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1. Definitions 

Let G=(V,E) be a multigraph of order n without loops. Put V={1,2, ...,n}. Let 
p(x) denote the valency of the vertex x. ~(G)=(v~j) be its valency matrix, with 
vo=p(i)6ij, 6ij being the Kronecker delta. Let d(G)=(aij ) denote the adjac- 
ency matrix of G where a~j equals the multiplicity of the edge (i,j) of G. Since G 
has no loops, the matrix d has a zero diagonal. The admittance matrix A(G) of 
G is defined by A ( G ) = V - ~ ' .  Let B be an m x n  matrix. Let ec{1 , . . . ,m} ,  
f ic{1 , . . . ,n} .  We shall use the notation introduced in [-13] for identifying 
submatrices of B. B[-e[fl] is the submatrix of B consisting of rows c~ and 
columns ft. B(c~lfl) is the complementary submatrix to B[elfl]  obtained by 
deleting from B rows of e and columns of ft. B(e]fl] denotes the submatrix of B 
whose rows are precisely those complementary to ~ and whose columns are 
designated by ft. Likewise B[elfl). The unit matrix of order n will be denoted 
by I,. The matrix of order m x n all whose entries are 1 will be denoted by Jm,n" 
If m=n we just write Jn instead of J.,.. 

The following definition will be needed in the sequel. 

~  

The number of elements of a set S is denoted by JS[. We shall write x for 
the one element set {x}. The determinant of a matrix X will be denoted by 
det X. We define det [0JO] = 1. 

Let ~c(G) denote the complexity of the multigraph G. 

2. Introduction 

The complexity of a graph is defined as the number of its spanning trees. The 
first explicit result in this direction has been obtained by Cayley in 1889 who 
stated that the complexity of the complete graph of order n is n "-2 [6]. The 
first to give a satisfactory proof  to Cayley's result seem to be Dziobek [-8] in 
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1917 and Prtifer [17] in 1918. With time this beautiful result has received 
many proofs and the interested reader is referred to a thorough survey article 
on this subject by Moon [14]. See also [5] and [2]. 

The theorem which is sometimes referred to as the Matrix Tree Theorem, 
also known as Kirchhoff's Theorem and the Kirchhoff-Trent Theorem, supplies 
a formula for the complexity of an arbitrary multigraph G. 

Matrix Tree Theorem. The complexity of a multigraph G of order n equals any 
principal minor of order n -  1 of the admittance matrix of G. 

We shall refer to this theorem as MTT. The idea to this theorem appears 
already in the fundamental work of Kirchhoff in 1847 [12]. Although it has 
been rediscovered several times since, a clear proof based on the theory of 
determinants was given as late as 1954 by Trent [22]. An even shorter and 
more comprehensible proof was supplied by Hutschenreuther in 1967 [11]. 

Leaning on an idea of Hutschenreuther we shall give a slightly different 
proof of the MTT and then generalize the result which will reveal the precise 
meaning of every principal minor of the admittance matrix of a graph. 

The difference in approach lies mainly in the fact that Hutschenreuther 
proves a lemma on certain special classes of determinants before he starts the 
induction whereas we endeavour not to take our sight off the multigraph 
during the course of proof. A minor difference is also that we drop a complete 
multiple edge whereas in [11] a single edge is dropped to use induction, 

A paper on this subject was also written by Chaiken and Kleitman [24]. In 
[25] Chaiken skillfully treats the general minors of the admittance matrix and 
obtains an interpretation which is distinct from ours. 

Moon states in [15] that the usefulness of the MTT is limited by the 
difficulty in practically evaluating determinants of large matrices. This being 
generally true, we still would like to show a number of special cases which 
may be solved by either the MTT or its generalization, including most cases 
appearing in [2]. 

Since the presence of loops does not affect complexity, there is no restric- 
tion in assuming the graph in question to be without loops. 

Counting of trees in different ways has been extensively used to provide 
combinatorial identities. In Sect. 5 we shall add some new and some known 
combinatorial identities based on counting trees. 

3. The Main Result 

We shall first give a short proof of the MTT which is a variation of a proof by 
Hutschenreuther [11]. 

Let G be a multigraph of order n. Let the admittance matrix of the graph 
be A=(aij ) and put a l j = - b i j  for iq=j. If G is not connected, then A(G) is 
reducible, its submatrices of order n - 1  are singular, so that d e t A ( l l l ) = 0  
= ~(G), so we may assume G connected. 

For n =2  the theorem is clearly true, so we assume the theorem to be true 
for all graphs of order less than n. Since the theorem holds for disconnected 
graphs, we may assume the theorem to hold for graphs with less edges than G. 
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Without loss of generality we may assume vertices 1 and 2 adjacent in G. As in 
[11] we contract vertices 1, 2 to a single vertex v and consider the graph G' of 
order n - 1 .  Each spanning tree of G' corresponds to b12 spanning trees of G 
each containing one of the multiple edges of (1,2) and conversely. Thus the 
number of spanning trees of G containing a single edge of (1,2) is bt2 ~c(G'). 
Now remove the multiple edge (1, 2) from G. The graph G" so obtained has the 
same number of spanning trees as has G of the kind that do not use the edge 
(1, 2). We thus have 

~c(G) = b 12 ~c(G') + ~c(G"). (1) 

By the induction hypothesis we have 

~c(G') = det A (G')(v I v)= det A (G)({ 1, 2}1{ 1, 2}), (2) 

~c(G") = det A(G') (1[ 1). (3) 

Now the matrices A(G)(111) and A(G')(111) differ only in their upper left entry 
which is a2e and a22-b~2 respectively. Therefore 

detA(G")( l l l )+bl2detA(G)({1,2}]{1,2})=detA(G)(1]l  ). (4) 

Combining (l), (2), (3) and (4) yields the theorem. 
Now let G be a multigraph and let F be some subforest of G. How many 

spanning trees of G contain F? To answer this question we adjoin to F as trees 
those vertices of G which are not in F, thus expanding the forest F to a 
spanning forest F' of G, Therefore there is no restriction in posing our problem 
as follows. How many spanning trees of G contain the spanning forest F of G? 
(We intentionally replaced F' by F.) We now construct a new multigraph G' 
derived from G. Let T1, T2, ..., T k be the trees constituting the forest F. Let G' 
=(V',E'), V'={T~l i=l ,2 , . . . , k  }. The multiplicity of the edge (T~, Tj) of E' is 
equal to the number of edges (counting multiplicities) having one vertex in T~ 
and one in Tj. Each spanning tree of G containing F corresponds to one 
spanning tree of G' and vice versa. This establishes a bijection from the 
spanning trees of G containing F to the spanning trees of G'. The number of 
spanning trees of G containing F is therefore equal to the complexity of G'. We 
have in fact shown the following theorem. 

Theorem 1. Let G be a graph and let F be some subforest of G. The number of 
spanning trees of G containing F is equal to the complexity of the graph obtained 
from G by contracting each tree of F to a single vertex and at the same time 
preserving outer adjacencies (including multiplicities). 

Various special cases are of quite general nature. 

Theorem 2. Let G=(V,E) be a multigraph, A its admittance matrix and let T be 
some subtree of G on the vertex set ~ of V. Then the number of spanning trees of 
G containing T is given by 

p(7) = det A(el e). 

Proof Let G' be the graph derived from G by contracting T to a vertex. 
Consider A'=A(G'). Since T is a vertex of G', the number of spanning trees of 
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G containing T equals the complexity of G' which is given by ~:(G') 
=detA' (TIT) .  But A'(T]T)=A(eI~),  so that #(T)=detA(ele) ,  which proves the 
theorem. 

Theorem 2 is thus a generalization of the MTT, since in the latter ~ may be 
chosen as a one-element set, 

Let G=(V,E) be a multigraph and let U be a subset of V. Let G(U) denote 
the subgraph of G induced by U. Let ~o(G(U)) be some spanning forest of G(U). 
Let f (G,  U) denote the number of spanning forests of G where each component 
of such a spanning forest contains precisely one component of ~o(G(U)). By 
adding just enough edges to G(U) to make it connected, each spanning forest 
of G(U) becomes a spanning tree of G(U) and each spanning forest of G' with 
the above mentioned restriction becomes a spanning tree of G', where G' is G 
strengthened by the additional edges. The problem now reduces to counting 
the number of spanning trees of G' containing the modified spanning tree of 
G'(U) as a subtree. Once the counting has been completed, the auxiliary edges 
may be dropped. The conclusion is that the two problems have an identical 
solution. We thus have 

Theorem 3. Let G = (V, E) be a multigraph and let U be a subset of V. We then 
have f (G,  U) = det A(UI U). 

Theorem 3 gives rise to a converse theorem which interprets the meaning 
of a principal minor in general of the admittance matrix of some given 
multigraph. Let G=(V,,E) be a multigraph of order n. Let S c V = { 1 , 2 , . . . , n } .  
Let ?(G) denote the number of components of G. We then have 

Theorem 4. Let A be the admittance matrix of some multigraph G=(V,E) and let 
fi be some arbitrary subset of V. Then detA[fil]?] designates the number of 
spanning forests of G having y(G(V\fi)) components, containing a spanning forest 
of G(V\f l )  as subforest. 

Proof. Consider some spanning forest of G '=G(V\f i ) .  Connect the forest by 
additional edges from G, so as to obtain as few components as possible, that is 
7(G(V\fl)). Applying now Theorem 3 we get Theorem 4. 

Corollary 1. All the principal minors of an admittance matrix of a multigraph are 
nonnegative. 
Proof. Interpret the principal minors of an admittance matrix in the light of 
Theorem 4. 

Let R "'n denote the set of all n x n matrices over the real field. Define Z"'" 
= {A = (aij) ta~j <= O, i , j } .  

An M-matrix is a matrix A of the form A = s I - B  with s > 0  and B 
nonnegative, and such that s > ~(B), the spectral radius of B. We then have 

Theorem 5. Every admittance matrix of a multigraph is a (singular) M-matrix. 

Proof. Let A be an admittance matrix of some multigraph of order n. Then 
A ~ Z  ~'~. By Theorem 4 all its principal minors are nonnegative and hence by a 
result of Fiedler and Ptak [9] (see also [3]) the matrix A is an M-matrix. 

Corollary 2. Let G be a multigraph of order n. Then for some labelling of its 
vertices the admittance matrix A of G is factorizable as A = B B  T, where B is 
triangular and singular. 
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Proof This follows from our Theorem 5 and from Theorem 2 in [20]. 

Corollary 3. The admittance matrix A of a connected graph is factorizable as A 
=BB r, where B is triangular and singular. 

Proof Since G is connected, the admittance matrix is irreducible. Theorem 5 
together with Corollary 1 in [20] now imply Corollary 3. 

Let T=(V,E)  be a tree and let U 1 and Uz be disjoint subsets of V such that 
the subgraphs induced by U s and U 2 are trees. Let A =A(T)  be the admittance 
matrix of T. 

The distance between two subgraphs of a graph is the minimal number of 
edges needed to traverse from one subgraph to the other within the given 
graph. We now have 

Theorem 6. The distance between T(U1) and T(U2) in T is given by 

d(T(UI), T(U2))=detA(U 1 w U2[ U1 w U2). (5) 

Proof If the subgraph of T induced by U 1 u U 2 is connected, then, since U s n U 2 
=~J, we have d(T(U1), T(U2))= 1 and the right hand side of (5) equals one by 
Theorem 2 and the fact that T is a tree. If the subgraph of T induced by 
U~ w U 2 is not connected, introduce an auxiliary edge e not in T connecting 
T(U1) and T(U2). There is a unique shortest path in T between T(U1) and 
T(U2). Let this path be the sequence of edges e~,e2,. . . ,e t with t 
=d(T(U1) , T(U2) ). Replacing e i by e we get a unique spanning tree of ( T \ e i ) u e  
for every i, i = l , 2 , . . . , t .  The t distinct spanning trees of T we are the only 
spanning trees of T u e containing T(U 0 w T(U2). Their number is given by the 
corresponding minor of the admittance matrix of T modified by e. But e has 
one vertex in U 1 and one in U2, the corresponding minor is not affected by the 
addition of e and hence the number of trees is given by the minor of the 
original matrix T. Since t is the distance in T between T(U1) and T(U;), t he  
theorem is proved. 

Corollary 4. Let T be a tree, A its admittance matrix. For i,j~V(T), i@j, let 
d(i,j) be the distance (number of edges) in T between i and j. Then 

det A( { i,j} J { i,j} ) =d(i,j). 

Proof Put i=  U1, j = U 2 and apply Theorem 6. 

Corollary S. Let T=(V,E)  be a tree, A its admittance matrix. Then 
detA({i,j}l{i,j}) = 1 if and only if (i,j)~E. 

4. Some Special Cases 

We start with a few simple lemmas. 

Lemma 1. Let x be some complex number and let s be some positive integer. We 
then have 

det(xI - J ~ ) = ( x - s ) x  ~-1. 
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Proof. Subtract  the first row from every other row and add all the columns to 
the first one as it is done in the special case of Cayley's  Theorem in [10, 
p. 154]. We obtain an upper t r iangular  matrix whose determinant  is (x 
- s ) x  s-1. This proves the lemma. 

For  the special case of the complexity of K ,  put x=n,  s = n - 1  and the 
theorem of Cayley follows. 

L e m m a  2. Let x, y, z, u, v, w be arbitrary complex numbers. Let 

A =(aij)= ( xlv + Y Jr zJ;,s 
\ uYs,p vI~ + wd,] 

be a matrix of order n in block form. Then 

det A =[(x + p y)(v + s w ) - s z p u ] x P - l v  ~-1. (6) 

The proof is a s tandard procedure  similar to the one described in L e m m a  1. 
Subtract  the first row of  A from each of the following rows down to the p-th 
row inclusive. Subtract  the last row of A from each of  the preceding up to the 
first row inclusive of  the two lower blocks. N o w  add to the first co lumn the 
sum of the remaining p - 1  columns of  the left blocks and add to the last 
co lumn the sum of the retaining s - 1  columns of the right blocks. The result 
now follows quite easily. 

Corollary 6. Let p,s be positive integers. Then we have 

hi; -Jv,~] =mS-~np-i(mn_ps). 
det -Js,p mI~ ] 

Proof. Put x = n, v = m, y = w = 0, z = u = - 1 in L e m m a  2 and the result follows. 

Let G = K ,  and let T t be a tree of  order t. Applying Theorem 2 to this 
special case we find that  ~ is a t-set. Applying L e m m a  2 with x = n, p = n - t ,  y 
= - 1 ,  s = 0  we get 

#(T~) = (x + p y) x v-1 = tn" -t-1. 
We have thus proved 

Corollary 7. Let T be some fixed tree of order t in K,.  The number of spanning 
trees of K ,  containing T is given by 

i~( T) = tn . - t -1  

For  t = 1 we get Cayley's result. For  t = 2 we get 

Corollary 7'. The number of spanning trees of K ,  containing some fixed edge e is 

#(e) = 2 n"- 3 

Let F(n, k) denote the number  of forests on n labelled vertices consisting of 
k disjoint trees so that  the first k vertices all belong to different trees. Already 
Cayley [6] established the equality 

F(n, k) = kn"-k-~. (7) 
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This was also proved by R6nyi [18]. Equality (7) follows immediately from 
Corollary 7 and the fact that the two problems have an identical solution. 

Multiplying the result of Corollary 7 by t ~-2 we get the following result. 

Corollary 8. Let c~ be a subset of t vertices of K, .  The number of those spanning 
trees of K ,  whose subgraphs induced by ~ are connected (i.e. trees) is 

n,-2 (~) t-1" 

For  t = 1 and t = n this is Cayley's result. For  t = 2 this is Corollary 7'. 
Now let F be a spanning forest of K,  consisting of trees of two different 

orders ql and q2. Let the number of trees of orders ql and q2 equal r~ and r 2 
respectively. Then clearly q ,q+qzr2=n.  Contract the trees to vertices and 
consider G'. The derived graph is of order r~ + r 2. Let the first r~ vertices of G' 
be referred to the trees of the first order and the rest refer to the second order. 
The admittance matrix of G' is in block form 

((qZarl +qlq2r2)lr,-q~Jrz -q~q2Jr .... 
A '= \ -qaq2J~2,~l (q~r2 +q~q2rl)l~2-q2jr2] 

\ -q iq2Jr2 ,~  qenI~-q~J~J" 

Applying Lemma 2 to A'(I]I) with x=qan , p = q - 1 ,  y = - q ~ ,  v=q2n , s=r2, w 
= - -  q~ ,  z = - -  qa  q2  = u, w e  get, after appropriate simplification, 

/'1 r2 r l  -}-r2 - -2  
/z=qa q2 n 

We have thus established the following 

Theorem 7. Let the complete graph K.  have a spanning forest F consisting of r l 
trees of order ql and r 2 trees of order q2. Then the number of spanning trees of 
K .  containing F is 

rJ. r2 r l q - r 2 - - 2  ql qz n 

It should be noted that the trees of F which are of the same order need not be 
isomorphic. 

Corollary 9. Let F be a subforest of the complete graph K.  such that F consists 
of r trees of order q, then the number of spanning trees of K .  containing F is 

Q r n n - - 2  --(q--1)r. 

Proof. Put ql =q, rl =r, q2 = l in Theorem 7. 

For  q = 1 this is again Cayley's result. 

Corollary 10. Let F be a subforest of K ,  consisting of r copies of stars S k. Then 
the number of spanning trees of K ,  containing F is 

(k+ 1)rn "-2-kr  
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Proof Put q = k + 1 in Corollary 9. 

Corollary 11 (O'Neil [16]). Let G be the complete graph of order n with k edges 
incident with the same vertex missing. Then 

/ s  ~--- n n - 3 (1  - -  l / n )  k - l ( n  - -  ]g - -  1). (8 )  

Proof Put r =  1 in Corollary 10 and apply the inclusion exclusion principle. 
We get 

i ~ O  

Using well known combinatorial identities we easily obtain (8). 
For k = l  the star degenerates into an edge and the forest becomes a 

matching. We thus have 

Theorem 8. Let H be a matching of r pairs of vertices of K, .  Then the number of 
spanning trees of K n containing H is 

2rn . -a  -~ = (2/n),n,-2. 

Applying the inclusion-exclusion principle to Theorem 8 we obtain a result of 
Weinberg [23] on the almost complete graphs. (See also I-4].) 

Theorem 9 ([23]). Let G be the graph obtained by removing r disjoint edges from 
K,,. Then 

to(G) = n" - 2(1 - Z/n)'. 
Proof We have 

i = 0  

=n "-2 ~ ( - 2 / n ) i = n " - 2 ( 1 - 2 / n )  r, 
i = 0  

proving Theorem 9. 
It should be noted that Theorem 9 as well as Corollary 11 are special cases 

of a result of Temperley [21]. 
Now let H be some fixed matching of K,.  What is the number of spanning 

trees of K,  for which H is a maximal matching? Put V(G)\V(H) = V'. We note 
that in a tree that contains H as a maximal matching, the subgraph induced by V' 
is totally disconnected. Let H be a matching of order q so that n = 2 q + r .  By 
putting x = 4 q + 2 r = 2 n ,  y = - 4 ,  z = u = - 2 ,  v=2q,  w=0;  p = q - 1 ,  s=r  in 
Lemma 2 we get 

v ( K n  ' H m a x  ) = 2q+r --1 nq -1 q,-1 = 2"-q -1 nq -1 q n -  2q -1.  

We thus have 

Theorem 10. Let H be a matching of order q in K, .  Then there are 
2 n-q-1 nq-lq n-2q-I spanning trees in K ,  containing H as a maximal matching. 

For q=  1 we get 2 "-a  such trees for n>2,  which is quite obvious. For  q = 2  
we get 4"-"n  such trees for n > 4. 
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Treat ing  the comple te  bipar t i te  g raph  Kin, ~ in a similar  manner ,  we obta in  
the following auxil iary admi t tance  matr ix  A' of order  m + n - q  where q is the 
order  of  the matching.  

/(m+n)Iq-2qJq,q 

A ' - ~  -Jm-q,q 

\ --Jn-q,q -J,,-q,m-q mI,_q / 

Taking  the mino r  of  order  m + n -  q - 1 and  using the same principle as before, 
we get 

v(K . . . .  q )=detA ' ( l [1)=(m+n)q- lnm-q- lm~-q- l (m+n-q) .  (9) 

Fo r  q = 0 we get 

For  m = n we get 
v(K . . . .  O)=lC(Km,.)=m"-ln m-I [19]. 

v(K .... q)= 2q-l n2"-q- 3(2n-q). (lO) 

For  m = n = q we get 
v(K .... n ) = 2 ~ - l n  ~-2. (11) 

Again using the inclusion-exclusion principle, we get, for q missing edges 
f rom 2q vertices in K,~,~: 

( - 1 )  r (m+n)"-lm . . . .  1 n . . . .  l(m+n_r)" 
r = 0  

Summing  up and  simplifying this yields 

m n-q-1 n m-q-l(m n _ m _  n) q - l ( m n - m -  n + q). 
W e  thus have 

Theorem 11. The complexity of the graph G ... .  q which is the complete bipartite 
graph Kin, n with q edges missing from 2q vertices is 

~c(G .... q) =mn- 2n•- 2(1 - l / m -  1 / n f - l ( m n - m - n  + q). 

For  m = n Theo rem 11 yields 

I~(G . . . .  q) = n2n  - q  - 3( n -- 2) q - 1  ( n 2  _ 2 n  + q). (12) 

For  m = n = q  we get 
~c(G .. . . .  ) = n " -  2 ( n -  1 ) ( n -  2) ~-1. (13) 

It  should be noted  that  for n = 1, 2 the g raph  G.,.,. is not  connected.  
The  n u m b e r  of  spanning trees conta ining a given match ing  H of order  q of 

K.,,n as a max imal  ma tch ing  is obta ined  by put t ing in L e m m a  2, x = m + n = N ,  
y= - 2, z =u= - 1 ,  v=q, w = 0 ,  p = q - 1 ,  s= N - q .  We get 

Theorem 12. Let H be a matching of order q in K.,,.. The number of spanning 
trees in K~,n containing H as a maximal matching is given by 

v(K . . . .  H) = (N + q - q2)Nq- 2 qS-q-1. 
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In [15] (see also [2J) the following problem is solved. Let K , = ( X , E )  be a 
simple complete graph of order n. Let X be partitioned into disjoint sets X i so 

P 
that X = ~ X i and let 7~ be a tree of order n~ on Xi. How many spanning trees 

i=1  
of K.  that contain every T~ as a subgraph are there? Contracting each tree to a 
vertex we obtain a multigraph G' of order p. The admittance matrix A'=(agj) 
will be as follows, a~j=ni(n~ij-nj). (~ij is the Kronecker delta.) Now consider 
detA'(lll).  By adding all the rows to the first row of A'(II1) we can extract n 1 
from the first row and n k from column k - l , k = 2 , . . . , p ,  of A'(II1). In the 
determinant that remains subtract the first column from every other, so we get 
a lower triangular matrix of order p - 1  whose determinant is clearly n v-2. It 
follows that the number of trees containing X~ is 

P 
n v-2 171 n i. (14) 

i = l  

A slight generalization of Moon's result (14) is obtained if we do not 
require that the X~ partition X but merely that they be disjoint. Consider X' 

p P 
= X \  Q) X i. Regarding the set X' as consisting of ]X'I = n -  ~ n i separate trees 

i=1  i=1  
of order 1, we apply (14) to the modified partition and we get 

Theorem 13. Let T1, T2,.. . ,Tp be disjoint trees in K, .  Then the number of 
spanning trees of  K ,  containing every Ti, i = 1, 2,. . . ,  p is given by 

p 

n - 2 -  Z (n . -  1) P 
v(T1, T2,-.., Tv)=n '=' ' f l  ni =n"-2 [I  ni n-O''-*)" 

i=1  i=1  

We shall now generalize some previous results. 

Lemma 3. Let k be some positive integer and let a~, y~ be arbitrary complex 
numbers for i= 1, 2, ..., k and such that yi~O. Let B=(b~j) be a k x k matrix with 
the following entries, b l l = y l + a l ,  b ~ , = - y ,  and b~=y~ for i>1 ;  for j > l  blo 
=aj; for i,j and for j >  l, i# j ,  bij=O. Then 

k 

d e t B =  (1+ ~ (ai/'yi))~_ly i. 
i = l  "= 

Pro@ By induction on k. For k = 1 the lemma is true. Let the lemma hold for 
matrices of order less than k. Expand the determinant by the last column. We 
get, using the induction hypothesis, 

k--1 

det B = Yk det B(k)k) + ( -  1) k ak( - 1) ~-1(-3q) [ I  Y~ 
i=2  

k--1 ) k--1 k- l l  

i=1  i 

k--~. k k k ) I ~  
= (1 + y, (ajyi)) ~=1Yi +(ak/Y~)~ 1 Yi = (1 + Y, (ajy)  Yi, 

i=1  i= "= \ i=1  i=1  

proving the lemma. 
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Now consider a matrix in block form with the blocks B~j being of order si 
x sj. We then have 

Lemma 4. Let  B = (Bij) be a square matrix in block form with 

Bii=xiIs~, Bij=ajJs~,s j for i + j  where x i and aj 

are complex numbers such that x i#:sia~. Then 

1~ (xi - sial)x~'- 1. (15) d e t B =  1 +  ' =  xi--siaiJi=l 

Proof  For some fixed i consider the submatrix of B consisting of the blocks 
B~. Subtract the first row of the submatrix from all the other rows of this 
submatrix. After having completed the subtraction of the rows over all the 
submatrices of this kind, consider the submatrix of B consisting of the blocks 
Bij for some fixed j. Add all the columns of this submatrix to the first column 
of the submatrix. Having done this for all j we arrive at a matrix which, except 
for the first rows of the horizontal submatrices, has zeros everywhere except on 

k 
the diagonal. We may therefore extract the factor l-[ x~'-i and are left with a k 

i=1 
x k submatrix C=(q j )  whose entries are c,=x~,  c~i=sja j for i+j .  Subtracting 

the first row of C from every other row we arrive at a matrix which satisfies 
the conditions of Lemma 3. Applying Lemma 3 to the matrix C we get (15) 
which proves the lemma. 

Corollary 12. Let  B=(Bij  ) be a square matrix in block form with Bii-=-xils,, Bij-=- 
-Js~,s~ for i=kj, where the x i are complex numbers such that x i 4: - s  t. Then 

d e t B =  ( 1 -  i=1~ s ~ )  ~[ xi 

Proof  Put a~ = - 1  for every i, 1 _< i < k and apply Lemma 4. 
Consider the star S k in the complete bipartite graph Kin, . with root in the 

m-part, so that k<n .  We obtain #(Sk) by setting x l = n ,  S a = m - 1 ,  x e = m ,  
s z = n - k  in Corollary 12. Put m + n = N .  We then get 

#(Sk) = (1 -- (m -- 1)/(N - 1) - (n - k)/(N - k)) n m- Z(N - 1) m"-k- t  (N - k) 

= [ ( m - 1 ) k + n ] m n - ~ - l n  m-2. 

Applying the inclusion-exclusion principle and using well known combina- 
torial identities we get 

Corollary 13. Let  G be the complete bipartite graph Kin, . with k edges incident 
with one vertex from the m-set missing. Then 

~c(G) = m " - i  n ~-1 (1 - l/m) k-1(l  - 1/m - k i n  + k/mn). 

Theorem 14. Let  G = K , ~ , ~  ...... ~ be a complete k-partite graph. Let  T be a 
subtree of  G containing b i vertices of  the i-th part. Then the number of  spanning 
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trees of G containing T is given by 

#(T)=  1 -  l~[ ( n - b l ) ( n - n i )  "~-b`-l. (16) 
i=1 n - b i ]  i=l 

Proof The admittance matrix of K . . . .  ~ ....... k satisfies the conditions of Corol- 
lary 12. Applying Theorem 2 we are left with a principal submatrix also 
satisfying the conditions of Corollary 12. Putting x i = n - h i ,  s i =n i -be ,  a~ = -  1, 
we get (16). 

Here are some special cases. 

Corollary 14 ([I]). The complexity of the complete k-partite graph K ..... ~ ....... is 
given by k 

~(K . . . . . . . . . . . .  ,o) = n~-2 [I  ( n -  n~)"'-i 
k i = 1  

where n= ~ n i. 
i = 1  

Proof Put b 1 = 1, b~=0 for i>  1 and substitute in (16). 

Corollary 15. Let e be an edge in the complete k-partite graph K .... . . . . . . .  ~ with 
vertices in parts r and s. Then the number of spanning trees containing e is 

k 

(n - 1) [ (n  - n~)-  1 + (n - n~)-  1] n k -  3 1~  (n - n i ) " -  1, 
k i = 1  

where n= ~ n i. 
i = 1  

Proof Put b~=b~= 1, b~=0 for the rest in (16) and the result follows. 
For k = 2 we get 

Corollary 16. Let T be a tree of a complete bipartite graph K . . . .  ~ with b~ 
vertices in one part and b 2 vertices in the other. Then the number of spanning 
trees containing T is 

~ n 2 - b 2 - 1  n l - b l - 1  
#(T)=(n~bz+n2b~ - b t o g ) n l  nz 

Corollary 16' ([19]). The complexity of the complete bipartite graph K,~,, 2 is 

z r z  x n 2 - - 1  n l  --1 
/ ~ [ / ~ n l ,  n2)  = n 1 n 2 

Proof Put b 1 = 1, b 2 =0  in Corollary 16. 

Consider the complete graph K,.  Let l be a positive integer less than n. 
Using the terminology of Clarke [7] a tree of type 1 is a tree in which precisely 
l edges end at a specified vertex. Let N~ denote the number of trees of type 1. In 
[7] Cayley's result is based on the following theorem. 

Theorem 15 ([7]). The number of trees of type 1 in K .  is given by the formula 

n - 2  1 ) " - l - ~ .  
Nl= ( l _  1 ) (n-- 
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We shall show that Theorem 15 is an immediate corollary of Theorem 2 
and Lemma 1. Let T~ be the number of trees containing some fixed /-star. By 
Theorem 2 the minor considered is taken from a submatrix of order n - l - 1 ,  
having n - 2  on the main diagonal, since the set of vertices complementary to 
the /-star are precisely those which are not adjacent to the root of the star. 
Lemma 1 now prescribes, with x = n - 1, s = n - 1 - 1, 

7~ = l ( n -  1)"-'-2 (17) 

We get N/ by multiplying Tlby (n / 1 )  , so that 

Nl.~_(n~l l) Tl~[n-2](n_l) n-l-l, 
\ 1 - 1 ]  

(18) 

proving Theorem 15. 
The lemma in [7] stating that (n-1)N~_l=(n-1)(1-1)N ~ follows im- 

mediately from (18). 

5. Some Combinatorial Identities 

By counting trees in different ways it is possible to obtain combinatorial 
identities which are of interest in themselves. We shall provide but a few 
samples of the host of identities that may be derived. We first show the 
following identity. 

Theorem 16. Let r and n be integers such that n>r>2. Then the following 
combinatorial identity holds. 

~ ( n ~ - r ) ( i + l ) i _ l ( n _ l _ i ) , _ l _ r _ i  r n ,_l_L (19) 
i=O r - - 1  

Proof Choose a fixed subtree T of K n of order r and count the number of 
those spanning trees of K,  which contain T as a subtree. This is done by fixing 
some endvertex v of T. Let V \ T =  V 1. Whenever a subset V 2 of 1/1 forms a tree 
with v, the complement of lv~ in Va forms a tree with T \ v  and the two together 
form a spanning tree in K,  containing T. Counting all the possible ways to 
obtain such trees and using Corollary 7 leads us to 

(r-1)(n-1)"-~-r + ( n l r )  2~ +... 

4- ( n  n - -  r \ . r - r - l )  (n-r) - - 2 ( r - 1 ) r ~  . . . .  1 

= ( r - 1 ) ~  (nTr ] (i+ 1 ) i - l ( n -1  __i) " - ~ - P - /  
i = 1  \ t ! 
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Using Corol lary 7 once again for the whole of T we get (19). This proves the 
theorem. 

For  r = 2 we obtain the special case 

n 2 ( i + l ) i _ l ( n _ l _ i ) , _ 3 _ . i = 2 n , _ 3 "  (20) 
i = 0  

Another  idea of counting trees based on Corol lary 7 is the following. Let  r, 
m, n be fixed positive integers such that  r < m < n .  Put  m - r = s .  Choose two 
disjoint trees T~ and T s of orders r and s respectively connected by an edge e. 
The tree T~, is a union of two disjoint subtrees 77 and T~' such that T~' ~ T, and 
T s ~ T S and T r' and Ts' are joined by e. By counting the number  of all possible 
trees T~' and applying Corol lary 7 in the process of counting as well as at the 
final stage, we arrive at the following identity. 

r(m--r)i-~S.= (n-Tin) ( r + i ) ~ - l ( n - - r - - i ) n - m - l - i = m n  . . . . .  1. (21) 

It may be of interest to note that  the left hand  side of (21) is independent  of r. 
For  r = 2 and m = 4 we get the special case 

n 4 (2 + i)i -1 (n - 2 - i)" - 5 -i  __= n"- 5. (22) 
i=0  

Putt ing r = 4  in (19) we get 

"~" ( n 7 4 )  ( i+  1 ) ~ - i ( n - 1 - i ) ~ - ' - ~ = ( 4 / a ) n  n-s (23) 
i=0  

which is a different identity from (22). 
We shall conclude with several examples derived from biparti te graphs. 

Consider the complete biparti te graph K=,,=(Vmw V,, V~ x V,,), IV~[=m, [V,l=n. 
Let T~,, be a tree on r + s  vertices in K~,~ with r vertices in 1/,,,, and s vertices in 
V,. Let  veT,,~ be some fixed vertex in V m. Choose a tree, consisting of  i vertices 
from Vm\T~,~wv and j vertices from V,\T,.,,, count  the trees on the com- 
plementary vertex set. Performing this construct ion over all possible choices of 
i vertices from V,~\T,., and j vertices from V,\T,, ,  and summing up for all 
admissible values of i and j we obtain the following identity based on the 
number  of  spanning trees of Kin, . containing T~,~ as a subtree. 

Theorem 17. Let m, n be arbitrary positive integers and let r and s be positive 
integers such that r <=m, s < n. Then the following identity holds. 

2 i -- 1 j i J- l j - 1  ((m-- i) s + in - - j - -  s)(r -- 1)) 
j=O i=1  

�9 (m -- i )"-J-~-I  (n --j)"*-*-~ =(ms + nr --sr)m . . . .  * n . . . .  1. (24) 

For  r - 1  this yields 
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Corol la ry  17. Let  m and n be arbitrary positive integers and let s be a positive 
integer < n. Then we have 

)( ) s ~ m - 1  n - s  , 
j=0 i=1 i--1 j ? - lJ ' -X(m-- i )n -~-S(n- - j )m- i - i  

= ( m s + n - - s ) m  . . . .  ln,,-2" (25) 

It  m a y  be po in t ed  out  that  for m = 1 bo th  sides of  the equal i ty  (25) yield 1 if 
we bear  in mind  our  conven t ion  0 ~  1. 

A n o t h e r  ident i ty  is based  o n  the fol lowing idea. Cons ide r  the comple te  
b ipa r t i t e  g raph  K ~ , , = ( V  1 u V2, V 1 X V2) which is no t  a star. Choose  two vertices 
vl,  v 2 of  V~ and  cons ider  them fixed. N o w  count  the spann ing  forests of  Kin, n 
consis t ing of  precisely two trees such tha t  v 1 and  v 2 are never  in the same 
componen t .  The  n u m b e r  of  such spann ing  forests is equal  to the n u m b e r  of  
spann ing  trees of  Kin, . a u g m e n t e d  by the edge e=(v~, v2) and  con ta in ing  e. We  
then  come to the fol lowing identi ty.  

Theorem 18. Let  m and n be arbitrary positive integers with m >= 2. Then we have 

Z i--l. i J - l j i - l (m- - i )n -J - l (n - - j )m- i -1  
j = 0  i=1 

= 2 n m - 2 m  "-1. (26) 

Proof  The left h a n d  side of  (26) is based  on Coro l l a ry  16' on trees of comple te  
b ipa r t i t e  graphs.  The  r ight  h a n d  side is der ived  from T he o re m 2. This com- 
pletes the proof.  

Set t ing m = 2 in (26) we ob t a in  the well k n o w n  ident i ty :  

j=O 
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