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Abstract. The consequences of the invariance of the superpotential under the 
complexification G ~ of the internal symmetry group on the determination of the 
possible patterns of symmetry and supersymmetry breaking are established in 
a globally supersymmetric theory. In particular, in the case of global internal 
symmetry we show that a vacuum associaated to a point z, where Gz c :t: Gc~ is 
always degenerate with a vacuum associated to a point z', where GC~, = G J ;  all 
the other degeneracies of the minimum of the potential on an orbit of G ~ are 
also determined and shown to be completely removed when the internal 
symmetry is gauged. The zeroes of the D-term of a supersymmetric gauge 
theory are characterized as the points of the closed orbits of G ¢ which are at 
minimum distance from the origin; at these points G~ = G~ ~. It is rigorously 
proved that the minimum of the potential is zero if the gradient of the 
superpotential vanishes somewhere. It is also shown that the D-term necessari- 
ly vanishes at the minimum of the potential if the direction of spontaneous 
supersymmetry breaking is invariant by G. 

Introduction 

Rigid supersymmetric theories, exhibiting additional global or local internal 
symmetries, have been the object of considerable interest lately [1]. The interest 
has survived the advent of local supersymmetry, as it is reasonable to believe that 
the breaking of supergravity takes place at very high scale such that the effective 
low energy theory is indeed a rigid supersymmetry, spontaneously broken or 
broken by explicit soft terms. 

The possible patterns of supersymmetry and/or internal symmetry breaking 
are contained in the form of the superpotential of a supersymmetric theory. It has 
been remarked by many authors [2] that the complexification G C of the compact 
internal symmetry group G may play an important role in this context, 
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particularly, if the local and global geometries of its orbits are analyzed [3-5]. In 
the second part of the present paper we shall essentially follow the approach of [3] 
with the purpose of examining how the possible patterns of supersymmetry and 
internal-symmetry breaking are constrained by the particular way in which G- 
invariance is realized in the potential of a globally supersymmetric theory. The 
derivation of new results has been possible in part because of recent progress in 
related mathematics, which we shall try to summarize in accessible terms in the 
first part of the paper. A considerable part of the present paper is reserved for the 
presentation of mathematical concepts, not used in physics so far, in the conviction 
that they may prove of some usefulness in the future development of the subject. 

The mathematical preliminaries contained in the four sections of Part I of the 
paper are only partially due to ourselves. The rest is taken from specialized 
textbooks and mathematical literature, and has been freely manipulated in order 
to be directly exploitable in the solution of problems of physical interest. As a rule, 
the proofs of those results which we could find in textbooks will not be reproduced 
(see for instance [69]). Some other results will be proved in Appendix A with the 
constant sacrifice of generality in favour of simplicity. 

Part II of the paper, devoted to physical applications in the framework of 
globally supersymmetric theories, is divided into four sections. After a short 
introduction in Sect. ILl, in Sect. II.2 we will determine all those degeneracies of 
the vacuum state that are related to the particular way in which the G-invariance is 
realized in the effective potential when the internal symmetry is global. 

In Sect. II.3 we shall be concerned with local internal symmetries. The main 
effort will be put in characterizing the situations in which the vacuum state is 
associated to a zero of the D-term of the effective potential. We shall prove 
theorems which give a hint towards understanding why the minima of the effective 
potentials are so frequently associated to zeros of the D-term. 

In Sect. II.4 we shall illustrate the ways in which our results can be adapted to 
the case of a partially gauged internal symmetry. 

I. Mathematical Preliminaries 

1. Complexification of a Compact Lie Group 

Throughout the paper G will denote a compact Lie group of unitary transfor- 
mations acting linearly on the vectors z=(zl, ...,zn) of an n-dimensional complex 
vector space V -'~ C n. The connected component of G ill be denoted by Go and K 
will denote the finite group G/Go. 

Below we shall define the complexification G c of G and some elementary 
properties of the isotropy subgroups of the related linear action. 

The elements of the Lie algebra f# of G are antihermitian matrices and will be 
denoted by t: 

t + = --t,  t~f#. (I.I) 

When necessary we shall introduce in f# a basis {t~} 1-<~-<r, orthonormal with 
respect to the Killing form: 

tr(adj t~. adj ta) = - 6~p, ~ = 1,..., r. (1.2) 
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The complexification ffc of ff is obtained by extending the basic field of ff from 
the real to the complex numbers: 

ffc= {zl'c=t + it'; t,t' ~ }  . (1.3) 

A basis for f# is evidently also a basis for ~fc. The Lie algebra fqc, originally 
defined as an algebra on the complex numbers, can be also considered as a 2r- 
dimensional real Lie algebra (also denoted by the same symbol). In this case a basis 
for f#~ is for instance {t~,t'~}l <~__r, where ~=it~. Clearly: 

dimR fgc = 2 dime (#~ = 2 dim R ff = 2r. (1.4) 

As a real Lie algebra, fgc generates a 2r-dimensional connected Lie group Go ~ 
which is called the complexification of Go. The group G ~ = KGo c, is by definition, 
the comptexification of G. 

In the following we shall use latin symbols to denote elements of ff and G and 
greek ones to denote elements of the complexifications. 

Both f#c and G ~ are closed with respect to hermitian conjugation: 

z + = - t + i t ' e ~  ~, Vz=t+i t '~ f f~;  t , t '~ f f ,  ~+~G ~, VTeG c. (1.5) 

The group G ~ is an algebraic subgroup of GL(n, C), that is a subgroup of 
GL(n, C) formed by the matrices which satisfy a set of convenient polynomial 
relations: 

qa(7) "= O, a = 1,..., A .  (1.6) 

The group G ~ is not compact and G is one of its maximal compact subgroups, 
so that every compact subgroup of G c is conjugated in G ~ to a compact subgroup 
of G. 

Every representation of G can be extended by complexification to a represen- 
tation of G c and every (rational) representation of G ~ can be obtained in this way. 

Since all the representations of a compact group are completely reducible, the 
same will be true of the representations of G ~. 

An algebraic group whose representations are all completely reducible is said 
to be reductive. So G ~ is a reductive algebraic group. It can be shown that: 

P1 [6]. A complex linear algebraic group is reductive if  and only if it is the 
complexification of  one of  its maximal compact subgroups. 

The reductivity of a linear algebraic group is equivalent to that of its Lie 
algebra. 

Isotropy subgroups and subalgebras at z wilt be denoted by G~, GCz, f#~, f#~. By 
definition: 

g ' z = z = v ' z ,  Vg~G~, y ~ G ~ ,  (1.7) 

t . z = O = z . z ,  Vt~fg~, ~ .  (1.8) 

If • = t + it' and t, t' ~ (#~, then z- z = 0 and consequently: 

ff~c=f#c~, GzCC=G~, (1.9) 

where f#~ denotes the complexification of f#~. 
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Since z. z = 0  does not generally imply t.  z = 0 = t ' . z ,  the equality sign in 
Eq. (1.9) is exceptional. 1 It will also be useful to reformulate our last remark in the 
following way: since t.  z = 0 = t'. z if and only if z. z = 0 = z + • z, and by definition 
f¢z~=(~zc) +, the subalgebra ~ can be characterized as the maximal Lie 
subalgebra of f¢c which is closed with respect to hermitian conjugation. Thus: 

dimR (¢~ ~ dim R ~zc = 2 dimR ~z. (1.10) 

Example 1. G = SU 2 in C 2, G c = SL2(C ). Isotropy subgroups: every non-null vector 
z = (zl, z2) can be transformed by means of a SL2(C ) transformation into w--(1,0) 
and 

With reference to a given linear group the isotropy subgroups at points of the 
same orbit are conjugated. Thus: 

Gc~.~=TG~7-~, 7~G~; (1.12a) 

Go.z=gG~g -1 , g~G;  (1.12b) 

but it is easy to realize that there is generally no simple relation between G~.~ and 
G~ when ~ ~ (G ~ -  G), as shown in the following example. 

Example 2. G=SOa(R) acting in C 3, G~=S03(C). The two points u=(1,0,O) and 
v = (cos w, sin w, 0), w ~ C1, Re w Im w ~e 0, are on the same G%orbit, but it is easy to 
check that: 

G~,'~SO2(C)~-G~, G,~SO2(R); G~-{I} .  (1.13) 

Since all the points of the same orbit have conjugated isotropy subgroups, the 
class (G~) of all the subgroups of G conjugated to G~ will be called the"symmetry of 
the G-orbit through z." Analogously, one will define the symmetry of a G~-orbit. In 
formulas: 

(G~)= {gG~g- 1}o~G; (G~3 = {yG~7-I }~G~. (1.14) 

The group G'~ is clearly algebraic, but not necessarily reductive. In Example 1, 
for instance, the linear group G~, which yields a representation of the additive 
group of complex numbers, is not reductive. In fact, the linear group itself is 
reducible, since C 2 contains a G~-stable subspace V 1 = {2w}~c~ , but it is not 
completely reducible, since no complementary subspace to V~ in C 2 is left invariant 
by G~. 

2. Closed Orbits (and Vectors of Minimal Length) 

Closure properties of G~-orbits will play a central role in the physical applications 
we shall describe in the second part of the paper. Therefore, we shall devote the 
present section to a characterization of this distinguishing topological property 
and of its implications. 

1 The fact that GC~ is in general different from Gw c was remarked in [3], in connection with the 
problem of characterizing the zeroes of the D-term (see also [4, 5]). The relation Gw c = GCw is also 
relevant to the phenomenon of exact doubling of the Goldstone bosons (see [ 10]).The problem is 
discussed for instance in [11] 
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Owing to the Lie structure of G and G c, both G- and GO-orbits are smooth 
submanifolds of C" [7]. Since G is compact, G-orbits are compact subsets of C", 
and therefore bounded and closed subsets. The same is not true, in general of G ~- 
orbits; however, from Theorem 8.3 of [-7] one can easily derive that: 

P2. The closure 0 of every GO-orbit g2 is an algebraic subset of C n. 

By algebraic set in C" is meant the set of all the common zeroes of a set of 
complex polynomial functions defined on C". 

The closure of a G~-orbit can be tested by means of a fundamental criterium, 
due to Hilbert and Mumford [9], which will be stated, without proof and in a form 
suitable to our purposes, under item P3. 

P3. The GO-orbit I2 is closed if and only if there is no one-parameter subgroup F of 
G c, I ~ = {eat}aeR1 , it ~ f# such that the limit l ime  "~. z, exists and does not belong to f2. 

a-4 co 

Example 3. G= U 1 acting in C 1, G~= GLI(C ). There are only two orbits: 
I. the origin z=0 ,  which is a dosed subset; 
2. the rest of the complex plane, which is dearly an open set. 

Example 4. G= U 1 acting in C 2, G'~-GLI(C): 

e e a 

There are three types of orbits: 1. the point z = 0  (closed); 2. orbits through 
points z=(zl,  z2)~0 with zlz2 =0  (non-closed); 3. orbits through generic points 
Z = (Z1,  Z2)  , Z1Z 2 :~ 0 (closed). 

Orbits of type 2 have evidently zero in their boundary and: 

l i m (  ea e_a) (zOz) =O= l~m ( e-" e,) ( ;~)  • 

On the contrary it is quite evident that, starting from points lying on orbits of 
type 3, no limit on the action of a one parameter subgroup of GLa(C) can 
eventually lead to a finite point outside the orbit. 

Example 5. G is a unitary 3 +_8, matrix representation of SU3. Let g ~ G be the 
representative of ueSU3. The eleven dimensional complex vector z can be 
considered as a direct sum of a three dimensional complex vector w and a traceless 
3 x 3 matrix 2, on which g~G acts in the following way: g .(w,2)=(uw, u2u-t). 

The complexification of G leads to a 3- + 8 representation of SL3(C). The 
representative ? of an element a ~ SL3(C ) acts on z = (w, 2) in the following way: 
7- (w, 2) = (aw, a2a- 1). 

Let us consider the G~-orbit through Zo=(Wo,2o), Wo=(l,0,0), 
2o = d i a g ( -  2, 1, 1). It is not closed, as one easily checks using the Hilbert-Mumford 
criterium. In fact: l i m e  xx°. Zo = (0, 2o) ¢ G ~" Zo. 

The isotropy subgroup of G c at z o is formed by the representatives in G ~ of those 
matrices of SL3(C ) which commute with 2o, and leave Wo stable. Therefore, 

a~SL3(C)hasrepresentativesinGCzoifandonlyifa=(lo~),wherefz~SL2(C),  
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so that GC~o-~ SL2(C ) = (SU2) e. The same argument leads to G=o ~-SU 2, so that in 
this particular case G+~o is reductive. As we shall see this last property is quite 
exceptional for non-closed orbits, while it is the rule for closed ones. 

Owing to P2, the boundary fT-f2 of a GO-orbit f2 is an algebraic set of lower 
dimensions than I2; moreover, it is easy to realize that the closure of O is a GO-stable 
set: ?. z s O for all z e f2 and ? e G c. Therefore: 

P4 [7, Proposition 8,3], The boundary of every GO-orbit f2, O -  f2, is a union of  G ~- 
orbits (not necessarily closed) of lower dimensions. 

By iterating the argument leading to P4 one concludes that in the closure of 
every G~-orbit there is at least one closed G%orbit (in fact, it is unique as we shall 
see): 

P5 [7, Proposition 8.3]. Every lowest-dimension GO-orbit, contained in the closure 
of a G~-orbit, is a closed orbit. 

Below, under items P6, P7, and P8 we shall characterize the closed G~-orbits in 
a way which will be interesting for physical applications. 

If G is a group of unitary transformations of C +, its orbits are formed by vectors 
of constant length. The same is certainly not true of the G%orbits, along which one 
can generally reach infinity. Are there "vectors of minimum length" on a G'-orbit ? 
It is easy to realize that the answer is positive if the orbit is closed. In fact, a closed 
set always admits points at minimum distance from a given point (z = 0) in C". For  
non-closed orbits, which are generally not even open, the answer is not trivial, and 
has been given by Kempf and Ness [12]. In order to report their results, let us 
denote by f(z)la the restriction of the function f (z)  to the GC-orbit f2. Then: 

P6 [-10]. The function IIz[Iila takes on its absolute minimum at all its stationary 
points. 

A simple proof of P6 will be given in Appendix A where we shall also show 
that: 

P7 [10]. On a GC-orbit there are vectors of minimum length if and only if the orbit is 
closed. 

If z is a vector of minimum length z, then all the vectors forming the G-orbit 
through z share the same property. Kempf and Ness have shown that they are the 
only ones with such a property (for a proof see Appendix A). 

P8 [12]. The vectors of minimum length on a G~-orbit form a unique G-orbit. 

The following result, first remarked in [3] (for a proof see Appendix A) points 
out an important property of the isotropy subgroup of G ¢ at vectors of minimum 
length. As we shall see in Part II, it has significant applications in supersymmetric 
gauge theories for the constraints it puts on the mass spectrum. 

P9. I f  z is a vector of  minimum length, the isotropy subgroup of G ~ at z, GC~, coincides 
with the complexification Gz ~ of  z. 

2 In the rest of the paper, "vector z of minimum length" will stay for "vector z of minimum length 
on the G~-orbit through z" 
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The claim under the following item P10 can be derived as an immediate 
corollary to P9 and PS: 

P 10. The symmetry of  closed GC-orbits is reductive [13] and on every closed G~-orbit 
there is at least one G-orbit (9, where GCz= Gz c, for all z ~ (9. 

The converse of P 10 is not generally true, as we have just seen, in Example 5: 
the reductivity of the symmetry of an orbit does not imply its closure, a An even 
simpler example is yielded by the linear group examined in Example 4 (G~= the 
multiplicative group of complex numbers acting in Cz). There, for every 
z = (z 1, z2) ~ 0 of C 2 one gets: GC~ = { 1 } = G~ ~, showing that the isotropy subgroup 
of G ~ at z is the same both for zlz2 ~ 0 (in which case z lies on a closed orbit) and for 
zlz2 = 0  (non-closed orbit). 

Even if there are embarassingly simple counterexamples to the converse of P 1, 
they correspond to rather exceptional situations. 

A theorem due to Luna [15], which we shall mention without proof under item 
P 11, will shed some further light on the relation between the closure properties of 
an orbit and the reductivity of its symmetry. Let us call N~(K) the normalizer in G c 
of a subgroup K of G< The subgroup N'(K) is formed by the elements 7 of G ~ 
satisfying the relation 7K7-1 = K. As is well known, K is an invariant subgroup of 
its normalizer. 

P l l  [15]. Let K be a reductive algebraic subgroup of G c, then the following 
conditions i) and ii) are equivalent: 

i) N~(K)/K is a finite group; 
ii) in all finite dimensional rational representations of  G% all G%orbits whose 

symmetry is ~(K) are closed. 

3. Local Structure of an Orbit Near Vectors of Minimum Length 

In this section we shall report results proved in [3] concerning the local structure 
of a closed GO-orbit near vectors of minimum length. We shall first define the 
"realification" of the linear action of G c. 

The natural correspondence C"~-~ R 2", set by the relation: 

C'~  z ~-~, (=(Rez ,  Imz) e R 2~, (3.1) 

induces a linear action of G c in R 2n defined, for all 7 e G% by: 

( (3.2) 
7" = \ i m 7  [ ReTJ\I-mzz]" 

The restriction to G of this action is real orthogonal and the representation of 
the Lie atgebra f# associated to its induced action in R2": 

(Re  t ~ _ _ ~  Imt~ .  ( R e z ~  
t . ( =  \ I m t  I Re t ]  \ I m z ] '  (3.3a) 

is real antisymmetric. 

3 On this point we disagree with the authors of [4]. The proof of their theorem is spoilt by the use 
of a wrong statement erroneously attributed to the author of [12] 
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The multiplication by ~ in C" is represented in R z" by the action of the 
following operator ~: 

which commutes with the action of every 7 e GO: 

(e-o/--/- e)- ~=0,  VyEG c , ~ R  2" . (3.4) 

The standard hermitian scalar product ( , )  of C" can be calculated in terms of 
the matrix e and the euclidean scalar product ( , )  of RZ": 

n 
(z, z') = Y~ z*~z'k = (~, ~')  + i ( ~ ,  ~')  . (3.5) 

1 

The G- and GC-orbits in R 2" are smooth submanifolds of R 2n and the 
corresponding tangent spaces at ~ are, respectively, ~ + T¢ and ~ + T~, where T¢ and 
T~ are the spaces formed by all the vectors t. (, t ~ ff and, respectively, z- (, z ~ No: 

T~= {t" ~I t eqq} ; T~= {z" ~l~eqqc}. (3.6) 

In the following T~ and TC~ will be briefly called tangent spaces to the G- and G ~- 
orbits at ~. 

The orthogonal spaces to the G- and G~-orbits at ~ will be denoted by N~ and 
N~, respectively, and defined as the orthogonal complements of T~ and T~ in R2": 

N ; = { ~ e R Z " [ ( ~ , t . ~ ) = O ,  Vt e(q}, 
(3.7) 

Nc~={~eR2n t (~,z" ~)=0,  Vze~c}. 

The one-to-one correspondence between points of C" and R z" set in Eq. (3.1) is 
a G~-invariant homeomorphism, mapping G~-orbits onto GO-orbits and vectors of 
equal length into vectors of equal length. 

Let z ~ C" be a vector of minimum length, then its image ~ is a vector of 
minimum length (on its GC-orbit in RZ"). It is a straightforward calculation to check 
that the stationarity conditions at z0 for the restriction to O = G ~. z o of the function 
HZ[I 2, c a n  be written as a stationarity condition at y = l  for the function rio(Y) 
= ]l~" Zo]] z, defined on G~: 

(zo, t . z o ) = O ,  V t e ~ .  (3.8) 

Therefore, using P6, the statement of Proposition 1 of [3] can be reformulated 
in the form proposed under the following items P12 and P13: 

P 12. Let ~ e R 2" be a vector of minimum length, then the euclidean vector space R 2" 
can be decomposed in the following sum of orthogonal subspaces: 

R 2" = T¢(~ T~O {~} G {e~} O N (  ~ . (3.9a) 

In Eq. (3.9), the symbol {~} denotes the one-dimensional subspace of R 2" 
generated by the vector ~, the subspace To@ T~¢ is formed by the tangent directions 
to the G~-orbit at ~, while N¢ r~ is defined by: 

UC¢ = {~} G {e~} ~N~ res . (3.9b) 

The converse of P12 can only be proved for semisimple groups. 
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P13 [3]. I f  G is semisimple and if  at ( Eqs. (3.9) hold, then ( is a vector of  minimum 
length on G c. (. 

On the contrary, as shown in Example 5, the converse of P 10 is false even in the 
assumption that G is simple. 

4. Closed G~-Orbits and Invariant Theory 

In this section we shall illustrate the connections between closed orbits and set of 
zeroes of invariant polynomial functions. We shall also show how convenient sets 
of invariant polynomial functions can be exploited to parametrize the closed 
orbits. 

As shown in [16], the G-orbits in R 2" can be parametrized by means of a 
minimal integrity basis of the ring of polynomial invariant functions of ( e R 2", a 
minimal integrity basis being a minimal set of G-invariant polynomial functions of 
(, {0~(()1 _<~=<_q, through which every G-invariant polynomial function of (, p((), can 
be written as a polynomial function/3 of the 0,'s: 

p(0-- P(0(~)). (4.1) 

Every G-invariant function is clearly a constant on a G-orbit. Vice versa, given an 
integrity basis {0~}1 =~q,  the G-orbit through (-e R 2n c a n  be defined as the real 
algebraic set formed by the solutions of the following equations: 

0~(~) = 0~((-). (4.2) 

Therefore, the map 0 = (0a, ..., 0q), mapping each G-orbit of R 2" into a point of 
R q, is called "orbit map." The image of R 2n through the orbit map, O(RZ"), is a 
semialgebraic 4 subset of R q, which can be identified with the orbit space of the 
action of G in R 2". In [15] (see also [5]) it has been shown how the defining 
algebraic equations and inequalities can be determined in a standard way. 

Not  all the results valid in the case of compact groups can be extended to 
complex reductive linear algebraic groups acting in C". Also in this case, for 
instance, I-Iilbert's theorem assures the existence of a finite integrity basis, 
{Pa(Z)}l -<a-<d, for the ring of polynomial invariant functions of z ~ C" [8, Theorem 
5.9, p. 160], but there is no 1 : 1 correspondence between the GO-orbits and the 
image of C" in C d, p(C"), through the orbit map p(z)=(p~(z), ...,pa(z)). 

This easily emerges in the examples we have just presented. In Example i, for 
instance, the GO-orbits cannot be distinguished by the elements of an integrity 
basis, since there is no G~-invariant non-constant polynomial function of z. In 
Example 2, a minimal integrity basis is given by the unique function p(z) 
~-Z12 "~ Z22 "~-Z3 2, which assumes different values on distinct closed orbits, but does 
not separate the closed orbit {z = 0} from the non-closed orbit formed by the 
isotropic vectors: on both orbits p(z)= O. 

The reason why G~-invariant polynomial functions cannot separate all the G ~- 
orbits can be easily understood: a polynomial function which is constant on a set 
J ,  is necessarily constant on the smallest (closed) algebraic set containing J .  Thus, 

'~ A semialgebraic set of R e" is a subset defined by means of algebraic equations and inequalities 
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polynomial GC-invariant functions can at most separate GC-stable (closed) 
algebraic subsets of C". In fact: 

P14 [8, Corollary 1.2, p. 29]. An integrity basis separates the closed disjoint G c- 
stable algebraic sets and consequently (see P2) the closed GC-orbits. 

Let now p be a given orbit map and let JV" w denote the algebraic set formed by 
the common zeros of the following polynomial equations in z: 

pa(z)-pa(w)=O, a=1 ..... d. (4.3) 

Then, owing to P 14, JV" w does not depend on the particular choice of the orbit 
map p and from our arguments it follows that: 

P15. The closure of the G~-orbit through w is contained in the GO-stable (closed) 
algebraic set Jd~. 

As we shall see JV'w does not generally coincide with G ~- wl However, from P 14 
and P5 one immediately realizes that: 

P16. The sets ~/'~ and G ~. w contain a unique closed G~-orbit, which is the lowest- 
dimension G~-orbit contained in Y~ .  

The unicity of the closed orbit mentioned in P16 hints at the validity of the 
statement: 

P17 [6]. The symmetry of the unique closed GO-orbit ~o contained in the closure of a 
G~-orbit ~ is maximal in the sense that, if  z ~ O  and w~O o then (Gc=)C(G~w), 
i.e. Gc~ is conjugated in G ~ to a subgroup of GCw: 

G~ C=~G~ ~-I 

for at least a 7 ~ G~. 

Given a homogeneous integrity basis (Pl  . . . . .  Pd), the image in C e of the map: 

C" ~ z ~(pl(z  ) . . . .  , pd(z))- p(z) ~ C d . (4.4) 

will be identified, by definition, with the orbit space of the action of G ~ in C". Note 
that distinct G~-orbits of C" are not mapped into distinct points of the orbit space. 
In fact, the content of P14 and of its consequences P 15 and P 16 can be resumed, 
recalling P5, in the following statement: 

P18. The points of the orbit space of the action of G ¢ are in one-to-one 
correspondence with the closed G~-orbits in C n. 

The orbit spaces of complex reductive linear algebraic groups are easier to 
determine than the orbit spaces of compact groups. Generally, the elements of an 
integrity basis are related by algebraic identities 

Ra(p~(z),,..,pd(z))=O, VzEC",  l <a<_k, (4.5) 

where the R,'s are complex polynomial functions in d variables. Standard methods 
suitable for the determination of these relations are known for large classes of 
linear groups in the mathematical literature [14]. 
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It can be shown that: 

P19 [5, Proposition 5.2, p. 55]. Given an orbit map p a faithful image of the orbit 
space can be got as the closed algebraic subset of C d formed by the common zeros of 
all the equations relating the elements of the integrity basis (Pl . . . .  , Pd)" In particular, 
if the basis is free, the orbit space can be identified with C d. 

The sets Jffw, defined in connection with the statement of P15, are clearly the 
inverse images by p in C" of the points of the orbit space. 

The connection between G-invariant polynomial functions and G¢-invariant 
ones is very simple to state. 

Let q(z) be a G-invariant polynomial function of z: 

q(g- z) = q(z), Vg ~ G, (4.6) 

(¢) and let us express g e Go in terms of its Lie algebra elements: g(u) = exp ~ uJ,  , 
u ~ R  r. 

Then Eq. (4.6), ifg is restricted to Go, is equivalent to the following infinite set of 
relations: 

On q(g(u) • z) ,  = o = 0, n = 1, 2 . . . . .  (4.7) 
C~U~l...~tGn 

r 

For  7 e Go c and w e C r, let us write: ?2(w)= exp Z~ wj~. Then Eqs. (4.7) imply: 
1 

On ~ q(~(w), z) = 0, n = 1, 2,. . .  (4.8) 
~W~I  OWc~n w = 0 

and therefore: 

q(7" z)= q(t), V ), e Go c , (4.9) 

Therefore, recalling the definition of GO: 

P20. Every G-invariant polynomial function of z e C" is G ~ invariant. 

The same is clearly not true of the G-invariant polynomial functions of z and z*, 
which are also required, in addition to the G-invariant polynomial functions of z, in 
order to separate the G-orbits. 

II. Spontaneous (Super)Symmetry 
Breaking in Globally Supersymmetrie Theories 

I. Introduction 

As well known [1], in globally supersymmetric theories with compact connec- 
ted s internal symmetry group G the spontaneous breaking of supersymmetry 
and/or  internal symmetry is controlled by the minima of an effective potential 

5 This assumption is not essential for the validity of all our subsequent conclusions 
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V(z, z*), which depends only the scalar fields z = ( z  I . . . . .  zn) of the chiral supermul- 
tiplets through the gradient of the superpotential f(z) (a G-covariant polynomial 
function of z) and additional geometric terms, when the internal symmetry is 
local. Owing to translation invariance of the vacuum in Minkowsky space, in the 
search of the minima of V, it is not too restrictive to consider z as a vector (or a 
point) of C". The group G will be considered in the following as a group of linear 
unitary transformations of C". 

As stressed in the general Introduction the complexification G c of the group G, 
plays an important role in the search and characterization of the points where 
V(z,z*) takes on its minimum and is relevant in the determination of those 
degeneracies of the vacuum state that are related to the G-symmetry; these will be 
called G-symmetry-related (abbreviated into GSR) degeneracies of the vacuum. 

In the second part of the paper we shall show how the mathematical restflts 
presented in Part I can be translated into precious information in this context. 
Theories with global and local internal symmetry will be discussed separately, on 
the tacit assumption, when necessary, that V(z, z*) takes on an absolute minimum 
(at a finite point). 

General properties will be pointed out both of the residual internal symmetry 
groups after spontaneous symmetry breaking and of the group of transformations 
relating the GSR degenerate vacua. Like all continuous degeneracies of the 
vacuum state, the GSR ones will be responsible for the existence of a certain 
number ofmassless particles; the constraints on the mass spectrum of theories with 
possibly spontaneously broken global supersymmetry, implied by these degen- 
eracies, will be derived in a subsequent paper [17]. 

We shall subsequently report the details of a recent geometrical and analytical 
characterization of the zeroes of the D-term [3, 6]. This will allow us to propose a 
correct proof of a theorem stated in Bagger and Wess [1], concerning necessary 
and sufficient conditions for spontaneous breaking of supersymmetry. We shall 
also show that the D-term necessarily vanishes at every point where the effective 
potential takes on its minimum if the gradient of the superpotential is invariant by 
the internal symmetry group at a point where the F-term takes on its minimum. 
Some consequences of the assumption that the vacuum corresponds to a 
stationary point of the F-term will finally be worked out. 

In the following 0i and ~* will denote differentiation with respect to z~ and z~*, 
respectively, but we shall omit indices when this will not give rise to ambiguities. 

2. Globally Supersymmetric Theories with Global Internal Symmetry 

In globally supersymmetric theories with global internal symmetry the effective 
potential has the following form: 

V(z', z'*) = F(z', z'*) = [I Of(z')I[ 2 (2.1) 

where ~f(z') denotes the gradient at z' of the superpotential f(z') and is a G- 
covariant polynomial function of z'. In this section we shall derive the conse- 
quences of this particular structure of the potential or, more exactly, of the fact 
that, according to P20, the gradient of the superpotential is GC-covariant. 
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As well known, the action of G c in C" 

n 

(? " z')i = ~jTijz'j,  (2.2a) 

induces on the space of gradients of analytical GC-invariant functions of z' a dual 
action of GO: n 

Oif(7 • z') = Z j  ( ~ T  - 1)ijOjf(z,), (2.2b) 
1 

where T denotes transposition. 
The function Of(z') maps clearly the whole of V-~ C" onto a GC-invariant subset 

of V t ~ - C  ~, and the linear group G~t={?tlT~=7 T-l,  7 e G  c} yields a rational 
representation of G c and is therefore a linear reductive group. Both for the action of 
G ~ on the vectors of V and V~" we shall use the same notation, and similarly for the 
action of f¢~ in V and V]'. So, for instance, Eq. (2.2b) will be written synthetically: 

f(7 -z') = 7 "f(z'). (2.3) 

From Eq. (2.3) one immediately realizes that: 

G~ c= G~oy~z), Vz ~ C", (2.4) 

and consequently: 
f¢z c = f#~0y~z), V z ~ C". (2.5) 

So, when V(z', z'*) takes on its minimum at z, the complex symmetry of the 
direction z of spontaneous internal symmetry breaking cannot exceed the complex 
symmetry of the direction Of(z) of spontaneous supersymmetry breaking. 

Below, after deriving some general properties of the groups G"~s~z ) and GCz we 
shall discuss the consequences of Eq. (2.5), when the inclusion is satisfied in a strict 
sense. This is likely to occur, for instance, if Of(z') = 0 has solutions z + 0, or when F 
takes on its minimum in correspondence of non-vanishing values of all non- 
invariant components of z. 

Proposition 2.1. Let f2=GC.z. I f  z is a stationary point of  tlOf(z')[12[~, then it 
corresponds to an absolute minimum and the isotropy subgroups of  the dual action of  
G ~ at ~o = Of(z), satisfies the foUowing condition: 

G~ = G j ,  (2.6) 

so that it is, in particular, reductive. 

Proof. In the assumptions of Proposition 3.1, the function ho : G~-+R ~ +, defined by 
h~(~)= IlOf(~" z)ll z =  I1~" ~oll 2, has a stationary point at 7 = 1. From P6, P7, and P9 
we learn that I1~0 II 2 is the minimum of h~o(?), the orbit G ~. z is closed and Eq. (2.6) is 
satisfied. 

Remark 1. When supersymmetry is not spontaneously broken, Of(z)=0, and 
Eq. (2.6) reduces to a well known result [2]: G~o=o = G~o=0¢= G ~. 

Remark 2. Ifz is a stationary point ofF(z', z'*), it is, in particular, a stationary point 
of F(z', z'*)la, where f2 = G ~. z; therefore, the conclusions of Proposition 2.1 hold 
at z. 



340 R. Gatto and G. Sartori 

Using P8 one can immediately identify all those degeneracies of the minimum 
of the effective potential which are a consequence of the G~-invariance of the 
superpotential: 

Proposition 2.2. Let V(z', z'*) take on its minimum at z and let ~o = Of(z). Then, except 
for the points lying on the set Z z = G. G~ • z, there are no other points on the orbit 
GO.z, where the V(z', z'*) takes on its minimum. 

The following Example 6 will illustrate the content of Propositions 2.1 and 2.2 

Example 6. Let G be a 2 + 3_ unitary matrix representation of SU2, analogous to the 
representation of SU3 defined in Example 5, and let us choose as superpotential 
the function, 

f =  u;~ 2 + wria~2w + au + by, (2.7) 

where the crj's are Pauli's matrices, a and b are complex constants, u and v are 
complex singlets of G and (25, 22, ha)-= ~, are the complex components of the matrix 
2 in the basis {aj}j= 1,2, 3: 

3 

= Zj 2jO'j = ~ "  ~ .  (2.8) 
1 

From Eq. (2.7) we obtain: 

2i~22W \ 

12u~, + wr itr 2~w l . 

It is not difficult to realize that the function Ir 3f(z')f[ 2 takes on its minimum at 
the points z characterized by the following relations: 

w = 0 = u ;  ~2= - a .  (2.10) 

The vector q)= Of(z) turns out to be invariant by GO= SL2(C) and its squared 
norm-equals Ib]2> 0. There is, therefore, a surface of degenerate minima S, whose 
equation is (2.10). Let us call So the intersection of S with the hyperplane of 
equation v = v 0 and discuss the two cases a = 0 and a ~e 0 separately. 

For a =~ 0, the surface So coincides with a unique closed GO-orbit whose complex 
symmetry is (GLI(C)). 

As for the compact symmetry of points of So, for a ~e 0, there are the following 
two possibilities i) and ii): 

i) for general z in So one gets Gz={+_l}, so that Gc~-4FGj; 
ii) for zoc~, where ~ is a real vector, one gets G~-U1,  so that, in this case, 

GC~ = GS. 
For a = 0 the surface So is the union of a non-closed (k2 = 0 + k) and a closed 

0. =0) orbit. 
At the points z of the non-closed orbit G~ = { _+ 1}, while GC~ is isomorphic to the 

additive group of the complex numbers, a non-reductive algebraic group, 
multiplied by Z2 = { -4-1 }. 
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The following Example 7 yields a sample of a situation in which supersymme- 
try is broken in a direction which is not invariant by G, GC~ 4: G c, but GC~ contains 
GC~ in a strict sense. 

Example  7. Let us consider a representation 3. (3~+ I c) of S03(R).  Then z' is the 
direct sum of three complex 3-dimensional vectors z~ and three complex singlets si, 
i=  I, 2, 3, and G ~ - S 0 3 ( C ) .  Let us choose as superpotentiat the invariant function 
f :  

f = k ( z  I xz2) .z3+sl(z12-1)+Sz(zzZ-1)+k'S3Zl  . z2 ,  (2.1 la) 

where k and k' are complex constants and 

From Eqs. (2.11): 

0 < I/I < ]k']. (2 .11b)  

/ kz 2 x z3 + 2SlZl + k's3z2\ 

kz 3 x z 1 4- 2s2z 2 4- k's3z 1 

~Z 1 X Z 2 
f =  (2.12) 

Z 1 2 -  ] 

Z2 2 - -  1 

~tZl • Z 2 

It is easy to realize that i[Of[I cannot vanish and, attains its minimum, for 
instance, for: 

s~=0=z3,  i=1 ,2 ,3 .  (2.13) 

In fact, with this choice, the first two vector components of ~f  vanish, while the 
remaining ones are completely unconstrained. Therefore, the minimum of F 
coincides with the minimum of the function Fo defined by: 

Fo = FI~,= 0 =z~ --Ikl2(llzx tl 2 [Iz2 tl 2 -Izx" z2l 2) 

4- [Z 1 2 _  114- [Z2 2 -  11 4-[k tl2lz 1 " Z2[ , 

~Fo 

(2.14) 

- [klZ(I{z2 II Zzl - ( z l  Zz*)Z2) + 2 ( z l  z - 1 ) z l *  + Ik'12(zl • z2 )z2*  = 0 ,  
(2.15a) 

aFo 
= Ik12(ll zl II 2z2 - ( z l * "  z g z 0  + 2(z2 2 - 1)z2* + Ik'l~(zl "zgzl*  = 0.  

(2.15b) 

After some lengthy but straightforward calculations one finds the following 
exhaustive set of solutions, i)-iv), of the stationarity conditions, Eqs. (2.15); under 
the same items are also indicated the corresponding values of Fo: 

i) Z l=Z2=0;  F0=2;  
ii) z l=0 ,  Z22=1 ,  o r  z 2 = 0  , z 1 2 : 1 ;  F o = l ;  

iii) z2= +_zl#:0; 
iv) z 1 = h~ + ih'~', z 2 = 4-_ (h~' - ih '~) ,  where ~ and ~' are mutually orthogonal 

arbitrary unit real vectors and h, h' are real numbers satisfying only the following 
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h>h'>O, (2.16a) 

h 2 - -  h '2 = (1 + k2/2)- 1 ; (2.16b) 

F ~ Ik12 (2.17) 

Owing to Eq. (2.11 b), F takes on its absolute minimum, which coincides with 
the right-hand side of Eq. (2.17), at the stationary points o f f  which are associated, 
as we have seen, to the stationary points of Fo defined under item iv). At the points 
of the surface 22 of degenerate minima of F we have found: 

0 

0 

+_ kK{ x ~' 
q~=Of = (2.18) 

K - 1  

K - I  

0 

where 

1 
K = i ~-~5)2. (2.18b) 

Therefore, Gz = {1} = GC~ = Gz c, G~ (GC~o) is the subgroup ofSO3(R ) (S03(C)) formed 
by the complex proper rotations around the axis { x {', so that GC~0 = G~o c, in 
agreement with Proposition 2.1, and G~o 3 GCz in a strict sense. The surface Sz is 
easily seen to coincide with the set G. GC~, . z. In fact, let us choose { and {', 
respectively, in the directions of the x and y axes and h, h' in their allowed ranges. 
Then it is easy to check that any other allowed choice of h and h' with the same 
and {', corresponds to a rotation y of GC~ with imaginary angle ia: 

(cos ia ,  - s i n / a ,  0 )  

~= ~sinia, cos/a,  0 , (2.19) 

\ 0 ,  0, 1 
while any other choices of{ and {' with the same values ofh and h', can be obtained 
by means of a real rotation induced by G. In order to determine all the points 
where F takes on its minimum, one has to require the vanishing of the first two 
components of Of(z), in correspondence with the values ofz I and z 2 specified under 
item iv). After some straightforward calculations one finds 

_2sg 
z3 = k x ~', sl =s2 = s ,  s 3 = 0 ,  (2.20) 

where s is an arbitrary complex constant. Therefore, also in this case, as expected 
[18], the degeneracy of the minimum on Z~, due to the complex character of the 
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internal symmetry, is superimposed on an additional degeneracy along a linear 
subspace whose equations are given by Eqs. (2.20) and 

z 1 =h~+ih'~'=const ,  Z 2  m- +(h~'-ih'~).  (2.21) 

As a consequence the potential is not confining [20-1. 
Contrary to what happens for GO,p, the isotropy subgroup of G c at z need not 

satisfy Eq. (2.6), nor be reductive; however, as we shall prove below, there is always 
a degenerate minimum of the potential at a point ~ where the isotropy subgroup is 
reductive and satisfies Eq. (2.6). 

Proposition 2.3. Let z be a point where the effective potential takes on its minimum, 
then there exists a point ~ where: 

i) V(g,e*)= V(z,z*): 
ii) GC~ = G~; and 

iii) Gz is conjugated in G c to a subgroup of G~. 

Proof. Let us define q) = Of(z) and consider the closure O of the GCo-orbit f2 through 
z. By continuity Of(z) = q~ on ~. Moreover, from Proposition 2.1 we know that GC~, 
is reductive, so we can use P16 (where GC~0 has to be substituted for GO, to claim 
that in the set I] there is a unique closed GC~-orbit f2'. Owing to Eq. (2.4), the 
isotropy subgroups of the two groups G ¢ and G~ are identical at points of f2'. So, 
from P17 we deduce the following constraints for the isotropy subgroup of G c 
at every z'~f2': (GC~)~,=GCz,~=TGC~7-1. In particular, owing to P9, the 
isotropy subgroups of the vectors i of minimum length on f2' will satisfy 
GC~=G~< Therefore, using Eq. (1.1.9) we obtain for a convenient ?eG~: 
G~=G~ ____?GC?-l_3_?GC~-i 

Now, 7G~7- a is a compact subgroup of ~G[7- a, which is contained in G~ ¢, as 
we have seen; therefore, ~G~?- ~ is conjugated in G ~ to a subgroup of G~, which is a 
maximal compact subgroup of G~< This achieves the proof of Proposition 2.3. 

Remark 3. In the proof of Proposition 2.3, we have also shown that at all the points 
of the set G. (GC~, • z) = G- (G~ - z) = S~, the function F takes on its minimum. These 
degenerate minima are a direct consequence of the GC-invariance of the super- 
potential. Obviously, there may be other degeneracies depending on the particular 
values of the parameters determining the superpotential and/or on the upper 
bound on its degree. 

It is not difficult to calculate the real dimension of S~ at z. One finds: 

dimZ~ = dim~ (~ ~ -  f#~) + dim~(~o - ~cz). (2.22) 

The dimension Z~ at z sets a lower limit to the number of massless scalar 
particles of the theory in tree approximation. 

Propositions 2.1-2.3 can be used to claim the existence of continuously 
degenerated vacua in all the cases in which a non-reductive residual symmetry 
[11] has been advocated in globally supersymmetric models. This has been the 
case, for instance in supersymmetric preonic models [10]. 

It is interesting to compare theories based on different degenerate vacua, when 
~ contains strictly f¢~, i.e. when the complex symmetry of the direction of 
supersymmetry breaking is larger than the symmetry of the direction of internal 
symmetry breaking. 
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Let ~ be a point where V(z', z'*) takes on its minimum, then the same occurs at 
all the points of the set Se-- G- GO, • L ~o = Of(z). By varying z on Z~, the residual 
(compact) symmetry after spontaneous symmetry breaking, (G~), and therefore, the 
number of Goldstone particles, may be generally changed, since Go. ~ is in general 
OegG~g -~, for g~(G~-G). 

On the contrary, the complex symmetry (G~), as well as dimS~ at z, remain the 
same. 

If the following subset S of degenerate minima: S = {z e C" ] Of(z) = ~} does not 
reduce to a unique G~,-orbit 6 (which certainly occurs, for instance if Gee • ff is not 
closed), by shifting z through different G~o-orbits, the complex residual symmetry 
may be changed, too. In particular, the class (G~) will turn out to be locally 
maximal on closed G~e-orbits, which certainly exist inside S. Note also that, on a 
closed G~-orbit, the class (G~) is maximum when z is a vector of minimum length 
and, in this case, G~ is a maximal compact subgroup of G~z . 

As we shall see in the next section, the G~-related degeneracy of the vacuum is 
completely removed when the group G is completely gauged. Therefore, in that 
case one cannot exploit the possibility of varying z on Z~ in order to vary the 
number of massless chiral particles (after the Higgs mechanism has taken place) in 
theories with conserved supersymmetry and spontaneously broken gauge 
symmetry. 

3. Globally Supersymmetr ic  Gauge Theories  

In this section we shall be concerned with globally supersymmetric theories with 
local internal symmetry and no Fayet-Iliopoulos term [19]. As well known in these 
theories the effective potential is the sum of two non-negative terms: 

V(z ' , z ' * )=F(z ' ,  '* , , .  , 2 1 ~ , , .  2 z ) + D ( z , z  )=tI0f(z)II +~S~g~ [D~(z,z )1, (3.1a) 

where the components D,(z',  z') of the D-term are defined by: 

O~(z', z'*) =(z', Gz' )= - O~(z', z'*)* , (3.1 b) 

the g,'s are gauge coupling constant and {G}I _<~_<r is an orthonormal basis in f# 
[see Eq. (I.2.2)]. 

As is well known, supersymmetry is not spontaneously broken if and only if the 
absolute minimum of the effective potential is zero. 

It is, therefore, important to determine alt the zeroes of the D-term. As argued in 
[3] (see Remark d) and [5] there is a strict connection between zeroes of the D- 
term and closed GO-orbits. Below we shall make this connection precise using the 
results of Part I. 

The link rests on the following remark. Let us set f2= G ~ .z, then the 
stationarity conditions for the function I] z' IF Zlo at z E O reduce to Eqs. (I.3.8), that is 
O(z, z*) = O. 

The zeroes of the D-term are characterized by the following Proposition 3.1 
[3, 6]. 

6 Note that S contains at least one point of every G-orbit lying in r~ 
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Proposition 3.1. I f  the D-term annihilates at z then the GO-orbit through z is closed. 
lice versa, the D-term annihilates on every closed GO-orbit f2 at points lying on a 
unique G-orbit formed by all the vectors of minimum length on O. Moreover, at every 
zero of the D-term, G~c= G~z. 

Proof. The statement is an immediate consequence of Eq. (1.3.8) and P6, P7, 
PS, P9. 

Let us consider the set of G-orbits formed by zeroes of the D-term. From 
Proposition 3.1, its element turn out to be in one-to-one correspondence with the 
closed G~-orbits and therefore with the points of the orbit-space of the GC-action in 
Cn: the orbit space of G C yields a faithful image of the set of G-orbits formed by 
zeroes of the D-term. This image can be explicitly determined according to P19. 

There is an alternative way of characterizing the zeroes of the D-term, based on 
an Ansatz proposed by Buccella et al. 1-20]. 

Proposition 3.2. The D-term annihilates at a point z if and only if there is a 
polynomial invariant function of z', h(z'), such that: 

z* = ~h(z). (3.2) 

Proofs can be found in [5, 3]. For completeness we report here the line of the 
proof. 

Proof. The sufficiency of Eq. (3.2) is an immediate consequence of the covariance of 
the gradient of h, which yields: ((0f(z))*, z. z)= 0, Vz ~ C n and z e f9 ~. 

The necessity is also simple to prove in a large class of situations. Let us assume 
that z is a zero of the D-term, call {p~(z)}l _<~_<a a minimal integrity basis and denote 
by JV'~ the closed algebraic set of the solutions z' of the following equations: 

p~(z')-p~(z) = O, ~ = 1,..., q. (3.3) 

Since ~/~ is closed, there are points on it at minimum distance from the origin, 
and using P16, P7, and P8 it is not ditficult to realize that they form a unique G- 
orbit inside the unique closed G~-orbit contained in X z. The points on Jg; at 
minimum distance from the origin are stationary points of the function n(z', z'*) 
= II z' I121~=. The condition for a (constrained) stationary point of n(z', z'*) at z can be 
written by means of q Lagrange multipliers 2, as: 

d 

IJzll 2 = z *  = Ea  ~Pa(Z)~a • (3.4) 
1 

d 

which, for h(z)= Zap,(z)2~, coincides with Eq. (3.2). 
1 

The simple proof of the necessity of the condition expressed in Eq. (3.2) for the 
vanishing of the D-term, given above, is not complete. In fact, the Lagrange 
multipliers method is not safe when the matrix formed with the gradients of the 
constraint functions p~(z) has not constant rank on Jg'~ [3]. This may be the case if 
~4~ does not reduce to a set of G~-orbits with the same complex symmetry. 

A complete proof of the necessity of Eq. (3.2) requires the use of a much more 
sophisticated mathematics [5, 21] and can be achieved by refining the arguments 
that led us to prove, in [3], a slightly weaker result: if at z, D(z, z*) vanishes, then 
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there exists a real polynomial function of z and z*, I(z ,z*) ,  such that: 

iz* = ~I(z,  z*) .  (3.5) 

Let us recall the proof of this fact. Let z be a zero olD(z, z*) and ~ the real image 
of z in R z". Then from P 12 we know that e~ s NC~ C N o or more exactly, e~ belongs 
to the subspace N c' o of N¢~ formed by the vectors of N c which are invariant by GC~. 
Therefore, since the subspace N°o of N o formed by the G:invariant vectors is 
spanned by the gradients at ~ of the elements 0~(~), 1 < e <  ql, [22] of a minimal 
integrity basis for the ring of G-invariant real polynomial functions of~, the vector 
~ can be written in the following way: 

q l  

e~ = Y~, a~dO,(~), (3.6) 
1 

where a~ ~ R 1. It is easy to check that Eq. (3.6) is equivalent to Eq. (3.5). In order to 
derive Eq. (3.2) from Eq. (3.6) we need some further information. To this end let us 
note that the 0~'s can be thought of as originating from real G-invariant 
polynomial functions of z and z*, and can be chosen so that, for 1 _< c~ _< q, p,(z) 
= Oq + ~(~) + iO~(~), where {p,(z)} 1 =<~ ~q is a minimal integrity basis for the ring of G c- 
invariant polynomial functions of z. The holomorphism conditions for p~(z) can be 
expressed in the following form: 

e00, +~(~) = O0,(~), e = 1,..., q. (3.7) 

It has been shown in [6] that, as a consequence of Luna's slice theorem [15], 
the subspace N ~'° is in fact generated by the gradients of the invariants 0~(~), 
1 < ~ < 2q, originating from the elements of the integrity basis {p,(z)} ~ <~z~. 

Therefore, the sum in Eq. (3.6) can be arrested at e = 2q < q~, so that, using also 
(3.7) and the fact that e 2 = - 1 Eq. (3.6) can be rewritten in the following form: 

q 

= Z,  ( a :  + a, +,)~0,(~). (3.8) 
1 

From Eq. (3.8) we immediately derive: 

q 

iz* = -- i 2 ,  (a~ + ia, +,)(O j - -  iO, + ~)0~(~) 
1 

q ~p(z) 
= Z~ e~Qp~(z)/~zj = - - ,  (3.9) 

1 ~zj 

q 

where c~ = - a , -  ia, + ~, ~ = 1 , . . . ,  q and p(z) = Z ,  e~p~(z). 
1 

It is commonly accepted that the possibility of spontaneously breaking the 
supersymmetry depends on the existence of zeroes of the F-term. This claim, which 
we shall formalize in the following Proposition 3.37, is correctly stated, but not 
proved, by Bagger and Wess [I].  

Proposition 3.3. The  minimum o f  the potent ial  vanishes i f  and only  i f  the F- term 
vanishes somewhere.  

v Some of the arguments of [4] can be used to prove Proposition 3.3 (see, however, footnote 2) 
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Proof. The only non-trivial part of the statement is the claim that the condition 

rain F(z', z'*) = 0 (3.10) 
z" 6C n 

implies: 

min V(z',z'*)=O. (3.11) 
z" ~ C  n 

Let us assume that Eq. (3.10) is satisfied and call ~ the set of zeroes of ~J'(z'). 
Then JV" is an algebraic subset of C", which is closed and GC-invariant, owing to the 
GC-covariance ofaf(z').  The set d contains therefore a closed GO-orbit (the closure 
of every GO-orbit intersecting JV is contained in ~/'). By Proposition 3.1, on each 
closed GO-orbit t2 C X the D-term vanishes at all the points of a unique G-orbit, 
formed by all the vectors of minimum length. 

This completes the proof of Proposition 3.3 which, through the Hilbert- 
Mumford theorem (see P3), can also be formulated in the following way: 

Proposition 3.4. Let ~ be a zero of Of(z'). Then there exists a one-parameter subgroup 
of G ~, {exp(xz)}x~ R, such that the limit z =  lim exp(xz). ~ is finite and D(z, z*)=0. 

The arguments used to prove Proposition 3.3 can be extended to the case of 
spontaneous supersymmetry breaking when its direction ~f(z)+O is invariant 
by G. 

Proposition 3.5. I f  the vector (o, which equals the gradient of the superpotential at a 
point ~ where the F-term takes on its minimum, is invariant by G, at every point where 
V(z', z'*) takes on its minimum the D-term vanishes. 

Proof. The (dosed) algebraic set I={z'eC"l Of(z')=q~} is GMnvariant and 
therefore contains a closed G~-orbit ~2. According to Proposition 3.1, on (2 there 
are points where the D-term vanishes and the potential takes on its minimum. 

In general, there seems to be no reason why the minima of tbe  potential should 
correspond also to stationary points of its F and D components separately. 
However, when this happens, some general conclusions can be drawn. In fact, the 
quadratic structure and the homogeneity in z' and z'* of the D-term imply a one-to- 
one correspondence between its zeroes and stationary points. Thus, using also 
Propositions 3.1 and 2.1, it is straightforward to prove the following statement: 

Proposition 3.6. Every stationary point z of the potential which is also a stationary 
point of its F-term is a zero of the D-term, so that the G~-orbit (2 through z is closed 
and G~ = G/ .  Moreover, the function F[a takes on its minimum at z and Ge ~ = G~,, 
for (0 = Of(z). 

It would also be easy to show that, if z is a stationary point of the potential, then 
it will be a stationary point of Fl~c.~ if and only if it is a zero of the D-term. This 
means that the points, if any, at which the potential takes on its minimum and D is 
different from zero do not correspond to minima even of the restriction o f F  to the 
G~-orbit. 

Propositions 3.1, 3.3, and 3.5 yield a good characterization of the vacuum 
vector z when supersymmetry is not broken or broken in a direction which is 
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invariant by G. In these cases a comparison with the results obtained in Sect. 2 
shows that the gauging of the internal symmetry shifts all the points where the 
potential takes on its minimum to those points z of convenient closed GO-orbits 
which are at minimum distance from the origin. As a consequence G~ becomes 
locally maximal and all the degeneracies of the vacuum state which originate from 
the GC-invariance of the superpotential are removed, but for the degeneracies along 
the G-orbit through z. 

4. Supersymmetric Theories with a Partially Gauged Internal Symmetry 

If only a subgroup G' of the internal symmetry group G is gauged, the invariance of 
the D-term with respect to transformations of G sets severe constraints on the way 
G' is imbedded in G. A sufficient condition for the invariance of the D-term would 
be, for instance, that G' is an invariant subgroup of G, in which case the 
compactness of G implies that G =  G'®G". 

By the same arguments we have used in the case of complete gauging of G, we 
can conclude that, also in the case of partially gauged internal symmetry, the D- 
term vanishes in correspondence with an absolute minimum of the potential when 
the F-term takes on its minimum at a point where the gradient of the 
superpotential is invariant by G'. The D-term vanishes also at points where the 
potential takes on its minimum and the F-term is stationary. 

Appendix A 

In this appendix we shall prove some of the mathematical results stated in part I of 
the paper, starting from the statements under items P6 and P8 of Sect. 1.2. 

To this purpose let us define the following real positive semidefinite function 
on G+: 

0~(?)=lj?.zll 2, ?~G c. (A.l) 

Only in the aim of simplifying our arguments, we shall assume that in the 
representation of ff we shall be concerned with, all the elements of a given Cartan 
subalgebra ~ of (¢ are diagonal matrices. We shall denote by ~ the real Lie 
subalgebra i J r  and by/~ the abelian real subgroup of G c formed by all the elements 
d = exp h, with h ~ ~,uT~. 

Lemma 1 (Cartan Decomposition). Every element ? ~ G~o can be decomposed in the 
following form: ? = gdg', where g and g' are convenient elements of Go and d ~ ffI. 

Proof. Let ? ~ G~, then there exists z ~ (¢c such that: 

? = e x p z ,  "c=tt +it2; tl, t2~(~. (A.2) 

Since ? + = exp ( - t l  + it2)~ G~o, the matrix ?? + is a positive definite element of G~. 
Then it can be written in the form: 

?? + = exp(it), t ~ if ,  (A.3) 
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and diagonalized by means of a unitary transformation induced by an element g 
of Go: 

g - 1(7 7 +)g = d 2 G/~ .  (A.4) 

If g 'c  G~ is defined through the following relation: 

7 = gdg' 6 G~, (A.5) 

it turns out to be unitary: 

g'+g' = 7 +gd- 2g+7 =7+(77+) - 17 = 1, 

and therefore g' c Go. q.e.d. 

Lemma 2. For every h c 27F, the real function fh(2): 

fh(2) = p~(exp 2h), 2 c R 1, (A.6) 

has positive second order derivative, unless h. z = O, in which case fh is a constant. 

Proof. If h. z=0 ,  then exp(2h).z =z,  so that fh(2)= IIzll 2 =const.  Thus we have 
only to prove that f~"(2) > 0 for all values of)~, whenever h. z ~= 0. This follows from 
a trivial direct calculation: 

11 

fh"(2) = Zi hZlzil 2 exp (22hu) > 0. (A.7) 
1 

Recalling that every real function defined on R 1, with an everywhere positive 
second derivative, has a minimum if and only if it has a stationary point and that it 
has at most one stationary point, it will be easy to prove the following lemma: 

Lemma 3. Let ozlt~ denote the restriction of O~ to ffI C G c. Then there is a one-to-one 
correspondence between the points where O~[r~ takes on its minimum and its stationary 
points. Moreover, if Qzlr~ has a stationary point at 7 = 1, then the only points of H 
where it takes on its minimum are the elements of the stability subgroup of ITI at z, ffI z. 

Proof. The Lie group structure o f / t  assures that the absolute minimum of Qd~, 
when it exists, is a local minimum. We shall show that, vice versa, at every 
stationary point the function Q~[~ takes on its absolute minimum. 

Let us assume that Oz[rt has a stationary point at do in/~. Since o~(d)= Od.z(1) 
and the left translation is an analytical transformation in a Lie group, by changing 
if necessary the choice of z (z is arbitrary), it will not be restrictive to assume that 
d o = 1. We shall denote by d=exph,  he  2,~, a general element o f /q .  In our 
assumptions the function fh(2): 

fh(2) = ~(exp 2h), 2 c R ~ , (A.8) 

has a stationary point at 2 = 0. Therefore, from Lemma 2 we obtain: 

Q~(1) = fh(0) < fh(exp h) = ~(d), (A.9) 

and the equality sign holds if and only if d c/~z. 
Lemma 3 can be restated in the following form: The function I[zl121r~, defined on 

the/ t-orbi t  t2, has at most one stationary point, where it takes possibly its absolute 
minimum. 
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In terms of the function Qz(7), 7 s GO, with the help of Lemma I we obtain: 

Lemma 4. There is a one-to-one correspondence between the points where Qz takes on 
its minimum and its stationary points. Moreover, i f  ~ has a stationary point at ~ = 1, 
then all the vectors of  minimum length on the orbit G c. z form the orbit G, z. 

Proof. Owing to the Lie group structure of G ~, the function Q~(?) takes on its 
minimum at stationary points. 

In order to prove the converse, it will not be restrictive to assume that 0z(?) has 
a stationary point at the neutral element 1 of G c, just as was done in the proof of 
Lemma 3. According to Lemma 1, a general element 7 ~ G~ can be factorized in the 
following way: 

?=gdg' ,  g,g' ~Go,  dEffI; (A.10) 

therefore, using also the unitarity of g, we obtain: 

~(7) = Qz(gdg') = Q¢. ~(d). (A.I 1) 

Since the right and left translations are analytical operations in a Lie group, the 
function Qg". ~(d), considered as a function on / ] ,  has a stationary point at d = 1, in 
our assumptions. Using Lemma 3 and the unitarity of g ~ G, we can therefore 
conclude that: 

Q~(?) = qo'.~(d) < Qa,~(1) = 0~(1), (A.12) 

where the equality sign holds if and only if d c/70,. ~, i.e. if and only if ?. z = (gg') • z, 
so that 7 " z c G ' z .  

The first part of Lemma 4 coincides with P6, the second one allows us to 
conclude like in PS. 

Proof  of  P7. If the G~-orbit O is closed, the continuous function lJzll2[~, which is 
bounded below, has a minimum. Vice versa, let us assume that l!z rl 2le takes on its 
minimum for z = z  o. We shall prove that the following limit: 

lim exp (i2t) • Zo, t c ~ ,  (A.13) 
2--+m 

equals z 0, if it exists, so that the GO-orbit through z0 is closed according to the 
Hilbert-Mumford criterium (see P3). 

Whichever is t e ~, there exists k c G such that: 

k t k -  1 = h e fit'. (A. 14) 

In correspondence let us define: 

fh = II exp (i2t)" zo II 2 = Qk-~o(eXp 2h). (A. 15) 

Then, in our assumptions, the function fh(2) has a stationary point at 2 = 0 (see 
Lemma 3), so that fh'(0)=0 and, as shown in Lemma 2: 

i) if h. (k. Zo) = 0, then fh(2) = const; 
ii) if h. (k. z0) 4 = 0, then fh"(2) > 0. 
In the first case the limit in Eq. (A.J 3) exists, but equals z 0. In the second case the 

limit diverges, as a consequence of the relations fh'(0) = 0 and fh"(2) > 0, for all 2's. 
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P r o o f  o f  P9. The statement in P9  can be derived as a simple consequence of 
Eq. (1.3.6) I-3]. In fact, let z be a vector of minimum length on its G~-orbit, so that 
Eq. (1.3.9) holds. If z E ~ ,  and ~ = t + it', where t, t' ~ ~ ,  then 0 =-c. [ = t. [ + d .  ~. 
Since t. ~ and et' .  ~ are orthogonal vectors, they must vanish separately. This 
implies: t, t' s ~ ,  or equivalently: f¢~ =f~ c. 

An equivalent proof of P9, which sheds some light on the physical meaning of 
the condition f#~z = f#z ~, is the following. Suppose D~(z, z*)=  (z, t~z )=  O, c~ = I , . . . ,  r. 
Then the positive semidefinite matrix K~a = (t~z, taz), which in globally supersym- 
metric gauge theories is related to the mass matrix of the spin ½ fermions, turns out 
to be real and symmetric, so that it admits a complete set of real eigenvectors. In 
particular, all the vectors of its null space can be written in the form w = u + iv, 

r 

where u and v are real vectors and belong to the null space of K. Now,  ifz = Z~ w~t,  

and T ~fgc,  then the vector w = (wa, ..., wr) must be in the null space of K. Since K is 
a real matrix, the same must be true of the real and imaginary parts u and v of w. 

r r 

Therefore, • = t + it', where t = ~ u~t, and t '=  Y,~ v,t~ both belong to f~.  
1 1 
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