Convolution Conditions for Convexity, Starlikeness and Spiral-Likeness*

Herb Silverman¹, Evelyn Marie Silvia² and Donald Telage³

1 Department of Mathematics, College of Charleston, Charleston, S.C. 29401, U.S.A.

2 Department of Mathematics, University of California, Davis, CA. 95616, U.S.A.

³ Department of Mathematics, University of Kentucky, Lexington, KY. 40506, U.S.A.

1. Introduction

The convolution or Hadamard product of two power series $f(z) = \sum a_n z^n$ and $g(z) = \sum_{n=0} b_n z^n$ is defined as the power series $(f * g)(z) = \sum_{n=0} a_n b_n z^n$. The Pólya-Schoenberg conjecture [3] generated a great deal of intrinsic interest in properties of convolutions. The proof of the conjecture [7] increased rather than decreased the work done on Hadamard products and led to several generalizations ([6, 10]) of the conjecture. In addition, a wide range of applications to extremal problems in univalent functions ([5, 8]) has created extrinsic interest in convolutions.

In this note we give characterizations for convex, starlike, and spiral-like functions in terms of convolutions. A function f, analytic in $|z| < R \le 1$ and normalized by $f(0)=f'(0)-1=0$, is said to be *convex of order* $\alpha(0 \le \alpha < 1)$ if $\text{Re}\left\{1+\frac{2J'(2)}{J'(2)}\right\} > \alpha(|z| < R)$, is *starlike of order* α if $\text{Re}\left\{\frac{2J'(2)}{J'(2)}\right\} > \alpha(|z| < R)$ and is *spiral-like* if for some real λ , $|\lambda| < \pi/2$, we have Re $\langle e^{i\lambda} \frac{\partial f}{\partial \lambda} \rangle > 0$ ($|z| < R$). For $f(z)$ J each of these classes, \mathscr{F} , we find a function g, depending on \mathscr{F} , such that $\frac{1}{z}(f * g) \neq 0$ is both necessary and sufficient for f to be in \mathcal{F} . More generally, given a specific function $\varphi(z, f, f', ..., f^{(n)})$ with Re $\varphi(0) > 0$, our method shows how one can often construct a function g_{α} such that Re $\varphi(z)$ >0 for $|z|$ < R if and only if $\frac{1}{z}(f * g_{\varphi}) \neq 0$ for $|z| < R$.

Zeitschrift 9 by Springer-Verlag 1978

^{*} This work was completed while the first two authors were visiting at the University of Kentucky.

The research of the first author was partially supported by a College of Charleston research grant. The second author was on a sabbatical leave from the University of California, Davis.

The conditions obtained are used to determine the radius of convexity of functions whose coefficients form a totally monotone sequence.

We would like to express our deep appreciation to Professor Stephan Ruscheweyh for many helpful suggestions, and especially for the application to totally monotone sequences.

2. Convolution Conditions

In the sequel, f will be analytic in $|z| < 1$ and normalized by $f(0) = f'(0) - 1 = 0$. In addition, α will satisfy $0 \leq \alpha < 1$.

Theorem 1. *The function f is convex of order* α *in* $|z| < R \le 1$ *if and only if*

$$
\frac{1}{z} \left[f * \frac{z + \frac{x + \alpha}{1 - \alpha} z^2}{(1 - z)^3} \right] \neq 0 \qquad (|z| < R, |x| = 1).
$$

Proof. The function f is convex of order α in $|z| < R$ if and only if

$$
\operatorname{Re}\left\{\frac{(zf'(z))'}{f'(z)}\right\} > \alpha \qquad (|z| < R). \tag{1}
$$

Since $\frac{(zf')'}{z'}=1$ at $z=0$, (1) is equivalent to

$$
\frac{(zf')'}{f'} - \alpha
$$

1 - \alpha + \frac{x-1}{x+1} \quad (|z| < R, |x| = 1, x + -1)

which simplifies to

$$
(1+x)(zf'') + (1-2\alpha-x)f' + 0.
$$
 (2)

Setting $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, we have $(zf')' = 1 + \sum_{n=2}^{\infty} n^2 a_n z^{n-1} = f' * \left(\sum_{n=1}^{\infty} n z^{n-1} \right) = f' * \frac{1}{(1-z)^2},$

so that the left hand side of (2) may be expressed as

$$
f' * \left(\sum_{n=1}^{\infty} \left[1 - 2\alpha - x + (1+x) n \right] z^{n-1} \right) = f' * \left(\frac{1 - 2\alpha - x}{1 - z} + \frac{1+x}{(1-z)^2} \right)
$$

=
$$
f' * \left(\frac{2 - 2\alpha + (x+2\alpha - 1) z}{(1-z)^2} \right).
$$

Convolution Conditions for Convexity, Starlikeness and Spiral-Likeness 127

Thus (2) is equivalent to

$$
\frac{1}{z} \left[z f' * \frac{z + 2\alpha - 1}{(1 - z)^2} z^2 \right] \neq 0.
$$
\n(3)

Since $zf' * g = f * zg'$, we can write (3) as

$$
\frac{1}{z} \left[f * \frac{z + \frac{x + \alpha}{1 - \alpha} z^2}{(1 - z)^3} \right] \neq 0 \qquad (|z| < R, |x| = 1).
$$

Remark. The case $x = -1$ in the convolution condition for Theorem 1 as well as the analogous results contained in Theorems 2, 3 and 4 is equivalent to stating $f' \neq 0$ for $|z| < 1$, which is a necessary condition for univalence.

Theorem 2. The function f is starlike of order α in $|z| < R \leq 1$ if and only if

$$
\frac{1}{z} \left[f * \frac{z + \frac{x + 2\alpha - 1}{2 - 2\alpha} z^2}{(1 - z)^2} \right] + 0 \quad (|z| < R, |x| = 1).
$$

Proof. Since f is starlike of order α if and only if $g(z) = \int_{c}^{z} \frac{f(\zeta)}{\zeta} d\zeta$ is convex of order α , we have

$$
\frac{1}{z} \left[g * \frac{z + \frac{x + \alpha}{1 - \alpha} z^2}{(1 - z)^3} \right] = \frac{1}{z} \left[f * \frac{z + \frac{x + 2\alpha - 1}{2 - 2\alpha} z^2}{(1 - z)^2} \right].
$$

Thus the result follows from Theorem 1.

Remark. The special cases of $\alpha = 0$ in Theorem 1 and $\alpha = 1/2$ in Theorem 2 are contained in $\lceil 6 \rceil$.

Theorem 3. For $|z| < R \leq 1$, λ real with $|\lambda| < \pi/2$ and $|x|=1$, we have

$$
\operatorname{Re}\left\{e^{i\lambda}\left(1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right)\right\}>0
$$

if and only if

$$
\frac{1}{z} \left[f * \frac{z + \frac{2x + 1 - e^{-2i\lambda}}{1 + e^{-2i\lambda}} z^2}{(1 - z)^2} \right] \neq 0.
$$

Proof. We have $\text{Re}\left\{e^{i\lambda}\left(1+\frac{zf^{\prime\prime}}{f^{\prime}}\right)\right\}>0$ in $|z|< R$ if and only if

128 H. Silverman et al.

$$
\frac{e^{i\lambda}\frac{(zf')'}{f'}-i\sin\lambda}{\cos\lambda}+\frac{x-1}{x+1}, \quad (|z|
$$

which simplifies to

 $(1+x)(zf'')' + (e^{-2i\lambda} - x)f' \neq 0.$ (4)

Observe that (4) can be obtained by substituting $e^{-2i\lambda}$ for $1-2\alpha$ in (2). The remainder of the argument is the same, with $e^{-2i\lambda}$ replacing $1-2\alpha$ in Theorem 1.

Theorem 4. For $|z| < R \leq 1$, λ real with $|\lambda| < \pi/2$, and $|x|=1$, we have

$$
\operatorname{Re}\left\{e^{i\lambda}\frac{zf'(z)}{f(z)}\right\}>0
$$

if and only if

$$
\frac{1}{z} \left[f * \frac{z + \frac{x - e^{-2iz}}{1 + e^{-2iz}} z^2}{(1 - z)^2} \right] + 0.
$$

Proof. The result follows from Theorem 3 in the same manner that Theorem 2 followed from Theorem 1.

Remark. Although a function that satisfies the conditions of Theorem 4 for $|z|$ is 1 must be univalent [9], a function that satisfies the conditions of Theorem 3 need not be [2].

3. An Application

We will need the following result due to Ruscheweyh [4].

Theorem A. Let $g(z, t)$ be analytic in the disk $|z| < 1$ and continuous in the variable *b* t on [a, b]. Denote by V functions of the form $f(z) = \frac{1}{2}g(z, t) d\mu(t)$, where μ is a *probability measure on* [a, b], and V^2 the subset of V in which μ is a step function with at most two jumps. If L_1 and L_2 are continuous linear functionals with $0 \notin L_2(V^2)$, *then to each* $f \in V$ *there corresponds an* $f_0 \in V^2$ *such that*

$$
\frac{L_1(f_0)}{L_2(f_0)} = \frac{L_1(f)}{L_2(f)}.
$$

A sequence of real numbers $\{a_n\}$ is said to be *totally monotone* if

$$
\Delta^0 a_n = a_n \ge 0 \qquad (n \ge 1)
$$

and

$$
\Delta^k a_n = \Delta^{k-1} a_n - \Delta^{k-1} a_{n+1} \ge 0 \qquad (n \ge 1, k \ge 1).
$$

Hausdorff [1] showed that a necessary and sufficient condition for the coefficients of $f(z) = z + \sum a_n z^n$ to be totally monotone is that n=2

$$
f(z) = \int_0^1 \frac{z}{1-tz} d\mu(t)
$$

for some probability measure $\mu(t)$ defined on [0, 1]. Such functions are known to be univalent in $|z|$ < 1. Wirths [11] found the radius of starlikeness for this class. We have

co **Theorem 5.** The *radius of convexity for functions of the form* $f(z) = z + \sum a_n z^n$ whose coefficients are totally monotone is $\sqrt{2}/2$.

Proof. Let $L_1(f) = zf'' + f'$ and $L_2(f) = f'$ in Theorem A. It follows that we need only consider f in the form

$$
f(z) = \gamma \frac{z}{1 - t_1 z} + (1 - \gamma) \frac{z}{1 - t_2 z} \qquad (t_1, t_2, \gamma \in [0, 1]).
$$

It is an obvious geometrical fact that for A and B nonzero complex numbers, $|\arg A - \arg B| = \pi$ if and only if the line segment connecting A and B passes through the origin. Thus, from Theorem 1 with $\alpha = 0$, we see that proving the result is equivalent to showing that

$$
F(t_1, t_2, x, z) = \left| \arg \frac{(1 + xt_1 z)(1 - t_2 z)^3}{(1 + xt_2 z)(1 - t_1 z)^3} \right| + \pi \qquad \left(|z| < \frac{\sqrt{2}}{2}, |x| = 1 \right). \tag{5}
$$

For each point z in the unit disk, $\left|\arg(1 + tz)\right|$ is an increasing function of t, $0 \le t \le 1$. Thus

$$
\max_{t_1, t_2 \in [0, 1]} \left| \arg \left(\frac{1 + t_1 z}{1 + t_2 z} \right) \right| = |\arg (1 + z)|,
$$

and for $|z| \leq r$, we have

$$
F(t_1, t_2, x, z) \le \left| \arg \left(\frac{1 + x t_1 z}{1 + x t_2 z} \right) \right| + 3 \left| \arg \left(\frac{1 - t_2 z}{1 - t_1 z} \right) \right|
$$

\n
$$
\le \max_{|x| = 1, |z| = r} \left| \arg (1 + x z) \right| + 3 \max_{|z| = r} \left| \arg (1 - z) \right| = 4 \sin^{-1} r.
$$

Note that $F(1, 0, -1, z) = 4 \sin^{-1} r$ when $\arg(1-z) = \sin^{-1} |z|$. Since $4 \sin^{-1} \left(\frac{\sqrt{2}}{2}\right)$ $=\pi$, the result follows.

Corollary. *Functions of the form* $f(z) = z + \sum_{n=2} a_n z^n$ whose coefficients are totally *monotone are starlike of order* $1/2$ *in the disk* $|z| < \frac{1}{3}/2$.

Proof. Applying Theorem 2 with $\alpha = 1/2$ instead of Theorem 1 with $\alpha = 0$, we find that the 3 in the exponent of (5) can be replaced by a 2. From there it follows that f is starlike of order 1/2 when $3 \sin^{-1} |z| < \pi$.

References

- 1. Hausdorff, F.: Summationsmethoden und Momentenfolgen I. Math. Z. 9, 74-109 (1921)
- 2. Krzyz, J., Lewandowski, Z.: On the integral of univalent functions. Bull. Acad. Polon. Sci. S6r. Sci. Math. Astronom. Phys. 11, 447~448 (1963)
- 3. Pólya, G., Schoenberg, I.J.: Remarks on de la Vallée Poussin means and convex conformal maps of the circle. Pacific J. Math. 8, 295-334 (1958)
- 4. Ruscheweyh, St.: Nichtlineare Extremalprobleme ftir holomorphe Stieltjesintegrale. Math. Z. 142, 19-23 (1975)
- 5. Ruscheweyh, St.: Duality for Hadamard products with applications to extremal problems for functions regular in the unit disc. Trans. Amer. Math. Soc. 210, 63-74 (1975)
- 6. Ruscheweyh, St.: Linear operators between classes of prestarlike functions. Comment. Math. Helv. 52, 497-509 (1977)
- 7. Ruscheweyh, St., Shell-Small, T.: Hadamard products of schlicht functions and the P61ya-Schoenberg conjecture. Comment. Math. Helv. 48, 119-135 (1973)
- 8. Ruscheweyh, St., Singh, V.: On certain extremal problems for functions with positive real part. Proc. Amer. Math. Soc. 61, 329-334 (1976)
- 9. Špaček, L.: Contributions à la théorie des functions univalentes (in Czech). Časopis Pěst Mat.-Fys. 62, 12-19 (1933)
- 10. S uffridge, T.J.: Starlike functions as limits of polynomials. In: Advances in complex function theory. Lecture Notes in Mathematics 505, pp. 164-202. Berlin-Heidelberg-New York: Springer 1976
- 11. Wirths, KJ.: Untersuchungen tiber Potenzreihen, die durch total-monotone Zahlenfolgen erzeugt werden. Preprint

Received November 2, 1977