
Math. Z. 197, 177-199 (1988) Mathematische 
Zeitschrift 

�9 Springer-Verlag 1988 

On Fiber Products of Rational Elliptic Surfaces 
with Section 

Chad Schoen 
Department of Mathematics, Harvard University, Cambridge MA 02138, USA 

O. Introduction 

Recently, simply connected, three dimensional, projective varieties with trivial 
canonical bundle have attracted the interest of physicists working on superstririg 
theory and algebraic geometers working on the classification of threefolds and 
on algebraic cycles. The purpose of this note is to popularize a certain class 
of such 3-folds which is large enough to exhibit many of the phenomena which 
one wants to study, yet is special enough to be quite tractable. The members 
of this class are fiber products of relatively minimal, rational, elliptic surfaces 
with section. A nice attribute of these 3-folds is that many questions about 
them reduce to questions concerning the well studied surfaces from which they 
are built. To illustrate the point we shall take up the following three issues: 

(i) How does one construct rigid 3-folds of Kodeira dimension zero ? 
(ii) What integers arise as topological Euler characteristic of 3-folds with 

K = 0 ?  
(iii) Are there examples of birational automorphisms of projective 3-folds 

with K = 0 which are not biregular? 

In general very little is known concerning (i), although two examples have 
been described [B1, w IS1]. However, when attention is restricted to resolu- 
tions of fiber products of rational elliptic surfaces with section we show in 
w that examples are easily produced and that subject to a mild restriction 
all such varieties with no non-trivial, first order deformations fit into four distinct 
classes. 

It has been conjectured by Bogomolov that the third question should have 
a negative answer [Bo]. Contrary to the conjecture, investigation of the second 
question naturally leads to examples of (iii) (see (6.2)). The motivation for (ii) 
comes in part from questions raised by physicists working on superstring theory 
(see [SW] and references therein). They would like to find examples of compact, 
Kaehler threefolds with zero Ricci curvature and non-zero Euler characteristic 
of small absolute value, preferably 6. It follows from a fundamental theorem 
[B2] that the universal cover of such a manifold is a projective variety with 
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trivial canonical bundle. Conversely, by Yau's proof of the Calabi conjecture 
[Y1], any quotient of a projective variety with trivial canonical class by the 
free action of a finite group admits a Kaehler metric with zero Ricci curvature. 

The bulk of this paper is devoted to showing that considerations concerning 
fiber products of rational elliptic surfaces with section allow one to construct 
many projective, K = 0 ,  3-folds having positive Euler charactgeristics. In fact 
we use two elementary constructions to produce examples having any desired 
even Euler characteristic between - 8  and 92. Generally it has been difficult 
to find examples with a predetermined Euler characteristic in this range. In 
particular Euler number 6 does not seem to have been previously achieved, 
while only three Ricci flat Kaehler threefolds with Euler characteristic - 6  have 
been found [Y2, appendix]. For  other approaches to the problem of constructing 
compact, Kaehler 3-folds with zero Ricci curvature and Euler characteristic 
of small absolute value the reader is referred to [Hi], [HW],  [Y2], [SW], [B2, 
w [Hu],  [AGKM] .  

Several individuals have indicated in their comments on the initial version 
of this paper that physicists would be most interested in a K = 0  projective 
3-fold with Euler characteristic _+ 6 having either no rational curves or, what 
seems more accessible, a finite, non-trivial fundamental group [Y2, appendix]. 
This has motivated me to add a final section in which certain fixed point free 
group actions on special fiber products of relatively minimal, rational, elliptic 
surfaces with section are introduced. There is no good general technique for 
isolating from a family of varieties those which admit a fixed point free 
automorphism. The technique employed here is to use the theory of principal 
homogeneous spaces for elliptic curves over function fields to explicitly construct 
the quotients. All the elliptic surfaces which are involved in this somewhat 
delicate procedure are simply connected, but their desingularized fiber products 
are not. Unfortunately for the physicists, the projective varieties with Euler 
characteristic _< 6 which arise from these considerations have Euler characteristic 
zero. 

The fiber products with which we will deal tend to have ordinary double 
point singularities. We shall need to take small resolutions. Basic facts concerning 
these are collected in w 1. Frequently it is difficult to determine if a small resolu- 
tion of a projective variety is projective (or Kaehler). This is an important  consid- 
eration, since the additional complex manifolds which turn up when we ignore 
it are likely to be of less interest to both physicists and algebraic geometers. 
As explained in w most of these difficulties are easily dealt with in the case 
of fiber products of elliptic surfaces. Those elliptic surfaces which form the build- 
ing blocks for our constructions are described in w and the threefolds with 
desired Euler characteristics are produced in w 5 and w Finally, w 8 is devoted 
to interesting variations of Hodge structure which come from certain families 
of fiber products of rational elliptic surfaces with section. 

Unless the contrary is specifically indicated, the base field for all algebraic 
varieties in this paper is the complex numbers. 

I am grateful to F. Hirzebruch and J. Werner for correspondence which stimulated my interest 
in this field, and to Hirzebruch for many informative conversations. I wish to thank J. Wahl  and 
B. Harbourne  for explaining several basic strategies for constructing elliptic surfaces. Some of these 
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W. Lang, D. Morrison, R. Miranda, and J. Werner for numerous helpful comments and to W. 
McCallum for assistance in constructing the examples in w 7. Support by an NSF Postdoctoral Fellow- 
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1. Preliminaries Concerning Small Resolutions 

This p a r a g r a p h  summar izes  wi thou t  p r o o f  p r e l im ina ry  ma te r i a l  on smal l  resolu-  
t ion of  o r d i n a r y  doub le  po in t s  on  three d imens iona l ,  complex  ana ly t ic  spaces. 
A doub le  point ,  w, on  a threefo ld  hypersurface ,  X, is said to be o r d i n a r y  (or 
a node)  if its p ro jec t iv ized  t angen t  cone  is i s o m o r p h i c  to p1 x p1. Equiva len t ly ,  
there  a re  ana ly t ic  coo rd ina t e s  (x,y,u, v) such tha t  X is loca l ly  def ined by  
x y - u v = O  (cf. [M,  p. 7]). I t  is a lways  poss ib le  to find a s m o o t h  surface, S, 
on  some n e i g h b o r h o o d  X 0 of  w which  passes  t h r o u g h  w. G iven  such a surface, 
the t angen t  p lane  TwS is the  cone over  a l ine in one of  the two rul ings on 
p1 x p1. By a l inear  change  of  var iables  we m a y  assume tha t  x = u = 0  is the 
equa t ion  of  TwS and  tha t  x ' = x + h . o . t ,  and  u'=u+h.o.t, genera te  the  ideal  of  
S in the local  r ing at  w. Since S is con ta ined  in X0,  there  exist funct ions  y '  
and  v' such tha t  x y - u v = x ' y ' - u ' v ' .  F u r t h e r m o r e ,  x',y', u', v' is a new sys tem 
of  coord ina tes ,  so after a local  ana ly t ic  change  of  coo rd ina t e s  we m a y  ac tua l ly  
assume tha t  S coincides  wi th  its t angen t  space. Observe  tha t  the m a p  (x ' :  u'): 
X o -  w ~ p1 is defined after sh r ink ing  X o if necessary.  The  closure  of the g r a p h  
is a comp lex  submani fo ld ,  Jfo,  of  Xo x p1 cal led the b low up of  Xo a long  S. 
P ro jec t ion  o f  J~o on to  the  first fac tor  is an  i s o m o r p h i s m  a b o v e  X o - w .  The  
fiber over  w is i s o m o r p h i c  to p1. G lu ing  X - w  and  J?o a long  X o - w  gives 
the des i red  smal l  r e so lu t ion  of  the o r d i n a r y  doub le  po in t  on X. If  S is rep laced  
by  any  s m o o t h  surface S' whose  t angen t  space gives a line in the same rul ing 
of  the pro jec t iv ized  t angen t  cone then  the b low  ups  of  Xo a long  S and  S' are  
i somorph ic .  H o w e v e r  if the  rul ings are  different, the  two b low ups are  no t  
i s o m o r p h i c  over  Xo.  F ina l ly  suppose  tha t  J(0 is b lown  up a long  the excep t iona l  
P1. In  this case one checks easi ly tha t  the resul t ing man i fo ld  is i s o m o r p h i c  
to the usual  b low  up  of  X 0 at  the po in t  w. 

I f  X is a pro jec t ive  threefo ld  wi th  only  o r d i n a r y  doub le  po in t  s ingulari t ies ,  
then  by  pe r fo rming  the a b o v e  process  in an ana ly t ic  n e i g h b o r h o o d  of  each 
node  one  arr ives  at  a complex  man i fo ld  3~. The  canon ica l  sheaf  of  J~ a n d  the 
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pullback of the dualizing sheaf of X [-H, III.7] are invertible sheaves on )? 
which are isomorphic outside the codimension two exceptional locus. Hence 
they are isomorphic. The topological Euler characteristics are related by e()() 
= e(X)  + ~ (nodes). 

The question of whether J( admits a Kaehler metric is subtle and in practice 
fi'equently difficult to decide. When we wish to show that )~ does not admit 
a Kaehler metric, we shall attempt to find an effective curve supported on the 
fibers above the nodes which is orthogonal to H2(X, R). This suffices since 
no effective curve could be orthogonal to the Kaehler class. Should we wish 
to show that )~ is projective, and hence Kaehler, we shall attempt to realize 
)f  as the result of successively blowing up a sequence of closed, non-singular, 
codimension one algebraic subvarieties, at least one of which passes through 
any given node. This suffices since the blow up of a projective variety along 
a closed subvariety is again projective [H, II.7]. These criteria turn out to be 
admirably suited for our purposes. A more systematic discussion of the projecti- 
vity, or equivalently, the Kaehlerness of Jf will appear in [W]. 

2. Fiber products of Elliptic Surfaces 

In this section we describe the threefolds to be investigated and relate them 
to special hypersurfaces in p 2 x  pz. Let r: y ~ p 1  and r': Y'--,P1 denote two 
relatively minimal, rational, elliptic surfaces with sections. Let x = ( x o ,  x l ,  x2) 
denote homogenous coordinates on p2. Then there exist homogeneous cubic 
polynomials a(x) and b(x) without common factors such that Y is the blow 
up of p2 at the base locus of the pencil associated to the rational map r (x )= (a (x): 
b(x)) IMP, Prop. 6.11. Write S (resp. S') for the images of the singular fibers 
of Y (resp. Y') in p1. It is immediate that the fiber product p: W= Y x 1,1 Y'--* p1 
is non-singular except at points in the fibers over S"=Sc~S ' .  In order that 
the singularities of W be no worse than ordinary double points, we shall assume 
until w that the singular fibers of r and r' above the points in S" are either 
irreducible nodal rational curves or cycles of smooth rational curves. In the 
notation of Kodaira [BPV, V.7] such fibers are of type I b, where b > 0 denotes 
the number of irreducible components. Such fibers will also be called "semi- 
stable". Now the singularities of W occur precisely at the points (q, q') in r-~ (s) 
x r ' -  t (s) where both q and q' are singular points in the fibers of the correspond- 

ing elliptic surfaces. A local computation shows that the singularities are indeed 
ordinary double points. 

By choosing homogeneous cubics a'(x') and b'(x') which give the pencil on 
p2 corresponding to r', one may explicitly write the equation of a bicubic hyper- 
surface in p2 x p2 which is birational to W as a(x) b ' ( x ' ) -a ' ( x ' )  b(x)=0.  Such 
determinantal hypersurfaces form a very special subclass of bicubics in p2 x pZ. 
For  a general choice of cubics a, b, a', b', the threefold has 81 nodes at the points 
(x, x') where a, b, a', and b' vanish simultaneously. The inverse image of these 
nodes in W give 81 sections of the morphism p. 

The dualizing sheaf of W is most readily computed by regarding W as the 
hypersurface in Yx Y' obtained by pulling back the diagonal in P1 x P 1 via 
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the map r x r'. For  a relatively minimal, regular elliptic surface, r: Y~P~,  the 
canonical sheaf is given by 

coy ~ r* (gp, (pg( Y ) - -  t)@ (s (~(m,--  i) F~) 
i 

where the second term is the contribution of the multiple fibers [BPV, V12.1 
and 12.2]. An easy computation using the adjunction formula reveals that the 
dualizing sheaf co w is trivial exactly when p g ( Y ) = p g ( Y ' ) = O  and there are no 
multiple fibers. Of course these conditions are fulfilled when both Y and Y'  
are rational and have sections. However it follows from Castelnuovo's rationality 
criterion [BPV, VI2.1] and the vanishing of the Tate-Shafarevich group for 
rational elliptic surfaces with section [-Sa, Thm. 3] or [La] that this is the only 
case when the conditions for triviality of cow are fulfilled. In this case any small 
resolution has trivial canonical bundle (w 1). In any other case involving fiber 
products of regular elliptic surfaces the Kodaira  dimension of a non-singular 
model of Wis one provided that Whas at worst ordinary double point singulari- 
ties (or more generally canonical singularities). 

Since the topological Euler characteristic of a smooth fiber of p is zero, 
the Euler characteristic, e(W),  is the sum of the Euler characteristics of the 
singular fibers. For  a singular fiber of type Iv x Ib, the Euler characteristic is 
b x b' by the Kuenneth formula. Note that for the fiber over any s not in 
S", e ( p - l ( s ) ) = O  since one factor in the product  is an elliptic curve. It follows 
that e (W)  is equal to the number of nodes. Also if 13/is any small resolution 
of Wthe  Euler characteristic is 2( # nodes of W). 

(2.1) Remark.  Let r: y_+p1 and r': Y' ~ p 1  denote rational (or more generally 
simply connected) elliptic surfaces with sections. The fiber product W may be 
seen to be simply connected by arguing as in [$2, Lemma 1.1]. If W has at 
worst ordinary double point singularities, then a local computation shows that 
any small resolution lff is also simply connected. 

All elliptic surfaces in the remainder of this paper are assumed to be rational 
and, until w 9, to have a section. 

3. Small Resolution of Fiber Products 

In this paragraph we show that it is generally easy to determine when W has 
or does not have a small projectile resolution. 

(3.1) Lemma. ( i ) I f  for  all s in S", neither r-~(s)  nor r ' - l ( s )  is irreducible, then 
W has a small projective resolution. 

(ii) I f  r = r', W has a small projective resolution. 
(iii) I f  S does not equal S', and i f  for  some s in S" either r -  1 (s) or r ' -  1 (s) 

is irreducible, then W has no small projective resolution. 

Proo f  Recall that each node of W lies in a fiber over some s in S". In case 
(i), every component  of every such fiber is a smooth surface, which is in fact 
isomorphic to p1 x p1. Every node of W lies on such a Weil divisor. A small 
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projective resolution is obtained by successively blowing up any sequence of 
these Weil divisors which contains all nodes (w 1). In particular, if S" is not 
empty, W has several non-isomorphic projective resolutions. By the considera- 
tions of (i), case (ii) will be settled if nodes in fibers over those points s for 
which r -  1 (s) is irreducible, can be resolved. But these singularities are all resolved 
by blowing up the diagonal. 

To prove (iii) suppose that g: l?f~ W is small projective resolution and 
that F = g - 1  (w) for a node, w, in the fiber over s. A contradiction will be estab- 
lished by showing that no divisor on ffVmeets F. Write q for the generic point 
of p1 (in the sense of schemes [HI) and Pic for the group of Cartier divisors 
modulo rational equivalence [H, II.6]. The first hypothesis implies that the 
generic fibers of r and r' are not isogenous. In particular Pic(p 107)) 
-~Pic(r-l(q))xPic(r '-l(q)).  Since Pic(Y) surjects to Pic(r-l(q)) and the same 
holds for Pic(Y'), it follows that the pullback of Pic(W) in Pic(~)  surjects onto 
the Picard group of the generic fiber, Pic(W,). The second hypothesis implies 
that every component of the fiber p-  ~ (s) is a Cartier divisor on W. From the 
exact Sequence 

Free abelian group ] 

(3.2) on components of sing. ~ ~ Pic (17V) --+ Pic (W,) ~ 0 

fibers of W. ) 

we see that Pic(W) is generated by the pullback of Pic(W) and components 
of fibers other than those over s. Of course the pullback of Pic(W) is orthogonal 
to F. Thus Pic(l?V) is orthogonal to F which contradicts the projectivity of 

I have learned from Hirzebruch that many constructions of threefolds in 
p4 with very large numbers of nodes involve fiber products of the affine plane 
with itself over the affine line [HW, IV]. The reader may answer positively 
a question of Hirzebruch [Hi] by applying the ideas of (3.1 (i and ii)) and some 
evident symmetries to produce a small projective resolution of Hirzebruch's 
remarkable quintic threefold with 126 nodes. J. Werner has independently used- 
quite similar considerations to produce small projective resolutions of certain 
other nodal threefolds described in [HW]. 

4. Construction of Certain Rational Elliptic Surfaces 

In order to use (3.1(i, ii)) to construct examples of projective threefolds with 
trivial canonical sheaf and a diversity of Euler characteristics, it is necessary 
to have examples of rational elliptic surfaces with section with various sorts 
of singular fibers. First of all we shall make use of certain elliptic modular 
surfaces associated to torsion free congruence subgroups of SLz(Z ). Each of 
these has four singular fibers, all of which are of type Ib for various b. Several 
people have pointed out to me that this is actually a complete list of rational 
elliptic surfaces with exactly four semi-stable singular fibers (see Beauville [B3] 
for the proof and further discussion). For each of these surfaces the following 
table gives the level of the associated congruence subgroup and the number 
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Table 1. Certain rational elliptic modular surfaces 

Level Congruence Number of 
subgroup components in 

singular fibers 

3 F(3) 3, 3, 3, 3 4 
4 rd4) c~ r(2) 4 ,4,2,2 0 
5 F~ (5) 5, 5, 1, 1 4 
6 F~(6) 6,3,2, 1 2 
8 F0(8) ~ Fx(4) S, 2, 1, 1 2 
9 F0(9) ~ F~ (3) 9, 1, 1, 1 4 

of components in each of the four singular fibers as well as the invariant n 
to be introduced in w 6. 

For  most of our examples we shall use the following lemma, whose proof 
depends on the existence of the rational, elliptic modular surface of level 9. 

(4.1) Lemma. Given a set of  at least four positive integers {bl, ..., b j} satisfying 

(i) b 1 = b 2 = b 3 = 1, 
(ii) b 1 + ... + b j =  12 

there exists a rational elliptic surface with section having exactly the singular 
f ibers Ib . . . . .  , Ibj" 

Proof  Let k =  e {bi: bi> 1} and l = j - k - 3 .  An elliptic surface with section and 
twelve 11 singularities is given by a Lefschetz pencil of cubics on p2. Thus 
we may assume k>0 .  By Kodaira 's theory [BPV, V.11.1] it suffices to produce 
a degree twelve holomorphic map J:  p1 ~ p1 with the following ramification: 

j -  1 (0) = 4 points, each with ramification index 3, 

j -  1 (1) = 6 points, each with ramification index 2, 

(4.2) j -  1 (oe) = j  points with ramification indices bl . . . .  , b j, 

j -  1 (oh) has 11 points for 1 _< i _< k - 1, 

j - 1 (fli) has 11 points for 1 _< i_< l, 

where {cq, ..., ek- 1, ill, --., flz, 0, 1} are pairwise distinct complex numbers. Note 
that by the Hurwitz formula, 

2(g(P1))-  2__> 12(--2) +4 (2 )+  6(1) + ~ ( b i -  1 ) + k -  1 + l  

= - l O + 1 2 - j + k - l  + l = - 2  

J can have no further ramification. In the language of Kodaira, J will be the 
functional invariant of an elliptic surface. In order to completely determine 
the associated rational elliptic surface with section, one must also specify one 
of finitely many compatible homological invariants. With J as above there is 
exactly one such which gives only type I b singular fibers in the corresponding 
elliptic surface [BPV, V.11 and V.10, Table 6]. 
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Choose  loops  5o,61,~0,6~ l < i < k - 1 ,  ~ ,  l<i<_l a round  0, 1, or, el l=<i 
< k - l ,  fli l < i < l  which generate  ~ 1 ( P 1 - { 0 ,  1, ov, e 1 . . . . .  ek-1,/31 . . . . .  flZ},*) 
subject only to the relat ion 

(4.3) C5o616t~ ~ ... 6p, c~o~ 6~ 1 ... (5 . . . .  = 1. 

By cover ing space theory  and  the R i e m a n n  Existence T h e o r e m  [F, Prop.  1.2], 
to const ruct  J it suffices to p roduce  a h o m o m o r p h i s m  

(4.4) )(: ~z l (P1-{0 ,  1, oo, ~1, ... ,  c~k_ 1, fil . . . .  , flz}, *) ~ 5P12 

whose image is a transit ive subg roup  of the pe rmuta t ions  on twelve elements  
and which also satisfies 

a) Z(6~~ )~(5~m) are t ransposi t ions  for all n and  m. 
b) Z(6o) is conjugate  to (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12), 
c) X(61)is conjugate  to (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12), 
d) )~(6oo) is a p roduc t  o f j  disjoint cycles of lengths bl ,  . . . ,  bj. 

Example. j = 4 ,  b4=9 .  Then  k = l  and  l = 0 .  Then  a h o m o m o r p h i s m  
Zo: g l ( P a =  {0, 1, oo}, . ) -+  ~c12 having the desired proper t ies  exists. In  fact the 
m a p  J :  p1 ___, p1 associated to Zo is the J - func t ion  of the unique ra t ional  elliptic 
m o d u l a r  surface of level 9. 

The  h o m o m o r p h i s m  )~o of the example  will be used to cons t ruc t  )~ in the 
general  case. Set )((6o)=)(o(6o) and Z ( 6 0 = Z o ( 5 0 .  The  p r o b l e m  now is to find 
t ransposi t ions  )((6~1 ) . . . .  ,7~(6~k_ 1), Z(5~,), . . . ,  Z(Sp,) and  a product ,  )((6~), o f j  dis- 
jo int  cycles of  lengths bl ,  . . . ,  b j, such tha t  

(4.5) Z(5r Z(5~) Z(6~) )~(6~,) ... Z(6,k_ , )=  )~o (6~o). 

Because ~1 ( p l _  {0, 1, cq . . . . .  ek-1 ,  fll . . . . .  /31} ,)  is a free g roup  m o d u l o  the one 
relat ion (4.3), such a Z would  extend uniquely to a h o m o m o r p h i s m  to 5Pt2 . 
F u r t h e r m o r e  the image  would  be transitive, since it would  conta in  the image  
of Zo- 

To  const ruct  pe rmuta t ions  which satisfy (4.5) we are free to assume bj 
> b j _ l > . . . _ _ > b j _ k _ l > l .  F o r  l < i _ < k ,  set p~= ~ b j _ , + l .  Observe  tha t  9 
= Pk + l and  p~ > p~ _ 1 + 1. Set 1 ~, ~ 

to=(1, . . . ,  PO(Pl + 1, . . . ,  P2) .-. (Pk-1 + 1 . . . . .  Pk) 

and note  tha t  the following identi ty a m o n g  cycles holds 

tc(p~, Pl + 1)(p2, P2 + 1) ... (Pk- ~, Pk- 1 + 1) 

= (1 ,2 ,  . . . ,  p l , p l + 2  . . . .  , p 2 , p 2 + 2  . . . .  , . .-, Pk 1, 

p k - l + 2  . . . .  ,Pk,Pk-I+I,  pk-2+ 1, . . . , P l + I )  �9 

Left mul t ip l ica t ion by (Pl + 1, 9)(p1 + 1, Pk + l - -  1) ... (p~ + 1, Pk + 2)(p~ + 1, Pk + 1) 
gives a 9-cycle, v. Choose  cre 5~ z so that  ~wr  -1 =Zo(5~).  Then  set )((6~) = crtc~ -1,  
Z ( 6 ~ , ) = a ( p i , p ~ + l ) ~  -1, l < i _ < k - 1 ;  Z(6~)=~(pl + l, pk+i) a -1 l <_i<l. N o w  
(4.5) is satisfied and  the l e m m a  is proved.  
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5. Euler Characteristics 

Using (3.1(i)) and rational elliptic surfaces constructed in (4.1) it is a simple 
matter to produce projective threefolds with trivial canonical sheaf having any 
even Euler characteristic greater than or equal to zero and less than 100 except 
2, 4, 6, 10, 14, 22, 88, 94. 

To illustrate the point we construct an example with Euler characteristic 
96. According to (4.1) there exists a rational elliptic surface, Y,, with section 
and with one I6, one I3, and three I1 singular fibers. Similarly, there exists 
Y' with one 17, one I2, and three I1 singular fibers. By choosing an appropriate 
isomorphism between the base curves we may arrange that the I6 and 17 fibers 
map to the same point of p1 and that the I3 and I2 fibers similarly map to 
one point. There is still enough freedom in the choice of isomorphism to insure 
that S" consists only of these two points. The fiber product, W, has 42 + 6 =48 
nodes. Any small resolution has the desired Euler characteristic, 96, and some 
small resolutions are projective (3.1(i)). 

The Euler characteristic 88 can be achieved by taking a projective small 
resolution (3.1(ii)) of the self-fiber product  of Y where Y has one I6, one I2, 
and four 11 singular fibers. 

Take Y= Y' to be the modular surface of level 9 in Table 1. The resulting 
fiber product has a small projective resolution with Euler characteristic 168. 
Because every semi-stable elliptic surface has at least four singular fibers IMP],  
this is the largest Euler characteristic which can be obtained from this construc- 
tion. It appears to be the largest known Euler characteristic for any 3-fold 
with trivial canonical bundle. However, the set of such Euler characteristics 
is not even known to be bounded. 

6. Families of Kummer Surfaces 

It does not seem possible to obtain projective varieties with non-zero Euler 
characteristic less than eight by taking small resolutions of fiber products of 
rational elliptic surfaces with section. In order to reach smaller Euler characteris- 
tics we consider the family of Kummer  surfaces associated to the fiber products. 
The inversion homomorphism in the generic fiber of r (resp. r') extends uniquely 
to a biregular involution of Y (resp. Y'). This gives an involution t of W which 
we wish to lift to a small resolution. We shall assume either that r = r' or that 
for all s in S" neither r -1  (s) nor r -  1 (s) is irreducible. Then the considerations 
of w show that small projective resolutions, W, of W exist. Extra care must 
be taken in the choice of resolution to guarantee that the birational isomorphism 
1 is biregular on W. For  s in S" write b(s), or just b if confusion is unlikely, 
for the number of irreducible components of r- l (s) .  Label these components 
Ao . . . .  , Ab-~ with subscripts mod b so that t A _ , = A , .  The same notation with 
a prime added will be used for the components of the fibers of r'. Suppose 
that W" is a projective, partial, small resolution of W to which t lifts. Let 
D denote the strict transform of some smooth component of a fiber p - l ( s )  
with s in S". It is important  to know when the variety obtained from W" 
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by first blowing up the Weil divisor D and then blowing up the strict transform 
of ~D is isomorphic to the variety gotten by first blowing up W" along tD 
then blowing up the strict transform of D. Of course if D does not meet the 
singular locus of W" then neither does 1D. In this case both D and tD are 
Cartier divisors and blowing up has no effect [H, II.7.14]. If D and ~D meet 
only at nodes of W" then their tangent spaces give planes in the same rulings 
of the tangent cones at each of these nodes. In this case the order in which 
the blow ups are taken does not affect the isomorphism class of the resulting 
variety (w 1). The only remaining possibility is that the intersection of D and 
ID contains a p1 which passes through a node of W". In this case the tangent 
spaces of the two divisors give planes in different rulings of the tangent cone 
and the varieties obtained by blowing up D and tD in different orders are 
not isomorphic over W. 

(6.1) Lemma.  Let W be as above. Suppose in addition that for each s in S" 
for which b(s )=2  (resp. b ' (s)=2) then b'(s) (resp. b(s)) is even. Then there exists 
a small projective resolution 17V of W to which z lifts. 

Proof First of all resolve the singularities in the fibers where both b(s) and 
b'(s) are at least two. If b(s)=b'(s)=2, then all four components  of p- l ( s )  are 
stable under the involution and blowing up any one component  resolves all 
singularities in the fiber. If either b(s) or b ' ( s )>2  consider a sequence 
D 1 , IO 1, 02,  ID2, . . . ,  D,,, 1Din, where each Dk is a component  in the fiber p -1  (s). 
When both b(s) and b ' (s )>2,  choose each Dk of the form A , x  A~, so that 2n 
and 2n' are not zero and every node of p -  ~ (s) is contained in some Dk or 
~Dk. From the considerations above, if W" is obtained from W by blowing 
up first D~, then the strict transform of lD1, and so on through the whole 
sequence, then z lifts to W" and all nodes in the fiber are resolved. When b ( s )=2  
and b'(s) is even and greater than two, choose the Dk in the above sequence 
in the form A 0 x A',, with 2n' not 0. Again z lifts to the partial resolution W". 
I f  for some s in S" b(s)= 1 or b'(s)= 1, then by assumption r =  r'. In this case 
the final step in the resolution process is to blow up the diagonal. This resolves 
all remaining nodes and it is evident that the involution lifts to the resulting 
small projective resolution. 

(6.2) Remark.  Contrary to a conjecture of Bogomolov [Bo] (see also [B1, 
w for a counterexample to another  aspect of this conjecture) which asserts 
that birational automorphisms of varieties with trivial canonical sheaf are biregu- 
lar, it is possible in the present situation to construct small projective resolutions 
to which the involution does not lift. For  example suppose that S" consists 
of a single point s with b (s )=2  and b ' (s)=3.  Then a non-singular 13z may be 
constructed by first blowing up A0 x A~ followed by the strict transform of 
Ao x A~. The involution clearly does not lift to W. In fact when S" = {s}, b (s) = 2, 
and b ' (s)= 1 mod  2 it is not posible to construct a small projective resolution 
to which inversion lifts. 

A counter-example of a different sort is obtained by considering the case 
where W is a self-fiber product  of Y (i.e. r=r')  and Y has a singular fiber of 
type I , ,  n >  1. Let Y e c  Y denote the complement  of the singular points in 
the fibers of r. Then Y~ and hence W ~ = Y# x ~,~ Y~ is a group scheme over 
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pa. There is an obvious injective homomorphism 7: G L 2 ( Z ) ~ A u t ( W e / P 1 )  �9 
Any group scheme automorphism raised to an appropriate power will stabilize 
the connected component  of the identity in every fiber of P[w~. For s6S, the 
connected component of (p[w.)-a(s) is C* x C*. An automorphism (ta,t2) 

(t~ltb,~ a --+ tl t2) extends to a rational map p a x  pa ~ p~ x pa which collapses some 
divisor t~=0 or t i= oe unless one member of each pair {a, b}, {c,d} is zero 

- in particular unless the automorphism is of finite order. It follows that the 
subgroup of ira(7) which extends to biregular automorphisms of W (or [3z or 
1711) is finite. 

Suppose that !3z is a small projective resolution of some W satisfying the 
hypotheses of (3.1) and that , is biregular on 131.. In order to show that the 
induced action on global holomorphic 3-forms is trivial, it suffices by Serre 
duality to investigate the action on H3(W, (9). Since inversion acts by - I  on 
R a r ,  (9 = (9~,(-- 1), the action on H3 (IV,, (9) = H 3 (W, (9) = H a (P~, R2p, (9) 
= H  a (p1, (R a r ,  (9) | is trivial. 

The fixed locus of inversion on IVis a smooth curve which will be denoted, 
B. Write W* for the blow up of W along B. The quotient of W* by the involution 
is a smooth variety V *. Standard formulas which compute the canonical sheaf 
of blow ups and branched covers show that V* has trivial canonical sheaf. 
It is an easy exercise to compute the topological Euler characteristic of V*. 
One finds e(V*) = (e(W) + 3 e(B))/2. 

It remains to compute e(B). Write I for the identity section of Y and ( I+  C) 
for the smooth curve on Y fixed by inversion. The even integer n = 6 - e ( C )  
ranges from 0, when all the two torsion in the generic fiber is rational, to 
12. If the only singular fibers are of type Ib, then n is the number of fibers 
with b odd, as one sees by the Hurwitz formula. Suppose that for each s in 
S", one of the two numbers b (s) or b'(s) is even. Then the fiber product (I + C) 
x p l ( I + C )  is non-singular, disjoint from the singularities of W, and may be 

identified with B. In general let k denote the number of s in S" for which 
both b(s) and b'(s) are odd. In this case B corresponds to the strict transform 
of (I+C)•  in ~. By applying the Hurwitz formula to B viewed in 
the obvious way as a branched cover of p1 one finds e(B)= [-32-4(n + n')+ 2 k]. 
This proves 

(6.3) Lemma. Let W be a fiber product of rational elliptic surfaces with section 
satisfying the hypotheses of (3.1). Then the topological Euler characteristic of 
any variety V* constructed as above is given by 

(6.4) e(V*)=3(16-2(n+n')+k)+ y" b(s) b'(s). 
s E S  p, 

The following table illustrates possible ways of choosing elliptic surfaces 
r: y_~p1 and r': y , ~ p a  so that the projective variety V* arising from the 
above construction has the specified Euler characteristic. As an example consider 
the fourth line which asserts that all Euler characteristics congruent to 6 rood 12 
between - 4 2  and 30 are achievable by the indicated construction. Specifically, 
r and r' are to be chosen so that S" consists of a single point, sa, and r a(sa) 
is a type 13 fiber while r ' -a  (sO is a type 15 fiber. There is still some freedom 
in choosing the other singular fibers of r and r' and hence in choosing the 
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Table 2. Euler characteristics 

C. Schoen 

e(V*) Range *S" b(sl) b(s2) b(s3) b(s4) Range of even h 
of h integers 

n n' 

r t+n '  
12h -8_<h_<4 0 [0, 12] [0, 12] h = 4 - - ~  

n + n '  
2 + 1 2 h  0_<h_<3 1 5 7 [4,8] [4,6] h = 7 - ~  

nq-n r 
4 +  12h --6<_h_<4 1 2 2 [0, 10] [0, 10] h = 4 - ~  

n - -n  ~ 
6 +  12h -4_<h-<2  1 3 5 [2, 10] I-4, 8] h = 5 - ~  

n -}- ~/r 
8 + 1 2 h  -5_<h~<4 1 2 4 E0, 10J [0,8] h = 4 - - ~  

/7-}-/'/' 
10+12h  -2<_h_<2 2 5 3 2 2 [4,6] [2,8] h = 5 - - -  

2 

invariants n and n'. In fact n may take any even value from 2 through 10, 
while n' may be any of the numbers 4, 6, or 8. This is easy to see using w 
For  instance, if r corresponds to the modular surface of level 6 in Table 1, 
then n=2. If r' has seven 11 fibers, which is possible by (4.1), then n '=8 .  In 
this case h = 0  and the resulting threefold V* has Euler characteristic 6. Of 
course, many other combinations also yield e(V*)=6.  The other entries in the 
table are constructed in an equally straightforward manner using only the meth- 
ods of w to produce the necessary elliptic surfaces and the considerations of 
w and w to guarantee that V* is projective. 

The largest value that e(V*) can take is 100. This occurs when r=r'  is 
the elliptic modular surface of level 8 from Table 1. 

(6.5) Remark. The threefolds V* are simply connected. The argument is similar 
to the proof  of [$2, Lemma 1.1] but easier since the general fiber is simply 
connected. The section on the level of fundamental groups which is necessary 
for this argument is supplied by the Pl-bundle in V* which corresponds to 
the identity section of 1~. 

7. Rigid Varieties 

As is well known, a complex manifold X has no infinitesimal deformations 
exactly when H 1 (X, J-)--0,  where Y- denotes the sheaf of germs of holomorphic 
vector fields. The following proposition indicates when this phenomenon occurs 
for blow ups of the nodal fiber products which we have been considering. 

(7.1) Proposition. Let r: Y-~ p l  and r'" Y' -~ p1 denote relatively minimal rational 
elliptic surfaces with section. Suppose that the fibers of r and r' above all points 
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in S" are semi-stable. Then the fiber product Yxp1Y '  has only ordinary double 
point singularities. The projective variety, V/V,, obtained by blowing up the nodes 
has no infinitesimal deformations, exactly when all fibers o f t  and r' are semi-stable 
and one is in one of the following four cases, each of which actually occurs: 

(i) Y and Y' appear in Table 1 and are isogenous. In particular S = S'= S" 
has 4 elements. 

(ii) Y and Y' appear in Table 1, each has at least one 11 fiber, and the map 
r' has been modified by an automorphism of p1 so that # (S")=3. Furthermore 
the singular fibers of r and r' which do not lie above points of S" are of type 
Ia. 

(iii) Y and Y' are not isogenous and S = S '= S" has 5 elements. 
(iv) Y appears in Table 1, S = S", ~ (S') = 5, and the singular fiber of  r' which 

does not map to S" has type I~. 

Proof It is convenient to replace ITv by any small resolution ffV of Y xp Y'. It 
is not difficult to show HI(17V,,~--w)_~H~(I~,,~--0r For this we write E for the 
exceptional curve in W,, f :  17V~ W for the blow up centered at E, and Q = f - 1  (E). 
As the normal bundle of each component of E is (9p1(-l)O(gp,(--l),  it suffices 
to show 

(1) Raf ,  J~v~-O, 

(2) There is an exact sequence 0 ~ f ,  Yw ~ ~--w ~ ~Are/~r ~ 0. 

The first assertion reduces to an exercise in Grothendieck's Theorem on formal 
functions [H, III.11] and the cohomology of various invertible sheaves on Q. 
The exact sequence (2) may be constructed from the standard exact sequence 

0 ~ f *  f2r162 ~ f2w ~ ~2w/w ~ 0 

in three steps. First apply X ~ r  ( , (9r162 Then observe that f2w/~-~ f2om , whence 
E~vg~(f2~/w, (gw)~-~m| Now apply f , ,  using the exact sequence for 
the relative tangent bundle of the projective bundle, [F2, Appendix B, 5.8], 

Q ~- Proj (Sym WE~V) 

to compute f ,  (~/E| --- JV~/W. 
If X is a threefold with trivial canonical bundle, the vanishing of H 1 (X, J-) 

is equivalent to H2(X, f2x)=0 by Serre duality. Suppose that the cohomology 
of X has a Hodge decomposition (e.g. X is a Moishezon manifold [U]) and 
that h I (X, (9)= h 2 (X, (9)= 0. Then we may write 

(7.2) e (X) = 2 h 1, 1 ( X )  - -  2 h 1,2 (X). 

This follows from e (X) = 2 (Z ((gx)- Z (f2x)), X ((gx) = 0 (Riemann-Roch), and Hodge 
symmetry, etc. Now take X=I/*V and let S = S ~ S ' - S " .  For any s in p1 let 
b (s) (resp. b' (s)) denote the number of irreducible components in the fiber r-1 (s) 
(resp. r'-l(s)). It is easy to check that HI(I?V,, (9)~-HZ(l~,,, (9)=0, so that h a, 1(17V) 
= r k  Pic W follows from the exponential sequence. We compute rk Pic l?Vusing 
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(3.2) and the fact tha t  the only relat ions in Pic 131 a m o n g  c o m p o n e n t s  of  fibers 
arise f rom the fact that  two fibers are l inearly equivalent.  This assertion, which 
is well k n o w n  for surfaces [BPV, I I I  8.23, m a y  be verified in our  s i tuat ion by 
pulling back  to a general  very ample  divisor on W. N o w  (7.2) m a y  be rewritten, 

2 ~ b(s) b ' ( s ) = 2 [ 1  + ~ (b(s) b'(s)- 1) 
s ~ S ' "  s ~ S ' "  

+ ~, (b (s) b' (s) - 1) + rk (Pic (Wn) ] - 2 h 1,2 (I?d) 

where q is the generic poin t  of  P~ in the sense of schemes. This simplifies to, 

(7.3) h 1,2 (i?g) = 1 - ~ (S") + ~ (b (s) b' (s) - 1) + rk Pic % .  
s~S 

Since rk  (Pic (W~))> 1, we mus t  have  ~ (S")>  2 when h 1' 2 (I7r 0. 
Suppose  * ( S " ) = 3 .  Fo r  (7.3) to hold with h l ' 2 ( W ) = 0  we mus t  have 

rk(Pic  Y, )=rk(P ic  Y,')= 1. Ra t iona l  elliptic surfaces with only tors ion sections 
have been classified I M P ] .  In  fact the list of  those having three or m o r e  semi- 
stable fibers coincides with the entries in Table  1. T a k e  any two such surfaces 
Y a n d  Y' (not necessarily distinct) each having at least one fiber of  type 11. 
Then  it is possible to find an a u t o m o r p h i s m  a: P I ~  P~ such that  exactly three 
critical values of  r and r'  ma t ch  up (i.e. ~ (S") = 3) and those that  do not  m a t c h  
up have  irreducible fibers. Since rk Pic W, = 2, by (7.3) any small  resolut ion will 
be infinitesimally rigid. In  mos t  cases no small  project ive resolut ion exists. H o w -  
ever ffV is a rigid project ive variety associated to W with K o d a i r a  d imens ion  
zero. Us ing  Table  1 it is not  difficult to enumera te  all varieties of  this sort  
(type (ii)). 

A further  re formula t ion  of (7.3) is useful to get an upper  b o u n d  on e (S). 
Set d = 1 if Y~ and Y,' are isogenous,  and d = 0 otherwise. Then  

rk Pic W~ = rk Pic Y, + rk Pic Y,' + d. 

Which  m a y  be rewri t ten as 

rk(Pic  W , ) = d +  1 8 -  ~" b(s)- ~ (b'(s'))+ # S+ ~ S'. 
s ~ S  seN" 

By Euler  characteris t ic  considerat ions,  the quanti ty,  g = 2 4 - ~  b(s)- ~ b'(s'), 
s e S  s '  e S '  

is zero i f  all fibers of r and  r' are semi-stable and is posit ive otherwise. Rewri te  
(7.3) in the fo rm below and notice tha t  *S"N eS+ ~S ' -  eS". 

hi '  2 (I?V) = 1 -- e (S") + e (S)+ e (S') + d + ( g - -  6) 
(7.4) 

+ ~ (b(s) b'(s')- 1). 

Evidently,  ~ (S")<  6 when h 1' 2 (I?()=0.  If  e (S")=  5, then d = g  = 0 and  S = S ' =  S", 
which is case (iii). If  ~ ( S " ) = 4  and d =  1, then g = 0  and S =  S ' = S " ,  which is 
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case (i) by [B3]. Besides the self fiber products, the other type (i) examples 
are the fiber product  of level 3 with level 9 and level 4 with level 8. If ~ (S")= 4 
and d=0 ,  then either S = S ' = S "  or we are in case (iv). If the former case were 
to occur, all fibers would be semi-stable, hence g = 0. Since S is empty in this 
case, (7.4) reads hl"2( lTd)=-  1. Hence only the second situation could possibly 
arise. 

A complete enumeration of the numerous examples of types (iii) and (iv) 
would be a lengthy undertaking. We shall content ourselves with constructing 
a single example of each sort, thereby proving the non-obvious fact that such 
examples do occur. The starting point for the examples presented here was 
suggested by W. McCallum. 

For  complex numbers z not in { 0 , -  1} the Weierstrass model associated 
to 

y2 =x(x--  1)(x--(t 2 --z)) 

is a double cover of p l •  p1 branched along sections 0, 1, oo, and ( t2-z) .  The 
final section intersects the first two transversely at +_ z 1/2 resp. + (z + 1) 1/2. These 
give rise to a total of four A 1 singularities in the Weierstrass model and in 
fact to four 12 fibers in the corresponding minimal elliptic surface which will 
be denoted Yz. The remaining two sections have local intersection multiplicity 
2 at infinity which contributes a n  1 4 fiber to Yz- All other fibers are smooth. 
I claim that the generic fiber of Y~ does not have a cyclic subgroup which 
is rational over C(t) of order n>2 .  The existence of such would give a map 
from the t-line to the coarse moduli space Xo(n ) such that the following diagram 
involving the j-function associated to Yz commutes, 

pl  __,Xo(n) 

Xo(~) 

Now j has four poles of order 2 and one of order 4. Since the canonical map 
has a pole of order n, n is 2 or 4. The latter case is ruled out using the fact 
that when n = 4 the canonical map has degree [SL z (Z): Fo(4)] = 6. Because deg- 
j =  12, j would have to have a pole of order 8 or two of order 4. This means 
that the only elliptic surfaces which are isogenous to Y~ are obtained by modding 
out by the action of a section of order two. As usual, we shall take the section 
at infinity to be the identity section. The resulting involution on Y~ is biregular 
with fixed points contained in the singular points of the fibers. It is easy to 
check that if one takes the quotient by the action of either of the sections 
0 or 1 and desingularizes, then the resulting minimal elliptic surface has two 
11 fibers, two I4 fibers, and one I2 fiber. The quotient by the other two torsion 
subgroup gives rise to an elliptic surface with four 11 fibers and one 18 fiber, 
which shall be denoted Yj. 

To produce a threefold of type (iv), we recall that the elliptic modular surface 
of full level 3 is given by the famous pencil l-B3] 

X3-[- X3 q- X32-- BtXoXI X2=O , 
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and thus has bad fibers over infinity and the cube roots of unity. Write c for 
a primitive cube root of 1. The automorphism of p1, t--+(t+(c2/2))/(1 +(c2/2)), 
takes these four points to {oe, 1 , -1 ,3c2 / (2+c2)} .  Now the I s fiber of Y~' 
lies over oo. By applying the automorphism t-+t/(z) ~/2 to p1, we arrange 
that the I1 fibers lie over { 1 , - 1 , ( l + z - * )  1/2, - (1+z-1)1/2} .  Take z =  
(9c4(2 + c2) - 2 - 1 ) - 1 ,  then the fiber product of these two surfaces is of type (iv). 

To produce an example of type (iii), consider the involution ~c of p1 which 
fixes 1 and interchanges oo and - 1 ,  namely t--+(t-3)/(-t-1). If p = ( - 3 )  1/2, 
then ~c(p)=-p.  When z = - l / 4 ,  1 + z - 1 = - 3 ,  so we may consider I1-1/4 to 
have bad reduction at {o% 1, - 1 ,  ( - 3 )  1/2, - ( -3 )1 /2} .  Write Y51/4 for the base 
change of Y_ 1/4 with respect to to. Now Y_ 1/4 and Y_~ 1/4 have the same places 
of bad reduction, yet are not isomorphic since one has an I2 fiber at infinity 
and the other has an 14 fiber. Furthermore we have listed the fiber types for 
the minimal elliptic surfaces isogenous to I1_ 1/4. From this we infer that I1_ 1/4 
and Yx_l/4 a r e  not isogenous, so we are in case (iii). By (3.1(i)) Y-1/4 Xp1Y~-1/4 
has a small projective resolution, so we get a rigid projective 3-fold with K = 0. 
However, if Y_ 1/4 were replaced by Y'_ 1/4, no small resolution would be projec- 
tive. 

(7.5) Remark. It may be shown that the list of examples of isomorphism classes 
of rigid threefolds constructed in (7.1) is finite. 

The existence of the varieties constructure in this section raise interesting 
arithmetic questions. The first of these is to describe the Galois representation 
on H3(W0, Q,) and then to find correspondences between these varieties and 
modular varieties when the Tate conjecture implies such a relationship. However 
these issues will not be dealt with here. 

8. Some Problems Concerning Moduli and the Period Map 

In this section we raise two questions concerning moduli and the period map 
for simply connected, projective 3-folds with trivial dualizing sheaf and at worst 
ordinary double point singularities. If X is such a 3-fold write X for some 
choice of small resolution and J? for the blow up of X along the nodes. For  
any variety V write J v = H o m ( f 2 ~ ,  Ov). From Hodge theory, the proof of (7.1) 
and [Fr, Lemma 3.1] we deduce easily 

(8.1) Hl(X, f22)'-~Hl(g, Ozx)~-Hl(X, ZZ})~-Hl(X,J~)~-Hl(X, fx). 

Let Yf be an irreducible, open subvariety in the Hilbert scheme of pN such 
that ~ parametrizes 3-folds with the properties listed above. If Xh c pN corre- 
sponds to a general point h ea/f and e is an integer satisfying 0__<e 
__< dim H a (Xh, ~X~) it is interesting to ask if there is an e-dimensional subvariety 
JgVeCJ~ with the property that for a general closed point P ~ e  the Kodaira- 
Spencer map 

(8.2) gpafe--, I-11 (X,, &p) 

is an isomorphism. Note that (8.2) is defined since deformations of a general 
member of the family will be locally trivial. To get some feeling for our first 
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question, observe that in the special case e = 0 ,  this reduces to asking for a 
point p in 240 with the property that )~p is infinitesimally rigid. If e =  1, we 
are asking for a one parameter family of 3-folds, )(, with Hodge numbers 
h a, o(j~) = h 2, a (kT) = 1. I am not aware that interesting variations of Hodge struc- 
ture with h 3" 0 > 0 and h 2' ~ small have previously been realized geometrically. 

If for 240 we take the open subvariety of P H ~ (p4, (9p4 (5)) parametrizing quint- 
ic hypersurfaces with at worst ordinary double points, the question appears 
to be quite difficult. Indeed for many integers e, ONe_< 101 = h  a (Xh, Jxh), I do 
not know how to construct even a single nodal quintic X with e=hl(X, Y-x) 
--h 2' a (JT), let alone an e-dimensional family. To show that there is some hope 
that the answer could be yes for all e, we sketch a means of constructing an 

when 24 ~ parametrizes fiber products of relatively minimal, semi-stable, ratio- 
nal elliptic surfaces with section. 

For  the general fiber product, W, ~S = ~ S '=  12, g = 0, S " =  qS, d = 0, all fibers 
are irreducible so (7.4) and (8.1) yield dim Hl(W, J w)= 19. Now fix an integer 
e satisfying 2<e_<18 and write e=la + / 2 + 2  for integers 0 < / i < 8 .  Write ~ for 
the open subvariety of (P~)~ parametrizing/-tuples of distinct points on P~ with 
support disjoint from {0, 1, co}. Let f l c ~ x P  1 denote the resulting universal 
family of degree l divisors. Using techniques described in [F, w 1] or [CH, w 1] 
and the proof of (4.1) it is possible to construct a dominant &ale map q~: ~ ~ 
and a morphism J:  ~ x P* ~ ~ x p1 branched over ~ x {0, 1, co} and (~b x id)* fl 
as in 4.2 with invariants j = / + 4  and k =  1. We may also arrange that ~ is 
irreducible, that J ( ~ x  {0, 1, c o } ) c ~ x  co and that the ramification index of J 
along ~ x {co} is l+  1. 

In addition we may arrange that N x P1 has a double cover with set theoretic 
branch locus J -a (N x {0, 1, oo }) when 1 is even and J - 1  (~  x {0, 1, co }) - ~ x { co } 
when l is odd. Once more replacing ~ by a dense Zariski open it is possible 
to construct a family of relatively minimal, rational elliptic surfaces 

~___~ • p1 prl____~ 

where z h has a section, there a r e / + 3  type I~ singular fibers, one I9-~ singular 
fiber over ~ x {co} and the modular invariant is the given function J. Indeed 
following [L, w begin with the constant elliptic surface over ~ x pa whose 
Weierstrass model in homogeneous coordinates (t :s) on p1 is given by 

(8.3) yaz=x3 + 3t(s--t) sZxz2 + 2t(s--t)Zs3z3 

and whose modular invariant j :  p1 _+p1 is easily computed to be the identity, 
(j= t/s). Now pull back this Weierstrass mode l  via J and twist by the double 
cover just mentioned. The singular fibers of the relatively minimal model over 
the generic point of ~ are determined by the local behaviour on P1 of the 
coefficients in the Weierstrass equation. By IMP, Table 1.1] they are of the 
desired type. 

Given a closed point p e r  write Jp: p1 ~ p ~  for the modular invariant of 
(prao~t)-l(p). Due to branch locus considerations there are at most finitely 
many other closed points p' such that Jp and Jp, differ by automorphisms of 
Pa. To see that this implies that (pr~o~z)-l(p) is isomorphic to at most finitely 
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many other fibers in the family recall that a rational surface has at most one 
minimal elliptic pencil with section. Indeed the elliptic pencil determines the 
canonical class [BPV, Chap. V, Cor. 12.3]. From this one can deduce that 
the Kodaira-Spencer map [BPV, p. 31] 

(8.4) Tp~l ~" H a ((prl o re,)-1 (p), Y) 

is injective for a general point p. 
A family of 3-folds parametrized by ~ x ~2 x Aut(P 1, {co}) is given by the 

hypersurface, Yg', in ~ ,  x ~ ,  x Aut(P 1, {co}) obtained by pulling back the tauto- 
logical family of graphs F c P 1 x P 1 x Aut (P 1, { co }) via the map 

(8.5) (pr2 o~ h , pr2 x ~zz2, id): ~1 x ~2 x Aut(P 1, {oo})__.p1 x Pa x Aut(P 1, {oo}. 

The variety W= ~1@,. p,, ~) obtained by intersecting ~ with the fiber of 

(prl ~  pr l  orbs, id): ~ ,  x ~2 x Aut(P 1, {co})--, ~ x ~2 x Aut(P 1, {co}) 

over the point (Pl,P2,7) is a fiber product of the elliptic surfaces Y1 
= (p r 1 ~ 7hl)- 1 (p 1) and Yz = (P r 1 ~ rh2)- 1 (p2). For a general choice of (p 1, P2, Y) 
W will have Ii ' la nodes in the fiber over ooeP ~ and no other singularities. 
To show that the Kodaira-Spencer map for a general point (Pl, P2,7), 

(8.6) Tm~ ̀  x Tp2~, x ~ Aut(P 1, {co})-+ H1 (~/K(m,p2,,), Y) 

is an isomorphism consider the exact sequence 

(8.7) 0 -* J w  ~ YY, x v21w ~ J w  .. . .  Jffw/,-~ • r, ~ O. 

One computes 

HP(W, Jy ,  xr21w) ~- @ HP(W, pr*JY,)  ~ @ HP(Yi, YY,) 
ie{1, 2} ie{1,2} 

for Pc{0, 1}. When P = 0 ,  this vector space is zero. Since for a general point 
(P, ,P2,  7) deformations are locally trivial we get a well defined injective map 
T~ Aut (P 1, {co }) --+ H~ W, Sw~.,.A@/Y, • r~) ~ ker( H1 (W, Jw) --+ H1 (W, ~ • Y21 w)). 
Again using the local triviality of the deformations, the product of Kodaira- 
Spencer maps (8.4) factors 

Tp, ~ ,  Q Tp.~2 ~+ H I ( y I . Y y , ) O H I ( Y 2 . J - y ~  ) 

1 I 
HI(W,,y-w) --, H l ( W , ~ , , , , l w ) ,  

so c~ is injective. Since ~(S")=I ,  ~(S)=/1+4,  e (S ' )=/2+4,  d=0 ,  g=0 ,  and all 
fibers over g are irreducible, (7.4) and (8.1) yield dim H 1 (W, Yw)= 11 + 12 + 2. 

This shows that (8.6) is an isomorphism. Thus it is possible to construct 
an .,~, with the desired properties when 2_<e_<18 as the image of ~ ,  x ~  
x Aut(P 1, co) in an appropriate Hilbert scheme. Minor modifications of the 
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above procedure involving replacing Aut(P ~, {oo}) by Aut(P 1) (respectively 
Aut(P a, {0, oe})) allow one to treat the cases e=  19 (respectively e =  1). The case 
e = 0 was treated in w 7. 

Our second question relates to the image of the period map for the middle 
dimensional cohomology of non-singular Moishezon 3-folds with trivial canoni- 
cal bundle. Let 2q denote the rank of the third cohomology. Recall the definition 
of the relevant classifying space for marked polarized Hodge structures, 
D(q, ( , ) ) .  Begin with a free rank 2q Z-module H z and a non-degenerate, alter- 
nating, integer valued form ( , )  such that (Hz, ( , ) )  is isomorphic to the middle 
cohomology of our 3-fold modulo torsion, equipped with the usual intersection 
pairing. Then D(q, ( , ) )  is the parameter space for flags F 3 c F 2 c Hc . '=Hz |  
satisfying 

i) dim F 3 = 1 
ii) F2 =(F2) • 

iii) i ( ,  - )  is positive definite on F 3 

iv) - - i ( ,  ) is positive definite on H 2"~:=Fzc~(F3) • 

Also write 5~(q, ( , ) )  for the Siegel space parametrizing subspaces G c H  c satisfying 
v) G = G • 

vi) i < ,  - > is positive definite on G. 

The real analytic map D (q, ( , ) )  ~ 5 e (q, < ,  >)  which associates to the filtration 
F" the subspace G = F 3 + ((F3) • c~ F 2) is surjective with fiber Pq- 1 

Now suppose that a positive rank, saturated subgroup H ) . c H z  has been 
fixed on which ( , )  is non-degenerate. Write H~ for (H~) • and ( , ) '  (respectively 
( , ) ' )  for the restriction of ( , )  to H i  (respectively H~). Define a map 

One: J (q ' ,  ( , ) ' )  x D(q--q',  ( , ) " ) -+D(q ,  ( , ) ) .  

F ' "  ~ F 2 b y 0 n ~ ( G , ( ) )  F3=(F3)"and  =G+(FZ)  ''. 
Define the parameter space for reducible Hodge structures, R ( q , ( , ) )  

= U im 0n~, where the union is taken over all saturated, positive rank subgroups 
on which ( , )  is non-degenerate. Given a complex analytic family of Moishezon 
3-folds with K = 0 parametrized by a simply connected base, A, it is interesting 
to ask how the image of the period map, go: A ~ D ( q , ( , ) )  meets R ( q , ( , ) ) .  
Intersection points correspond to 3-folds whose intermediate Jacobian contains 
a subtorus with associated Hodge type (2, 1), (1, 2). It is precisely for such 3-folds 
that the generalized Hodge conjecture concerning the image of the Abel-Jacobi 
homomorphism on I-cycles algebraically equivalent to zero is interesting. Now 
if A is a Kuranishi family dim A __<dim HI(X ,  J x ) = q - -  1 (8.1). On the other hand 
dim 5~ ( , ) ) = q ( q +  1)/2, whence dim D(q, <,  > ) = q ( q +  1)/2 + (q-- 1) and 

dim (im ~p~) = q' (q' + 1)/2 + (q - q') (q - q' + 1)/2 + (q - q' - 1) 

__< 1 + ( q -  1) q / 2 + q - 2 = q ( q +  1)/2-  1. 

(The inequality arises because the first expression is maximized for 1 __< q'=< q -  1 
when q '=  1.) In other words the codimension of every component of R(q, ( , ) )  
is at least q. Thus a naive dimension count would lead one to suspect go (A)c~ 
R(q, ( , ) )  is empty. However, large families of reducible Hodge structures may 
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be produced by considering non-singular quintic hypersurfaces in p4 which 
are invariant under a suitable finite group action. Unfortunately it is difficult 
to have much insight into this situation because the dimensions of the parameter 
spaces are so large (q = 102). Perhaps it would be worthwhile to study in detail 
a situation where q is as small as possible, yet the threefolds in question are 
not rigid (i.e. q=2).  As alluded to above (Yge with e--1), an interesting test 
case may be constructed as follows: Let ~: y___,p1 denote the rational elliptic 
modular surface of level 9. Choose an inhomogeneous coordinate on p1 so 
that rc-l(oo) is the 19 fiber and ~-~(0) is an 11 fiber. Given two copies of 
Y identify the base curves via 7eAut (P  1, {0, oo}) and take a small resolution 

of the fiber product. By varying 7 we get a one parameter family of Moishezon 
3-folds with trivial canonical bundle, non-constant period map, and invariant 
q =  2. It would be interesting to describe the intersection of the image of the 
period map for this family with the set R(2, ( , ) )  of reducible Hodge structures. 
Is it empty? Is it finite? Or does it give rise to a dense subset of the parameter 
space Aut(P 1, {0, oo})? 

9. Fixed-point Free Group Actions 

In this section we describe how the theory of principal homogeneous spaces 
for elliptic curves over functions fields naturally leads to fixed-point free group 
actions on certain fiber products of relatively minimal, rational, elliptic surfaces 
with section. We shall make use of the following 

Theorem 9.1. Let qo: To-+ p1 be a relatively minimal rational elliptic surface with 
section. Let ml, (1 <= i< n) be a collection of positive integers and p~p1,  (1 <_i=< n) 
a collection of points over which qo is smooth. Then there is a projective elliptic 
surface q : T-~ p1 which is a principal homogeneous space for qo and whose multiple 
fibers are exactly q-  1 (Pi) with multiplicity mi. 

Proof See [Sa, Thin. 3 and 4] or [La] or [Ogg, Thm. 2(b)]. 

Fix an inhomogeneous parameter t o n  p1. We shall make use of four classes 
of relatively minimal rational elliptic surfaces with section, qo: To ~ p 1  such 
that qo is smooth over co and the fiber over 0 is described in the following 
table. Examples of types 3, 4 and 6 may be found in IMP, w It is not difficult 
to construct examples of type 2, say as double covers of P1 x p1 whose branch 

Table 3 

Type Kodaira type of qo 1 (0) Order of local 
monodromy at 0 

2 I* 2 
3 IV* 3 
4 I l l*  4 
6 11" 6 
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locus consists of one member of each ruling and the graph of a general degree 
three map from p1 to itself. Given an elliptic surface qo: To --*P1 of type m 
above, we let q: T ~ P  ~ denote a relatively minimal, projective, elliptic surface 
which arises from a principal homogeneous space associated to qo and has 
exactly one multiple fiber namely q-X(oe) which has multiplicity m. Let r: 
y ~  p1 (resp. ro: I1o ---' p1) denote the relatively minimal elliptic surface associated 
to the pullback of q: T--~P 1 (resp. qo: To -~P1) via ~bm: p1 _~p1, q~,,(t)=t m. 
As the local monodromies for r and r o around 0 and Go are trivial the corre- 
sponding fibers are smooth (criterion of N6ron, Ogg, and Safarevic) [BPV, V.7 
and V.10, Table 6]. The topological Euler characteristics of Y and I1o are equal 
to the sum of the Eulcr characteristics of the singular fibers, which in each 
case is m(12--e(qol(O)))=12. This equality explains why in the table above 
we choose only those finite monodromy singular fibers which appear with a 
star in Kodaira's list. Since K ro = K r = - F i b e r  [BVP, V12.1, 12.2] these surfaces 
are rational by Castelnuovo's criterion. This means that the Tate-Shafarevich 
group for Y0 vanishes [La] or [-Sa, Thm. 3] whence the principal homogeneous 
space Y has a section. Thus Y_~ Yo. The (biregular) action of the cyclic group 
~r: Z /m~Aut(Y)  corresponding to the cover Y/T has fixed points only in the 
fiber r -  1 (0). 

Now let q~: 7-d'~ P~ be a second elliptic surface of the same type m. Exactly 
as before we associate to q~; an elliptic surface q": T"-+P1  with a multiplicity 
m fiber at oo and a relatively minimal rational elliptic surface with section 
r": Y"-*P1 which possesses a natural Z/m action with quotient birational to 
T". By 

q~): T~--*P 1, (resp. q': T ' o p 1 ) ,  (resp. r': y , ~ p 1 )  

we denote the pullback of q~, (resp. q"), (resp. r") via the automorphism of 

p1, t___>t-1. Now we may choose an isomorphism a': Z/m ----~Gal(Y'/T') so 
that Z/m acts on W= Y • p, Y' via a • a': Z/m ~ Aut(Y • Y'). As the fixed points 
on Ylie in r-l(0) and those on Y' in r ' - l ( ~ ) ,  the action on Wis  fixed point 
free. The quotient, U, is birational to T•  p,T'.  It has fibers of multiplicity m 
over 0 and 0% whose reductions are hyperelliptic surfaces. If qo and q~j are 
semi-stable away from 0 then W will have a small resolution, 17r to which 
the fixed point free group action lifts. By Riemann-Roch the holomorphic Euler 
characteristic of the quotient, z(O~), is zero. This implies h~ 1, whence 

From the point of view of superstring theory it would be desirable to find 
a projective • with topological Euler characteristic _+ 6. Under  the semi-stability 
hypotheses on q0 and q; made above, e ( O ) = 2 e ( n o d e s  of U). If the Kodaira 
types of q-  1 (s) and (q')- 1 (s) are Ib and Iv,, then e(q 1 (s) x (q')- 1 (s)) = 2bb'. The 
requirement 0<e(O)__<6 forces b or b ' = l .  We shall argue that 0 cannot be 
projective in this situation. Indeed if 0 were projective, there would be a divisor 
D whose intersection with each exceptional p t  is non-zero. The pullback, D W, 
of D to the covering space 17V is invariant with respect to Gal (~ /O) .  Furthermore 
by the arguments of w 3, Dw gives rise via the standard composition 

Pic(I?V) --*Pic(W,) ~ -*Ho m ( r  l(t/), r ' - l(~))  
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[F2, 16.1.2] to a (non-zero) isogeny f Now f gives rise to an isogeny F of 
N6ron models which we may restrict to get an isogeny Fo between the (smooth) 
fibers r-1(0) and r ' - l (0) .  Given a function g, it will be convenient to denote 
its graph by <g). Since or' acts trivially on H~ but a acts by a 
non-trivial character on H ~ ( r -  1 (0), g2), the image of ~ <o-' (i) o Fo o a (--  i) ) 

O<=i<=m--1 

ePic(r -  1 (0) x (r')- 1 (0)) in Horn ( r -  1 (0), (r ')-  1 (0)) is zero. F rom this we may con- 
clude that ~, (a'(i)ofoa(-i)) has zero image in Hom(r- l ( t / ) , ( r ' ) - l ( r / ) ) .  

O < i < m  1 

The point here is that the image is detected in the 6tale cohomology over the 
algebraic closure of the base field. Now the cycle class map  from Pic to cohomo-  
logy is compatible with specialization [F2, 20.3.5]. By the proper  base change 
theorem specialization on cohomology is an isomorphism. It is now clear that 
when we sum the conjugates of Dw with respect to Gal(l?r and apply 
we get zero. This contradiction shows that 0 is not projective if b or b' = 1. 

One may be tempted to apply the methods of w to 0 in an at tempt to 
produce more threefolds with trivial canonical sheaf. However  in cases 3, 4, 
and 6 inversion, ir, on Y does not descend to T. The point here is that al though 
ir does commute with a generator ~eGal(Y/To), a generator of Gal(Y/T) is 
of the form z o 7 ~ where z is a translation which does not commute  with ir. 
Consequently ir does nor normalize Gal(Y/T). Thus there is no notion of inver- 
sion on U in cases 3, 4, or 6. In case 2 one verifies that if inversion on W 
descends to U then it has some isolated fixed points which live in the multiple 
fibers. This means that the desingularization of the quotient by this Z/2 action 
will contain exceptional p2'S which contibute to the canonical divisor, whence 
K#O. 
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