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In this paper, we prove the following result: Let M 2" be a minimal submanifold 
in the unit sphere with Euler characteristic no greater than two, then, if ~ S"< e, 

M 
for some c >0,  M is totally geodesic. Here S is the square of the norm of 
second fundamental form. We also give a topological lower bound for ~ S" 

in terms of Pontrjagin numbers. M 

w 1. Introduction 

Gauss-Bonnet formula establish a very powerful relation between the geometry 
and topology of a manifold. Lots of results have been obtained using Gauss- 
Bonnet formula as a key ingredient. But, this is done only within the intransic 
geometry of a manifold. Surely enough, it will play a key role in the theory 
of submanifolds. Here, we give an effort to obtain some consequences of Gauss- 
Bonnet formula. 

Let M " ~  S"+P(1) be an oriented minimal immersion. Assume S is the norm 
of the second fundamental form of M, it is well known that the Simons' inequality 
can be used to obtain pinching theorems for S. For example, we have: If S < n/ 
(2--l/p), then, M is totally geodesic [6]. Further discussion in this direction 
have been carried out [3, 8]. All these discussion have pointwise condition for 
S. Hence, one may consider the global condition on S. By using eigenvalue 
estimates, Shen proved the following result: 

Global Pinching Theorem [7]. Let M"~S"+I (1 )  be a minimal embedding 
with RicM>0. Then, there exists an universal constant c(n)>0, such that, if 

S"/2< c(n), M is totally geodesic. 
M 

In this paper, we will prove some global pinching theorems using topological 
information of the submanifold M instead of geometry condition like curvature 
pinching condition. 

First, we have the following theorems for minimal surface or minimal hyper- 
surface M 4 in the unit sphere. 
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Theorem A. Let M 2 be an oriented compact minimal surface in the unit sphere 
S ~ which is not totally geodesic. Then, there exists an universal constant c>O, 
such that: 

~S~g~g+c 
M 

where g is the genus of  M. 

Theorem B [51. Let M 4 be an oriented compact minimal hypersurface in $5(1). 
I f  M is not totally geodesic, then 

S 2 > 64 ~2 (2-- 2)/3 + c, 
M 

for some universal constant c > O. Here Z is the Euler characteristic of  M. 

From Theorem A and B, we can get global pinching theorem for minimal 
submanifolds with Euler characteristic no greater than two in each case. We 
go further in this direction, and consider M 6 in the unit sphere. Then, we have 
following theorem: 

Theorem C. Let M 6 be an oriented compact minimal hypersurface in the unit 
sphere $7(1). I f  M is not totally geodesic, then: 

S a > 2880 7"c3 (2 -- Z)/49 + c, 
M 

for some constant c > O. Here Z is the Euler characteristic of M. 

If M En is an oriented compact  minimal submanifold in the unit sphere, we 
can show that similar estimate holds. 

Theorem D. Let M 2n be an oriented compact minimal submanifold in S2n+v(1). 
I f  M En is not totally geodesic, then, 

Sn>=b(n, p ) ( 2 -  Z)+ c(n, p), 
M 

for some constants b(n, p), c(n, p)>0.  Here )~ is the Euler characteristic of M. 

From this, one can easily show the following global pinching theorem. 

Theorem E (Main Theorem). Let M 2" be an oriented compact minimal submanifold 
in S2"+v(1). I f  the Euler characteristic of M is not greater than two, and S S" 

<c(n, p), then, M is totally geodesic. M 

Theorem A to D give lower bounds of S S" in terms of Euler characteristic. 
M 

Then, one may  ask whether or not there is a similar bound in terms of other 
characteristic numbers. This is answered in the following theorem. 
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Theorem F. Let M 4k be a compact minimal submanifold in  S4k+P(1), and P(M) 
is one of its Pontrjagin number. Then, there exists a constant c(k, p, P)>O, such 
that: 

s2k>c(k,  p, P) P(M). 
M 

This paper  is arranged as follows: In w we give facts that  are used in 
our proof  and a basic lemma (generalized Simons'  inequality). In w 3, we review 
the proof  of Theorem A and B, then, give the proof  of Theorem C. In w we 
prove Theorem D and our main theorem, Theorem E. In our last section, w 5, 
we prove Theorem F. 

w 2. Preliminaries 

In this section, we recall some well known facts and prove a generalization 
of Simons'  inequality which is needed in the proof  of our theorems. 

Let M" be an n-dimensional Riemannian manifold. As usual, we denote 
by R i j k l  , Rij and p be its curvature tensor, Ricci curvature tensor and scalar 
curvature under or thonormal  frame near a point, respectively. The Einstein 
tensor E of M is defined by: 

E i  j = R i  j - -  p t~i j /n .  

Let M " ~  S"+P(1) be a minimal immersion. Assume hi~ be the second funda- 
mental  form of M, where i, j, k, l = 1 . . . . .  n, 7 = n + 1, .. . ,  n + p. The minimal con- 
dition can be read as: 

• h~i=0, c~=n+ 1, . . . , n+p .  
i=1 

The Gauss '  equations can be written as: 

R i  jkl  = (~ik (~ jl  - -  Oil (~ jk -}- hick h~t - -  hill h~k. 

We also have the lower bound for the volume of minimal submanifolds 
in the unit sphere: 

Proposition [2]. Let M"~S"+P(1)  be a compact minimal submanifold. I f  M is 
not totally geodesic, then, there exists a constant c(n)> O, such that: 

V(M) > (1 + c(n)) V(S"(1)). 

Let M 2n be an oriented Riemannian manifold with Euler characteristic X 
and curvature form f2 - 1  ~ l~ ,k ,l o,)k i j-- 2/_.~a'ijkl t~ to, where is the or thonormal  coframe 

k,l 
of M. Then, we have Gauss-Bonnet  formula. 
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Proposition [4]. 

2 2n 7r n n ! Z ---- S 8il i2 . . . i2n  ~~il  i2 A . . .  A ~-] i2n-  1 i2n" 
M 

Lemma (Generalized Simons' inequality). Let M" ~S"+P(1) be a closed minimal 
submanifold, then, for any integer t >= O, we have: 

S '+ ~ ( S -  n/(2-- l/p)) dVM > O. 
M 

Proof It follows from [6] that 

�89 AS>=S(n- (2 -1 /p )S ) .  

For any e > 0, we have: 

Since 

we have: 

( �89  

A(S + e) t+ ~ = ( t +  1) t(S + e) t-  ~ ] VSlZ +(t  + 1)(S + e)~ AS, 

S ( n - ( 2 -  1/p)S)(S + ey 
M 

<=12 1 (S+~)'AS 
M 

< I A(S+e)t+l/( 2 t + 2 l - t ( t +  1)(S+e)t-l l l7Sl2/2 
M 

<0. 

The last inequality above follows from Green's formula and the assumption 
t > 0. Thus, we obtain: 

S (n - - (2 -  1/p)S)(S + e)t<O. 
M 

Letting e -o 0, we conclude the proof of the lemma. 

w 3. The Proves of Theorem A, B and C 

In this section, we first give a proof of Theorem A, then, we prove Theorem C. 
For the proof of Theorem B, one may consult [5], since the proof is similar 
to the proof we give here. 

Proof of  Theorem A. From Gauss' equation, we have that for minimal surface 
in the unit sphere 

S = 2 - 2 K ,  
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where K is the Gauss curvature of the surface. Then, we have: 

S=2 V(M)--87z(1--g). 
M 

Combining with the lower bound of V(M) in w 2, we have: 

s>=8rcg+c. 
M 

Proof of Theorem C. From Gauss-Bonnet formula, we have: 

2 6 7Z 3 3 ! Z = S eil...i6 f2q i2 ̂  ~'~i3i4 A ~'~i5i6" 
M 

But 

8il...i6 ~'~il i2 A ~'~i3i4 A ~-~isi6 

_ _  1_  . . J l  gO J6 
- -  8 ~il...i6 Ri112J1 J2 R i3  i4J3J4 mis i6JsJ6 (LJ A . . .  A 

= 6 ! ( 1 +  t ~ 2 i 2 g + � 8 9  ~ 2,2j2k2,+N2i) dvM, 
i < j  i < j < k < l  i=1 

here, 2~ are the principal curvature of M. And, we also have used Gauss' equa- 
tion: 

R i  jk l  = (1 + '~k 2l) ( 3 ik (~ j l  - -  t~ il (~ jk)" 

Since M is a minimal submanifold, we have 

Hence, we have: 

~ 2 i = 0 .  
i 

Y. 2j2k= - ) S .  
j < k  

As is well known, ~. 212j2k2 t can be expressed by linear combination of 
i < j < k < l  

(~  42) 2 and ( ~  24) (Notice that we have ~ 2i = 0). Hence, we can assume: 

2i2j2k21=aS2 + b ~ 24. 
i < j < k < l  

Let 21 . . . . .  23 = 1, 26 = - 5. Then, 

- 4 5 = 9 0 0 a + 6 3 0 b .  

Let 21 . . . . .  23= 1, 2,, . . . . .  26----- --1. We get 

3 = 3 6 a + 6 b .  

Hence, a = ~, b = - 1 .  That  is 

i < j < k < l  
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Hence, we have the following formula: 

( -  720 21...26 -[- 36(~ 24)-  18 S 2 + 72 S) = 6! V(M)- 267C 3 3! Z- 
M 

Lemma. - 21...46 < $3/216. 

Proof We use the Lagrange multiple method to calculate the maximum of 
the function f = - # 1 . . . # 6  under the constraints ~ # , = 0  and Y'#~=S. Let f =  
- #a..-#6 + 4 (S-- ~, #2) + # ~ #~. Then, at the maximum point of f, we have: 

--#2"" "#6 - 2 4 # 1  + # = 0  

- - # 1 . . . # 5 - - 2 4 # 6 + # = 0 .  

Thus -#a . . .#6=4S/6 .  We can assume #1...#640. Hence, #i, i=1, . . . ,6 are 
the roots of the following equation: 

6 4 z z - 3 # z - 4 S = 0 .  

It follows from direct calculation that; 

max( - #1.-.#6) = $3/216, 

which is reached by: 

# 1 = # 2 = # 3 =  - - # 4 =  - - # 5 = - - # 6 =  S ~ .  

Lemma. ~ 4~_-< 7 SZ/lO. 

Proof We use the Lagrange multiple method to calculate the maximum of 
~ # 4  under the constraints ~ # i = O  and E # 2 = S .  Let f = ~ # 4 + 2 ( S - - ~ # 2 )  
+ # ~ #~. Then, at the maximal point of ~ #4, we have: 

4 # ~ - 2 2 # ~ + # = 0 .  

It follows from direct calculation that: 

max(~ #4)= 7 $2/10, 

which is reached by: 

#1=#2 . . . . .  #5 = ]//S/30, # 6 = -  55~/6.  

From the lemmas, we have: 

10 S~/3 + 36 SZ/5 + 72 S > 6! V(M)-- 26 z~ 3 3 !. 
M 
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F r o m  the generalized Simons'  inequalities, we have:  

I 72S__<2 I sa, 
M M 

I 36 $2/5 < I 6 $3/5. 
M M 

Hence,  we have (using the lower bound  of V(M)): 

S 3 > 2880 n a (2 - ;0/49 + c 
M 

for some constant  c > 0. Here  ;( is the Euler  characterist ic of M. 

387 

w 4. The Proof of  the Main Theorem 

In this section, we prove  Theo rem D, our  main  theorem, Theorem E, is a conse- 
quence of Theo rem D. 

Proof of Theorem D. F r o m  Gauss-Bonnet  formula,  we have 

22"nnn! Z = S ~i,...i2.~-~ili2 A . . .  A ~'~i . . . .  i2 . ,  
M 

- -  1 k (.ol where ~ij--~Rijk~CO is the curvature  form. Since M2n--.s2n+p(I) is a immer-  
sion, we know:  

R i  jk l  = t~ik • j l  - -  Oil (~ jk  -t- hick hsz - hi~ h~k 

by Gauss '  equation.  Hence 

%...i2, f2il i2 ^ - . .  ^ Qi2,-1 i~, = ((2 n) ! + p (h)) d vM 

where p(h) is a fixed po lynomia l  of  h~i which satisfies: 

(i) p(h) is of  degree no greater  than  2 n, 

(ii) p(h) is even po lynomia l  of  h, 

(iii) p(h) has no constant  term. 

L e t  S 2n ---r s 2 n + p ( 1 )  be a totally geodesic embedding,  we have h = 0  in the above  
equality. Hence,  we have:  

(2 n)! V(S 2") = 22 n 7Zn n ! 2. 

Using the lower bound  of  V(M) in w 2, we have: 

V(M) > V($2"(1)) + c(n) 

if M is not  total ly geodesic. Hence  

-- S p (h) d vM _-> cl (n) ( 2 -  X) + c2 (n). 
M 
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Since p(h) is a fixed polynomial satisfying condition (i)-(iii), we have: 

- p(h)<=c3 S"-F c4 S, 

for some constants ca(n, p) and c4(n, p). By generalized Simons' inequality, we 
have: 

Sn>b(n,p)(2-  g)+c(n,P) �9 
M 

Proof of  Theorem E. This follows directly from Theorem D and the assumption 
;(<2. 

w 5. Topological Lower Bound of ~ S dim(M)/2 
M 

It is well know that the only totally geodesic n-dimensional submanifold of 
Sn+P(1) is just the great circle. Notice that S"(1) has all its Pontrjagin number 
zero and S "/2 =0. Using this and the topological lower bound of Yang-Mills 
functional [1] as phototype, we can get a lower bound of S sdimtM)/2 in terms 

M 
of Pontrjagin number. This is just the content of Theorem F. 

Proof of the Theorem F. We may assume P(M)> O, otherwise we use - P  instead 
of P. By Chern-Weil theory of characteristic class (4), we know P(M) is the 
integral of some fixed curvature expressions (depend only on P). By Gauss' 
equation 

R i  jkl = t~ik (~ jl - -  6il (~ jk  d- hick h~t - h~l h~k ; 

we know: 

P (M) = ~ c (P) d v + S fp (h) d v. 
M M 

Here, c(P) is a constant depend only on the class P, fv(h) is a polynomial 
satisfies: 

(i) fp(h) is a polynomial depending only on P, 

(ii) fp (h) is of degree 2 k, 
(iii) fp (h) is even with respect to h, 

(iv) fp(h) has no constant term. 

Now, let M = S  4k be the totally geodesic embedding, then, we have 0 
= c(P) V(s4R). Hence c(P)= 0. From conditions (i)-(iv), we have; 

fe(h)<cl  S+cz  S2k 

for some constant c~(k, p, P)>  0. By generalized Simons' inequality, we have: 

I S~>=c~ ~ S. 
M M 
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Hence, 
SEk> c(k, p, P)J P(M) I. 

M 

Remark. The above inequality become equality when M is totally geodesic sub- 
manifold. But, if one want to get the best constant in the above inequality, 
one must use some other method. This is the main difference between the topo- 
logical lower bound of Yang-Mills functional in [1]. 

References 

1. Atiyah, M.F.: Geometry of Yang-Mills fields. Lezioni Fermiane, Accademia Nazionale dei Lincei 
Scuola Normale Superione, Pisa 1979 

2. Cheng, S.Y., Li, P., Yau, S.T.: Heat equations on minimal submanifolds and their applications, 
Am. J. Math. 106, 1033-1065 (1984) 

3. Chern, S.S., do Carmo, M., Kobayashi, S.: Minimal submanifolds of a sphere with second founda- 
mental form of constant length, in: Browder, F.E. (ed.) Functional analysis and related fields. 
Berlin Heidelberg New York: Springer 1970 

4. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. II, New York: Interscience 
1969 

5. Lin, J.M., Xia, C.Y.: Geometric and topological obstructions for minimal hypersurfaces in S s (1). 
Kexue Tongbao 33, 1409-1413 (1988) 

6. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. 88, 62-104 (1968) 
7. Shen, C.L.: Global pinching theorems for minimal hypersurfaces of the unit sphere. (to appear) 
8. Terng, C.L., Peng, C.K. :  Minimal hypersurfaces of sphere with constant scalar curvature. In: Bom- 

bieri, E. (ed.) Sem. of minimal submanifolds. Princeton: Princeton University Press 1983 
9. Willmore, T.J.: Total curvature in Riemannian geometry. Chichester: Ellis Horwood 1982 

Received July 17, 1987; in final form October 25, 1988 


