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THE ORDER ASPECT OF THE FUZZY REAL LINE 

Robert Lowen 

It is the purpose of this paper to put the "fuzzy real line" 
in a setting which proves to be advantageous to a more fun- 
damental study of that space. 
Actually there are three different fuzzy real lines to be 
found in the literature, mainly defined by U. HShle in [1], 
[2] and by B. Hutton in [4], [5], and a fourth one shall be 
added in this work. 
The main result of this paper is the fact that three of the 
four spaces are homeomorphic to fuzzy topological spaces the 
underlying sets of which are, in each ease, the probability 
measures on ~, and the fuzzy (resp. quasi fuzzy and transla- 
tion-closed fuzzy) topologies of which are determined by the 
left and right sections of a canonical fuzzy extension of 
the strict order relation on ~. From this it will follow 
very fundamentally that it is the order of ~ and not the 
topology, which determines the fuzzy real line. 

1. Preliminaries 

The unit interval is denoted I, I 0 := ]0,1] and 11 := [0,1[. 

If X is a set and A c X then the characteristic function of 

A is denoted 1 A. If f is any real valued function on 

then by f(x+) and f(x-) we denote right and left limit of f 

in x. 

Given a set X, by a quasi fuzzy topology A on X [9] we under- 

stand a collection of fuzzy sets on X, closed for finite in- 

fima and arbitrary suprema. If moreover A contains all con- 

stant fuzzy sets we call it a fuzzy topology [9] and if it 

is stable for translations, i.e. for all ~ e A and ~ e I : 

(~+~) ^ 1 e A and (~-~) v 0 e A, then we call it a transla- 

tion closed fuzzy topology [1]. In the terminology of U. 

H~hle [1], [3], this is aprobabilistic topology for the case 
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L = [0,1] (see [1] for notations). 

If TOP denotes the category of topological spaces and FTS 

that of fuzzy topological spaces then by ~ : TOP ~ FTS, 

l : FTS ~ TOP and I : FTS ~ TOP we denote, the functors in- 

troduced in [9] and [11]. The topological space (X,ICA)) is 

called the topological modification of A. 

If X is a separable metrizable space, then we denote B(X) 

the Borel o-algebra on X and T(X) the topology on X. The 

collection of all probability measures on B(X) is denoted 

M(X) and the collection of all degenerate probability measu- 

res is denoted D(X). Recall that P e M(X) is called degene- 

rate if there exists x e X such that P(B) = 1 if and only if 

x e B. Throughout this work such a measure is denoted P 
x" 

If Y e B(X) then we denote MY(x) the collection of all 

P e M(X) for which P(Y) = 1. If f : X ~ Y is a measurable 

map then it has a natural extension 

: M(X) ~ M(Y) (1.1) 
-1 

defined by f(P)(B) = P(f(B)) for all B e B(Y) [18]. 

H c M(X) is called tight if for all ~ e I 0 there exists 

K c X, compact, such that P(K) > 1 -s for all P e H [19]. 

We recall some basic notions from [12]. If {0,1} is equip- 

ped with its natural, i.e. discrete, Borel a-algebra then 

for any A E B(X) the map 1 A : X ~ {0,1} is measurable and 

thus has an extension 

1A : M(X) ~ M({0,1}) : P ~ (1-P(A)) P0 + P(A)P1 (1.2) 

by (1.1). Since any probability measure on {0,1} is deter- 

mined by its value on f.i. {I}, the mapping 

@ : M({0,1}) ~ I : (1-~)P0 +~P1 ~ ~ (1.3) 

is a natural isomorphism between M({0,1}) and I. Then~ upon 

identifying these two sets, (1.2) becomes, 

6 A : M(X) ~ I : P ~ P(A) (1.4) 

We now extend the topology of X to the fuzzy topology A(X) 

on M(X), generated by 
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E(x) :: {6GIG e T(X)} (1.5) 

The space (M(X)~A(X)) is denoted simply M(X). Since the ex- 

tension of a continuous map f : X ~ Y to f : M(X) ~ M(Y) is 

again continuous, we obtain a functorial relationship. Let 

SMS denote the subcategory of TOP consisting of all separa- 

ble metrizable spaces. 

THEOREM 1.1. T__he .COrrespondenc_~e Extto p : SMS ~ FTS defined 

by 
Exttop(X) := M(X) on objects 

Exttop(f) := f on morphisms 

is a covariant functor. 

In [12]' it was shown that X is canonically embedded in M(X) 

by ~ : X ~ M(X) : x ~ Px" Regardless of structures on X and 

on M(X), ~ shall always denote this map. 

2. Three fuzzy real lines 

In the literature there are three spaces which are referred 

to as "fuzzy real line". 

The coarsest space is that of B. Hutton [4]. Let R denote 

all non increasing real-valued functions on ~ with infimum 

equal to 0 and supremum equal to 1. Let - be the eauivalen- 

ce relation on R defined as I ~ B if and only if 

l(x-) = ~(x-) and l(x+) = ~(x+) for all x e ~. Then the 

"natural" quasi fuzzy topology on RI ~ is the one generated 

by the subbasis 

{LxlX e ~} U {RxlX e ~} 

where for each x E ~ and [I] E RI~ 

Lx([l]) := i -l(x-) and Rx([l]) := l(x+). 

In the literature ~(I) usually denotes the space RI~ equip- 

ped with this quasi fuzzy topology. 

Let now D(~) denote the set of all distribution functions on 

and let B be the collection of fuzzy sets on D(~) defined 

by 
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B :: {LxlX e~} u {RxlX era} 

where for each x E m and F E D(m) 

Lx(F) = P(x) and Rx(F) = 1 -F(x+). 

Let D0(R) denote D(m) equipped with F0(~) := the quasi fuz- 

zy topology generated by B, then we have the following re- 

sult, the proof of which is straightforward. 

PROPOSITION 2.1. m(1) and D0(m) ate homegmgrphic and the 

~angnica! hgmepmorphism is given b~ 

D0(~) ~(I) : F ~ [l-F]. 

In view of the fact that D0(m) is a more natural model than 

~(I), we shall refer to D0(m) as the Hutton fuzzy real line. 

The in-between space we obtain using the technique of satu- 

rating a quasi fuzzy topology for the constants in order to 

obtain a fuzzy topology [9], [14]. This space has also been 

suggested in [21]. Thus we take as underlying set again 

D(~) but now equipped with F(m) := the fuzzy topology gene- 

rated by B. We shall denote this space simply D(~) and, in 

this work, refer to it as the fuzzy real line. 

The finest space is that of U. H6hle [1], [2] who considers 

on D(m) the structure FI(~) :: the translation closed fuzzy 

topology generated by B. This space we shall denote Dl(m) 

and we shall refer to as the H6hle fuzzy real line. 

Remark that, U. H6hle usually only considers the subspace 

D+(m) of D(m) consisting of those distribution functions F 

for which F(0) = 0. 

Eaeh of these three spaces can be viewed as the "model" of a 

certain concept of "fuzzy real line ~' in its corresponding 

category. 

The results of the fourth section will reveal fundamental 

arguments, apart from those of [16], why D(m) and Dl(m) are 

maybe more natural and canonical spaces to consider than 

D0(m). 
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3. The probabilistic aspect 

In classical probability theory on ~ there is advantage in 

being able to work with both distribution functions and pro- 

bability measures on ~. We shall therefore translate the 

concepts of the fuzzy real lines into the language of proba- 

bility measures on ~. 

Let ~ denote the usual bijection from M(~) to D(~) i.e. 

: M(]R) -~ D(IR) : P -~ <(P) :: Fp (3.1) 

where Fp is the distribution function defined by Fp(X) := 

P(]-~,x[, u E ~. Let A be the subbasis for T(~) defined by 

A := {]-~,a[la e ~} u {]a,+~[la e ~}. (3.2) 

Now put 

ZA(m) := {~A]A e A} (3.3) 

and le t  AA(~) (resp. A~(~) and A](~)) denote the fuzzy 
(resp. quasi fuzzy and translation closed fuzzy) topology 

generated by EA(~). 

The space (M(~),AA(~)) (resp. (M(~),A~(R)) and (M(~),A](~))) 

shall then simply be denoted MA(~) (resp. M~(R) and M](~)). 

Analogously if E(~) c M(~), then as a subspace it shall be 

denoted EA(~) (resp. E~(~) and E](~)). 

PROPOSITION 3.1. The following hold 

1 ~ M~(~) is homeomorphic to D0(~) 

2 ~ MA(~) is homeomorphie to D(~) 

3 ~ M~(~) is homeomorphic to DI(~). 

In each case the canonical homeomorphism is ~. 

Proof. This follows at once from the fact that for any 
-1 

x e ~ : ~ (L x) = 6]_~,x[ and ~I(R x) = ~]x,+~[. [] 

From this we see that there is a striking resemblance be- 

tween the fuzzy real line and the spaces introduced in [12]. 
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MA(~) is constructed in a similar way as M(~) by extending 

only a specific subbasis of T(~) namely A. 

The only subspaces of the fuzzy real line, studied so far, 

essentially, are the open and closed fuzzy unit interval 

[4 ] ,  [20] .  
The closed fuzzy unit interval [4] consists of all F e D(~) 

fulfilling F(0) = 0 and F(I+) = 1. We shall denote this 

subset D(1). 

The open fuzzy unit interval [20] consists of all F e D(~) 

fulfilling F(0+) = 0 and F(1) = 1. This subset we shall de- 
O 

note D(~). Further if either D(I) or D(1) are equipped with 

the fuzzy topology induced by F(~) (resp. F0(~) a~d FI(~)) 

then we shall also denote them simply D(1) and D(1) (resp. 
O O 

D0(I) , D0(I) , DI(1) and DI(1)). 

If we now denote M~(N)(resp. M~'X(N), M~'X(R))the set 
MX(~) equipped with the structure induced by AA(~) (resp. 

A~(~), A~(~)) then we have the following result. 

PROPOSITION 3.2. The following hold 

1 ~ M~'I(~) is homeomorphic to D0(I 
O 

M~'I(~) i S homeomorphic t ~ D0(~ 

2 ~ M~(~) is homeomorphic t 0 D(1) 

O O 

M~(~) _ is homeomorphie to D(I) 

3 ~ M~'I(~) is h0meomor~hic to DI(I 
O 

M~'I(m) is homeomorphic to DI(~). 

Again in each case the canonical homeomorphism is induced 

b_~y ~. 

Proof. By straightforward verification. [] 

Let I(T(~)) denote the quasi fuzzy topology I(T(~)) :: 

{1GIG E T(~)}. Then we have the following result, the ve- 

rification of which again causes no problem. 

PROPOSITION 3.3. The following h 0! d 
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1 ~ N~(~) is homeomorphic to (~,l(T(~))) 

2 ~ DA(~) is home.omorphic, to (~,~(T(~))) 

D~(~) is homeomorphic to (~,m(T(~))). 3 ~ 

It is surprising that in none of the many previous papers 

dealing with any of the three fuzzy real lines, it was ever 

questioned why the only somewhat naturally definable sub- 

spaces were fuzzy intervals. The reason herefore lies in 

the fact that the relation between ~(I) and M(~) uptill now 

was never used, especially not in papers dealing with the 

Hutton fuzzy real line which usually deal with very general 

lattices L instead of with I. The framework which we have 

proposed now makes it possible to consider a large class of 

subspaces of the fuzzy real line in a canonical way. There 

is however a more fundamental problem, with the very nature 

of the fuzzy real lines, in particular again with the Hutton 

fuzzy real line. From the literature, this space has always 

been considered a natural fuzzy extension of the topological 

space ~. Its structure was obtained however by extending 

only the subbasis A of T(~). 

A crucial question then is the independence of the chosen 

subbasis. In [12] we showed that the extension process is 

not subbasis-independent and that by considering the entire 

topology T(~), one obtains an in many ways more natural fuz- 

zy extension of ~. 

Nevertheless the basic concept of the fuzzy real lines is 

important, as follows from [4], [5], [20]. 

Consequently we were faced with the problem whether there 

exists a more canonical way of obtaining these spaces. This 

problem is not so important for the H6hle fuzzy real line 

since there the structure is indeed obtained from a diffe- 

rent point of view using the concept of statistical metrics. 

This method however is only meaningful in the subcategory 

of translation closed fuzzy topological spaces. Neverthe- 

less for both the H~hle fuzzy real line and the fuzzy real 

line we were able to discover, for the former an alternati- 

ve, and for the latter its fundamental defining structure. 

For the Hutton fuzzy real line this works only if one 

299 



LOWEN 

somewhat alters the space thus obtaining a new quasi fuzzy 

topological space. This shall be shown in the next chapter, 

but first we still give some preliminary results. 

THEOREM 3.4. If X and Y are Borel subsets of ]R and 

f : X ~ Y is continuous and monotone then f : MX(IR) ~ MY(IR) 

is continuous. 

Proof. By straightforward verification. [] 

It is sometimes advantageous to use the following alterna- 

tive description of subspaces Mi(~). For any Borel subset 

X c ~ put 

AIX := {A ~ X]A e A} 

w h e r e  A i s  a s  d e f i n e d  i n  ( 3 . 2 )  a n d  p u t  

Ealx(X) := {~ ls  e alx} 
X 

w h e r e  f o r  a n y  B E A I X  : 6B : M ( X )  ~ I : P ~ P ( B ) ~  D e n o t e  

by MA[x(X) the fuzzy topological space with underlying set 

M(X) and subbasis ZAIx(X) (see also [12]). 

THEOREM 3.5. If X is a Borel subset of ~ then the 

(X) ~ M~(~) 0 : MA[ X 

where 8(P)(B) := P(BnX) for all B e B(~) is a homeomor~hismo 

Proof. Using the fact that B(X) = {B N XIB ~ B(~)} the rea- 

der can easily verify this himself. [] 

THEOREM 3.6. [12] The Tgpolg.~ic.al modi.fication, of &A(~) 

e__o.incides with the .weak topology on M(~). 

This result was first shown by U. Hbhle in [3] in the con- 

text of translation closed fuzzy topologies. It also holds 

for the Hutton fuzzy real line [12]. 

i• The order aspect and ,....a.. fourth fu.zzy real. line 

The topology of ~ is an order topology in the sense that if 

we put S := {(x,y) Ix < y} the "strict order relation" then 
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the topology of ~ is generated by the left and right sec- 

tions of S i.e. by the collection of all sets 

Sl(X) :: {YlY < x} x �9 

Sr(X) := {ylx < y} x E ~. 

It is our purpose in this chapter to prove that the same is 

true for the fuzzy topologies AA(~) and A~(~). Precisely 

we shall prove that there exists an extension of S to a 

"fuzzy strict order relation" on M(~) such that the left 

and right sections generate (in their respective categories) 

AA(~) and A~(~). 

Recall the definition of the following t-norm 

T (x,y) := (x+y-1) v 0 x,y �9 I 
m 

and its dual 

S (x,y) := (x+y) ^ 1 x,y �9 I. 
m 

DEFINITION 4.1. F~ any P,Q �9 M(~) we define 

p(P,Q) :: sup P(]-~,x[) ^ Q(]x,+~[). 
xe~ 

Example. Let us illustrate this definition on some concrete 

probability measures. 

Suppose that N 1 := N(ml,1) and N 2 = N(m2,1) are normal pro- 

bability measures, then straightforward calculus shows that 

m2-ml 2 

1 [ 2 x 
2 

P(NI'N2) = I e dx 
J 

from which we conclude that 

and 

P(N1,N 2) ~ 1 iff m 2 - m I ~ +~ 

P(N1,N 2) ~ 0 iff m I - m 2 ~ +~ 

1 
P(NI'N2) : 7 iff m I = m 2. 

This example illustrates p and, with the results of Propo- 

sitions 4.1 and 4.4 and Theorems 4.2 and 4.3, show that we 

can interpret p(P,Q) as a "degree" with which P is strictly 

smaller than Q". 
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PROPOSITION 4.1. The fuzzy relation p is an extension of 

the strict order on ~, i.e. p o (~x~) = 1 S, 

Proof. This is straightforward. D 

THEOREM 4.2. The fuzzy relation p is a linear T -strict or- 
m 

der in the sense that it fulfills the following properties 

1 ~ (Tm-antireflexivity) For all P,Q e M(~) : 

Tm(P(P,Q),p(Q,P)) : 0 

2 ~ (T -transitivity) For all P,Q e M(~) : 
m 

p(P,Q) ~ sup Tm(P(P,R),p(R,Q)) 
ReM(~) 

3 ~ (Tm-linearit Z ) _ _  __F~ all P ~ Q e M(~) : 

Sm(P(P,Q),p(Q,P)) > 0. 

Proof. 1 ~ It suffices to note that if x ~ y then 

P(]-~,x[) ^ Q(]x,+~[) + Q(]-~,y[) ^ P(]y,+~[) 

P(]-~,x[) + P(]x,+~[) < 1 

and if y ~ x then analogously 

P(]-~,x[) ^ Q(]x~+~[) + Q(]-~y[) ^ P(]y,+~[) 

< Q ( ] y , + ~ [ )  + Q ( ] - ~ , y [ )  < 1 

a n d  c o n s e q u e n t l y  p ( P , Q )  + p ( Q , P )  < 1. 

2 ~ L e t  P , Q , R  E M(~) ,  t h e n  i t  s u f f i c e s  t o  show t h a t  f o r  a n y  

x,y e ~ there exists z e ~ such that 

P(]-~,x[) ^ R(]x,+~[) + R(]-~,y[) ^ Q(]y,+~[) 

P(]-~,z[) ^ Q(]z,+~[) + 1. 

Now if x < y then 

P(]-~,x[) ^ R(]x,+~[) + R(]-~,y[) ^ Q(]y~+~[) 

P ( ] - ~ , y [ )  + Q ( ] y , + ~ [ )  

P(]-~,y[) ^ Q(]y,+~[) + 1 

i.e., z := y will do, and if y < x then 

P ( ] - ~ , x [ )  ^ R ( ] x , + ~ [ )  + R ( ] - ~ , y [ )  ^ Q ( ] y , + ~ [ )  

R ( ] y , + ~ [ )  + R ( ] - ~ y [ )  ( 1 
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i.e., any z �9 ~ will do. 

3 ~ Let P # Q �9 M(~) and Sm(P(P,Q),p(Q,P)) = 0 i.e.~ 

p(P,Q) = p(Q~P) = 0. 

This means that for all x �9 ~ : 

(4.1) 

P(]-=,x[) ^ Q(]x,+=[) = 0 

Q(]-=,x[) ^ P(]x,+=[) = 0o 

and (4.2) 

(4.3) 

If we now put 

A_(P) := {x[P(]-~,x[) = 0} 

A+(P) := {xIP(]x,+~[) = 0} 

A_(Q) := {xIq(]-~,x[) : o} 

A+(Q) := {xlQ(]x,+=[) = o} 

then A_(P) and A_(Q) are intervals extending to -= and A+(P) 

and A+(Q) are intervals extending to +=. Further it fol- 

lows from (4.2) and (4.3) that 

A_(P) u A+(Q) : ~ and (4.4) 

A_(Q) u A+(P) = m (4.5) 

and that none of the sets A_(P), A+(P), A_(Q) or A+(Q) can 

be empty, otherwise either P(~) = 0 or Q(~) : 0 which is 

preposterous. 

Consequently we have for instance by (4.4) 

-~ < inf A+(Q) ( sup A_(P) < +~. (4~ 

Case I : inf A+(Q) < sup A_(P). Then there exist a < b such 

that P(]-~,b[) = Q(]a,+~[) = 0 and consequently for any 

x �9 ]a,b[ we have P(]-~,x[) = Q(]x,+~[) = 1 which implies 

that p(P,Q) = 1 contradicting (4.1). 

Case [ : inf A+(Q) = sup A (P) =: a. Then obviously 

P([a,+~[) = Q(]-~,a]) = 1 (4.7) 

Now if P(]a,+~[) : 0 then P = Pa and it follows from Q ~ P 

and from (4.7) that there exists b < a such that 

Q(]-~b[) > 0. Consequently Q(]-~,b[) ^ P(]b~+~[) > 0, 

which implies that p(Q,P) > 0, which again contradicts 

(4.1). If on the other hand P(]a,+~[) > 0, then for some 

b > a also P(]b,+~[) > 0, and it follows again that 
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Q(]-~,b[) ^ P(]b,+~[) > 0, which implies that p(Q,P) > 0 

and which once more contradicts (4.1). [] 

Z THEOREM 4.3. The • zy relation p is a linear ~weak {~ m- 

strict order in the sense ' that it fulfills the f0il;owin~ 

properti,e,s 

1 ~ (weak ^-antireflexivity) 

1 
p ( P , Q )  ^ p ( Q , P )  ~ 

2 ~ (weak A-transitivity) 

1 
p(P,Q) v [ > sup 

3 ~ (^-linearity) 

p(P,Q) v p(Q,P) > o. 

For all P,Q e M(~) : 

For all P,Q e M(~) : 

p(P,R) ^ p(R,Q) 

For all P # Q e M(N) : 

Proof. 1 ~ This is an immediate consequence of Theorem 4.2 
1 

since for any a,b e I : Tm(a,b) = 0 ~ a A b ~ 7" 

2 ~ Let P,Q,R e M(~) be such that 

i (4.8) p(P,R) A p(R,Q) > ~ > 

then there exist x~y c ~ such that 

P(]-~,x[) a R(]x,+~[) a R(]-~,y[) a Q(]y,+~[) > ~ (4.9) 

Now if y < x then R(]-~,y[) a R(]x,+~[) ( ~, which together 

with (4.9) implies < ~, in contradiction with (4.8). Con- 

sequently x ( y and it follows by (4.9) that 

P ( ] - ~ , x [ )  ^ Q ( ] x , + ~ [ )  > 

which implies p(P,Q) > ~. 

3 ~ This again is an immediate consequence of Theorem 4.2 

since for any a,b ~ I : Sm(a,b) > 0 ~ a v b > 0. [] 

PROPOSITION 4.4. The fuzzy relation P is open, i.e. it is 

an open fuzzy subset of MA(~) x MA(~ ). 

Proof. This is an immediate consequence of the definitions 

of p and the product fuzzy topology. D 

From this we conclude that p not only is a set theoretical 

extension of the strict order relation on ~ but also a 
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topological one. 

We shall now prove that AA(~) is indeed an "order fuzzy to- 

pology. 

Let us denote the left and right sections of p by 

pI(P) : M(It) ~ I : Q ~ p(Q,p) 

pr(P) : M(IR) ~ I : Q ~ p(p,Q) 

and the fuzzy topology generated by 

{p!(P)IP e M(Iq)} u {pr(p)Ip e M(I9)} (4.12) 

of all sections, by ^<(JR). 

The space (M(IR),A<(]R)) shall then be denoted M<(]R). 

If E(19) c M(I~) then as a subspaee it shall be denoted [<(IR). 

(4.10) 

(4.11) 

THEOREM 4.5. ~he fuzzy t0Pglogy of the fuzzy, rea ! line is 

generated by the linear Tm-strict order p, i.e. 

AA(~) = A<(~). 

Proof. First, for any x E ~, we have 

PI(Px ) : ~]-~,x[ and pr(Px) : 6]x,+~[. 

Second, for any P e M(~), we have 

pI(P) -- sup ~]-~,x[ ^ P(]x,+~[) and 
• 

pr(P) = sup 6]x,+~[ ^ P(]-~,x[). [] 
xel~ 

Let us now see whether this result can be obtained also for 

the Hutton- and HShle fuzzy real lines. 

In consistence with our previous notation we shall denote by 

A0<(IR) and AI(iR) the quasi and the translation closed fuzzy 

topology generated by the collection of (4.12). 

(M(]R),A0<(IR)) shall then be denoted by M0<(]R) and (M(]R),AI(IR)) 

by MI(i~), and analogously if [(I~) c M(i9) then as subspace of 

MO(]R) (resp. MI(I~)) it shall be denoted E0(19)< (resp. El(R)). 

THEOREM 4.6. The translation closed fuzzx topolo$y of the 

H~hle fuzzy real line is generated by the linear T -strict 

order p, i.e. A ( = A (~). 

1 
Proof. Since AA(~) is obtained saturating AA(~) for trans- 

lations and A~(~) is obtained saturating A<(~) for 
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translations this follows at once from the previous theorem. 

[] 

We thus conclude that MA(~) and M](~) both in a natural way 

are indeed "ordered fuzzy topological spaces". This how- 

ever is not the case for M~(~) as we shall see. For ~ e I 
H 

and x ~ y we put 

P~ :: ~Px + (1-~)P x,y y (4.13) 

PROPOSITION 4.7. For !ny ~ e i and x < y e ~ we have 

pr(P~,y) = (e v ~]y,+=[) ^ ~]x,+~[ 

(pl-~. : (e v ~ ) ^ 6]_= 
Pl x,y; ]-=~x[ ,y[" 

PROPOSITION 4.8. D0<(I~) is homeomorPhic to (I~,~(T(IR)) 

Proof. It is clear that for any x E ~ : 

~]-~,x[ o~ = 1]_~,x[ and 6]x,+~[ o~ : 1]x,+~[ , 

that it suffices to show that A~(~)ID(~ ) _  contains the so 

constants. Consider hereto, for any e E I, the open fuzzy 

set 

u s := sup pr(P~ ) ^ pl(P~), 
x,yE~ 'Y 
x<y 

then, using Proposition 4.7, for any x E ~ we have 

~ (Px) = ~, i.e. ~ o~ = ~. [] 

THEOREM 4.9. The quasi ....... fu>zy topolo~j ~ of the. Hutton fuzzy 

~eal line is st.rictly coarser than the quasi fuzzy, t.opology 

generated by p, i.e. A~(~) C A~(~). 

Proof. The same argument as in the proof of Theorem 4.5. 

shows that A~(~) c A:(~). That the inclusion is indeed 

strict follows from Propositions 3.3 and 4.8. [] 

The next diagram pictures the situation of all the spaces 

eonsidered so far. Note all inclusions are strict. 

MOA(]R) c MA(]R) c M~(I~) 

n Thm 4.9 IIThm 4.5 IIThm 4.6 

M~ c M<(~) c M<i(~) 
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PROPOSITION 4.10. The following hold 

1 ~ A0<(IR) contains all constant fuzzy sets ' with constant va- 
1 

lue larger than 7 

2 ~ sup ~(P) I> 7 for all ~ e s (JR). 
PeM(m) 

1 
Proof. 1 ~ Let us assume ~ ~> 7 and let again 

B~ := sup pr(Px ~ ) ^ p1(Pl-~). 
x, ye-]R ,y • x,y 
x<y 

For any P e M(]R), making use of Proposition 4.7, with 

T(x) :: P(]x,+=[) ^ (P(]-~,x[ v~) 

S(y) := P(]-=,y[) ^ (P(]y,+=[ v~) 

we have Be(P) : sup T(x) ^ sup S(y)) 
x~-JR x<y 

yEiR 

I> sup T(x) ^ ~ ~> ~. 
xela 

Conversely if for some x e ]R we have T(x) > e then 
1 P(]x,+=[) > ~ and P(]-=,x[) > ~, thus ~ < 7 in contradict- 

ion with our assumption. Thus it follows that also 

~ (P) : sup (T(x) ^ sup S(y)) ~ ~. 
xe-JR x<y 

y6]R 

:= inf pr(Qk ) ^ inf Pl(R ) e A~(~) where K and J 2 ~ Let 
keK jej J ' 

without loss of generality, may be supposed non empty. 

being a complete separable metric space we can find, for 

each j ~ J and k e K, 
i (i) xj e ~ such that Rj(]xj,+=[) 
7 

i 
(ii) Yk e ~ such that Qk(]-=,yk[) 7" 

Putting x := minx. and y := (max yk ) v (x+l), then from 
jEJ ] keK 

Proposition 4.7, (i) and (ii), 

1 

~(P~,y) : inf(~ VQk(]-~,x[)) ^ Qk(]-~,y[)) 
kEK 

1 
^ inf((~vRj(]y,+~[)) ^Rj(]x,+~[)) ~ inf(~^Qk(]-~,yk[)) 

jEJ keK 
�9 1 1 

^ inf(~AR~( +~[)) : [] jej L j ]xj, 7" 
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THEOREM 4.11. If H is a. tight subset of M(~) then the fuz- 

zy topo!ogies induced on it by regpectively A<(~) and A~(~) 

coincide. 

N . 
Proof. It suffices to show that A~(~)IH contains the con- 

stants. Let m e ]0,1[ and s E I 0 such that 

< ~ ^ (1-~) (4.14) 

By tightness of H we can find x,y c IR such that 

P(]x,y[) > 1 - e VP e H, (4o15) 

then, from Proposition 4.7, (4.14) and (4.15) we have for 

x 
any P e H : pr(P A pl(P ,y)(P) = ~. [] 

COROLLARY 4.12. If X is a bounded Borel subset of ]R then 

th e fuzzy topologies induced 0n MX(I~) by A<(IR) and AO(IR) 
0, X(IR) respectively coincide, i.e. MX(I~) = M< 

COROLLARY 4.13. T he..fuzzy topologies induced on any fuzzy 

interval, b_i A<(~) and A~(~) respectively, coincide, 

Remarks. 1 ~ Tightness in Theorem 4.11 is only sufficient and 

not necessary as can be seen from Proposition 4.8. 

2 ~ Theorem 4.11 may be interpreted by saying that M~(~) on- 

ly lacks the constants "at infinity". 

3 ~ The usual subbase of a linearly ordered topological space 

is obtained taking sections over all elements. This is what 

was done to obtain A~(~). The quasi fuzzy topology A#(~) 

was obtained however taking sections only over the elements 

of D(~). It is noteworthy that saturation by constants eli- 

minates this difference. 
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