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Abstract .  The kinetics of  synonymous codon change 
and species divergence is described in a matrix formal- 
ism that is equally applicable to all levels of  codon de- 
generacy and all levels of  codon or nucleotide bias. 
Based on the formalism it is possible to calculate the sum 
of all the synonymous substitution rate constants from 
the observed sequence differences between two species. 
This sum, the relaxation rate, is equivalent to the LogDet 
transformation that has recently been proposed as a new 
measure of evolutionary distance (Lockhardt et al. Mol. 
Biol. Evol. ••(4): 605-612, 1994). The relationship be- 
tween this measure and the average number of  base 
changes per site (Ks) is discussed. The formalism is 
tested on some sets of  simulated sequence divergence 
data. 

Key words:  Synonymous substitution rates - -  Ge- 
nome evolution - -  LogDet transformation 

Introduct ion 

The nucleotide sequence dissimilarity in the genomes of  
related species can be used to infer the phylogenetic 
distance between two species. The dissimilarity can also 
be used to estimate the various substitution rates of  one 
base pair for another. Such an analysis requires a large 
set of  sites where the kinetics of  base change is very 
similar. The simplest situation to describe is that of neu- 
tral substitutions which do not influence the phenotype. 
In this case, the substitution rates will be equal to the 

mutation rate constants, which may vary relatively little 
between sites. Also synonymous substitutions in coding 
sequences are often treated as neutral. However, many 
organisms, particularly unicellular ones, frequently dis- 
play a distinct codon preference that indicates that syn- 
onymous substitutions cannot be selectively neutral (Ike- 
mura 198t). Nevertheless, synonymous differences still 
have properties that make them useful for a statistical 
study of  sequence dissimilarity. This is because it can be 
argued that a particular synonymous base change for a 
particular amino acid has approximately the same kinet- 
ics regardless of  where in the genome it occurs. As a 
consequence, by grouping together all synonymous dif- 
ferences for each amino acid separately, it is possible to 
get a large statistical data set even from the study of the 
difference between only two species. When the codon 
preference is different in different parts of  the genome, 
one must consider the statistics of  the synonymous sub- 
stitutions in different subgroups of the genome. For ex- 
ample, in many unicellular organisms, codon bias varies 
with the expression level of  the gene considered (Ike- 
mura 1981). Similarly, in genomes where the GC content 
varies strongly across the chromosomes, it would be im- 
portant to group together genes that are in the same back- 
ground of  GC content since this is likely to influence the 
effective substitution rates. 

In contrast, the rate constants for nonsynonymous 
substitutions are expected to vary considerably from site 
to site depending on the function of  the corresponding 
amino acids at each particular site. Thus, nonsynony- 
mous divergence cannot easily be described by kinetic 
models that assume the same rate constant for all substi- 
tutions where a certain nucleotide is replaced by a certain 
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other. Nevertheless, the evolutionary distance between 
two lineages is frequently estimated based on such ki- 
netic models applied to all nucleotide substitutions inde- 
pendently of  what kind of  sites they appear at. This cor- 
responds to treating all sites as fourfold degenerate and 
most of  the models described below have been applied in 
this way. Methods have been developed to account for a 
statistical distribution of  rate constants from site to site 
(Nei and Gojobori 1986). To ensure the validity of using 
a kinetic scheme that can provide information about the 
individual rate constants, this study will focus on the 
synonymous substitutions. 

There are a large number of models for the calculation 
of  evolutionary distance based on the kinetics of  base- 
pair change. (For a recent review, see Rodriguez et al. 
1990.) Most often the distance is defined as the average 
number of  changes per site. As it turns out, this distance 
measure is quite insensitive to the assumed underlying 
substitution kinetics (Rodriguez et al. 1990). For in- 
stance, the two-parameter model of  Kimura (1980) as- 
sumes that all nucleotides are equiprobable; nevertheless 
the model can be used to estimate the average number of 
changes even for sites where the nucleotide bias is large. 
Similarly, the model of  Tajima and Nei (1984), which 
accounts for nucleotide bias but is valid only for a very 
restricted set of  substitution schemes, also gives good 
estimates for the distance. However, these models cannot 
be used to estimate the underlying substitution rate con- 
stants except in the restricted cases for which they are 
valid. These and other similar models are frequently used 
to estimate the number of  nonsynonymous changes; 
while this may provide useful estimates for evolutionary 
distance, it is doubtful that the assumed kinetics has any 
meaning when rate constants differ drastically from site 
to site. 

It is the substitution rate constant of one nucleotide for 
another, rather than the average rate of  change, that is 
most directly related to the mutation rates and relative 
selective advantage between the two. In a separate com- 
munication (Berg and Martelius 1995) we considered the 
kinetic equations of synonymous base change for a two- 
fold degenerate amino acid, taking proper account of 
mutational or selectional nucleotide bias, and used the 
model to study the rates of  base change in Escherichia 
coli and Salmonella typhimurium. This made it possible 
to infer not only the various substitution rate constants 
but also to separate out the selection pressure and the 
mutation rate constants. In the present communication, 
the kinetic model is extended to describe the kinetics of  
synonymous change for an amino acid of arbitrary de- 
generacy. Because of  the multitude of possible synony- 
mous substitution paths for higher degeneracy than two, 
it is not possible to estimate the substitution rate con- 
stants except in special cases. The model presented be- 
low assumes a general set of  rate constants for the 
possible synonymous substitutions. It is therefore appli- 
cable to any set of  genes that are under the same evolu- 

A G A  < > A G G  

; $ 
CGA CGG 

CGC < > C G T  
Fig. I. The substitution scheme for the six codons of arginine. The 
codons can be numbered and each possible nucleotide substitution 
(arrows in the scheme) can be assigned a rate constant as described in 
the text. 

tionary pressure for codon or nucleotide bias. The model 
is similar to that presented by Rodriguez et al. (1990), 
but with some of  their assumptions removed. One quan- 
tity that is directly accessible from the divergence data is 
the sum of all the rate constants in the substitution 
scheme. This turns out to be the same as the LogDet 
transformation that has recently been proposed as the 
best measure for evolutionary distance (Steel 1994; 
Lockhardt et al. 1994). The properties of  this measure 
under various kinetic schemes will also be discussed be- 
low. 

Kinetics for Synonymous Codon Change 

Let us consider the synonymous codon choices for an 
n-fold degenerate amino acid. The codons can be num- 
bered i = 1,2, . . . ,  n. Assume that the substitution rate 
constant from codon i to codon j is kij. These are called 
rate constants in analogy with chemical kinetic equations 
in order to distinguish them from the average rate of  
change that will also be considered below. For a sixfold 
degenerate amino acid (see Fig. 1) not all codon choices 
can be connected via a single nucleotide substitution; 
these probably have very small and possibly zero values 
for the corresponding value of kij. Thus the rate constants 
that enter the scheme are based on single nucleotide re- 
placements. The rate constants define a matrix, k, with 
the elements,~ kij for i ~e j and the diagonal elements equal 
to kzi = -j2~ikij. Thus, the elements of  each row in the 
matrix will sum to zero. If  Pz(t) denotes the probability 
that a certain site uses i at time t, the vector of probabil- 
ities P(t) = {Pi(t)}will satisfy the rate equation 

dP 
d t =  P"  k (1) 

The formal solution to the rate equation is 

P(t) = P(O). exp(kt) (2) 

Since the sums and products of matrices are well defined, 
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the time evolution matrix can be defined formally by the 
series expansion 

1 knt n T(t) = exp(kt) = E ~ (3) 
n=O 

Thus, if the substitution rate constants and the initial 
conditions are known, the time evolution of the proba- 
bilities for each synonymous codon choice is determined. 
The elements of  the time evolution matrix are 

Tij = pj(tli) (4) 

which is the probability for codon j at time t conditional 
on there being a codon i at time t = 0. 

comparison, all the elements of  D can be calculated from 
the observed differences and similarities. However,  it is 
not possible in general to calculate the substitution rate 
matrices k 1 and k 2, even if the original base distribution 
at the time of separation, D(0), were also known; there is 
not enough information in the result f rom two time 
points, the initial and the present, to infer all rate con- 
stants. However,  by taking the determinant of  both sides 
of eq. (5), the sum of all the substitution rate constants 
can be calculated directly from the observed dissimilarity 
matrix: 

(kij + kij t ) :  - l n~  ~ ) )  
Rs = ~ (1) (2) //det(D(t)) 'X 

iej 

(7) 

Accumulation of Differences Between Two Species 

Consider two species that separated from a common an- 
cestor at time t = 0. The divergence between the two 
species at some time t later can be described by a dis- 
similarity matrix, D. This matrix has the elements Dij 
given as the fraction of sites for a particular amino acid 
where species 1 has codon i and species 2 has codonj.  At 
time t = 0, when the two species are equal to their com- 
mon ancestor, the dissimilarity matrix is diagonal and 
determined from the initial condition: Dij(O ) - -  0 for i 
j and Dii(O ) = Pi(O). Since changes in the two species are 
independent, we can apply the kinetic relation, eq. (2), 
for each and find 

D(t) = Tf. D(0) .  T 2 = exp(kar) • D(0) .  exp(k2t ) (5) 

k l is the substitution rate matrix in species 1 and k 2 the 
corresponding expression for species 2. k T is the trans- 
posed matrix where the elements kij have been replaced 
by kj;. Similarly, the corresponding time evolution ma- 
trices T a and T 2 are given by eq. (3). 

For example, from eq. (5) the element D o of the dis- 
similarity matrix is determined by 

Dij(t) = E Pm(O)Pf 1) (tlm)P¢ z) (tim) (6) 
m 

The probabilistic structure of this expression is obvious: 
The first term is the product of  the probability Pro(O) that 
there was codon m at time 0, the probability p}l) (trm) 
that species 1 has codon i at time t conditional on there 
being codon m at time 0, and the probability p~2) (t Im) 
that species 2 has codon j at time t conditional on there 
being codon m at time 0. Thus as it should, the sum of all 
terms in eq. (6) expresses the total probability that there 
is codon i in species 1 simultaneously as there is codon 
j in species 2 at time t. 

Eq. (5) is the general relation expressing the diver- 
gence between the two species at time t. In a sequence 

where kij (1) is the rate constant of  replacement of  codon 
i t o j  in species 1 and correspondingly for species 2. This 
result follows from a number of  properties of  the matri- 
ces involved: (1) The determinant of a product equals the 
product of  the determinants; (2) the determinant of  the 
time evolution matrix, T = exp(kt), is the product of  its 
eigenvalues; (3) this product equals the exponential of 
the sum of eigenvalues of kt," (4) the sum of the eigen- 
values for k equals the sum of all its rate constants. 
When, after a long separation time, the synonymous dif- 
ferences become saturated, det(D) approaches zero and 
eq. (7) is useless; in this limit the synonymous substitu- 
tions carry little information. 

The proper calculation of Rs requires a knowledge of 
the initial condition, D(0). The determinant of the initial 
condition is just the product of  the initial four base prob- 
abilities. If  both lineages develop with the same codon 
distribution, the most reasonable assumption is that their 
common ancestor also had this distribution. Even if the 
two lineages develop towards different codon distribu- 
tions, the choice of  D(0) is not crucial as long as the 
difference in codon bias is not dramatic; it can with 
relatively small errors (see below) be taken as the aver- 
age of the distributions in the two. 

Since this expression is proportional to the separation 
time, t, eq. (7) may provide the most useful measure for 
phylogenetic distance. This LogDet expression has also 
been derived without recourse to a kinetic scheme and 
suggested to provide the correct evolutionary distance 
(Steel 1994; Lockhardt et al. 1994). However, most often 
one uses the average number of  base substitutions per 
site as a measure of the evolutionary distance. This can- 
not be calculated directly from the data without intro- 
ducing additional assumptions about the underlying ki- 
netics, as will be evident below. 

Based on eq. (5), an equivalent way of calculating the 
sum of all rate constants is: 

R s = - trace[In(D-l(0) • D(t))] (8) 

where D-l(0) is the inverse of the initial condition ma- 
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trix. This expression is much less useful than eq. (7) but 
is given here for comparison with eq. (14) below. The 
logarithm of the matrix can be calculated either as de- 
scribed, e.g., by Rodriguez et al. (1990), or from the 
series expansion 

in(D-l(0) • D(t)) = - Z  ! ( I -  D - l ( 0 )  • D(t)) ~ (9) 
n=l 

in the two species during the separation time t is the 
weighted average 

Ks Z ~-(i) k(2)]pO~ = {.gij + ij ,--i  t 
i,j 
iej 

(13) 

This can be calculated from the solution, eq. (12), as 

where I is the identity matrix. The sum can easily be 
calculated on a computer to any required degree of ac- 
curacy through a finite number of terms. 

Equilibrium Relaxation 

In one important special case, the relation (5) can be 
considerably simplified so that all the substitution rate 
constants can be calculated directly from the dissimilar- 
ity matrix. Assume that the two species have evolved 
since separation with the same codon bias P~ as their 
common ancestor had. Then the observed codon frequen- 
cies in both species would be the same and the same as 
the initial probabilities Pi(0). The codon distribution in 
both organisms remains the same and the divergence is 
due only to random switches within this distribution. 

One more assumption is required before a solution for 
the rate constants can be achieved. This is the reversibil- 
ity condition (cf. Rodriguez et al. 1990): 

k i jP  ° : k j iP  ~ f o r  i =/= j (10) 

which corresponds to the principle of detailed balance 
for a thermodynamic equilibrium: For every possible 
pair of substitutions (i , j) ,  the number of changes of i for 
j equals the number of changes o f j  for i. If  this relation 
holds, the matrix k:rDo will be symmetric: 

k r .  D O = (k r .  Do) r =  D O -k  (11) 

The first equality is the symmetry relation and the second 
follows because D o is diagonal. If both k I and k 2 satisfy 
eqs. (10) and (11), they will commute and eq. (5) can be 
written as 

(k 1 + k2)t = ln(Do I - D(t)) (12) 

This expression is valid only for kinetic models that pro- 
duce a divergence matrix D(t) which is symmetric. Con- 
versely, only a symmetric D in eq. (12) will produce a 
rate constant matrix where the rows sum to zero as re- 
quired. Small-sample variations may produce a nonsym- 
metric divergence matrix even if the underlying kinetics 
satisfy the conditions for eq. (12). In such cases it is best 
to symmetrize D by replacing it with 0.5(D + D r) before 
use in eq. (12). 

The average number of synonymous changes per site 

K s = -trace(D o • (k I + kz)t) 
= -trace[D o • ln(Do 1 • D(t))] (14) 

This result has been derived previously by Rodriguez et 
al. (1990). Since the logarithm cannot be calculated 
when det(D) ~< 0, this relation for K s becomes inappli- 
cable in the same cases as eqs. (7) and (8) for R s do. 

The mutational appearance and fixation of base sub- 
stitutions is a driven process far from thermodynamic 
equilibrium. Thus there is no reason to expect detailed 
balance to hold for this system, even if it is "equili- 
brated" in the sense that codon distributions remain con- 
stant. Nevertheless, eq. (12) may provide the best esti- 
mates for the substitution rate constants from the limited 
amount of data available. The rate constants calculated 
from eq. (12) also satisfy the exact relation, eq. (7), for 
which no extra assumptions were needed. 

The relations derived above are valid for all synony- 
mous substitutions, be they 2-, 3-, 4-, or 6-fold degener- 
ate, with an obvious choice of dimensions for the matri- 
ces involved. In the twofold degenerate case, where 
detailed balance is automatically satisfied, the result 
agrees with our previous one (Berg and Martelius 1995). 
Eq. (14) is valid under equilibrium relaxation for arbi- 
trary substitution rate matrices that satisfy the detailed 
balance condition; it may be the most general expression 
for K s that can be found (Rodriguez et al. 1990). Below, 
we shall compare this with the results from some more 
commonly used models which are valid under much 
more restricted substitution schemes. The two-parameter 
model of Kimura (1980) assumes that all transitions take 
place with one rate constant and all transversions with 
another. As a consequence, it leads to equal frequencies 
for all nucleotides and it may therefore be expected to be 
less useful for situations with strong nucleotide prefer- 
ences or codon bias. The formulation of Tajima and Nei 
(1984) is strictly valid only for the equal-input model 
where the rate constant to a particular nucleotide is in- 
dependent of which nucleotide is being replaced. This 
model gives a very simple expression for the average 
number of changes per site: 

Ks=  -bln(1 - p / b )  (15) 

where 

p = 1 - trace (D) (16) 
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is the fraction of sites with differences in the two lin- 
eages, and 

b = 1 - £ (p0)2 (17a) 
i 

is the fraction of differences expected after infinite time. 
If divergence takes place under nonequilibrium condi- 
tions such that there are different codon frequencies, p}l) 
and p}2), in the two lineages, this relation can be changed 
to (Bulmer 1991) 

b = 1 - Z -iP°)P(2)-i (17b) 
i 

As we shall see below, eq. (17b) provides a useful ap- 
proximation for nonequilibrium relaxation. Tajima 
(1993) has extended both the Tajima and Nei (1984) 
model and the two-parameter model (Kimura 1980) to 
provide unbiased estimates also for a small sample of 
sites. 

Results 

The equations allow us to calculate the expected synon- 
ymous sequence divergence for any sets of substitution 
rate constants. This can be done either from the deter- 
ministic relation, eq. (5), which would be valid for an 
infinite number of sites, or it can be done by simulation 
for a finite number of sites. From the dissimilarity ma- 
trices generated in this way, one can calculate the K s and 
R s values based on the different models and compare 
with the appropriate averages of the rates that went into 
the calculation. There are two aspects to consider: First, 
there are the systematic differences that appear because 
various assumptions of the kinetic models are not satis- 
fied; these can be studied using the deterministic equa- 
tions. Second, one must consider the applicability of the 
equations to divergence matrices than contain small- 
sample variations from the use of a finite number of sites; 
this can most easily be studied by simulations. The prob- 
ability for a particular change from codon i to codon j in 
genome 1 and 2 at any time is kij°)pi(1) and kij(2)pi(2), 
respectively; pi(a) is the fraction of sites in genome 1 
with codon i at the time considered, and correspondingly 
for genome 2. In the simulations described below, each 
successive change was assigned with this probability and 
the codon frequencies were adjusted after each. An initial 
codon distribution was assumed for each simulation, but 
since this is not usually known in general, for the anal- 
ysis of divergence using eqs. (7) or (14) an initial distri- 
bution, D(0), was estimated by taking the average of the 
observed frequencies of the different codons in the two 
species. 

Rodriguez et al. (1990) simulated the divergence for 
fourfold degenerate sites using various different rate ma- 

3 '  
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Fig. 2. Equilibrium relaxation for fourfold degenerate codons where 
two codons are ten times more common than the other two. The sub- 
stitution rate constant matrices used in the calculations were 

(_1.4 , o2 o2) 
-1.4 0.2 01.2 

k l = k 2 = t  ~ 2 -5  

2 1 - 5  " 

A shows the estimated K s values after various times of separation 
using the two-parameter model (lowest line and squares), the Tajima 
and Nei model (middle line and diamonds), and eq. (14) (upper line 
and triangles). The lines are for infinite number of sites and the data 
points are from one simulation using 400 sites. The exact result would 
be according to the upper straight line, where the estimated number of 
changes equals the real number. B shows the estimated relaxation rate 
(Rs) from eq. (7). The straight line is the exact result for an infinite 
number of sites. The diamonds are from one simulation using 400 sites 
and the x 's  are the averages from 100 such simulations. 

trices under equilibrium relaxation. They found that the 
distances estimated from the K s values were quite close 
to their real value regardless of which underlying kinetic 
model was used and regardless of whether the conditions 
assumed for the different models were satisfied or not. I 
have tested both equilibrium and nonequilibrium diver- 
gence, but using a more severe bias for the nucleotide 
choices. Figure 2 shows the results for the equilibrium 
relaxation of fourfold degenerate sites when two nucle- 
otides (e.g., the purines) are tenfold preferred over the 
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other two. Based on the deterministic equations (infinite 
number of  sites), Kimura 's  two-parameter model  system- 
atically underestimates the true value for Ks, while the 
estimate based on the Taj ima and Nei model  is closer to 
the true one, The estimate based on eq. (14) is exact 
under these conditions, as is the estimate for R s from eq. 
(7). The differences between the models become some- 
what blurred in the simulations of a finite number of  

sites. In the simulations, the estimated K s and R s values 
do not continue to increase linearly in time as expected 
from the deterministic equations, but level off the fluc- 
tuate around some finite value. At  this point the diver- 
gence is saturated and distances cannot be estimated 
from any model. The smaller the number of  sites studied, 
the earlier saturation occurs. 

For  an infinite number of  sites under equilibrium re- 
laxation, the relaxation rate R s from eq. (7) would pro- 
vide the best distance estimate since the expression is 
linear in the divergence time and exact for all possible 
substitution schemes. The estimate of  K s from eq. (14) is 
also exact under these circumstances, but only if the 
substitution scheme also satisfies the detailed balance 
condition. For  a finite number of  sites, however,  both 
estimates are sensitive to small-sample variation and sat- 
uration effects. For  some of  the time points, the simula- 
tions using 400 sites have been repeated 100 times. After 
an average of  0.75 changes per site, 23% of  the runs give 
a negative value for det(D), which therefore give inap- 
plicable results for the use of  eqs. (7) and (14). After an 
average of one and 1.5 changes per site there are 40% 
and 53% inapplicable cases, respectively. That is, above 
one change per site, the results for R s are virtually ran- 
domized with det(D) fluctuating around zero. The Ta- 
j ima  and Nei estimate, in contrast, is much less sensitive 
to the small-sample saturation effects and provides 100% 
applicable cases for these time points with a significant 
reduction only after an average of  two changes per site 
when there are 89% applicable results. Below saturation, 
the relative scatter is around 25% in the R s estimates 
while it is less than 10% in the K s estimate from Tajima 
and Nei .  Thus, for the particular substitution scheme 
studied in Fig. 2, the most useful distance estimate may 
be provided by the approximate Tajima and Nei estimate, 
and not by the exact relation for R s in eq. (7). 

In Fig. 3 are displayed the results for a nonequilibrium 
relaxation where the two lineages start at the same strong 
codon bias, but after separation the codon bias in one of  
the lineages is assumed to relax toward equal frequencies 
of  all codons. For  this situation, none of  the K~ estimates 
discussed above is exact. In this case it is the estimate 
based on Kimura ' s  two-parameter  model  that comes 
closest to the real  number of  changes per site. The 
Taj ima and Nei estimate works fairly well up to about 
1.5 changes per site; in a run of  100 different simulations 
there are a 100% applicable cases and 10% relative scat- 
ter at this point and below. The R s values based on the 
same data are more variable and become very unreliable 

Fig. 3. Nonequilibrium relaxation for fourfold degenerate codons 
where two codons are ten times more common than the other two in 
one of the lineages and in the ancestor. The other lineage relaxes 
toward an equal codon distribution. The substitution rate constant ma- 
trices used in the calculations were 

A shows the estimated K s values after various times of separation 
using the two-parameter model (lowest line and squares), the Tajima 
and Nei model (middle line and diamonds), and eq. (14) (upper line 
and triangles). The lines are for infinite number of sites and the data 
points are from one simulation using 400 sites. B shows the estimated 
relaxation rate (Rs) from eq. (7), The lower straight line is the exact 
result for an infinite number of sites if the ancestral codou distribution 
is known. The upper line shows the same for the case where the 
ancestral codon distribution has been estimated from the average ob- 
served in the two lineages. The diamonds are from one simulation using 
400 sites and the x's are the averages from 100 such simulations. 

already around an average of one change per site. The 
estimate based on eq. (7) would be exact also under these 
conditions, i f  the codon distribution, D(0), in the ancestor 
were known; this is the straight line in the lower panel of  
Fig. 3. However, if  the ancestral codon distribution is 
estimated as the average of  the two lineages, one gets the 
upper line for an infinite number of  sites. The data points 
are from a simulation using 400 sites. For  a run of  100 



Ks(ast) 

Ks(real) 

Fig. 4. Equil ibr ium relaxation of twofold degenerate sites. The upper 

line is the exact result (regardless of bias) which follows from use of eq. 

(14) or (15). The middle line is from an application of the two- 

parameter model  for the case when one codon is preferred by a factor 

of three over the other: The lower line is the same i f  the eodon pref- 

erence is a factor of ten. The data points are from one simulation of 400 

sites with bias three; squares are from an application of the two-state 

model  to the data and diamonds are from use of eqs. (14) or (15). 
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directly the sum of all the rate constants in the scheme; 
for the scheme in Fig. 1 there are 18 rate constants in- 
volved. Similarly, under equilibrium and detailed bal- 
ance, eq. (14) gives directly the average number of syn- 
onymous substitutions per amino acid involved. 

If sites of very different kinetics, e.g., nonsynony- 
mous and synonymous, are lumped together in the cal- 
culation of the dissimilarity matrix, none of the measures 
discussed above will give a reasonable estimate for the 
average rate of change, except possibly at early times 
after separation when the divergence is due only to the 
fast substitutions. At later times, when the fast substitu- 
tions are saturated, they will only contribute a constant 
term to the estimated rate of change (R~ or K~), although 
they will continue to change at a rapid rate. Conse- 
quently, in this case R~ or Ks used as distance measure 
will severely underestimate the longer separation times 
compared to the shorter ones. They may still provide 
useful measures for evolutionary distance, but would say 
very little about the actual rates of change or average 
number of changes. 

simulations, one finds 21% inapplicable cases and a 20% 
relative scatter in the R~ estimates after an average of one 
change per site. 

Because of the statistical fluctuations, it does not ap- 
pear useful to calculate the individual rate constants from 
eq. (12), except for samples including a very large num- 
ber of sites (around 1,000 or more in the fourfold degen- 
erate case). However, the different averages, K s and R s, 
plotted in Figs. 2 and 3, are useful and readily available 
from the data. I have simulated (data not shown) also 
cases where the substitution-rate constants are very dis- 
parate and far from a detailed-balance condition. Such 
extra complications do not seem to change the general 
picture very much from that displayed in the figures 
above. 

For twofold degenerate codons with or without bias 
and under equilibrium relaxation, both Ks estimates 
based on eq. (14) and on the Tajima and Nei model, eq. 
(15), are exact, as is the R~ estimate from eq. (7). The Ks 
estimate based on Kimura's two-parameter model, on the 
other hand, departs more strongly than in the fourfold 
degenerate case. The lines in Fig. 4 show the results for 
the equilibrium relaxation of an infinite number of sites. 
The upper straight line is the exact result that can be 
calculated either from eq. (14) or eq. (15). This would be 
the result from the two-parameter model only if the two 
codons are equal in frequency (no bias). The two curved 
lines are from an application of the two-parameter model 
to two cases with strong codon bias which obviously 
would lead to serious underestimates of the average 
number of synonymous codon changes. 

For sixfold degenerate codons (Fig. 1), neither the 
two-parameter model nor the Tajima and Nei model can 
be applied directly without corrections for the structure 
of the substitution scheme. Eq. (7) for R,, however, gives 

Discussion 

To understand the kinetics of base-pair substitutions, it is 
important to consider only sites that can reasonably be 
assumed to have the same rate constants for the same 
kind of substitutions. By lumping together sites that have 
very different substitution kinetics one cannot hope to 
get very reliable estimates even for averages of the rate 
constants. Instead, it is suggested that one study the syn- 
onymous substitutions separately for each amino acid. 
Possibly one can lump together amino acids of the same 
degeneracy if they have similar codon bias. Then, using 
eq. (7), one can calculate the sum of all the synonymous 
rate constants for the amino acid considered. An average 
synonymous rate constant for that amino acid would then 
be given by R s divided by the total number of rate con- 
stants involved in the substitution scheme (e.g., 18 rate 
constants for the scheme in Fig. 1); this normalization 
puts the rates for all amino acids on the same base and an 
overall average can be calculated by taking the amino- 
acid weighted average across the gene(s) studied. Simi- 
larly, K~ estimated from eq. (14) will give an average 
number of synonymous changes for each amino acid and 
the overall can be synonymous changes for each amino 
acid and the overall average can be calculated by taking 
the amino-acid weighted average. These results can be 
used also for estimating the evolutionary distance be- 
tween two lineages and- - for  the reasons discussed 
above--they are expected to be more closely linear in the 
separation time than measures based on all sites lumped 
together. 

The divergence at synonymous sites allows a straight- 
forward statistical analysis based on kinetic schemes, but 
due account must be taken of the biases involved. The 
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synonymous substitutions are useful only for species that 
are sufficiently closely related so that the differences 
have not reached saturation. Also, after long separation 
times it is not reasonable to consider the synonymous 
changes independently from the nonsynonymous ones. 
In a separate communication (Berg and Martelius 1995) 
we derived the relations for the twofold degenerate 
amino acids and used them to study the synonymous 
substitutions for the twofold degenerate amino acids in 
E. coli and S. typhimurium. By focusing on the individual 
substitution rate constants rather than on their weighted 
average, it was possible to separate mutation and selec- 
tion pressure and also study the relationship between 
selection pressure and substitution rates. We intend to 
use the present model to extend this study to amino acids 
of higher degeneracy. 

The matrix formulation has the advantage that it au- 
tomatically accounts for all amino-acid degeneracies, 2-, 
3-, 4-, or 6-fold, and thereby puts all synonymous 
changes on the same basis. The data required are in the 
dissimilarity matrix, counting the fraction of sites for a 
certain amino acid that uses a certain codon in one spe- 
cies and another (or the same) in the other species. Fur- 
thermore, for use with eq. (7) or (14), one needs an 
estimate of the codon preferences in the ancestor of the 
two species. This could be chosen as the average of the 
codon choices in the two species studied, at least if the 
difference in bias is not large. If several lineages are 
studied, one might find other evolutionary arguments to 
infer a most likely codon distribution in the ancestor(s). 
If  this can be reliably estimated, the relaxation rate R s 
from eq. (7) is the only measure that remains exact also 
under nonequilibrium relaxation when two species drift 
toward different codon or nucleotide distributions. With 
additional assumptions, the individual substitution rate 
constants can also be directly calculated--eq. (12). 

The measure for evolutionary distance has tradition- 
ally been the average number of changes per site that has 
taken place during the separation time; this has an obvi- 
ous intuitive appeal as a measure for evolutionary 
change. For synonymous differences that is given by the 
weighted average, K s, in eq. (13) above. This is directly 
available from the dissimilarity data via eq. (14) only 
after an assumption about constant codon bias and de- 
tailed balance. It gives a weighted average of the rate 
constants. Both this average and the relaxation rate, R s 
from eq. (7), are proportional to separation time and 
could therefore be used as a distance measure. Since R s 
can be calculated directly from the dissimilarity matrix 

with no additional assumptions, it may provide a better 
estimate for the evolutionary distance. However, for the 
particular kinetic schemes studied in Figs. 2 and 3, it 
turns out that the various estimates for Ks--in spite of 
their limitations--can provide estimates that are less sen- 
sitive to small-sample effects and saturation. However, 
for the twofold degenerate sites with bias, Fig. 4, the 
two-parameter model (Kimura 1980) cannot be applied 
except at very short separation times. 
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Note Added in Proof  

After this paper had been submitted, there appeared an 
extensive study of the relationship between the estimated 
phylogenetic distance and assumed substitution model 
(Zharkikh 1994). 
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