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1. Introduction 

The present article has its origin in a problem of population genetics, namely 
the investigation of a differential equation that describes the dynamical behavior 
of probability densities of certain types (e.g. genes) in a population, under the 
combined action of selection and mutation. A true understanding of such models 
is of some interest for evolutionary theory, as is indicated in Sect. 4 below. 
To cover a sufficiently wide range of applications, it turns out that an approach 
involving functional analysis and, in particular, the theory of strongly continuous 
semigroups of positive operators is useful. 

The mathematical core of the present article is the investigation of the spec- 
tral properties of perturbations A =  T - - U  on a Banach lattice E, where - T  
is the infinitesimal generator of a strongly continuous semigroup of contractions 
and U is a positive, bounded operator which satisfies a certain compactness 
condition. To treat this problem, the family of operators K~ = U(T+ c 0 - 1, Re c~ 
>0,  on E is investigated. The precise compactness condition that is required 
is power-compactness of all K ,  with Re c~ >0.  Based on results of Schaefer [19], 
which generalize the Perron-Frobenius Theorem for positive matrices and the 
Krein-Rutman Theorem, it is shown that the existence of some e > 0, such that 
the spectral radius of K~ satisfies r(K~)> 1, implies the existence of a unique 
e 0 > 0  such that r(K~o)=l,  and, - e 0  is the lowest eigenvalue of a(A). If U 
is irreducible - e 0  has algebraic multiplicity one and its eigenspace is spanned 
by a quasi-interior point of D(A). Furthermore,  the existence of some e with 
r (K~)>l  is equivalent to the condition s(-- T + U) > s(-- T). Here s(--T+U) 
and s ( - T )  denote the spectral bounds of - T +  U and --T, respectively. This 
generalizes similar results of Greiner (cf. [-6] and [-15]), because we require only 
power-compactness, which will be of importance, when U is a kernel operator  
on a D-space. In particular, the condition s ( - T +  U ) > s ( - T )  can be replaced 
by testing whether r (K~)>l ,  for some c~>0. The latter has the advantage of 
being much easier to check, since the K~'s are bounded operators. This is the 
contents of Sect. 2. 
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In Sect. 3 sufficient conditions for the existence and global stability of a 
unique equilibrium solution of the differential equation 

p(t) + A p(t) = p(t) ~ (A p) (y, t) dr(y) 

are derived. Here p(t) denotes a probability density on a locally compact space 
M that carries a positive measure v, and A = T-- U, where T is a multiplication 
operator and U a kernel operator on E = LV(M, v). To study the spectral proper- 
ties of the operator A the results of Sect. 1 are applied. 

In Sect. 4, finally, some concrete applications to particular models from popu- 
lation genetics are treated. 

2. Perturbations of Generators of Positive Semigroups 

Throughout, let (E, I1 []) denote a real or complex Banach lattice, for example 
E = LP(M, v), 1 <p  < oo, v a positive a-finite measure on a locally compact space 
M. Let E+ = { f eE:  f > 0 } .  A bounded linear operator SeL(E)  is called positive, 
if f e E +  implies S f e E + .  In case, E=LP(M, v), f > O  means f ( x )>O v-a.e. A one- 
parameter semigroup (S(t))t>=o is called positive, if it is a C0-semigroup, i.e., 
strongly continuous, and each operator S(t) is positive. As general references 
for the theory of positive operators and semigroups of linear operators we men- 
tion Schaefer [19], Nagel [15] and Pazy [18], respectively. 

In the sequel T and U denote linear operators E ~ E satisfying assumptions 
(A1), (A2) and (A3) which are stated below. 

(A1) T is closed with dense domain D(T), such that - T generates a positive 
semigroup {e- Tt}t> = o of contractions, that is l] e- Tt[i <= 1, for t >= O. 

(A2) U is a positive, bounded operator on E. 

It is well known that a densely defined operator - T  is the infinitesimal 
generator of a semigroup of contractions, if and only if - T  is m-dissipative 
(or, equivalently, T is m-accretive). Hence range (T+ c0 = E and 

]l(Z+ c~) fl[ > c~ [If I[ (2.1) 

for all f e D ( T )  and e > 0  (cf. Pazy [18], 1.4 and 3.3). Since - -T  generates a 
positive semigroup, it follows from Nagel [15] that 

I ( r+  c~)- t f l  =< ( r +  Re c~)- 1 if[ (2.2) 

for all f e e  and R e e > s ( - T ) .  Here s ( - T ) = s u p { R e e :  --c~eo-(T)} denotes the 
spectral bound of - -T  and a(T) the spectrum of T In particular, (T+c0 -1 
is a positive operator whenever e>s ( - -T) .  Throughout, we assume that 
s ( - -T)=0 .  

Since T is a closed operator, D(T) becomes a Banach space, denoted by 
F, under the graph norm []fllF= ]lfll + [I Tfl[, f e D ( T ) .  The closed graph theorem 
together with the fact that range(T+ e)= E, e > 0, implies that (T+ ~)- i :  E ~ F  
is bounded. Inequality (2.2) shows that this is valid for arbitrary c~e~, where 
@ denotes {zeC: Rez>0}  throughout. 
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It is the purpose of this section to investigate the spectral properties of 
the operator 

A: E ~ E ,  A : = T - - U ,  D(A)=D(T) .  (2.3) 

Since T is closed and U is bounded, A is a closed operator with D ( A ) = D ( T )  
(Kato [9], III.2). 

Now let us introduce the family of operators 

K~: E ~ E ,  K~..=U(T+~) -1, ~E~. (2.4) 

These operators will play a central role in the investigation of the spectrum 
of A. Each Ks, a e ~ ,  is a bounded operator on E, since U and (T+a)  -1 are 
bounded. However, we will need more, namely we will require throughout that 

(A3) Ks is power compact for all a ~ ,  that is, there is some f ixed n such 
that Ks" is compact for all ~ .  

Remark 2.1. If U is T-compact, that is, if U: F--~E is compact then K~ is compact, 
since (T+c~)-a : E ~ F  is bounded. If U is weakly T-compact, K~ is weakly com- 
pact and Ks 2 is compact if E is an AL- or AM-space (cf. Schaefer [19], II.9). 
Power compactness of Ks is equivalent to T-power compactness of U as defined 
by Voigt [22]. 

Next we will collect some facts concerning the spectral properties of the 
operators K, .  Since K~ is power compact, the spectrum of Ks consists of eigen- 
values with 0 as the only possible accumulation point and all eigenvalues 4:0 
have finite algebraic multiplicity. Let r(~):=r(K~) denote the spectral radius of 
K s. If 7>0 ,  K~ is a positive operator and it follows from Schaefer ([19], V.4) 
that r(a) is an isolated eigenvalue of K~ with finite multiplicity (in fact a pole 
of the resolvent), provided that r (a)>0.  If, additionally, K~ is irreducible (cf. 
[19], III.8), r(~) is an algebraically simple eigenvalue, whose eigenspace is 
spanned by a unique positive eigenvector f~, which is a quasi-interior point 
of E+ (in case E = L  p this means that f~>0  v-a.e.). Furthermore, r(ct) is the 
unique eigenvalue of K~ with a positive eigenvector (cf. [19], V.5). 

Now we are able to state and prove the main results of this section. It 
is supposed that T and U satisfy the assumptions (A 1), (A 2) and (A 3). 

Proposition 2.1 (i) I f  Re ~ > O, s is an eigenfunction of A, corresponding to an 
eigenvalue - ~, i.e., 

A f~=(T- -  U ) f s =  --af~, f ,~D(A) ,  (2.5) 

if and only if 

K .g~= U ( T + g ) - l g s = g ~ ,  g~6E, g~=(T+g) f~  (2.6) 

holds, that is, if 1 is an eigenvalue of K .  with eigenfunction g.. 
(ii) Each 26a(A)  with Re 2 < 0 is an isolated eigenvalue with finite algebraic 

multiplicity. 

Theorem 2.2. The following assertions are equivalent: 
(i) There exists c~>0 with r (e)> 1. 
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(ii) There exists a unique ~o > 0 with r(c%)= 1. In particular, 

a o = s ( - - A ) = s u p { R e  2: 2ea(- -A)} .  (2.7) 

(iii) s ( - - A ) = s ( - -  T +  U ) > s ( -  T). 

This implies. 
(a) --~o is an isolated eigenvalue of A of finite algebraic multiplicity with 

a positive eigenvector. 
(b) I f  the semigroup generated by - T  is eventually norm continuous (e.g. 

analytic), then -- ~o < Re 2 for all 2 ~ ~ (A), 2 ~ - ~o. 
(c) I f  U is irreducible, -c~ o is a simple eigenvalue, whose eigenspace is spanned 

by a quasi-interior point of  E+ c~ D(A). 

To prove these results we need some lemmas. 

L e m m a  1. Re e I ~---~2>0 implies r(cq)<r(c~2) and lim r(~)=0. 

The proof of the first assertion follows easily from relation (2.2) together 
with the positivity of U and (T+72) -~ and the fact that (T+c0 -~ is monotone 
decreasing. The second assertion holds, since r(7)< []K~ [I--< e- l l ]  U I[. 

L e m m a  2. e~--*r(c 0 is continuous for Re e > 0 .  

Proof Let c~, cq e ~ .  A simple computation shows that 

K ~ = K ~ ( T + c q ) ( T + c ~ ) - ~ = K ~  +(cq--c~)K~I(T+e) ~ 

This implies 
[cX 1 - - e  I 

[]K~--K~II[<IIK~,[[ Rec~ 

It follows that K~ converges to K~ 1, if e converges to cq. Denote by 5 e the 
set of all compact subsets of (E, endowed with the Hausdorff distance. Then, 
by a result of Newburgh [17], the mapping s: L(E)~ST, given by s(B)=a(B)  
is continuous at B, if o-(B) is totally disconnected. The assertion of the lemma 
follows easily. 

Proof of Proposition 2.1. (i) An easy calculation shows that (2.5) and (2.6) are 
formally equivalent. Since ( T + e )  -1" R ~ F  is bounded, s  if and only 
if g~ = (T+  ~) f~eE. 

(ii) ~ K ~  is an analytic function on 9 and K," is compact for some n >  1. 
Now, Corollary 1 of [20] implies one of the following alternatives : (a) If 1 - K f  
is somewhere invertible on @, then (1 -K~) -1  is a meromorphic function on 
9 ,  or (b) 1 -K~"  is invertible for no a 6 9 .  In case (a) this proves assertion 
(ii), since 

(A+cO-I=(T+c~)- I (1- -K~)  1 (2.8) 

holds and 7~--~(T+e)-1 is analytic on 9 .  Case (b), however, cannot occur due 
to Lemma i. 

Remark 2.2. Part (ii) of Proposition 2.1 is also a consequence of Theorem 1.1 
of Voigt [22] (together with Lemma 1). However, elements of the above proof 
will be needed below. 
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Lemma 3. :~+r(~) is strictly monotone decreasing for ~(0, o~). 

Proof Assume the contrary, i.e., the existence of 0<~1<~2  such that r(~l) 
=r(c~2)=c>0. Lemmas 1 and 2 imply that r(~)=c for all ~ [ ~ 1 , a 2 ] .  Since Ks 
is positive, 1 is an eigenvalue of c-XK~ for each ~e[%,~2],  in contradiction 
to the meromorphic nature of (1 - c- * Ks)- 1 (see the proof of Proposition 2.1). 

Proof of Theorem 2.2. (i)~(ii) The existence of a unique ~o is the consequence 
of Lemmas 1, 2, and 3. The validity of (2.7) is a consequence of Lemmas 1 
and 3, since 2e~r(-A) with R e 2 > ~ o  would imply r(2)<r(Re2)<r(V.o)=l, 
which, together with Proposition 2.1 (i), leads to a contradiction. 

(ii) ~ (iii) This is obvious, since s ( - A) = ~o > 0 = s ( - T). 
(iii)~(i) Suppose that r(~)< 1 for all positive ~. Then, in fact, r(~)< 1 holds 

for all positive a, because of Lemma 3. This implies, by Lemma 1, that r(~)< 1 
for all ~ e ~ .  Hence ( 1 -  K~)-1 exists for all ~e~@. Since s ( - T ) =  0, also (T+ ~)-1 
exists for all e e l .  Using (2.8), it follows that (A+r -* exists for all c~e~. This 
yields s ( -  A) < 0 = s ( -  T), the desired contradiction. 

(a) That -c~ o is an isolated eigenvalue of A of finite algebraic multiplicity 
follows from Proposition 2.1(ii). The existence of a positive eigenvector of A, 
corresponding to -~o ,  follows from the fact that r (a0)=l  is a simple pole 
of the resolvent of Kso ([19], V.Ex.7) together with Proposition 2.1(i). In case 
U, and hence Ks, is compact, this is just part of the Krein-Rutman theorem. 

(b) This assertion follows from (2.7) and (a) together with C.III Corollary 
2.13 of Nagel [-15]. 

(c) In view of what has already been shown, it is sufficient to prove irreduci- 
bility of Ks, y.>0, and to apply Theorem 5.2 of Schaefer El9] to Ks. Recall 
that an operator S is irreducible if and only if for each 0 < f e  E and each 0 < 05 ~ E' 
some n e N  exists such that (S~f, 05)>0 ([19], III.8). Since - T  generates a posi- 
tive Co-semigroup, <g, ~ , )>0  for O<geE and O<tkeE' implies 

( ( T + ~ ) - * g , O ) =  j 'e  St<e-r'g,O) dt>O 
0 

for all ~>0.  In particular, < U f , ~ ) = < f , U ' O ) > 0  entails <(T+~) lf, U ' ~ )  
= < K ~ f , O ) > 0 ,  c~>0. Now we proceed by induction and assume that 
(U n lf, 05)>0 implies <K~n-lf, 05)>0. Since (Unf, 05)>0 is equivalent to 
<U ~ if, U'05)>0, <K~"-lf, U'05)>0 follows by assumption. As we have seen 
above this implies {(T+ e ) - lKs~- i f ,  U'05)>0, which in turn is equivalent to 
{Ks~f, qS)>0. This proves that irreducibility of U implies irreducibility of Ks, 
c~ > 0. This finishes the prove Theorem 2.2. 

Remark 2.3. Greiner ([6]; see also [15], C-III, Prop. 3.18) has proved that, 
condition (iii) of Theorem 2.2 implies (a), if U is T-compact. In Theorem 2.2 
we have replaced T-compactness of U by power compactness of Ks, which 
is useful, when the Banach lattice E is an Ll-space, for example. In particular, 
the theorem stated above seems to be more useful for concrete applications, 
since the validity of the condition r (K~)>l  for some ~ > 0  is more easily to 
check then the condition s ( -  T+  U)> s(-- T), that has been used by Greiner. 
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Remark 2.4. It is possible, to generalize the above results, to T-bounded perturba- 
tions U. In that case one needs an additional condition, namely the existence 
of some a > 0 ,  such that r (a)< 1. This is automatically satisfied, if U is bounded, 
but can be shown to be valid also for certain unbounded operators (see Remark 
3.1). In particular, it can be shown that this condition implies closedness of 
the operator A (which is not the case for general T-bounded perturbations). 
For, consider the right hand side of Eq. (2.8). This is a bounded operator for 
sufficiently large a, i.e. if r (~ )< l ,  and it can be shown as in Pazy ([18], 3.1) 
that it is just the resolvent of A. Hence, A + a  is closed for large ~>0,  which 
implies closedness for every ~, in particular for ~ = 0. 

3. Asymptotic Behavior of the Solutions of an Initial Value Problem 

It is the purpose of this section to investigate the asymptotic behavior of the 
solutions of the initial value problem 

[~(t)+Ap(t)=p(t). ~(Ap)(y, t)dr(y), p(O)=po~L q. (3.1) 

Here the operator A: L q--+ L q is the sum of a multiplication and a kernel operator, 
as defined below. Throughout,  let E=Lq(M,v), where M is locally compact, 
v is a positive a-finite measure on M and 1 < q <  ~ .  To define the operator 
A we introduce functions w and u satisfying the following assumptions. 

(T1) w: M ~ I R +  is measurable and ess in fw=0.  
(T2) (w+l)- l~L q', 1/q+l/q'=l. 
(U1) u: M x M ~ I R +  is measurable. 
(u2) ul(x)= ~ u(y, x) dv(y)eL ~. 
(U 3) If q > 1 then u2 (x) = ~ u (x, y) d v (y) 6 L ~176 

(U4) I f q = l t h e n ~ e s s s u p  u(x,y) y~M ~ dx < oo. 

( . F . /  u(x ,y)  \q' ]q/q' )l/q 

Now define 

T: E~E,  Tf(x)=w(x)f(x), D(T)=(feE: wfeE}, (3.2) 

U: E--+E, Uf(x) = ~u(x, y) f(y) dv(y), D(U) = E, (3.3) 

A: E - -*E ,  A---T--U, D(A)=D(T). (3.4) 

F is just the Banach space Lq(M, vq) with vq=(w+l)qv. An equivalent norm 
is given by Hf[[ + [[Tfl[. According to (2.4) we have 

u(x,y) f(Y) dv(Y), :~e~. (3.5) K~: E-+E, K~f(x)= ~ w(y)+~" 

Let us collect some properties of T, U and K~. 
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Proposition 3.1. Let T, U and K~ be defined as in (3.2), (3.3) and (3.5), respectively. 
Then 

(i) ~(T) = ess range(w)_~ [0, oe) and s ( -  T) = O. In particular, -- T generates 
a positive analytic semigroup. I f  q = 2, T is selfadjoint. 

(ii) U is a positive, bounded operator on E and U is irreducible if and only 
if 

~ u ( x , y ) d v ( x ) d v ( y ) > O  (3.6) 
M~.S S 

for each measurable set S ~_ M such that v ( S ) > 0 and v ( M \ S) > O. 
(iii) K~ is a bounded positive operator for every c~>0 which is irreducible 

if  U is irreducible. 
(iv) I f  q> 1 then Ks is compact for every ~ .  

I f  q = 1 then K~ 2 is compact for every ~ .  

Proof. (i) Recall that 2~ess range(w) if and only if an e0 exists such that for 
lz, ~o.-= {x: I w ( x ) -  2 ] < eo}, v (Ix, ~o) = 0. This implies that ] 2 -  w (x)[ - 1 is essentially 
bounded by eo 1. For  arbitrary g ~ L  q define 

~g(x ) / (2 -w(x ) ) ,  xr 
f ( x )  = [0 ,  x e I~,~o. 

It follows that ( 4 -  T) f = g and 

Ilf][q= g 2 1 w  q={ 
M~.IM~ o 

Ig(x) l q 1(4- w(x))-  21q dv(x)} 1/q ~ Ilgllq ~o 1. 

This proves that a(T)=essrange(w).  Since ess in fw=0,  we have s ( - T ) = 0 .  It 
follows that T is m-accretive, sectorial, positive and selfadjoint if q = 2, which 
implies the other assertions of (i). 

(ii) Positivity of U follows from (U 1). The statement concerning irreducibility 
may be found in Schaefer ([19], V.6). Next we show boundedness of U, if q >  1. 
Applying H61der's inequality we obtain 

1[ U f I[ qq = ~ (~ u (x, y) f (y )  d v (y))q d v (x) 

<= ~ (~ u (x, y) d v (y))q/q'. (~ u (x, y) f(y)q d v (y)) d v (x) 

~-~ I[ U2 ]l ~q/q' ~ U (X, y) f (y)q d v (y) d v (x) < I[ u2 H co q/q' [I U l II co II f [I qq- 

If q =  1, one obtains similarly IlUfll~ < Nulll ~ Ilflll- 

(iii) is obvious. 
u(x, y) 

(iv) K,  is given by the kernel - -  which satisfies the condition stated 
w(y)+~ 

under (U 4), since ~ w  + 1 is finite, if e e g .  Hence, each K~ is a so-called Hille- 

Tamarkin operator on L q and therefore compact, if q >  1. If q =  1 then K= 2 
is compact (cf. J6rgens [8]), 
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Although no simple general conditions ensuring compactness of kernel oper- 
ators between Ll-spaces are valid, in special cases stronger results can be derived. 
For  convolution operators the following proposition, which is a special case 
of Corollary 3.6 of Feichtinger [4], can be derived. 

Proposition 3.2. Let M be a locally compact abelian group, e.g., M = ] R  k or M = ~  k, 
and let u ( x , y ) = u ( x - y )  and (w+ l ) - laCo(M) .  Then U: LI(M, V l ) ~ D ( M , v )  is 
compact if and only if uaLl (m,  v). 

It should also be noticed that if (w+ 1)-* does not vanish at infinity, no 
compact convolution operator exists. 

Corollary 3.3. The statements of Proposition 2.1 and Theorem 2.2 are valid for 
the operator A (3.4). In particular, A generates a positive analytic semigroup 
on E which satisfies s ( -  A) = ~o > O, if an c~ > 0 exists, such that r (~) > 1 holds. 

The first assertion is obvious, since Proposition 3.1 implies that (A1), (A2) 
and (A 3) are fulfilled. The second is a consequence of the positivity and bounded- 
ness of U. 

Remark 3.1. If conditions (U 2) and (U 3) are omitted U is in general not bounded. 
However, it is not difficult to show that []K~]I and, therefore, also r(c 0 tends 
to zero as : ~ o e ,  if for every compact subset K~_M the integral 

(~ u(x, y)q'dv(y))q/q'dv(x)is finite. This is obviously the case, if u is bounded 
K K 

on M x M. This shows that generalizations along the lines of Remark 2.4 may 
be useful, sometimes. 

Next let us derive a simple condition that ensures the existence of an ~ > 0 
with r(~)> 1. 

Proposition 3.4. Let x o a M  be such that W(Xo)=O. Define I ~ = { x e M :  w(x) 
<=~} c~ U(xo), where U(xo) is a small neighborhood of x o. I f  there exists uo>O 
such that 

1 
v(I~) inf ~ u(x, y) dv(y)>uo (3.7) 

holds for all small c~ > O, and if 

u~ lim v(L) > 1 (3.8) 
2 c~ 

~ 0  

then there exists a > 0  such that r(~)> 1. 

Proof First note that there exist Xo and U(xo) such that v(I~)>0, c~>0, since 
0~ess range(w). Let ~o~ denote the characteristic function of I s. Then we have 

u(x,y) dv(y) 1 S u(x,y)dv(y)>UoV(l~)cp~(x). K~0~(x)= S w(y)+~  > ~  i~ 2c~ 
I=  

This implies that ][K~n[[ 1/n 

(3.8). 

Uo v(I~) 
2~ 

and, therefore, the assertion follows from 
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Condition (3.7) is satisfied, for example, if u(x,y)>u o in a neighborhood 
of (xo, Xo). (3.8) is a cusp condition on w, that is, at a minimum W(Xo)--0 there 
must not be a cusp. Conditions like (3.7) and (3.8) are in fact necessary to 
ensure that r (e )>  1 for small e, as the subsequent example shows. 

Example. Choose M =  [0, 1] and E=I2(M, v), v the Lebesgue measure. Suppose 
that u(x, y)=u(x). Then 

u(y) 
K~ u(x) = f dr(y)- u(x). 

~6 w (y) + ~  

Since K~ is positive, compact (which is obvious) and u is strictly positive (as 
a consequence of (3.6)) it follows that 

r(~)=~ u(y) w (y) +~  d v (y). 

Hence, there exists an equilibrium density in L ~ if and only of this expression 

is greater than 1 for some e > 0 .  Suppose that ]lull ~ < 1/2 and w ( x ) = [ ~ .  Then 

r ( c Q = i  u(y) 1 l+c~ w (y) + ~  d v (y) < �89 S ([//y + e ) - I  d v (y) = 1 - e in 
o o 

<1 

for all positive ~. 
Throughout  the sequel, we assume that an c~ with r(~)> 1 exists and that, 

besides of (T1), (T2) and (U1)-(U4), (3.6) holds. This implies the existence of 
a unique, nondegenerate "ground state" of A with a strictly positive eigenvector. 
The rest of this section is devoted to the proof  of the following theorem. 

Theorem 3.5. There exists a unique, strictly positive probability distribution 
/5~D(T) which is an equilibrium of (3.1). Moreover,/5 is globally, asymptotically 
stable (in a sense specified below). 

Proof First we will investigate the asymptotic behavior of the solutions of 

h(t) + (A + ~o) n(t) = 0. (3.9) 

Since --A is the generator of a positive, analytic semigroup, the same is true 
for --(A+eo).  Therefore, (3.9) has a unique solution in D(A)=D(T), existing 
for all t > 0  and for any n o t e  (cf. Pazy [18], 4.2). If no is positive, so is n(t), 
for every t>0 .  Moreover, by H61der's inequality we have IIfl l l< 
II(w+l)fllq II(w+l)-lrlq,<O% due to (T2). This implies that D(T)~_I2. Hence, 
every solution of (3.9) is in L ~ for t > 1. 

Set A o = A + c%. Then the eigenvalue 2o = 0 of A o has algebraic multiplicity 
1. Let P denote the corresponding spectral projection and let E1 =PE and E2 
=(I--P)E. In the present case we have El=kerAo={r/5: retE}, where [5 is 
the uniquely determined, strictly positive eigenvector of Ao corresponding to 
2o=0  such that S/5(x)dv(x)=l. This normalization is possible, since 
/5r Then E = E I • E  2 and the Ei are invariant under Ao, and if At 
denotes the restriction of A o to E i then A1 is the 0-operator on E 1 and D(A2) 
=D(Ao)c~g 2 and a(A2)=a(Ao)\{0} (see Henry [-7], Th. 1.5.2 or Kato  [9], 
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III.6.4). Moreover, - A  2 generates an analytic semigroup {e-A2t}t>o which is 
just the restriction of { e - A ~  o. (The latter leaves each E~ invariant.) Since, 
due to Theorem 2.2(b), the spectral bound s ( - - A 2 ) < 0  , and because e -A2 t  is 
analytic (and therefore growth and spectral bound coincide) there exists/~ > 0 
such that 

[le-&t[[<=Ce -~t and I tA2e-A2tH~Ce-P' / t  (3.10) 

for all t > 0  (see Henry [-7], Th. 1.5.3). 
According to the above decomposition, for every noeE unique elements 

r e •  and voeEz exist, such that no=rf i+Vo . It follows that e-A~  
+ e-A2t V0 and (3.10) yields 

Il e -  A~ no - r fill = Il e -  A~ vo l] <-_ C e - pt Ilvoll 
and 

IlAo e -A~ no - r/~ll = ]]A2 e -Azt VoII <= C e - " '  ]]Voll/t. . 

Since A o = T +  (~o - U) and since U is bounded, an easy estimate shows that 

lim I[e-A~ (3.11) 
t---~ oo 

If no>0  and no is not identical zero, then r>0 .  For, assume r = 0  (r < 0  
cannot happen, since the semigroup is positive). Then we have n o = v o > 0 .  0 
is also a simple eigenvalue of the adjoint A; with strictly positive eigenvector 
/Y, since K'~ is power compact and positive on E' and our results hold therefore 
also for A~. It follows that Vo_LkerA'o={Z~': zeff~}, which is a contradiction. 
Thus we have shown that for n o e E there is a unique r E~E such that lira n(t)= r 

t ~ o 0  

(in F!). If no>0  and not identical zero then r>0 .  In particular, it follows that 
~n(x, t )dv(x)>e(r )>O for all t>0 .  

Now we turn to (3.1). (3.1) is obtained from (3.9) through the transformation 
p( t )=n( t ) /~n(x , t )dv(x) .  This is a well defined positive element in D(T) with 
~ p ( x , t ) d v ( x ) = l ,  whenever n(O)=nosE, no>0.  If E = L  1 it is obvious that 
A p ( t ) e L  1 for all t and, therefore, the integral on the right hand side of (3.1) 
is finite. If E = L  ~ this needs not to be the case. However, if noeL] ,={ feLq:  
(1 + xZ)l/r f ~ L  ~} then n(t)~{f~Lq: (l + x2) l /q 'wf~L ~} and it follows that An(t )  
and, hence, Ap(t )  are in L~,~_L ~ for every t>0 .  Together with (3.11) and 
~n(x, t )dv(x)>e(r)>O, which has been shown above, this implies that for any 
positive Po e L~ (M), resp. P o ~ L%,(M), a unique positive solution p (t) of (3.1) exists 
for all t > 0  and converges to /~ in F and hence in L ~, as t-~oo. This proves 
Theorem 3.5. 

4. Applications to Some Problems of Population Genetics 

In this section a general population biological model is presented and analyzed 
that describes the dynamics of a haploid population under the influence of 
selection and mutation. The model covers numerous special cases that have 
been investigated earlier (cf. [1, 5, 10-14, 16, 21]). 
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We consider a population that is infinitely large and has overlapping genera- 
tions. Individuals are characterized by their type x, where x is a vector in a 
(locally compact) subset M___Nk, k >  2. M is the state space and is endowed 
with a positive measure. The components of x may be, for example, numerical 
values of quantitative characters or alleles at a certain gene locus, p(x, t) denotes 
the normalized density of type x in the population at time t. p(t) denotes the 
corresponding element in LI(M, v). It is positive and has norm 1. Throughout,  
let E = L l(m, v). 

The mutation term will be denoted by u (x, y )>  0, i.e., u (x, y)d t is the fraction 
of individuals of type x originating through mutat ion from individuals of type 
y in the time interval dt. Let us assume that u satisfies assumptions (U1), (U2) 
and (U4) (or the assumption of Proposition 3.2). re(x) denotes Malthusian fitness, 
that is, the intrinsic growth rate of type x. We assume that re(x)< const. (v-a.e.) 
and that m: M ~ I R  is measurable. Set d=ess in f ( -m+ul )  and w =  - m + u ~ - d ,  
then w fulfills (T1) and (T2). (Note that q = 1, now.) 

Employing standard modelling techniques from population genetics (cf. 
Kimura, [10]) the differential equation describing the dynamical behavior of 
type densities p(x, t) is derived to 

ap(x, t) 
= [m(x)--r~(t)] p(x, t)+ S u(x, y)p(y, t) dv(y)-u~(x)p(x, t) (4.1) 

c~t M 

where r~(t)= S m(x)p(x, t)dv(x) denotes the mean fitness of the population. 
M 

Defining the operators T, U, and A as in Sect. 3, it is easily seen that Eq. (4.1) 
yields just Eq. (3.1) and Theorem 3.5 applies, if (3.6) holds and if r ( e ) > l  for 
sufficiently small c~ > 0. Subsequently, we will treat several special cases. 

A. One Locus with a Finite Number of Alleles 

If M is a finite set (with measure v normalized such that v(x)= 1, xeM), each 
x may be considered as an allele at some gene locus. Mutat ion from y to x 
occurs with probability u(x, y)>O, such that ~ u(x, y)=  1. Moreover, to each 

x e M  

allele x a finite fitness value re(x) is assigned. Hence (T1), (T2), (U1), (U2) and 
(U4) are satisfied. To apply Theorem 3.5, we have to require additionally that 
the operator  U, or in the present case, the matrix with entries u(x, y), is irreduc- 
ible. And, we have to show that there exists an ~ > 0  with r(~)> 1. Let xo~M 
be such that W(Xo)=0. Since U is irreducible there is a sequence x~ . . . .  ,xs-1 
such that U(Xo,Xl)>O ... .  ,u(xs_l, Xo)>O. (Usually one has U(Xo,Xo)>O, since 
U(Xo,Xo)=O is biologically not very sensible.) It follows that K,~ox~>ci~o . . . . .  

for i=  1 . . . . .  s--1 and cl >0,  and that K~ q)xo__>~2 ~ q0 . . . . .  where ~ox, denotes the 

characteristic function of {xl}. Hence 

K~",p~o>=(c/.)"~O~o, c=llc,>O 
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for all nEN. This implies 

I lK J "  II ~i~. > (c/a)~/" 

for all n~N, which proves that lim r(a) = co. Therefore, Theorem 3.5 is applicable. 
~ 0  

It follows that in the classical selection-mutation model for a haploid population 
a unique, globally stable equilibrium exists, for arbitrary fitness functions (uni- 
modal or not) and arbitrary irreducible mutation operators. For finite M equa- 
tion (4.1) is just a system of ordinary differential equations. Although they are 
well known in population genetics (cf. Crow and Kimura [3], 6.4), it seems 
that no complete analysis has been published, so far. However, for a closely 
related discrete time model, i.e. for a difference equation, an analogous result 
was first proved in full generality by Moran [13], using the Perron-Frobenius 
theory of positive matrices. 

B. One Locus with an Infinite Number of Alleles 

If M is an infinite, countable discrete set (with measure v normalized such that 
v(x)=l ,  x e M )  and each x e M  is considered as an allele at some gene locus, 
one arrives at models like those investigated by Moran ([13, 14]) and Kingman 
[11]. They, however, used discrete time models with a slightly different model- 
ling. Theorem 3.5 can be applied, if (U2), (U4) and (3.6) are fulfilled (the other 
conditions hold automatically) and if some e > 0  exists with r(cQ>l. Due to 
Proposition 3.4 this is the case, for example, if U(Xo, xo)> O, whenever w(xo)= O. 
This condition is satisfied in most biological applications and may also be found 
in Kingman [11]. Moran and Kingman (loc. cit.) presented also some other 
assumptions that lead to a unique and stable equilibrium. 

C. Models with Continuous Allelic Effects 

It was Kimura [10], who analyzed in an influential paper a model with a contin- 
uum of allelic effects. Such models may be of considerable importance, because 
most metric characters (like brain weight, body size, etc.) vary continuously. 
In the present terminology he chose M = IR with Lebesgue measure v and inter- 
preted x E M  as an average allelic effect on the quantitative character under 
consideration. He assumed m ( x ) - - - s x  2, s the selection coefficient, and u(x, y) 
=/~(2~ 7 2 )  - 1 /2  e-(X-y)2/272, # the mutation rate. He derived Eq. (4.1), approximat- 
ed it by a diffusion equation and calculated mean and variance of the equilibrium 
distribution - which is Gaussian - of this diffusion equation. Kimura's model 
has been further analyzed by Fleming [5] and Nagylaki [16], still using approxi- 
mation techniques. These authors conjectured the existence of a unique, stable 
equilibrium distribution. Only recently, it was proved in [1], using spectral 
theory of selfadjoint operators, that a unique equilibrium distribution exists 
and that every solution p(t) with (1 + x2) ~/2 p(0)~L 2 (IR) converges to this unique 
equilibrium. An exact analysis of models of this kind is of importance for one 
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of the basic problems of evolutionary theory, namely the maintenance of genetic 
variability (cf. Turelli [21], and Bfirger [1, 2]). 

The present analysis allows to generalize Kimura's model in various direc- 
tions. Instead of the special mutat ion and fitness terms he used, one can take 
all functions u and m (or w) such that the hypothesis of Theorem 3.5 is fulfilled. 
For  example, one can put u ( x , y ) = u ( x - y )  with u~I2(M) (e.g. compactly sup- 
ported) and e s s i n f u > 0  in a neighborhood of 0. If, moreover, m has no cusp 
at its optimum and satisfies lim m(x) = - oo then Proposition 3.2 together with 

IxE~oo 

Theorem 3.5 prove the existence of a unique globally stable equilibrium. If 
u and m are chosen as in Kimura [10] or in [1] (see above) and if E=L2(IR) 
one arrives just at the main result of [1]. The choice E=Lt(IR) improves that 
result, because it follows that every solution p(t) such that p(O)~I2(N.) converges 
to the unique equilibrium. 

If, however, m has a cusp at its optimum, an equilibrium density in L ~ 
does not necessarily exist, as the example before Theorem 3.5 shows. It appears 
that at equilibrium an atom of probability occurs at the optimal fitness value 
and thus it may be conjectured that an equilibrium exists in the space of proba- 
bility measures Co(M)'. This observation may be of practical importance, since 
there is some empirical evidence that fitness landscapes may be rather jagged. 
Also Kingman's [12] house-of-cards model, i.e. the choice u(x, y) = u(x), u strictly 
positive and in L x, fits well into our context. Then U is compact and irreducible, 
independent of the choice of m and therefore, Theorem 3.5 applies. Kingman 
discovered a condition for the existence of a unique equilibrium in his model, 
that corresponds precisely to our condition in the example before Theorem 
3.5 (which is of the house-of-cards type). 

Instead of M = N  one can also take M = N  k or M = I  k, I some interval. 
This means that many characters can be considered and the scale of measure- 
ment can be chosen arbitrarily. The latter is of importance, if each x e M  is 
considered as a vector of measurements of quantitative characters. Typical 
choices of m and u in case M = I R  k, that satisfy all our assumptions, are m = 
-x~A x, A a positive definit k x k matrix, u (x, y )=  u ( x - y )  with u ~ D and positive 
and strictly positive near 0. If M is compact, then for bounded u (U4) is a 
consequence of (T2). Hence, the only additional assumptions one has to impose 
are irreducibility of U and a condition like that in Proposition 3.4. Applications 
of the present results to the problem of the maintenance of genetic variability 
are given in [2]. 

Acknowledgements. I thank J. Swetina and T. Hoffmann Ostenhof for several stimulating discussions and 
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