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1. Introduction 

Positivity of curvature plays a crucial role in riemannian geometry. However, 
such positivity conditions can be expressed in different ways of varying 
strength. In the more qualitative parts of riemannian geometry, the sectional 
curvature K and its sign is prevailing. The reason is that K enters the 
fundamental formulas for the geodesic variation in a very direct manner. For 
other questions, the curvature operator p and its definiteness is more domi- 
nant. For  example, the positive semidefiniteness p > 0  is the only known 
universal condition ensuring the nonnegativity of the general Gauss-Bonnet 
integrand, while K > 0  is merely sufficient for dimensions less than 6. More- 
over, for noncompact complete manifolds the Gauss-Bonnet integral and the 
Euler characteristic, if existing at all, do in general not coincide, but their 
difference is in some instances manageable if the curvature operator is positive 
semidefinite (see Theorem (2.F) below). 

It is well known that p >0  implies K > 0 ,  the converse being true only for 
dimensions less than 4. So, a natural question is" What conditions have to be 
added to conclude from K > 0  that p > 0? Some known results in the realm of 
intrinsic geometry are listed in Sect. 2. 

Now, if a riemannian manifold M of dimension m is isometrically immer- 
sed in another riemannian manifold ~/  of dimension rh, we may conjecture 
that, for small codimensions p, = N - m ,  there are weaker conditions that in the 
abstract case to ensure the positive semidefiniteness of p. The purpose of the 
present paper is to initiate some answers in this direction. For  hypersurfaces (p 
=1) of euclidean space, p > 0  is directly implied by K > 0  since p equals the 
exterior square of the Weingarten map. For  submanifolds of euclidean space 
with codimension p=2 ,  Weinstein [-31] deduced p > 0  from K > 0 .  In Sect. 3 we 
generalize this result to the semidefinite case and to nonflat ambient spaces. 
Also, an application to the Gauss-Bonnet formula is given. However, there is 
no hope to go beyond p = 2  in this manner as is shown by a counterexample at 
the end of Sect. 3. For  higher codimensions, an attack is then made in Sect. 4 
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in order to establish conditions, additional to K >0, which ensure p >0. They 
are expressed in terms of the two extremal values L and 1 of [B(x,x)l on the 
unit tangent sphere where B is the vector valued second fundamental form. 
The conditions are related to a sort of mixed pinching for K and B. We call 
the quantities L and l isotropy bounds because their coincidence is equivalent 
to the notion of isotropy, introduced by O'Neill [22]. In Sect. 5, we conclude 
with some characterizations of isotropic submanifolds of low codimension, thus 
extending results of [22] to the variable curvature case. In particular, for m--2 
and p = 2, we meet the Veronese surface once more. 

2. Notations and Known Results 

Let (M, ( , )) always be a riemannian manifold of class C ~ with dimension 
m > 2  which is supposed to be hausdorff, paracompact, and connected. Beside 
the sectional curvature K of M we consider its curvature operator p, i.e. the 
riemannian curvature tensor, operating as a symmetric linear mapping from 
tangent bivectors to themselves. The curvature operator is called positive 
semidefinite, denoted by p>0 ,  if @ ( X ) , X ) > 0  for all bivectors X (decompos- 
able or not), where induced scalar products and norms for tensors are denoted 
the same way as for vectors. Similarly, the positive definiteness of p, denoted by 
p >0, is defined. For decomposable X =u  A v +0, the sectional curvature of the 
plane E spanned by u, v is related to p by 

K(E) = K(u, v) = (p(u A V), U/X V) 
]u A v] 2 (2.1) 

So, K > 0  means that ( p ( X ) , X ) > 0  for all decomposable bivectors X. We ex- 
press the last property by saying: p is positive semi&finite on all decomposable 
bivectors. Here and in the sequel, letters like u,v,x,y, . . ,  denote vectors at a 
fixed point of M. As a principle, in all inequalities we include the equality sign, 
leaving it to the reader to pursue the strict case along the lines given here. 

Between the quantities K,p and the general Gauss-Bonnet integrand a4g ", 
the following pointwise relations are known: 

(2.a) p>O~K>=O (Eq. (2.1)). 

(2.B) p > 0 ~ a f f > _ 0  (Avez, Johnson, Kostant, cf. also Kulkarni [19]). 

(2.C) K>=O~p>=O if m<3,  but not for m > 4  (if m=<3, all bivectors are decom- 
posable, for a counterexample in case m_>4 see (3.D) below). 

K > = 0 ~ a U > 0  if m=<5, but not for m>=6 (Chern-Milnor [7], Geroch (2.D) 
[Ii]). 

m-2 [m] 
(2,E) Kmln>m,+~K . . . .  m' :=2 .  ~ ~ p > 0  (Bourguignon-Karcher [4]). 

If nothing else is said, additional notions and conventions on signs of 
curvatures etc. are the same as in [29]. For  m odd, S = = 0 .  
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One further significant impact of p >0  is that on the Gauss-Bonnet bound- 
ary integrands and subsequently on the noncompact Gauss-Bonnet theory. The 
following theorem can be drawn rather immediately from former results of the 
second named author: 

(2.F) Theorem. Let M be a complete and oriented riemannian manifold. For 
m < 5 let the sectional curvature K be nonnegative outside a compact subset A of 
M; for m>6 let the curvature operator p be positive semidefinite outside a 
compact subset A of M. Then a generalized version of Cohn-Vossen's inequality 
is valid for M, namely 

Y d# =< z(M), (2.2) 
M 

where both quantities, the total curvature and the Euler characteristic, exist 
finitely. Moreover, ~ ~ 0 on M \ A .  

For compact M, (2.2) with the equality sign is the generalized Gauss- 
Bonnet theorem of Allendoerfer-Weil [1] and Chern [6] (a recent version of 
Chern's intrinsic proof is to be found in [29]). In the noncompact case, an 
essential tool in proving Theorem (2.F) is the extended Gauss-Bonnet formula 
for compact locally convex subsets of M established in [27]. For intrinsic 
convexity in general, see [26, 28 and 30]. (A different approach to (2.2) which, 
instead of convex sets, uses convex functions has been proposed by Poor [24] 
and also appealed to in Greene-Wu [13, 14]. However, this reasoning causes 
difficulties because certain signs cannot be controlled.) Another main step is 
the exhaustion of a noncompact M by suitable compact totally convex subsets 
whose existence in case A = 0 is part of the Cheeger-Gromoll structure theory 
[5]. The full proof of Theorem (2.F) in this case is carried out in [27]. For 
A + 0 one can essentially argue the same way, using Greene-Wu's generali- 
zation of the Cheeger-Gromoll construction in [12]. The necessary homotopy 
equivalence of the exhausting totally convex subsets with M follows explicitly 
from results of Bangert [2] or, in the widest generality, [3]. 

Remark. For m = 2, the classical Cohn-Vossen inequality (2.2) holds true under 
much weaker assumptions, cf. [10]. 

3. Isometric Immersions of Codimension 2 

We consider an isometric immersion of M into a second riemannian manifold 
AT/. All quantities related to )f/ will be marked by a tilde. Dimensions are 
sometimes indicated by writing M", M'~; the codimension is p.'= rh -  m > 1. 

First, let p be arbitrary. Then we have the Gauss equation 

( p ( u  A v), w A z )  - ( ~ ( u  A v), w A z )  = ( p " ( u  A v), w a z )  (3.1) 

where 

(pO(u A V), W A Z}:= (B(u, w), B(v, z)} - (B(u, z), B(v, w)). (3.2) 
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Here, we look upon M as a submanifold of _g/. B is the second fundamental 
form, interpreted as a symmetric bilinear mapping of the tangent space of M 
into the normal space. Of course, pB can be extended uniquely to a symmetric 
linear mapping from the set of all bivectors tangent to M to itself, and the 
definiteness notions introduced above for p apply to pB as well. For every 
normal vector e, the corresponding scalar second fundamental form is 
(u, v)~<B(u, v), e>. 

Generalizing [31, Theorem 1], we prove the following purely algebraic 

(3.A) Proposition. At a f ixed point of M, consider the following conditions on 
B: 

(a) There is an orthonormal base e I .... ,e v of the normal space such that the 
quadratic forms u~-~< B(u, u), ei) are all positive semidefinite. 
(b) p~ is positive semidefinite. 
(c) pB is positive semidefinite on all decomposable bivectors. 

Then (a) ~ (b) ~ (c) and, for p = 2, also (c) ~ (a). 

Proof. The first two implications are proven verbally the same way as in the 
strict positive case. The geometric core of the third implication will be dis- 
cussed in a more general setting in Sect. 4. At this point, we give a formal, 
elementary proof of (c)~(a): Denote by Z the set of all vectors of the form 
B(u, u) in the normal plane. By assumption 

(pB(u A V), U A V) -~- (B(u, u), B(v, v)) -]B(u, v)[ 2 ~_~0, 

thus 
<z,z ')>O for all z,z '~Z. (3.3) 

Let Z t be the set of all vectors x=z/lz[ with z~Z\{0}. The closure Z1 is 
compact and has the property analogous to (3.3). Choose e 1, yoeZ1 such that 

( x , y ) > ( e l , y o ) > O  for all x, ye21.  (3.4) 

If e 2 is the unit vector in the normal plane orthogonal to e 1 with 

yo=#lel +#2e2, #2>=0, 

then < e l , y o ) = # l > 0  and #2+#2=1.  Applying (3.4) to y = e l ,  resp. Y=Yo, 
gives <x, el)  >0, resp. 

#2 <x, e2)~#1(1- -<x ,  e l )  )>=0. 

In case #2>0 this implies <x, ea)>O. If #2=0, we have _#1=1, and it follows 
< x , e , ) = l ,  so x = e  1. In each case <x, ei>>O for xeZ1 ,  and this implies 
<z, ei) >O for zeZ.  

By combining the last result for p = 2  with the Gauss equation (3.1), (3.2), 
we see immediately that the condition K(E)> I~(E) for all tangent planes of M 
implies <p(X),X)></5(X),X) for all bivectors of M over the fixed point. Thus 
we obtain 

(3.B) Theorem. Let the manifold M be isometrically immersed with codimension 
2 in the riemannian manifold M. Then the following pointwise statement holds 
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true: I f  the curvature operator ~ of M is positive semidefinite and if K(E)> Is 
for all tangent planes E of M, then the curvature operator p of M is positive 
semidefinite. 

Like all conditions sufficient for p >0  this leads directly to a corresponding 
Gauss-Bonnet result. A particular case arises when )~r is a space form of 
nonnegative curvature since then t5 > 0, automatically. We display the following 
significant case which generalizes a result of [27] and leave it to the reader to 
formulate corresponding Gauss-Bonnet corollaries in the other cases (especially 
those of Sect. 4). 

(3.C) Corollary. Let the complete oriented manifold M be isometrically im- 
mersed with codimension 2 in a flat space form )fl (e.g. ]Rm+2). I f  the sectional 
curvature K of M is nonnegative over all points outside a compact subset A of 
M, then 

~ ~ d # < z( M), 
M 

including the finite existence of both quantities. Moreover, JU > 0 in M \ A .  

Proof Combine (2.F) and (3.B). 

For p > 3, it is no longe r true that the sign of K alone determines the sign 
of p. 

(3.D) Example. There is a 4-dimensional submanifold M of IR 7 with OeM such 
that all sectional curvatures of M over 0 are positive but the curvature operator 
p of M at 0 is indefinite. 

With respect to (2.C) and (3.B), the dimensions 4 and 7 are minimal for 
such an example. 

Proof Let aa, az, a3, a4 resp. el, e2, e 3 denote orthonormal bases for the 
tangent resp. normal space in a fixed point of our candidate M. We choose 
three scalar bilinear forms as candidates for the three second fundamental 
forms of ex, e2, e 3 according to the matrix representations: 

B I = (  ~x2 c~O , B2= f12 0 ' a ' 

0 0 84/ 
The coordinates for bivectors over our point will be denoted as follows: 

X = P l  "a 1 ma2 +p2"a3 ma4 +p3"a 1 Aa 3 

+p, .a2 Aa,+Ps.aa  Aa4+P6.a 2 Aa 3. 

(3.5) 

(3.6) 

The curvature operator p can be computed from (3.2) to be represented by the 
matrix 

_ _  2 --a2 [7s--a2 
p = d i a g ( (  -y;2 7~ ) '  (___Y;2 74 ) '  t 0 76Oa2))  ' (3.7) 
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Here, the right hand side stands for the (6 x 6)-matrix composed of the three 
displayed (2 x 2)-blocks along the main diagonal, where the following abbre- 
viations have been used (same order as in (3.6)): 

71'=cq~2+/~1/~2, 72:=c~3~4+/~3/~4 . . . . .  

p becomes indefinite if e.g. 
y l ~ - a ~ < 0 .  (3.8) 

Now, the decomposability condition for bivectors X over a 4-dimensional 
vector space is of scalar nature, namely the PRicker relation: 

G(X,X):= [X mX]=2plp2--2p3p4+2psp6=O. (3.9) 

Introducing the linear mapping ~ associated with the symmetric bilinear form 
G on bivectors, this fact furnishes the following implication: 

there exists t s N  with p + t7 >0~(p(X),  X ) >  0 for all decomposable X +0. 
(3.10) 

This conclusion is important because the positive definiteness of p + ty, stated 
in the assumption, is easier to verify than the positivity of K, stated in the 
assertion. Since ~ has by (3.9) the matrix representation 

7=d i ag ( (~  ; ) ,  (_01 - ~ ) ,  (~ ; ) ) '  

the positive definiteness of p +ty  is by (3.7) equivalent to: 

)~l > O, ? 2 > 0 ,  7 3 > 0 ,  7 4 > 0  

y s - - a Z > O ,  ~6--a2>0 

~Jl~2-- (aZ-- t )2>O,  ];3 ~4 -- (a2 -~- t)2 > 0 

(75 - a  2) (76 - a 2 )  - t  2 > 0 .  

(3.11) 

The set of the ten inequalities (3.8) and (3.11) for the ten entries el,/~i, a, t, has 
solutions, a particular one being: cq =~2=c~4= 1, %=5,  13 l=/~z=l ,  /33 = -1 ,  
fl4=4, a=]/~,  t = l .  Now, an M with 0~M can be realized as the graph of the 
map (xl, x2, x3, x4)~-*(fl ,f2,f3) (xl, x2, x3, x4) from 1114 to IR 3 where fl,f2,f3 are 
the quadratic polynomials corresponding to (3.5). For the numerical choice just 
made, we obtain the explicit example: 

2 2 2 X5 = X1Ar- X2--}- 5X3-]- X 2 

x7 = / g  (xl  4 + x2 x3). 
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4. Isometric Immersions of Higher Codimension 

If M is immersed in ~r with codimension p > 3, there cannot exist a result as 
smooth as (3.B). Using again Proposition (3.A), we exhibit here some ad- 
ditional requirements allowing the conclusion from K > 0 to p > 0. 

Obviously, the geometric idea behind the third implication of Proposition 
(3.A) is a statement on the unit circle N1, namely that a subset Z I ~ ;  1 of 
geodesic diameter <re/2 finds room in a geodesic interval on S~ 1 of length re/2. 
For subsets of higher dimensional spheres there is a corresponding inequality 
of Jung's type, established by Santalo, which will be used for the following 

(4.A) Proposition. Let Z be a subset of a euclidean vector space W of 
dimension p >= 2 with the property 

<x ,y>>p-2 . lx[ . l y l  for all x, yeZ.  (4.1) 
= p - 1  

Then there exists an orthonormal base el, ..., ep of W with <x, ei) >=0 for all x E Z  
and l <i<=p. 

Proof As is clear from the proof of (3.A), we may assume p > 3  and consider Z 
a subset of the unit sphere $P-~ of W. The assumption (4.1) then means for the 
geodesic diameter d of Z: 

p - 2  
d < arc cos ~ < 2" (4.2) 

If 6 denotes the geodesic diameter of the smallest geodesic ball A on ~;P- l 
containing Z then Santalo's inequalities [25, Theorem 1] imply 

d_< 6 _< 2- arc cos ] ? P  
1) COS d + 1 

V P 

Observe the case 20 there is excluded since it can only happen when d>>_zc/2. 
With (4.2), this gives: 

d _ < 6 < 2 . a r c c o s ] / P p  1 

Now, choose an orthonormal base el, . . . ,e v of W such that the center of A is 
represented by 

Then, for all x e Z :  

With 

1 P 
a=F; 2 ej 

j = l  

p 

X = E Xkek 
k=l  
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this means 
p 

y'  G >  l / ) -  1. (4.3) 
k = l  

If we had x j < 0  for a specific j then the Cauchy-Schwarz inequality would 
imply 

~Xk< }', Xk<I /  Y'. X~ " p]/~-- l< ]~p--1, 
kq=j ~--~k~j 

which is a contradiction to (4.3). 

Remark. The constant ( p - 2 ) / ( p - 1 )  in (4.1) has been selected minimally with 
respect to the idea of the proof. We do not know whether this is really the 
smallest possible choice for p > 3. 

Among the real invariants of the second fundamental form B, the simplest 
ones are the pointwise extrema 

L : =  max [B(u, u)[, I: = min IB(u, u)[. (4.4) 
1,1= 1 M= 1 

We call L and 1 the isotropy bounds (the reason being explained in Sect. 5). 
There is no direct relation of L and I to the "length" of B dealt with by Chern- 
Do Carmo-Kobayashi in [9J. However, L is also a norm on the vector space of 
our bilinear mappings B and, in a sense, L and l are related to the maximal 
value of sectional curvature if M is flat. 

For the rest of this section, we only consider a flat ambient space ]f/, hence 
15=0. 

(4.B) Theorem. Let the manifold M be isometrically immersed with codimension 
p in the flat riemannian manifold f/l. Then the following pointwise statements 
hold true: I f  p is arbitrary then 

Kmax~ L 2. (4.5) 

I f  p<=m-2 (or p < m - 1  and l>O) then 

12 ~ Kma x. (4.6) 

Proof (4.5) follows immediately from the Gauss equation for orthonormal u,v: 

K (u, v) = ( B(u, u), B(v, v) ) -[B(u, v)l 2. (4.7) 

The proof of (4.6) uses essentially an argument due to Otsuki 1-23] (cf. also 
1-20]): Denote by $m_x the unit sphere in our fixed tangent space of M and let 
Uo~N m-1 be a vector at which the function f(u), = IB(u, u)l 2 attains its minimum 
on ~m-1, so ]B(uo, u0) I =l. The usual necessary conditions in first and second 
order for the minimum of f at u o read: 

(B(uo, uo),B(uo,U))=O for all u c $  m-1 with U• (4.8) 

2LB(uo,u)[2+(B(uo,Uo),B(u,u))--12>=O for all u e ~  m-1 with u_l_u o. (4.9) 
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The first condition is equivalent to 

(B(uo, Uo),B(uo, u))=12.{uo, u) for all usg; " - I .  (4.8') 

The idea is to take an u~ ~ $ " - ' ,  orthogonal to uo, and satisfying B(uo, u~)=0. For 
such an ul, the Gauss equation (4.7) and (4.9) imply K(uo,u,)={B(uo,Uo), 
B(ul,ul))>I 2, hence the assertion. Now, the existence of ul is clear by simple 
dimension arguments: If p < m - 2  then the kernel of the linear map 
u~--~(B(uo, u),(uo,u)) is nontrivial. If p < m - 1  and l>0,  take ule$  m-1 in the 
kernel of u~-*B(u o, u), which is nontrivial, and observe (4.8'). 

We now show: 

(4.C) Theorem. Let the manifold M be isometrically immersed with codimension 
p in the fiat space form M where m > 4 and p > 3. Then the following pointwise 
statement holds true: I f  

K >]/P-3/~22.L2 (4.10) 
min = [ /  p -- 1 

then the curvature operator p of M is positive semidefinite. 

Proof For each orthogonal pair u,v over our point, we have by the Gauss 
equation (4.7): 

K m i  n < ( B(u, u), B(v, v) ) (4.11) 
L 2 = lB(u, u)l' ]B(v, v)]" 

Here, it is assumed that all denominators are 4:0. In order to gain an 
analogous relation for arbitrary tangent vectors x,y, choose z orthogonally to 
x, y and set 

go:= -~ ( B(x, x), B(y, y)) 

goa:= 4:(B(x, x), B(z, z)) 

q~2:= ~ (B(y, y), B(z, z)) 

where, for the present, B(x,x)4:0, B(y,y)4:0, B(z,z)4:0. By (4.11) we have 
cos cp~ > Kmin/L 2, and the triangle inequality for angles yields: 

Kmin 
cp_-< cpl + cp2 < 2" arc cos ~ 2  - , 

hence 
(B(x, x), B(y, y)) 2 Kmin 
[B(x, x)I-[B(y, Y)[ = cos (p > 2 . ~ - -  1. 

Using (4.10) we deduce 

pp--~21 �9 IB(x, x)l. IB(y, Y)I. (4.12) (B(x, X), B(y, Y)5 > 

This is trivially correct if L - 0  or B(x,x)=O or B(y,y)=O, the only case left 
being: L+O, B(x,x)+O, B(y,y)+O, but B(z,z)=O for all z4:0 orthogonal to x 
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and y. However, this last case does not exist since, for these z, we had by the 
Gauss equation (4.7): 

0 <= Ix A zl2 K(x, z) = (B(x, x), B(z, z)) - I B ( x ,  z)12 < 0, 

so Kmin:0, hence by (4.10): L=0 .  
From (4.12) and Propositions (3.A) and (4.A) follows p >0. 
With respect to (4.5), the assumption (4.10) implies 

Obviously, this pinching condition can be weaker than that of (2.E). We do not 
know whether such a pinching alone ensures p>0 .  However, from (4.B) and 
(4.C) we can draw the following mixed pinching condition: 

(4.D) Corollary. Let the manifold M be isometrically immersed with codimen- 
sion p in the flat space form M where 3 <-_p < m - 1 .  Then the following statement 
holds true pointwise: I f  K > 0 and 

I2.K >]/P--3/~2.L2.Kmax (4.13) 
m i n : ~  p -  1 

then the curvature operator p of M is positive semidefinite. 

Proof. In case l = 0  the assertion is trivially clear since K = 0 .  So we may 
assume l > 0  and Kmax>0. But then (4.13) and (4.6) imply (4.10). 

5. Isotropy 

With regard to the "extrinsic" pinching discussed before, but also indepen- 
dently, it becomes important to elucidate the case where the isotropy bounds L 
and l coincide. We are able to do this in certain instances for which the 
codimension is not too big. The ambient manifold M can again be arbitrary 
(not necessarily flat). 

Following a notion of O'Neill [22], we call the immersion ).-isotropic at a 
fixed point if, for a real constant 2, we have 

IB(u,u)l = ,~ .  [ul 2 

for all vectors.u over the given point. Of course, this is equivalent to L = l=  2. 
If there is a function qo: M ~ N  such that the immersion is cp(q)-isotropic at 
every q6M, then the immersion will be called (p-isotropic or isotropic for short 
(necessarily, q~2 is smooth). In case ~o = 2 =  const., the immersion is said to be 2- 
isotropic. 

Totally umbilic immersions are characterized by the following particular 
form of the second fundamental form: B(u, v)=(u, v). H, where H is the mean 
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curvature normal vector. So, totally umbilic immersions are isotropic with (p 
= [HI, and they are 2-isotropic if [HI is constant, where 2 =  IH[ (this is certainly 
so if 2~ has constant curvature). In [22] O'Neill studied 2-isotropic immersions 
of space forms into space forms and particularly showed that such immersions 
are totally umbilic if p < � 8 9  and not necessarily umbilic otherwise. 
We will prove that isotropic immersions are totally umbilic in general if 
p<m/2. The following Proposition contains the purely algebraic core. For 
simplicity, we deal with the 1-isotropic case: 

(5.A) Proposition. Let V and W be euclidean vector spaces of dimension m>2 
and p > l  resp. and assume B: V x  V ~ W  to be symmetric, bilinear and 1- 
isotropic, i.e. 

IB(u,u)l--[u[ 2 for all u~V. (5.1) 

I f  p<m/2 then there is a unit vector N e W  such that 

B ( x , y ) = ( x , y ) . N  for all x, yeV. (5.2) 

Proof By polarizing (5.1) we get for all x, y, z, weV: 

( B(x, y), B(z, w) ) + ( B(x, z), B(w, y) ) + ( B(x, w), B(y, z) ) 

= (x, y) .  (z, w) + (x, z ) .  (w, y) + (x, w). (y, z). (5.3) 

In fact, both sides of (5.3) define a 4-linear form on V which is symmetric in 
any two of its arguments, and (5.1) says that both 4-linear forms coincide on 
the diagonal of V x V x V x V Specializing (5.3), we obtain the following iden- 
tities in x, ys V: 

2 [B(x, y)[2 + (B(x, x), B(y, y)) = 2(x,  y)  2 + ixl2. ty]2 (5.4) 

[B(x,x)-B(y,y)12=([xJ2-ly[a)2+4lB(x,y)[2-4(x,y) 2 (5.5) 

( B(x, y), B(y, y) ) = (x, y ) . (y, y ). (5.6) 

For given unit vectors x,y~V, define linear maps A x and Ay from V to W by 
Ax(z): = B(x, z) and Ay(z)." = B(y, z). Since p < m/2, we have dim(ker Ax) > m/2 and 
dim(kerAy)>m/2. Hence, there must exist a unit vector zeV such that B(x,z) 
=B(y,z)=O. Now (5.6) implies ( x , z )=(y , z )=O,  and from (5.5) we get 

IB(x, x) -B(z ,  z)] 2 = [B(y, y) -B(z,  z)] 2 = 0. 

Thus, B(x,x)=B(y,y)= :N for any two unit vectors x,y. This implies (5.2). 

Remark. Suppose that B is 1-isotropic and for some ON-base e I . . . .  , ep of W the 
bilinear forms Bi(x, y): = (B(x, y), ei), i e{1, . . . ,  p} are simultaneously diagonaliz- 
able. (This is certainly the case if p = 2  and m>3,  cf. [15].) Then, by (5.6), any 
diagonalizing base of V is automatically orthogonal, and it is not hard to see 
by means of (5.5) that the assertion of Proposition (5.A) holds true in this case, 
too. 

From Proposition (5.A) and this remark we obtain: 
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(5.B) Theorem. Let the manifold M be isometrically and isotropically immersed 
with codimension p in the riemannian manifold MI. I f~m>3 and p < m a x  {m/2, 3} 
then the immersion is totally umbilic. If, in addition, M has constant curvature I( 
then the immersion is )~-isotropic and M has constant curvature K = / ( +  2 2 where 

,~=IHI. 
The last part follows again from the Gauss equation (3.1), (3.2), using 

Schur's lemma. 
For  m = 2  and p>2 ,  the assertion of (5.B) is false in general. In fact, all 

minimal immersions of a differentiable 2-sphere into the round unit sphere ~4 are 
isotropic. This can be read off the results of Chern [8] where all such minimal 
immersions have been determined in principle, almost all of them having 
nonconstant curvature and, therefore, nonconstant (p; see (5.8) below. The 
essential point here is that for any minimal immersion M 2 - + ~  4 the isotropy in 
our sense is equivalent to the isotropy of the complex vector V:=B(el ,el)  
d-iB(e>e2) , introduced in [8], el, e 2 being any tangent ON-base of M. This is 
true pointwise and can be verified by a simple calculation. In particular, the 

Veronese surface of Nr is 2-isotropic with 2 = 1/1~-(and K = 1/3). We prove the 
following converse: 

(5.C) Theorem. Let M 2 be a connected surface and qo a real function on it 
without zeros. Then, any qo-isotropic immersion of M 2 in a 4-dimensional rieman- 
nian manifold ~ 4  is either totally umbilic or minimal. Denoting by Fi, the 
sectional curvature of ~i ~ along the tangent planes of M 2, we have 

K - I( t = q~2 (umbilic case) (5.7) 

K -  R~= -2~o 2 (minimal case). (5.8) 

I f  ~/I 4 has constant curvature ~2, then any 2-isotropic immersion of M 2 in f/I 4 is 
in case K<O totally umbilic and in case / ( > 0  either totally umbilic or an 
immersion in a Veronese surface of 7~/I 4. 

Observe that the notion of a Veronese surface is by [9] locally of an 
intrinsic character. Related questions for m > 3  or for constant curvature of M 
and ~ / a r e  discussed in [16, 21, 22]. 

Proof. For the given q0-isotropic immersion, consider the square S of the length 
of B as defined in [9]. If X1, X 2 is any ON-frame field on M 2, one calculates S 
-2qo2=2IB(X1,X2)I 2. So, [B(X>X2) I is invariant under rotation of X1, X2, 
and it is easily seen that B(X, ,X2)=O characterizes the form B ( X , Y )  
= (X,  Y) .  H of B (pointwise). 

Suppose that, at some point, there is an ON-basis el, e 2 with B(e,,e2)+O. 
We extend this basis locally to a tangent ON-frame field Xz, X 2 such that 
B(X1,X2)+O and choose a normal ON-frame field X3, X ,  with B(XI,X2) 
=IB(X1,Xa)I .X  3. By (5.6), B(X1,X1) and B(X2,X2) a re  orthogonal to 
B(Xt,Xa),  hence proportional (and of same length qo). By (5.5), they cannot 
agree, so B ( X ~ , X a ) = - c p . X  4, B(X2,X2)=(p'X4, say. This shows the mini- 
reality. By (5.4), [B(Xa, X2) ] = cp, and this implies that the subset of M 2 where 
B(el,e2)4:O is possible for some ON-basis el, e 2 is not only open but also 
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closed. F o r  X1, X2, the G a u s s - e q u a t i o n  special izes to (5.8). That ,  in the umbi l ic  
case, (5.7) holds  t rue is also seen easily. 

N o w  assume cp = 2 = const.  > 0 and  2f/~ of  cons tan t  c u r v a t u r e / s  and  consid-  
er the case tha t  the  immers ion  is not  to ta l ly  umbilic.  Wi th  the a d a p t e d  frame 
fields jus t  cons t ruc ted  one can enter  the s t ructure  equa t ions  (in the form of  
[-9]). The  essential  re la t ion  is the res t r ic t ion  of  dc5=00/ ,  00+ ~ on to  M 2 where  
(5 resp. ~b is the connec t ion  resp. curva ture  mat r ix  in 2~r 4 (superscripts  count ing  
columns,  subscr ipts  rows). D e n o t i n g  the res t r ic t ions  of  &, ~b by 00, O, the 
second fundamen ta l  form par t  of  co is by the above  choice of  the frame fields: 
003 ~,,~002, 0023=)~001 (_04= _j~001, 004=2002 where co 1, O02 is dual  to X 1, X2, and  

O has entr ies f2~ = - O F = K00 1/x 002, and  zeros otherwise.  Then do) = co/~ co + O 
is expressed by  

d00~ = ( K - 2 2 2 ) 0 0  1A co 2, d00] = 2)~2 00 1A (O 2 (5.9) 

M o r e o v e r  

d00 1 = _ _  002/k t(('O12 -- (2)3~41, d(A)2 = O) 1A (00~ - 00~). (5.10) 

d001 =002 A 00~, d002 = - 0 0 1 / x  0021 . (5.11) 

El imina t ing  do) 1, do) 2 f rom (5.10), (5.11) gives o)3=2o)  1 and  with this, (5.9) 
yields / ( - 2 2 2 = 2  2, hence / s  So, for / ( < 0 ,  this case canno t  occur. 

F o r  K > 0  we m a y  assume / s  and  then ob ta in  2 = 1 / ] / 3  and  S = 4 2 2 = 4 / 3 .  
Thus, by [9], we arr ive at  the  Veronese  surface here. (This case could  also have 
been hand led  directly,  using (5.8) and  [8].) 
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