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1. Introduction 

The convolution or Hadamard  product of two power series f(z) = ~ a, z n and 

g(z)= b,z" is defined as the power series ( f . g ) ( z ) =  a,b,z". The Pdlya- 
n = 0  n = 0  

Schoenberg conjecture [3] generated a great deal of intrinsic interest in proper- 
ties of convolutions. The proof  of the conjecture [7] increased rather than 
decreased the work done on Hadamard  products and led to several generali- 
zations ([6, 10]) of the conjecture. In addition, a wide range of applications to 
extremal problems in univalent functions ([5, 8]) has created extrinsic interest in 
convolutions. 

In this note we give characterizations for convex, starlike, and spiral-like 
functions in terms of convolutions. A function f, analytic in ]zl<R_-<l and 
normalized by f ( 0 ) = f ' ( 0 ) - l = 0 ,  is said to be convex of order e(0Nc~<l)  if 

{ J,,~zf"(z)) ~zf'(z)~f(z) J > e(lzl < R ) a n d  is Re l + ~ > ~ ( I z l  < e ) ,  is starlike of order c~ if R e [  

spiral-like if for some real 2, I,~1 < ~/2, we have Re C~e ix zf'(z)~ > 0 (]zl < R). For 
f (z) J 

each of these classes, o~, we find a function g, depending on ~ ,  such that 
1 
- ( f  * g)=#0 is both necessary and sufficient for f to be in ~ More generally, 
Z 

given a specific function qo(z,f,f', . . . .  f(")) with Re~p(0)>0, our method shows 
how one can often construct a function go such that Re (p(z)>0 for ]zl < R  if and 

only if 1 0c �9 go) #= 0 for I zl < R. 
Z 
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The conditions obtained are used to determine the radius of convexity of 
functions whose coefficients form a totally monotone sequence. 

We would like to express our deep appreciation to Professor Stephan 
Ruscheweyh for many helpful suggestions, and especially for the application to 
totally monotone sequences. 

2. Convolution Conditions 

In the sequel, f will be analytic in [zl < 1 and normalized by f ( 0 ) = f ' ( 0 ) -  1 =0. 
In addition, c~ will satisfy 0 _-< c~ < 1. 

Theorem 1. The function f is convex of order ~ in Izl <R=< 1 if and only if 

I f  x + ~  2 ]  1 z+~_ z ] 
�9 (i_~z)3 ]4=0 (Izl<e, Ixl=0. 7 

Proof. The function f is convex of order c~ in [zl < R  if and only if 

R f(zf' (z))') 
e ~ 7 ~ - ;  > e  (Izl <R). (1) 

Z z1 ~. ( f )  brace 7 - =  1 at z=O, (1) is equivalent to 

(zf 7 
f '  x--1 

- -  : ~ = - -  

1 - ~  x + l  
(Izl<R, Ix l=l ,  x + - l )  

which simplifies to 

(1 +x)(zf ') '+(1 - 2c~- x ) f ' ,  O. (2) 

Setting f(z)  = z + ~ a, z", we have 
n = 2  

( ~176 nz,_~) 1 (zf')' = l + n 2 an  Z n -  1 = f ' ,  ~ = f '  * (1 - -  z )  2 '  
n = 2  n-- 

so that the left hand side of (2) may be expressed as 

s .  E12  z. 1)=s. ( !  l+x 
.=1  1 - z  ~ !  

=f ,  , ( .2 -2~+(x  + 2c~- l) z) .  
(1 - z )  2 
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Thus (2) is equivalent to 

Z-[ Z 2 

z f '  , - 2 - - ~  -(iU_z) 2 , o .  (3) 

Since z f '  * g = f  * zg', we can write (3) as 

1[ i z + - - z  I 
1 -  c~ I 0 �9 ~: (Izl<e, lxl=l). 

Remark. The case x--  - 1 in the convolution condition for Theorem 1 as well as 
the analogous results contained in Theorems 2, 3 and 4 is equivalent to stating 
f '  4=0 for Izl < l ,  which is a necessary condition for univalence. 

Theorem 2. The function f is starlike of order ~ in Izl < e  < 1 if  and only if 

1 z-~ 2 - 2 ~  
�9 (1_z)2 4:0 (Iz[<e,  Ixl=l) .  

i f(~) d~ is convex of Proof. Since f is starlike of order c~ if and only if g(z)= o 
order c~, we have 

[ 1 1 Z + l _ c ~ z  zq 2-2c~ 

Z g* ( i - - ~  3 j =  * ( l - z )  ~ �9 

Thus the result follows from Theorem 1. 

Remark. The special cases of c~ = 0 in Theorem 1 and c~ = 1/2 in Theorem 2 are 
contained in [-6]. 

Theorem 3. For [zl<R__<l, 2 real with 121<~/2 and [x l= l ,  we have 

Re {e~a ( 1 + ~ ] ~ > 0  
f ( ) / J  

if and only if 

z ~  ~ _ ~  z ~ 

f *  (1 - z )  2 4:0. 

�9 { ( z f " \ ) j / )  
Proof We have Re e iz 1+~7-, J ~ > 0  in [zr<R if and only if 
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ei z (zf ' ) '  i sin). 
f '  x - 1  

4: ( Iz l<e ,  Ixl= 1, x4= -1 ) ,  
cos2 x + l '  

which simplifies to 

(1 + x) (zf ' ) '  + (e-  a ix _ x) f '  + O. (4) 

Observe that (4) can be obtained by substituting e -21~" for 1-2c~ in (2). The 
remainder of the argument is the same, with e -2~a replacing 1-2c~ in Theorem 
1. 

Theorem 4. For ] z ] < R < l ,  2 real with 12[<n/2, and Ix[=l ,  we have 

' Z  IN ;>0 
i f  and only if  

z-t 1+e_2i  z z 

f ,  ( l_z )2  , 0 .  

Proof. The result follows from Theorem 3 in the same manner that Theorem 2 
followed from Theorem 1. 

Remark. Although a function that satisfies the conditions of Theorem 4 for 
Izl < t must be univalent [9], a function that satisfies the conditions of Theorem 
3 need not be [2]. 

3. An Application 

We will need the following result due to Ruscheweyh [4]. 

Theorem A. Let  g(z, t) be analytic in the disk Izl < 1 and continuous in the variable 
b 

t on [a, b]. Denote by V functions of  the .form f ( z ) = S g ( z , t ) d # ( t ) ,  where # is a 

probability measure on [a, b], and V 2 the subset o f  V in which i~ is a step function 
with at most two jumps. I f L 1 and L 2 are continuous linear functionals with O(~ L2 ( V Z), 
then to each f E V there corresponds an fo e V 2 such that 

L1 (fo) _ LI  ( f )  

L2(fo) L2(f)  

A sequence of real numbers {a=) is said to be totally monotone if 

A~ a = a  >O (n>__l) 
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and 

Akan=Ak-la _A k-lan +2>0 ( n > l , k > l ) .  

Hausdorff [1] showed that a necessary and sufficient condition for the coef- 

ficients off(z)=z+ ~ a,z n to be totally monotone is that 
n=2 

1 Z 
f(z) = ! ~ dl~(t) 

for some probability measure/~(t) defined on [0, 1]. Such functions are known to 
be univalent in Izl < 1. Wirths [11] found the radius of starlikeness for this class. 
We have 

co 

Theorem 5. The radius of convexity for functions of the form f(z)= z + ~ a. z" 
whose coefficients are totally monotone is ]/2/2. n= 2 

Proof Let L l ( f ) =  zf" +f '  and L 2 ( f ) = f '  in Theorem A. It follows that we need 
only consider f in the form 

Z Z 
f (z)  = 7 ~ + ( 1 - 7 )  1 - t  z z (ta, t2, 7~[0, 1]). 

It is an obvious geometrical fact that for A and B nonzero complex numbers, 
[ a r g A - a r g B [  =7r if and only if the line segment connecting A and B passes 
through the origin. Thus, from Theorem 1 with c~ =0,  we see that proving the 
result is equivalent to showing that 

F(tl, t2, x,z)= arg (l +xtl z)(1-tzz)3 ( ~ -  ) 
( l+x t2z ) ( l _~a~  =~z Izl< , I x l= l  . (5) 

For each point z in the unit disk, [arg(1 +tz)[ is an increasing function of t, 
0_t_< 1. Thus 

arg f l + t l z t  : max larg (1 + z)l, 
~l,t2ao, 1] \1 +t2z/[ 

and for [z[ <r,  we have 

F(q,t2,x,z)<= arg [ l + x t t z ]  +3  arg ( 1- t2z]  
\l + xt2z/] \ l-- t lz/[  

< max [arg(l+xz)I+3max[arg(1--z)]=4sin-lr. 
IxJ= 2, Izl=r Izl=r 

Note that F(1, O, -1,  z)=4sin-l r when arg(t-z)=sin-X lzl. Since 4sin-X ( ~ )  
= ~, the result follows. 
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Coro l l a ry .  Functions of the form f ( z )=z  + ~ a,z" whose coefficients are totally 
n = 2  

monotone are starlike of order 1/2 in the disk Izl < 1 ~ / 2 .  

Proof. A p p l y i n g  T h e o r e m  2 wi th  c~ = 1/2 ins t ead  of  T h e o r e m  1 wi th  e = 0, we find 

tha t  the  3 in the  e x p o n e n t  of  (5) can  be  r e p l a c e d  by  a 2. F r o m  there  it fo l lows  
tha t  f is s t a r l ike  o f  o r d e r  1/2 w h e n  3 s i n -  1 Iz] < ~. 
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