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Abstract. A direct method is employed to minimize the Yang-Mills functional 
over a 4-dimensional manifold. The limiting connection is shown to be Yang- 
Mills, but in a possibly new bundle. We show that a topological invariant of 
the bundle is preserved by the minimizing process. This implies the existence of 
an absolute minimum of the Yang-Mills functional in a wide class of bundles. 

Introduction 

We examine the limiting behavior of a minimizing sequence of connections for the 
Yang-Mills functional in a principal bundle over a compact 4-manifold. A limiting 
connection is found, but possibly in a new bundle. It is natural to ask for some 
invariant of the bundle which is preserved by this procedure. In the minimizing 
process, there are a finite number of points where curvature collects. When we take 
the limit, we lose control of the bundle at these points, So an invariant which wilt 
survive through the limit should be determined by the bundle with a finite number 
of fibers removed. If the invariant is to be in cohomology, we see that we want 
classes which are determined by their restriction to the manifold with finitely many 
points removed. For 4 manifolds, this is satisfied by 2- and 3-dimensional 
cohomology classes, Uhlenbeck makes a conjecture in [17] that the first chern 
class of a unitary bundle is preserved under the minimizing process. Our results 
show that the conjecture is true, although this case does not seem the most 
important application of our results. 

In his paper [13] Taubes shows existence of self-dual Yang-Mills fields on 
many oriented 4-manifolds. The principle bundles to which his method applies 
must have an invariant in dimension 2 cohomology vanishing. This invariant is 
the obstruction to lifting the structure group of a principle bundle to the universal 
covering group of the structure group. In this paper we show that this obstruction 
is preserved by our process, so we obtain Yang-Mills fields in bundles with 
nontrivial obstruction. 

This obstruction also arises in 't Hooft's [14] construction of bundles over a 
4-dimensional torus with structure group SU(n) modulo its center. By explicit 
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computations he produces Yang-Mills fields in bundles with a nonzero obstruc- 
tion to lifting the structure group to SU(n). 

In dimension four the Yang-Mills equations are conformalty invariant. This 
happens in dimension two for the harmonic map problem. There are strong 
similarities between the two problems. For  details on the harmonic map problem 
see Schoen and Yau [ t2] ,  Lemaire [6], and Sacks and Uhlenbeck [10]. 

Section 1. Preliminaries 

Let P be a principle fiber bundle over a compact 4-dhnensional Riemannian 
manifold M. The structure group G is assumed to be a compact Lie group with Lie 
algebra N. A will denote a connection on P and F A its curvature. Let adN be the 
adjoint bundle of P, Da the exterior covariant derivative induced by A, and d the 
exterior derivative which is defined on APM®N. We shall denote the induced 
inner product on any APM®adN by (,), the norm by [ [- Recall the definition of 
the Yang-Mills functional 

~(A)  = ~ tFAI 2 . (1.1) 
M 

Integration over M is via the density induced by the Riemannian metric. 
Suppose or: U C M ~ P  is a section. Then o-*A is a N-valued one form on U, and if 
we trivialize A ; U ® a d N  via ~ we have N-valued p forms. In particular F A over U is 
a N-valued 2 form, and we have F A = &r*A + [o-*A, ~*A]. Here [ ,  ] is induced from 
the Lie algebra multiplication in N. If U is a coordinate chart and ~, is a section of 
APU®adN~-APU®N; we write DAtp=d~+(r*Atp, where a*A~p involves only 
multiplication. For  more details see [5]. 

We assume some knowledge of Sobolev spaces. Let L~ denote the space of 
functions with weak derivatives through order I¢ in LP; II !tp, g denotes the norm in 
L~. Let ~ denote weak convergence, ~ strong convergence. Recall that - ,  in L p 
implies pointwise convergence almost everywhere. For  more details see [8]. 

We need to define LP(U, G), where U is a coordinate chart. Since G is compact 
it may be viewed as a group of matrices, so sits naturally in some IR n. We say 
f : U - ,  G is in L~ iff each of its components are. Since the group operations are now 
just matrix operations, we see that the usual multiplication theorems in Sobolev 
spaces hold. Recall that f e L g  iff If[~Lg, where I I means the norm in IR ~. If f is C 1, 
then dfis tangent to GCIR. If we had a Riemannian metric with norm fl II on G, we 
could compute the Lg norm of df. Of course, one metric comes from IR " itself. 
Using the fact that any 2 Riemannian metrics on a compact manifold are 
uniformly equivalent, we see that tdf[ is in Lg iff tldf!l is. In particular we may use 

P an invariant metric on G to define Lg(U, G). 
An L~ section of P is a section of the form ~.g, where cr is a C ~° section, 

gELS(U, G). A connection A is Lk p means there exists an open cover {U~} of M by 
coordinate charts and C ~ sections o-~ : U ~ P  for which ~*A is L~ (see [5]). 

We will often use the following construction. Given a collection A k of 
sequences, we take a subsequence of Az-hence a map ~ :N-~N. Next take a 
subsequence of A 2 oE~, and get a map f2. Continuing, we get maps f~, f2, ... • If we 
define {' by g~(i)=~X o . .  og¢l(i) ' then AkO¢ is a subsequence of A k which for 
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sufficiently large i is a subsequence of A~ od~ od2 ... @ In particular, if the original 
subsequences converged, then A~ od converges as well, and to the same limit. The 
above process is called diagonalization, and will be used frequently in this paper. 
We shall be taking so many subsequences that we will not notationalty distinguish 
a sequence and a subsequence obtained from it. 

Section 2. The Obstruction I/(P) 

Let G be a Lie group with a homomorphism rc : G ~  G which is a surjective covering 
map. Let e be the identity and set K = n - l ( e ) .  Here K is discrete since n is a 
covering map. We assume further that K is in the center of G. This is automatic if 

is connected. In particular K is abelian. We say we have a lift of P to a principle 
bundle t3 if there exists f:/3-->P such that f(pg)= f(p)ng and f is the identity on 

M. 
Following Greub and Petry [3] we define the obstruction t/using Cech coho- 

mology. Let {U~} be an open cover of M with all finite intersections U,o~ ... c~ Us, 
contractible. Such a cover is called simple. Let G : U ~ P  be local sections with 
Ga:U~nUa~G defined by G=at~ga~. Recall that the 9~a satisfy the cocycle 
condition 9~9~79~ = e, Choose any lifts 0~a" Ud~ Ua--+ G with O~a0p~ = e, ~z0~ = 9~p. 
Define 

f~:U~c~Upc~U~-oK by f ~ = 9 ~ 0 ~ 0 ~ -  

If f ~ , = e  then the 0~p actually define a bundle. In any case, f ~ e K  since 

rcf~, = ( rcO~) ( rQ p,) ( rtO,~) = g~py ~,g ,~ = e . 

Definition 2.1. q(P) is the element in He(M, K) defined by {f~}.  
To justify this definition we need to check a few details. First, by changing the 

lifts .0~ to 0~'7~p, where 7~:U~c~U~--+K must satisfy 7~ ~ =7~,  we see that f~p~ 
may be varied by 7~7~xG~. 

This is actually a coboundary in the Cech theory. Recall that the Cech 
cohomology theory proceeds as follows [4]. For an open set V let F(V) be the 
abelian group of continuous functions from Vto K. Let {U,} be any open cover of 
M. Define groups CP{U~},K) for p > 0  by CP({U~},K)=the group of functions f 
mapping p + 1-tuples c%7q ... ap to F(U~oC~ ... c~ U~). Let f~ ...... p denote the value of 
f at ~o . .-~- 

Addition is pointwise. Define d : C ~  C ~+~ by 

We have d ~ =0, so can form /4~({U~}, K) from this complex. The Cech group 
/~V(M, K) is defined by taking the limit of/lv({U~}, K) over all covers { U=}. For 
{ U~} simple we have 

/tP({ Us}, K) ~- riP(M, K) ~- HP(M, K) 
(see [4, t8]). 

It is easy to check that f = { f~}  satisfies df = 0, and that 7t~7~G~ = (d7)~ for 
? = {G~}~ C ~. Finally, it is clear that ~(P)=0 iff there exists a lift P of P. 

Lemma 2.2. Let P, P' be principle G bundles, {Us} a simple cover with correspondin9 
transition functions g~, h~. Then tt(P ) =t/(P') iff there exist lifts 0~, h~ such that 
~7~1~0~ = h~h~h~. 
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Proof Immediate from the preceding discussion. 

Remark. On a compact Riemannian manifold there exists r > 0  such that any cover 
by geodesic balls of radius < r is simple. 

Lemma 2.3. I f  f : N ~ M ,  then ~l(f*P)= f*~l(P). 

Proof See Greub and Petry [3]. 
A particular case of the preceding occurs when G is connected and G is the 

universal covering group of G. Recall that K~-ThG in this case, so we have 
rl(P)eHZ(M, ~zlG ). This is the obstruction Taubes [13] needs to vanish and is the 
"twist" appearing in 't Hooft's paper [14]. 

Theorem 2.4. a) For G = O(n) or SO(n) we have q(P)= W2(P)~ HZ(M, ~2)' Here W z is 
the second Stiefel-Whitney class of the vector bundle associated to P by the 
representations O(n)~GL(n), SO(n)--->GL(n), and we try to lift to pin(n) and spin(n) 
respectively. 

b) For G = U(n) we have rl(P ) = c l(P)e H2(M, ;g) where c 1 is the first chern class 
of the vector bundle associated to P by the representation U(n)-> GL(n, C). Here we 
try to lift to SUN(n)=IRx  SU(n). 

Proof See Greub and Petry [3]. 
For  G connected, it is well known that bundles over S 2 are classified by rhG. 

See Atiyah and Bott [1]. As a simple example, if we take a bundle sp~ecified by 
C:[0, 1] ~G ,  ~ 0 ) =  e, lifting the structure group to the universal cover G amounts 
to lifting C to C:[0,1]---, G with C(0)= e. However, the lifted curve won't be a loop 
unless C was 0 in rqG. Indeed, the lifted curve will have C(1)EK. This is the usual 
correspondence between rc I G and K, and in our case gives tI(P)H2(M, r h G)~-rc I G 
for S 2. Therefore I? classifies such bundles over S z. Of course, we don't  have to try 
to lift all the way to the universal cover - if we don't  we get less information from t/. 

More generally, the appendix shows that the map P---'~I(P) from bundles to 
obstructions is onto. Moreover, the obstruction t/(P) determines P over the 3- 
skeleton of M. 

Section 3. Weak Compactness 

Remarks. In this section we show that a bound on the curvature of a sequence of 
connections implies convergence of a subsequence. However, the limiting object is 
some kind of L~ "connection" in an L2 z "bundle." Since we are working in 
dimension 4 these objects may not even be continuous, so should be treated 
cautiously. Theorem 3.1 is really more general than is needed for the sequel. We 
state it in this generality in order to make it applicable to coupled Yang-Mills 
equations, which we do not treat here. For  details on coupled equations see Parker 
[8] and Jaffe and Taubes [5]. 

Theorem 3.1. Let { Ai} be a sequence of C ~ connections in principal bundles { P i} over 
M with d (A i )<B .  Then there exists a subsequence, a countable set of arbitrarily 
small geodesic balls {U~} covering M - { x l , . . . , x e } ,  C ° sections 

a~(i):U~-~P, A~eL~(U~,A1U~®(~), and 9~p~L~(g~c~Up, G) 



Minimizing the Yang-Mills Functional 5t9 

such that : 
a) d*A~(i) is 0 for i sufficiently large, 
b) d*A~=0, 
c) g~(i)-~g~(L~), 
d) F~(i)~F~(L2), 
e) A~(i)~A~(L2), 

A~(i)~ A~(L 2) , 
l) A~ = g~lA~g@ + g~idg~p. 

Here As(i ) = a*(i)A i, F~ = dA~ + [ A~, A~], F~(i) = dAb(i) + [As(i), A~(i)] and d* is the 
adjoint of d in the fiat metric on U~ induced by normal coordinates. 

The idea of the proof is obvious. Use the bound on curvature to get an L~ z 
bound on the connections, then use weak compactness to get a limiting con- 
nection. The difficulty comes from the fact that we can only do this locally and in a 
particular gauge. More precisely, we have a theorem of Uhlenbeck [15]. 

Theorem 3.2. Let D be a geodesic ball. There exist constants R, S depending on the 
geometry of M such that if S IFA 12 < R, Ae  L~, then there exists a section a : D ~ P  
such that" D 

a) d*(a*A) = 0, 
b) LLa*AII2,~<-RS, 
a is L 2 in general; if A is C ~ so is a. 

Proof See Uhlenbeck [15]. Here d* is the adjoint of d in the fiat metric arising 
from normal coordinates. 

What we need next are covers {Cj} of M with the following properties: 
a) The elements of Cj are balls of radius r j~0.  
b) There exists h independent o f j  such that any h + 1 balls of Cj have empty 

intersection - in particular Cj is finite. 
Such covers certainly exist on compact Riemannian manifolds. We would like 

to apply Theorem 3.2 to each element of the cover C j, but the hypothesis needn't 
be met on all balls. However, we have an upper bound on the number of balls on 
which it fails: 

hS>=h ~ tFA,I2>= ~ ~ IFA,[a>=NijR, 
M DeCj D 

where N~j= # of D~Cj for which ~ IFA~I 2 >R. 
D 

Remark. We will call a ball D bad for A i if ~ [FAi]2~ R, otherwise it is called good. 
D 

Proposition 3.3. There is a subsequence of {Ai} for which the bad balls in a given Cj 
are independent of i f  or i sufficiently large. 

Proof By diagonalization it suffices to find for any fixed Cj a subsequence of {Ai} 
for which the bad balls are fixed. This is easy. Looking at the centers of the bad 
balls we get at most hB/R sequences in M. Compactness gives us convergent 
subsequences of the centers, and the finiteness of Cj then implies the centers are 
actually fixed. 

We now toss out the "eventually bad" balls in each cover Cj and throw what's 
left into a set {U~} of balls. Since t,_){U~} 3 M - { a t  most hB/R balls of radius r~} 
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and r j~0,  we see that U {U~} = M - { x  1 ... xe}, where E <_ --.hB By construction we 
- R  

see that any U s is eventually good - that is, for i large enough, U~ is good for all A i. 
Of course "large enough" depends on cc 

Lemma 3.4. There is a subsequence of  {Ai} which .for every c~ has C ~ sections 
as(i ) : U~-~ P such that: 

a) a~(i)*ai-~A~ in L 2, 
b) d*a~(i)*Ai=O for sufficiently large i. 

Proof By using Proposition 3.3, Theorem 3.2 and taking i sufficiently large we get 
a~(i) for which b) is true and for which ]la~(i)*Aill2.1 is bounded. We then apply 
weak compactness in L~(U~) to get a convergent subsequence cr~(i)*A ~ A ,  in L 2 for 
each c~. Diagonalization over the countable cover {U~} then gives us our 
subsequence. 

Lemma 3.5. The G(i) give rise to transition functions g~p(i). There is a subsequence of  
{Ai} for which g~(i)-~g~p(L~). 

Proof By diagonalization over the countable collection {eft} it suffices to produce 
a convergent subsequence for fixed eft. We show llg~(i)l] 4,1 is bounded. Recall that 

a~(i)A i = g~p(i)- l a*(i)Aig~t3(i) + g~#(i)- l dg,t~(i). 

Taking L~ norms and using the invariant metric on G we get: 

<= Ila~(i)Ail[4,o + a*(i)Ai]14 0 

<-_C( a*(i)A~ll2 1+ la*(i)A~lla O. 

Here we used the fact that L 2 imbeds continuously into Lo 4 in dimension 4 [8]. 
Finally, since G is compact it is automatic that Ng~(/)T[4,o is uniformly bounded. 

Lemma 3.6. There exists a subsequence such that: F~(i)~F~(L2). 

Proof We have 
F~( i) = da*(i)A i + [ a*(i)Ai, a*(i)Ai] . 

Since a*(i)Ai-~A~ in L1 z, we get da*(i)Ai~dA~ in L 2. 
Using the continuity of the imbedding L 2 ~ L  4, the continuity of multiplication 

from 4 4 L o ® L  o to Lo 2 and the fact that t11~(i)1t2,~ is bounded we see that 
l[[A~(i),A~(i)]ll2,o is bounded. Since we have pointwise convergence almost 
everywhere, we get [A~(i), A~(i)] ~[A~, A~] in L 2. 

Lemma 3.7. d*A~ = O. 

Proof It suffices to notice that d* involves only one derivative, which implies that 
d*A~(i)~d*A~(L~) since A~(i)~A~(L~). To finish, recall that d*A~(i)=O for i 
sufficiently large. 

Proof of  Theorem 3.I. This is almost immediate from the preceding discussion. 

Remark. We will call the collection {A~} a connection A~ in the bundle P~ = {g~p}. 
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Section 4. Existence of a Yang-Mills Minimum 

Definition. Suppose G and G are given and there exists a G-bundle P over M with 
rl(P) = rleHZ(M, K). We set re(t/)= inf{~(A)[A is a C ~ connection on a G bundle 
with obstruction ~/}. 

Take any sequence {Ai} of connections with ~(A~)-~m(rl). Since this implies 
that there exists B with d(Ai) =< B, we can apply Theorem 3.1 to get the existence of 
a weak limiting connection A~ in a bundle P~ over M -  {x 1 ... . .  x6}. 

Theorem 4.1. For each ~ A~ is a weak Yang-MilIs field. More precisely: 

(Daflb, F ~ ) = 0  for all ¢~C~(U~,A1U~®~). (4.1) 

Here (,) denotes the inner product in L~. 

Proof. Suppose (4.1) is false. We construct a sequence of C ° connections Ai such 
that d(z{~)--*~n<m(q), giving a contradiction. To start, take c~,¢ for which 
(Da= ~, FA~ ) < 0. Let tqS~ be that section of A 1M ®ad if(i) which over U~ is trivialized 
by a~(i) to be re. Since supp¢ C U= we have tqS~ globally defined on M and C ®. Set 
A~ = A~ + t¢~ by regarding t4~i as a (4-valued one form on P. Since ~ = ~ + j" 

M M -  U~ U~ 
and Ai = Ai over M -  U,, it suffices when comparing d(Ai) and d(Ai) to work over 
U~. Therefore we may trivialize everything using o-~(i) and write: 

t 2 
/~(0 = F,(o + tDa~(i)q~ + ~- [~b, qS]. (4.2) 

This implies : 

d(Ai)  = sC(A~) + 2t(Da,(0¢, F~(i)) 
+ t2(Fz(i), [~, ¢]) + t3(Da~li)¢, [~b, ¢]) 

t 4 
+ ~-1l[4,,¢]11~,o. (4.3) 

We now examine the terms as i--*oo. Observe that DA~(I~¢-*DA~ ~ in L~. This 
follows immediately from the fact that A~(i)--*A~ in L0 z which is part of 
Theorem 3.1. This theorem also gives F~(i)~F~ in L~. This immediately implies 
that the last 4 terms converge to the obvious limits. 

To handle the second term write: 

(DA~, F~)- (DA~O¢, F~(i)) = (DA,¢, F~- F~(i)) + (DA~ ¢ -- DA~i)~, F~(i)). (4.4) 

The first term approaches 0 since F~-F~(i)~O in L~. The second term 
approaches 0 since Daft5-  Oa,~i)¢~0 in L~ and ][F~(i)It 2, 0 is bounded. So we see 
that: 

~¢(zti)-+m(tt)-}- 2t(D a c), F~) + higher order terms. (4.5) 

Taking t to be a sufficiently small positive number, we get our contradiction. 

Proposition 4.2. A, is a smooth solution to the Yang-Milts equation. Moreover, the 
9~ are C ~. 

Proof. By Lemma 3.7 d*A~ = 0. Since A~ also satisfies the Yang-Mills equation on 
U~ by Theorem 4.1, it is a smooth solution. See Parker [9], Taubes [13], and 
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Uhlenbeck [t  5]. The proof that g~¢ is C ~ is similar to the proof of Lemma 3.5, see 
[15]. 

Theorem 4.3. P~ extends to a C ~ bundle over M, and Ao~ extends to a C ~ Yang- 
Mills Connection in the extended bundle. 

Proof. See Parker [9] and Uhlenbeck [16]. From now on A~ and P~ will denote 
the extended connection and bundle. 

Remark. We have ~ ]f~[2=<lim ~ ]f~(i)[ 2 which implies 
U~ U~ 

d (A~)  < lira s~(A~) = re(t/). 

Here we used the weak convergence of F~(i) to F~ and the fact that [[ iI z, 0 is lower 
semicontinuous. 

Section 5. The Obstruction is Preserved 

We first prove a technical lemma on cohomology. 

Lemma 5.1. Let d imM>3,  Q={xl ,  . . . ,xl} and J : M - Q - ~ M  be the inclusion. I f  
P ,U  are bundles over M with structure group G, then rl(J*P)=~l(J*P') implies 
~(P) = t/(P'). 

Proof. Since ~(J*P)= J*tl(P), it suffices to show that J* is injective. This follows 
from the exact sequence of the pair (M, M - Q )  and excision: 

... ~ H2(M, M -  Q)~ H2(M)- J* , H 2 ( M -  Q)-~ .... 

d 

Take small disjoint balls B 1 . . . .  ,B t around the points Xl, ...,xd. Set B=  0 Bi, 
1 

Exdsion of M -  B gives H*(M, M -  Q) ~-H*(B, B -  Q). The exact sequence of the 
pair (B, B -  (2) is: 

... ~ HI(B - Q)~ H2(B, B -  Q)-* H2(B)~ .... 

But since B -  (2 is homotopy equivalent to • spheres of dimension = 2, and B to 
points, we see that" 0 = H2(B, B-Q)~-H2(M,  M - Q )  which implies J* is injective. 

Proposition 5.2. Assume G is compact and that the hypotheses of Theorem 3.1 are 
satisfied. Then there is a subsequence of {A~} with lifts O~(i)~O~ in L~ where 
nO~p = g~. Here O~(i) may be any lift of gap(i). 

Proof. By Theorem 3.1 we get a subsequence of the {A~} and existence of g~p for 
which g~p(i)~g~(L~). Let 0~(i) be any lift of g~(i). The crucial point here is that 
I1~(i)114, ~ is bounded. However, this follows from the fact that 

II dO~(i) [I 4, 0 = II rcdO~(i)1[ 4, o = l] dg~(i)]l ,, 0 

since we can use an invariant metric on G for which n is an isometry. We have 
ll0~p(i)lf4,o bounded because d is compact - this is the only point that used 
compactness of G. 
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The argument finishes by using weak compactness in L~ to pick convergent 
subsequences O~p(i)~O~p in L 4. Then r~p  =g~p follows from the fact that we have 
pointwise convergence almost everywhere. Of course, we need to use diagonali- 
zation over the pairs eft to get our subsequence. 

Lemma 5.3. Suppose f :  U~--+R has only a finite number of values and has a weak 
derivative in L~. Then f is constant. 

Proof It suffices to show the weak derivative o f f  is 0. Let a 1 . . . .  , a, be the values f 
assumes, let c~i:R~R be Coo functions with ~Pi(a~)= a i near % i=  1 ..... n, and ~b i - 0  

n 

away from a i so that ~i(aj)= 0 for i*j .  Then f = ~ ~b i of By the weak chain rule 
1 

(Morrey [7]) we get the weak derivative o f f  being 0. 

Lemma 5.4. I f  G is compact and (7~p is an L 4 lift of  g~pECoo, then O~p~C ~. 

Proof We have O~pEL~ and r~O~p =9~ ,. Let ,0,~ be any C ~ lift of g~,. Then 

f = ~¢..~,~ : UJ~ Up ~ K 

is in L~. Indeed, n(g~,gp~)=9~Bgp~ = g = =  e so f is K-valued. The multiplication 
theorems for Sobolev spaces (Palais [8]) imply f is L~. By Lemma 5.3 we see f is 
constant, so ~ is Coo. 

Theorem 5.5. Assume G is compact and that we have the bundle Poo from 
Theorem 4.3. Then the obstruction is preserved. That is, ~/(Poo)=~/. 

Proof By Proposition 5.1 it suffices to work over M - { X l ,  ..., xt}. By hypothesis 
we have r/(Pi)= r/, so we can choose lifts O~p(i) for which 

£p~(i) = (7~p(i)~lp~(i)gT~(i) = f~/~(1) 

say. By Theorem 5.2 we can pick a subsequence of {A~} for which 0,p(i)--'O~p. The 
O=p are legitimate C oo lifts by Lemma 5.4. So we have: £p~(oo)=0=pOpTO~. ~. Since 
O~p(i) converges to 0~p almost everywhere, we can select xe  UJ~Uec~ U~ for which 
all 3 terms in f~ ( i )  converge: 

f~p~(i) (x) = (7~,(i) (x) . Op,(i) (x) - ~7.y=(i) (x) 

--+ O~e(x) . ~ p , (x )  . O , ( x )  = L , ~ (  ~ ) (x)  . 

Since f~7(i)=J;p~(1), and both sides are constant functions, we see that 1/= ~/(P~) 
=~/(Poo) o n  M-{x1, ...,x~}. 

Corollary 5.6. sC(Aoo) =re(q). 

Proof. We remarked earlier that ag(Aoo)<m01). But A~o is a C °o connection in Poo. 
By Theorem 5.5 we have ~(Poo)= ~/, so we get m(r/)< aC(Aoo). 

Section 6. Relaxing the Compactness of 

In the previous theorems we required G to be compact. It is possible to relax this 
assumption. 
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Theorem 6.1. The conclusions of Theorems 5.5 and 5.6 hold for any G. 

Proof Since K is a quotient group of ~i G which is finitely generated by the 
compactness of G, we have K = F G  Twhere F is a finitely generated free group and 
Tis a finite torsion group. Given tleHZ(M, K) and K' a subgroup of K, we may use 
the map K ~ K / K '  to define classes rt~,~HZ(M, K/K'). It is easy to see that t/K~iS the 
obstruction to lifting a bundle to G/K' if 17 is the obstruction to lifting to G. See 
Greub and Petry [3] for details. We have: 

H2(M, K) = H2(M, F O T) ~- H2(M, F)G H2(M, T), 

which give t /= t  h +t/2. Theorem 5.5 implies that t/K is preserved for K' which 
satisfy K/K' finite, tn particular we may take K'  = F  to get tlF=tI2~H2(M, T) 
preserved. Next take K'=nF@T to conclude that tI,e~T~H2(M,F/nF) is pre- 
served for n=  1,2, .... But clearly tl,F~ r is the image of ~i in H2(M, F/nF) under 
the map induced by F~F/nF. The exact sequence 

O-~ F - f ~  F - ~" ~ F/nF-~O 

gives rise to a long exact sequence: 

... HZ(M, F). ~? ~ H2(M, F) ~"*, HZ(M, F/nF)~ .... 

To show t h is preserved the preceding shows that it suffices to show ~,,(th)= 0 for 
all n implies ~I 1 = 0. From the exact sequence we get the existence of x,~ HZ(M, F) 
for which t/~ = nx,. Since H2(M, F) is finitely generated we see that t h =0. 

Corollary 6.2. The first chern class c a of a U(n) bundle is preserved. 

Proof Recall that c~ is the obstruction to lifting the structure group to IR x S U(n) 
and apply the theorem. 

Section 7. Concluding Remarks 

The preceding theorems show that given any ~I~HZ(m,K) then there exists a 
bundle P~o with tt(Po~)=t / and a Yang-Mills connection A~ in P~ which is an 
absolute minimum of the Yang-Mills functional over all bundles with obstruction 
t/, and which minimizes in Po0 in particular. We could have taken a fixed bundle P 
and minimized over connections in P in an attempt to realize rh(P) = inf{d(A)[A a 
C ~ connection in P}. In carrying out this procedure we get a b u n d l e / 5  and 
Yang-Mills connection A®. All we know about P~ is that t/(/5~)=~/(P). As 
remarked earlier, we also have ~ ( A ~ ) <  rh(P). 

If we try our procedure over a manifold with HZ(M, K) = 0  then re(t/) = 0, and 
Aoo is a fiat connection; perhaps the trivial connection in a product bundle. If we 
minimize in a fixed bundle we still can't really say much, since we know nothing 
about the resulting bundle/3®. These remarks apply, of course, to S 4 in particular. 

Recall that q is not affected by removing finitely many points. Of course 

pt(Pt= I FAF 
4~ it 
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is drastically affected. Removing one point x on S 4 for example, we see that P1 is 
completely free since all bundles over S ~ -  x are trivial. 

Another interesting question concerns the "first pontryagin class" pp For this 
to be nontrivial we need M oriented. We then have the volume form dv and the * 
operator giving rise to the usual decomposition F = F  + + F - ,  where , F  + = F  +, 
• F - = -  F - .  Using the fact that FAF=(IF+I 2 -  IF-]2)dv we may write: 

Pl(P)=~n2 ~ IF+t2- [F- I  2. 
M 

Remark. p~ is not integer in general. If we use the killing form, then p~ is the usual 
first pontryagin number which is an integer. The number px(P) is an invariant of 
the bundle since it is defined in accordance with the Chern-Weil theory of 
characteristic classes (see [9]). 

The next question to ask is about the relationship of p1(/3o~) to that of px(P). 
First recall that d ( A ) =  ~ IFXIZ+IFXI z. Letting {Ai} be the sequence of con- 

M 

nections converging to the connection Ao~ in/3o~ as we first observe: 

F + 2 a) ~ ]F~j  2<t im~ A~ , 
M M 

b) ~ tFjoolz <t im ~ tF~t,} 2. 
M M 

This follows from FA ~FA~ in L 2 and the fact that • is an isometry. So we have: 

4rc2(P, ( P ) -  P~ (/3o~)) = 5 ]F~,I 2 --IF74~l 2 - I IFJ~I 2 --1Fd~l = 
M M 

= I IF~,I2 + I F ~ J  2 -  5 IF~j2 + ] F + J  2. 
M M 

Therefore we have: 

4gz(pl(P) - p1(/3~)) < lira ~ [F~J 2 + ]F~j  2 -  lim ~ [F~J 2 + ]F+J z 
M M 

<lira j" [FJ~I 2 + IFA, I 2 --lira f ]FTI,] 2 + IF~i~l 2 
M M 

= rh(P)-l im ~ IF•I: + [F~J 2 
M 

< ~ ( P ) - I  - 2 ,+  2 

M 

<=rh(n)-rh(P~). 

Switching orientation on M gives: 

Theorem 7.1. Let P be a bundle, f'® the bundle constructed when minimizing for 
th(P). Then 

rh(n)-ff~(no~) 
]pl(P)-  pl(/~)[ < 4z~2 

Remarks. If we fix a bundle P it is possible to realize all other bundles with the 
same obstruction by gluing in a trivial bundle over a disc to P. In this process one 
uses an element of ~z3G to do the gluing. Of course, such an element corresponds to 
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a bundle over S 4. Therefore, we may hope to glue S 4 connections to our 
minimizing bundles to get connections which are almost Yang-Mills in other 
bundles, and apply an implicit function theorem to get Yang-Mills connections at 
least with suitable assumptions on P (see [13]). 

Appendix. Classification of Principal Bundles 

For G compact it is well known [11] that the universal covering group 
G_~IR k x G 1 x ... x G 1 where the G i are compact simple simply connected groups. 
This causes the adjoint bundle to split into a k-dimensional trivial bundle plus 1 
bundles corresponding to the Gi. Therefore we have a "vector pontry agin 
number" Pl s7L1. The following theorem gives a complete description of principal 
bundles. 

Theorem. Isomorphism classes of principal bundles are uniquely determined by tl and 
the vector pontryagin number. 

Remarks. All values of t /are realized, but not all values of Pl occur. The values of 
Pl will differ by arbitrary multiples of a specific m~Z 1. Furthermore, for a fixed t/, 
the values of Pl define a coset in ~1/mTZ1. This coset is determined by r/. 

The preceding follows from studying the homotopy classes [M, BG] where BG 
is the classifying space for G. Standard methods in homotopy theory plus the 
paper of Dold and Whitney [2] give the theorem. 

Of course, other invariants of the bundle may be of interest. However, those 
invariants will be expressible in terms of t/ and pl since they characterize the 
bundle. For  example, given a bundle with group lIJ(n+ 1)/S 1 can we lift the group 
to llJ(n+ 1)? This corresponds to asking if a bundle with fiber CP" arises as a 
projective bundle of vector bundle with fiber C "+ 1. This problem gives rise to the 
Brauer obstruction bsH3(M,;g). The exact sequence of groups 

0~TZ~IR~IR/~Z = $1 ~ 0  

gives rise to the Bockstein B:HZ(M, S1)~H3(M,;g). Now U(n+ 1)/S ~ ~-SU(n)/~, 
so that we have tl~HZ(M, Tln). But Zn~S  1 gives a map i:H2(M,~,)~H2(M, S1). It 
is not hard to show that/~i(~/) = b. 
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