 . (38) 

Since 

72"6"°+"exp[-2c~d(x],x~)]<C6"°(l +d(xl,xj)) -d+ z-~, (39) 
n = O  

2n ~no + n -- d + e  ~no y 6 (l+d(Xk, Xl) ) "  " <C6 (l+d(xk, x ~-a+z-~ (40) l]] 
n = 0  

we get f rom the first te rm in (35) a contr ibut ion to (34), 

Z [N-~ -1''4n -2~7- ~- +O(~n°(l+d(xi'xj))-a+2(l+d(Xk'Xl))-d+2-e)] s Cn =nx:]x~j~nx~x~ 
p a i r i ngs  I_ n = 0 

(41) 

Hn + 1 will be studied as explained above.  Denote  x ~ y if x and y lie in the same 
small Y. Let  rn 1 be the first m such that  for some i,j, x~ 1-1~,,~xJml-1. We m a y  
assume that  the present  i coincides with the original one. We write 

Hml exp [ - ~ml] = S,,, - n -  I (H,  + 1) exp [ - ~z,,,] = F2~ y(O) ~ 1-I ~7~' D, kl I--[ r~, ya  

• exp [ - Z ~r ~] + H,,I e- ~ - (V2~ r(O)Gmlkl + I-~ml) exp [ - ~ ] .  

(42) 

The  first te rm is again of  the two point  type whereas to /~"~ we apply  S m:-ml, 
where m 2 is for the next pair  : x~ : -  1 ~ x ~ -  1. note that  this might  cor respond to 

- - l '  3 

two new x[s or  one new collapsing in the next step to the small set where x~ '~ and  
xy '~ lie. Thus  

m2 - -  ml - -  1 

sm~-"~H,,~ = ~ ~ Ij'iJ ( o ] ~ m 2 - m l - - P t ' ~  - [ - S ( ~ t m  2 1). (43) 
~ m l  + p y p k  I ~ ~ m l  +p, kl -- 

p = O  Yp 
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We estimate the two-point terms 

IF/{1 + prp(O)[ < C$ "° + "Z ~- a + ~)(,.~ + p- .), (44) 

1< S N - N O - m l - p -  iGml+p,kt>~w-No~f[ <= CL-(a-~)(m~+P-")( 1 ---Ld(x"ml+P~k , ~ l + P ) )  -d+e 

< C(1 + d(x~,, x'~)) -d+~ , (45) 

whichimply that the first piece in (43) contributes to (34) (if n>m~ the analysis is 
similar) 

m2 m 2 -  1 

Z C? 4"~"°+" ~ L(-a+~)~'-")(l+d(x~,,x'~)) -d+~ 
n =  0 l = r n a x  (n, mx) 

< C$.O(1 + d(xi ' xi))- a + 2 - ~(1 + d(x k, xz)) -a+ 2 - . ,  (46) 

and we are left with S(/~,.~_ 0-=-/tin2. Let us consider the (more complicated) case 
where (i'f)c~(ij)= 0, i.e. a totally new pair of points collapses to a common small Y 
(The other case where first three and then four points collapse is left to the reader.) 
We write (Y1 3 {ij}, Y2 3 {i'j'} small) 

/-~m exp [ _  ~2]_-- E FI 0~;o,, [ I  F~2r exp [ _  E ~'Y] 
= F~=y,(0) Z IF] ~xx~v, i'y' 1-[ F~J2'r~ exp [ - E Vr] + / ~  exp [ - ~e,-~] 

with, subtracting once more, (47) 

/4~ e-  ~ ' ~ -  ~, I~.#~c~°'x'u/#~ exp [ - ~'r] 
-mzD, ij ij 

+ E I ]  0~D" 1~/3~Yo exp [ - E Vr]. (48) 

(In (47) 0, F are not those of (4); we are suppressing the indices of all the previous 
subtractions.) In (48) we note that ~ ' ~ J -  ~'J" -m2Yz-fmzYz and of course 
F 2 ~  = F~2r~ = F~'y=, if Y,c~ {ij} = 0. Thus the last term in (48)indeed has in/~I m2Y1 
and ] ~ y :  a subtraction at zero. Equations (47) and (48) may be expressed as 

I - t in2  ~" F~r~(0)G,.~. v j, + FimJ2'r2(O)Gm2, ij d- fflmz. (49) 
m--1 Let m 3 now be the first m such that all x~ are in the same small Y We have 

m 3 -  1 

S"3-'2H,.~ = ~,, E (Fiq~,~(O)Sq-'2Gqi'j'+Fi£~'~,Sq-m~Gqi.i)+S(Hm3-1) . (50) 
q=?;'12 ~lq, Y2q 

Again the two-point function pieces givea contribution that can be absorbed to 
the O ( - )  term in (41), whereas/~,.3 -= S(Hm~-1) is given by 

{x~}, r 

with 

FF,.3r[ < C6 "° + "L-  2 ~  - .)(a- ~) exp [ - 2ct5¢( Y)]. (52) 

Iteration of SkH,.3 is now as in case of the two point function, yielding 

](SN-N°-"3-1H ) ~ N I<C$"°+"L-E(m3-')~a-~) (53) 
m3 ..~ - o a ~ ' ~  
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Summing this over n with y4n produces the 0 ( -  ) term in (41). Equation (41) is thus 
our bound for (34). 

Estimation of the other terms in (1) proceeds similarly. Consider e.g. p=2 ,  
[Il I = 1121 = 2, given by 

N - N o > h i > n 2  ordered  
pair ings  

1L'Tn2 7 n;~ \ ~ ( 7 .  Here S ~*-'~- \-:¢~,,,/Jz.=-~.,,kl we have already computed: 

Gnu, kl = G.,, k~(0) + 0n, ' kl, 

with 

k/f~ ~ __ , . -  i ~/ ' I < ( " ~ n o  + n2(1. . i . .  A t  v n a  ~ , , n2~ l -d+e  Gn, 

and 

with 

G.,,kt=Z VI:"D'ki~ l Yx, I-I ~-ki.,r~ exp[- -  Z V~], 

(54) 

(55) 

(56) 

(57) 

d - g  
~k l  IF.~r[ < C~.o+.2L 2 ("' -"2)lr"{k'01exp[ - 2~£o(y)3 ' (58) 

and the usual bounds for ~. 
Thus 

(z~,Z"x~, G.l,ki)Z., = G.~ k,(O)<z"~,Z~I)Z., + <Z"~,Z~, G.1 ki)Z.,. (59) 
' z j ~ 2 " 

The first term contributes, by (56) and Sect. 5, 

n I n l  __ - - I  - - I  J~OT- 

~'no+n2 nl nl - d + s  n2 n2 - d + e  +(9(~ (l+d(x~ ,xj )) (l+d(x k ,x I )) ), (60) 

and upon summation over n, and n z in (54) 

pai r ings  ~ j k l ) ]  

+(9($"°(l +d(x,,x))-a+ z(l +d(Xk, X,))-e+ z-'+(9({ij} .~ {k/}))], (61) 

whereas, defining 

H.,+ 1 =L(~-~)("l-"~)/z"~ z "~ G \ (62) 

it has the expansion (36) with analogous bounds. Thus 

I<sN-N°-"~-aH.,+I>~-NoJel <C$"°+"~ 2 ( l+d(x ,  . . . .  ,xj ))-d+~ 
pair ings  

• (1 a- mY.~ ...2",'~-a+~ (63) 

and combining (63) with (62) and (59) these terms in (54) can again be absorbed to 
the (9(-)  in (61). Similar analysis is now carried out by inspection to the 
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other p, {I j} combinations in (1). We get 
I ( N - N ° - I ' / N - N o  -~ 

<q~X1'"  " ~ X 4 > ~  = pair~illgs L\ n~O Cl~ ~"X~X,) t 11~0 C:I"~lX~X~) 

+ (9(g'°(1 + d(x,, xj))- a + 2(1 + d(xk, x,))- d + 2 -~) + C({ 0"} <=> (kl})] 
d 

+ g)(VN), (64) 

where the (9(7 N) comes from the last contribution in (t). Proceeding as in (5.29) and 
taking N ~ ,  we obtain 

[Go fio   
pair ings  

+ (9(~,,o(1 + d(xi ' xj)):d+ 2(1 + d(xk ' x,))-d+ 2 ~) + (9({ij} ~ {k/})]. 
(65) 

In the scaling limit (t.3) the (9(-) 's drop away and 

A - 1  - 1  G ( X 1 . . .  X4*) = C(V)- 2 E ( -  c)~,x~(- A~)~:,,, ( 6 6 )  
pa i r ings  

which was the claim. 

Appendix 

Here we prove that (4.22) for n implies the same relation for n + 1. The repetition of 
the arguments of Appendix 2 of [1] gives 

1, gx, , I gB~x, E 1-I (exp [ -  ~' = Vy'] - 1), (1) 
{X~},{X~} I ~r {Y,,} a 

where X z, X~ are disjoint, Y~CX'\(wX~)u(wX~), u X  13X%D' and X' is connected 
with respect to X~, Xo, Y~ and connected components of D' r To proceed further, we 
need relations inverse to (4.12) and (4.13). These are 

g'~ 2 F:~ 1~ (exp [ -  "' = V~] - 1), (2) 
Y,{Y~}inX a 

and 

1kl 
gijX ~- ,k; F 'k F'; lq [/~3 - 1), ~, Fijy I~ ( e x p [ -  ~'r~] - 1) + ~ it, jr21 l(exp[ - 

Y, {Yet} in X a g 1, Y2, {g~} in X 
Y l c s g 2 =  O 

(3) 

with X connected with respect to Y (I11, Y=) and Y~ in both (2) and (3). It is easy to 
see that (4.12) and (4.13) as well as (2) and (3) establish one-to-one relations 
between (g~ax) and (F~Ar). In order to show that one is the inverse of the other it is 
then sufficient to prove that substitution of (4.12) and (4.13) to (2) and (3) yields 
initial (g~x)- But, with X connected with respect to X 1, Y~ and Yp, 

2 g:~cl 1~ (exp [ ~'r~] - 1) 1~ (exp [ - V'r,] - 1 ) 
X i ,  {g~,}, {Y~} in X ct fl 

Y~nX i * 0 

= 2 ( - l ) t  ,k f i  ( l_U(Xx ,  y~))~r,=g:kx (4) 
Xt,(Yl ..... Yr) inX 1! gix1 a= 1 

X conn. with respect  to X 1 and Y~ 
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(U(X, Y)= 1 ifXc~ Y# 0 and vanishes otherwise). Similarly, with X connected with 
respect to X1, (X2), Y~ and Y¢ 

,kt  ~ gijx, H (exp [ Vr3 - 1) y[ (exp [ - Vr,] - 1) 
X I , { Y ~ } , { Y ~ } i n X  o: fl 

Yo:c~X1 * 0 

+ E ffi~,g)~ [ I  (exp [VY~] - 1) H (exp [ -  Vrf1-1 ) 
X I ,X2,{Y~},{Y,6}  i n X  a 

X~, - ,X2 = ~,  Y~c~(XI  w X 2 )  * 

2 ( -1 ) '  ,k f l  ( I_U(Xz ,  y~))'~, r 
X I , ( Y 1  . . . . .  Yr) inX I !  Y i j X i  a = l  

X conn. with respect to X 1 and Ya 

( - 1 )  l ,~ ,l ,~ 
+ E I! 9ix,gjx~ 11 ( 1 -  U(XlwX 2, Y~))Vr ,k, a = ~ i j X "  

X 1 , X z , ( Y I ,  . . . ,  Yr) i n X  a :  1 
X conn. with respect to Xl,  2 and Y,, ( 5 )  

X1 nX2 = 0 

Insertion of (2) and (3) to (1) yields 

Ox e~= E H0~r~' E HF;A%(exp[  - ' '  V~] - 1), (6) 
{Xl} 1 {Ye},{re} ~r 

with X l disjoint, w 'm ' ' X 1DX D, Y~, Y~ CXz\uX and X' connected with respect to Xt, 
Y~, I~ and connected components of D' 1. This proves (3.39) for n + 1 except for the 
case when x] + 1, x2,+ i ~X'. In the latter case, using (6), (4.18), (4.20), and (3.6) of [1] 
we obtain 

~D'I __ 9 x , -  ~ H 0x~' H F ~  H ( e x p [ -  v r J  - 1  ) 
{XI} ,{YM,{Y~} j a 

E gx~' H (exp [ "' ,u - - V ~ . ]  - 1 ) V . ~ r ( O ) ,  
{XI} ,{Y~} ,Y  o: 

where in the first sum the restrictions are as in (6) and in the second one X~ are 
disjoint, Y~CX'\wX z and X' is connected with respect to Xt, Y~, Y and connected 
components of D' r The part of the second sum with Yc-~ z = 0 cancels the constant 
term in --,~g,~'kl see (4.18), whereas the one with Yc~X~ 4= 0 provides the correction for 
the ~)D' with x 1"+1, x 2"+lsX, appearing in the first sum, necessary to convert it 
into gX"D', see (4.20). This completes the proof of (4.22) for n + 1. 
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