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In this paper, we prove the following result: Let M2" be a minimal submanifold

in the unit sphere with Euler characteristic no greater than two, then, if | S"<c,
M

for some ¢>0, M is totally geodesic. Here S is the square of the norm of

second fundamental form. We also give a topological lower bound for j N

in terms of Pontrjagin numbers. M

§ 1. Introduction

Gauss-Bonnet formula establish a very powerful relation between the geometry
and topology of a manifold. Lots of results have been obtained using Gauss-
Bonnet formula as a key ingredient. But, this is done only within the intransic
geometry of a manifold. Surely enough, it will play a key role in the theory
of submanifolds. Here, we give an effort to obtain some consequences of Gauss-
Bonnet formula.

Let M"— §"*?(1) be an oriented minimal immersion. Assume S is the norm
of the second fundamental form of M, it is well known that the Simons’ inequality
can be used to obtain pinching theorems for S. For example, we have: If S<n/
(2—1/p), then, M is totally geodesic [6]. Further discussion in this direction
have been carried out [3, 8]. All these discussion have pointwise condition for
S. Hence, one may consider the global condition on S. By using cigenvalue
estimates, Shen proved the following resuit:

Global Pinching Theorem [7]. Let M"— S"*1(1) be a minimal embedding
with Ricy=0. Then, there exists an universal constant c¢(n)>0, such that, if
| S"*<c(n), M is totally geodesic.

M

In this paper, we will prove some global pinching theorems using topological
information of the submanifold M instead of geometry condition like curvature
pinching condition.

First, we have the following theorems for minimal surface or minimal hyper-
surface M* in the unit sphere.
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Theorem A. Let M? be an oriented compact minimal surface in the unit sphere
S" which is not totally geodesic. Then, there exists an universal constant ¢>0,
such that:

[Szgng+c
M

where g is the genus of M.

Theorem B [5]. Let M* be an oriented compact minimal hypersurface in S°(1).
If M is not totally geodesic, then

| $?z64n*2—yp)/3+c,
M

for some universal constant ¢ >0. Here y is the Euler characteristic of M.

From Theorem A and B, we can get global pinching theorem for minimal
submanifolds with Euler characteristic no greater than two in each case. We
go further in this direction, and consider M® in the unit sphere. Then, we have
following theorem:

Theorem C. Let M® be an oriented compact minimal hypersurface in the unit
sphere S7(1). If M is not totally geodesic, then:

| $32288073(2—y)/49+c,
M

for some constant ¢>0. Here y is the Euler characteristic of M.

If M?" is an oriented compact minimal submanifold in the unit sphere, we
can show that similar estimate holds.

Theorem D. Let M>" be an oriented compact minimal submanifold in S*"*2(1).
If M*" is not totally geodesic, then,

{ $"=b(n, p)2—x)+c(n, p),
M

for some constants b(n, p), c(n, p)>0. Here y is the Euler characteristic of M.
From this, one can easily show the following global pinching theorem.

Theorem E (Main Theorem). Let M>" be an oriented compact minimal submanifold

in §2"*2(1). If the Euler characteristic of M is not greater than two, and | S"

<c(n, p), then, M is totally geodesic. M

Theorem A to D give lower bounds of | S”in terms of Euler characteristic.
M

Then, one may ask whether or not there is a similar bound in terms of other
characteristic numbers. This is answered in the following theorem.
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Theorem F. Let M** be a compact minimal submanifold in S***?(1), and P(M)
is one of its Pontrjagin number. Then, there exists a constant c(k, p, P)>0, such
that:

| 8**zc(k, p, P) P(M).

M

This paper is arranged as follows: In §2, we give facts that are used in
our proof and a basic lemma (generalized Simons’ inequality). In § 3, we review
the proof of Theorem A and B, then, give the proof of Theorem C. In §4, we
prove Theorem D and our main theorem, Theorem E. In our last section, §5,
we prove Theorem F.

§2. Preliminaries

In this section, we recall some well known facts and prove a generalization
of Simons’ inequality which is needed in the proof of our theorems.

Let M" be an n-dimensional Riemannian manifold. As usual, we denote
by R;;, R;; and p be its curvature tensor, Ricci curvature tensor and scalar
curvature under orthonormal frame near a point, respectively. The Einstein
tensor E of M is defined by:

Eij=Rij“P‘5ij/n-

Let M™— S"*?(1) be a minimal immersion. Assume hf; be the second funda-
mental form of M, where ,j, k, I=1, ..., n,a=n+1, ..., n+p. The minimal con-

dition can be read as:
Y h;=0, oa=n+1,...,n+p.
i=1 -

The Gauss’ equations can be written as:
Rijk1= 01 051— 01 0j3+ A By — hiy 1.
We also have the lower bound for the volume of minimal submanifolds
in the unit sphere:

Proposition [2]. Let M"— S"*?(1) be a compact minimal submanifold. If M is
not totally geodesic, then, there exists a constant c(n)>0, such that:

V(M)>(14c(n) V(S"(1)).

Let M?" be an oriented Riemannian manifold with Euler characteristic y

and curvature form Q,;=%Y R;;,®* ®', where o* is the orthonormal coframe
k,1
of M. Then, we have Gauss-Bonnet formula.
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Proposition [4].
QA AQ

igip 7N - ian-1i2n"

20 00 Yy —
2 T n'x_ j‘ 8i1i2,“i2”
M

Lemma (Generalized Simons’ inequality). Let M™— S"*?(1) be a closed minimal
submanifold, then, for any integer t =0, we have:

§ S 1(S—n/2—1/p) vy 20.
M
Proof. 1t follows from [6] that
1AS=28S(n—(2—1/p)S).

For any ¢>0, we have:

1A8)(S+ef=S(n—(2—1/p)SHS+2).
Since
AS+ef T =+ D) t(S+e)f PS>+ +1)(S+e) 4S8,
we have:
A{ S(n—2—1/p)S)(S+¢f

<3 [ (S+e)4S
M
[ AS+e) YQ2t+2)—t(t+1)(S+e) | PSP/2

IIA

0.

IA

The last inequality above follows from Green’s formula and the assumption
t=0. Thus, we obtain:

| S(n—(2—1/p)S)(S+e) 0.

Letting £ — 0, we conclude the proof of the lemma.

§3. The Proves of Theorem A, B and C

In this section, we first give a proof of Theorem A, then, we prove Theorem C.
For the proof of Theorem B, one may consult [5], since the proof is similar
to the proof we give here.

Proof of Theorem A. From Gauss’ equation, we have that for minimal surface
in the unit sphere

§=2-2K,
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where K is the Gauss curvature of the surface. Then, we have:

[ S=2V(M)—8n(1—g).
M

Combining with the lower bound of V(M) in §2, we have:

| S28ng+c.
M

Proof of Theorem C. From Gauss-Bonnet formula, we have:
26n33!x=§ &; Qiliz/\gisi“/\g‘
M

1.6 isig®

But
Q

=%8

g INS N

R

isig

R

i1...i6 i1 is

... R....R.... o Je
iy, “Vi1iaj1i2 13141314R15151515w ARTERAY Y

6
=6z(1+g21,.1j+§ ¥ A,.z,.zkmnxi)d%,

i<j i<j<k<i i=1

here, /; are the principal curvature of M. And, we also have used Gauss’ equa-
tion:
Rijr=(1+ A A) (01 0;:— 616 53)-

Since M is a minimal submanifold, we have
Z li = 0
Hence, we have:

> Aidy=—%85.

i<k
As is well known, Y 1;A;44; can be expressed by linear combination of
i<j<k<l

(3. 49)* and (3 2#) (Notice that we have Y 1,=0). Hence, we can assume:

Z illjlkll=asz+b2/w.

i<j<k<l
LCt A’l="'=)’5=17 ’16= —5. Then,
—45=900a+ 6305.
Let ly=...=;=1,,=...=1¢=—1. We get
3=36a+6b.

Hence, a=4%, b= —%. That is
Z lll.’lkil=%(s2—zzil4).

i<j<k<l
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Hence, we have the following formula:

[ (=7202,...26+36(F 2#)— 1852+ 725)=6! V(M)— 267331 y.
M

Lemma. —4,...44 < 5%/216.

Proof. We use the Lagrange multiple method to calculate the maximum of
the function f= —p,...us under the constraints ) p;=0 and ) u7=S. Let f=
— .-+ AS =) uP)+u) p;. Then, at the maximum point of f, we have:

—Hy---Pe—2Ap +p=0

—Hy--ps—2Aps+p=0.

Thus —p,...us=A8/6. We can assume y,...uq=+0. Hence, y;, i=1,...,6 are
the roots of the following equation:

6Ax:—3uy—AS=0.
It follows from direct calculation that;

max(—y,...ug)=S83/216,
which is reached by:

By =Hy=H3=—lg=—pis=—lg=]/S/6.

Lemma. ) A <75%/10.
Proof. We use the Lagrange multiple method to calculate the maximum of
Y ui under the constraints Y p;=0 and Y p?=S. Let f=Y pt+2(S—Y u?)
+uY. u;. Then, at the maximal point of ) uf, we have:

4u?—22p+p=0.
It follows from direct calculation that:

max(Y uf)="75%/10,

which is reached by:
Mi=p=...=pus=]/S/30, ps=-—)55/6.

From the lemmas, we have:

[ 1083/3+368%/5+725=26! V(M)—2°x>3!.
M
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From the generalized Simons’ inequalities, we have:

{72852 [ 8%,
M

M

{ 365%/5< [ 65%5.
M M

Hence, we have (using the lower bound of V(M)):

| 8222880732~ x)/49+c¢
M

for some constant ¢>0. Here y is the Euler characteristic of M.

§4. The Proof of the Main Theorem

In this section, we prove Theorem D, our main theorem, Theorem E, is a conse-
quence of Theorem D.

Proof of Theorem D. From Gauss-Bonnet formula, we have

22"mw"nly= | e
M

Q.. AL AQ,

1,020 D¥iin i2n—1i2n?

where Q,;=1R,, 0" @ is the curvature form. Since M?" — §2"*2(1) is a immer-
ij— 2 *Nijkl
sion, we know:

Rijkl=5ik5jl_5ilajk+h?k ;‘l_ ?lh;
by Gauss’ equation. Hence
Eiyoizn iyt Ao Ay, 1, =((21)! + p(B) dvy,

where p(h) is a fixed polynomial of h¢; which satisfies:

(i) p(h)is of degree no greater than 2n,
(i) p(h) is even polynomial of h,
(iii) p(h) has no constant term.

Let S2"— $2"*7(1) be a totally geodesic embedding, we have h=0 in the above
equality. Hence, we have:

@) V($*m=22"n"n!2.
Using the lower bound of V(M) in §2, we have:

V(M)>V(S2"(1))+c(n)
if M is not totally geodesic. Hence

— J P doyZ e (M2~ 1)+, ().
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Since p(h) is a fixed polynomial satisfying condition (i}(iii), we have:
—p(W=c38"+c, S,

for some constants c;(n, p) and c,(n, p). By generalized Simons’ inequality, we
have:
§ §"zb(m, p)2—x)+cn, p).

M

Proof of Theorem E. This follows directly from Theorem D and the assumption
1=2.

§ 5. Topological Lower Bound of | S4m®/2
M

It is well know that the only totally geodesic n-dimensional submanifold of
S"+7(1) is just the great circle. Notice that S"(1) has all its Pontrjagin number
zero and S®2=0. Using this and the topological lower bound of Yang-Mills

functional [1] as phototype, we can get a lower bound of | S#™®™)/2 in terms
M

of Pontrjagin number. This is just the content of Theorem F.

Proof of the Theorem F. We may assume P(M) =0, otherwise we use — P instead
of P. By Chern-Weil theory of characteristic class (4), we know P(M) is the
integral of some fixed curvature expressions (depend only on P). By Gauss’
equation
R;jxy= 0105y~ 041 05+ iy by — hiy
we know:
P(M)= [ c(P)dv+ | fe(h)dv.
M

M

Here, ¢(P) is a constant depend only on the class P, fp(h) is a polynomial
satisfies:

@) fp(h)is a polynomial depending only on P,
(ii) fp(h)is of degree 2k,
(iii) fp(h) is even with respect to h,
(iv) fp(h) has no constant term.

Now, let M=S* be the totally geodesic embedding, then, we have 0
=c(P) V(5*¥). Hence ¢(P)=0. From conditions (i}«iv), we have;

fe(h)<c; S+c, 85
for some constant c;(k, p, P)>0. By generalized Simons’ inequality, we have:

[ $**2zc;y | 8.
M M
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Hence,

§ 8**zc(k, p, P)|P(M)|.
M

Remark. The above inequality become equality when M is totally geodesic sub-
manifold. But, if one want to get the best constant in the above inequality,
one must use some other method. This is the main difference between the topo-
logical lower bound of Yang-Mills functional in [1].
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