Lutz Weis

Fachbereich Mathematik der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-6750 Kaiserslautern, Federal Republic of Germany

1. Introduction

Around 1956 Kato improved the classical perturbation theorems for densily defined, closed semi-Fredholm operators. In E14] he called a bounded, linear operator $T: X \to Y$ in Banach spaces X and *Y strictly singular* ($T \in \mathfrak{S}(X, Y)$) if the restriction of T to any infinite-dimensional subspace of X is not an isomorphism; and he showed that not only compact operators but also strictly singular operators $T \in \mathfrak{S}(X, Y)$ are *admissible* Φ_+ -perturbations $(T \in \mathfrak{F}_+(X, Y)),$ i.e. $S+T: X \to Y$ is a Φ_+ -operator whenever $S: X \to Y$ is one. A class of operators in a certain sense dual to strictly singular operators was introduced by Pelczynski in [19]: he called a bounded linear operator $T: X \rightarrow Y$ strictly *cosingular* ($T \in \mathfrak{C}(X, Y)$) if the composition ΦT with any infinite-dimensional quotient map Φ on Y is not surjective. Later it was shown by Vladimirskii that all strictly cosingular operators are *admissible* Φ _{-perturbations (T $\in \mathfrak{F}$ ₋ (X, Y)),} i.e. $S+T: X \to Y$ is a Φ -operator whenever S is one. The classes $\mathfrak{F}_{+}(X, Y)$ and $\mathfrak{F}(X, Y)$ where first studied in their own right by Gohberg, Markus and Feldman in [5] but the question of whether strictly singular operators are the maximal class of admissible Φ_+ -perturbations was left open (see [5], p. 74). It is also not known if all admissible Φ -perturbations are strictly cosingular. These questions are not only of interest because a positive answer would provide a topological characterization of the perturbation classes \mathfrak{F}_+ and \mathfrak{F}_- , but also because \mathfrak{F}_+ and \mathfrak{F}_- form an operator ideal as defined by Pietsch if and only if $\mathfrak{S}(X, Y)=\mathfrak{F}_+(X, Y)$ and $\mathfrak{C}\mathfrak{S}(X, Y)=\mathfrak{F}_-(X, Y)$ for all Banach spaces X and Y.

There are some partial results in this direction. It follows already from [5], §5 that $\mathfrak{S}(X) = \mathfrak{F}_+(X)$ and $\mathfrak{C}(X) = \mathfrak{F}_-(X)$ for $X = l_p$, $1 \leq p < \infty$. The same is true for $X = L_p(Q, \mu)$ or $X = C[0, 1]$ according to [18] and [32]. In this paper we give a positive answer for a large class of Banach spaces, including most classical Banach spaces, and we reduce the general question to some long unsolved problems in Banach space theory. More precisely:

Theorem A. If X is weakly compactly generated, then $\mathfrak{F}_{+}(X) = \mathfrak{S}(X)$ and $\mathfrak{F}^{\mathbb{I}}(X) = \mathfrak{C} \mathfrak{S}(X).$

Zeitschi 9 Springer-Verlag 1981

Recall that a Banach space X is *weakly compactly generated (w.c.g.)* if the linear span of some weakly compact subset is dense in X. Hence all separable and all reflexive Banach spaces are w.c.g, as well as $L_1(\Omega, \mu)$ if (Ω, μ) is σ -finite. (For a discussion of w.c.g, spaces, see [3], Chap. 5.)

Our proofs also work for some more general classes of Banach spaces as detailed in Sect. 3. They imply for example that \mathfrak{F} $(X) = \mathfrak{C} \mathfrak{S}(X)$ for all Banach spaces if every Banach space had a separable quotient space. Wether or not this is true still seems to be unknown. Dealing with non-endomorphisms leads to another open problem, namely whether each infinite dimensional Banach space X contains, infinite dimensional subspaces M and N such that $M+N$ is closed in X (and $M + N/N$, $M + N/M$ are infinite dimensional).

Theorem B. *Let Y be weakly compactly generated.*

a) $\mathfrak{F}_{+}(X, Y)=\mathfrak{S}(X, Y)$ for all Banach spaces X if and only if Y contains at *least two infinite dimensional subspaces M and N such that* $M \cap N = \{0\}$ *and M + N is closed in Y.*

b) $\mathfrak{F}_{-}(Y, X)=\mathfrak{C}\mathfrak{S}(Y, X)$ for all Banach spaces X if and only if Y contains at *least two infinite codimensional subspaces M and N such that* $M + N = Y$ *.*

Theorem A and B are proved in Sect. 3. Section 2 includes the necessary properties of subspaces M and N with $M + N$ closed. We also use a theorem on quasi-complements by Lindenstraul3, Rosenthal and Johnson from [12].

Actually in [18] and [32] a stronger result than $\mathfrak{F}_{+}(X)=\mathfrak{S}(X)$ and $\mathfrak{F}_{-}(X)$ $=\mathfrak{C}\mathfrak{S}(X)$ was proved for $X=L_n(\Omega,\mu)$ or $X=C[0,1]$, namely that $\mathfrak{S}(X)$ and $C(X)$ both equal the class of admissible Fredholm perturbations. In Sect. 4 we give some examples showing that this cannot be extended to all $C(K)$ spaces or to function spaces "close" to L_n . As a contrast to the "constructed" operators used so far we give in Sect. 5 a "natural" example of a non-compact admissible Fredholm perturbation: we show that for $1 < p < 2$ the Fouriertrans-

form $\mathscr{F}: L_p(G,m) \to L_p(\Gamma,n)$, $\frac{1}{n}+\frac{1}{n}=1$, on a locally compact group G is strictly singular and strictly cosingular. In particular, the range of $\mathscr F$ on L_p does not contain an infinite dimensional subspace closed in $L_{p'}$.

Notation. X and *Y* always denote Banach spaces and $\mathfrak{B}(X, Y)$ stands for the space of all bounded linear operators $T: X \to Y$. For a closed subspace M of X, Φ_M is the quotient map $\Phi_M: X \to X/M$, $x \to \hat{x}$. If $S: X \to Y$ is a closed operator we denote its domain by $\mathscr{D}(S)$ and the Banach spaces X_s is $\mathscr{D}(S)$ with the graph norm $||x|| = ||x|| + ||Sx||$. Let $S: X \rightarrow Y$ be a densely defined, closed operator S: $X \to Y$ with a closed range. Then S is a Φ_+ -operator (S $\in \Phi_+(X, Y)$) if S has a finite dimensional kernel, and S is a Φ -*-operator (S* $\in \Phi_-(X, Y)$) if its range has finite codimension in Y. $\Phi(X, Y) = \Phi_+(X, Y) \cap \Phi_-(X, Y)$ is the class of Fredholm-operators. Observe that $\Phi(X, Y) \neq \emptyset$ if X is separable and Y' is separable in the w^* -topology (indeed, by [7] there is an injective, compact operator K: $Y \rightarrow X$ and K⁻¹ defines a Fredholm-operator). If $\Phi(X, Y) \neq \emptyset$, the class $\mathfrak{F}(X, Y)$ of admissible Fredholm-perturbations consists of all operators $T \in \mathfrak{B}(X, Y)$ such that $S+T$ is a Fredholm operator whenever $S \in \Phi(X, Y)$. If $\Phi(X, Y) = \emptyset$ we put $\mathfrak{F}(X, Y) = \{T \in \mathfrak{B}(X, Y): Id_x + ST \in \Phi(X) \text{ for all } S \in \mathfrak{B}(Y, X)\}.$

We defined above $\mathfrak{F}_{+}(X, Y)$ and $\mathfrak{F}_{-}(X, Y)$ for $\Phi_{+}(X, Y) \neq \emptyset$ and $\Phi_{-}(X, Y) \neq \emptyset$, respectively. If $\Phi_+(X, Y) = \emptyset$ we put $\mathfrak{F}_+(X, Y) = \mathfrak{S}(X, Y)$ and for $\Phi_-(X, Y) = \emptyset$ we set $\mathfrak{F}_{-}(X, Y)=\mathfrak{C}\mathfrak{S}(X, Y)$. The latter definitions differ from [5] but they are chosen to allow for the possibility that \mathfrak{F}_+ , \mathfrak{F}_- and \mathfrak{F}_+ define operator ideals. Sometimes (e.g. [27]) the symbols \mathfrak{F}_+ , \mathfrak{F}_- , \mathfrak{F}_+ are used for the perturbation classes of *bounded* (Semi-) Fredholm operators. Except for $\mathfrak{F}(X)$ it seems to be unknown if the two kinds of perturbation classes are the same.

For basic properties of strictly singular and strictly cosingular operators we refer to [6, 15 and 22].

2. Preliminaries on Perpendicular Subspaces

Two subspaces M and N of a Banach space X are called *perpendicular* (see [24], p. 20, or "pseudo-complemented" in [29]) in short $M \perp N$, if $M \cap N = \{0\}$ and $M+N$ is closed in X. In 2.1. we collect some known properties of perpendicular subspaces which we will use many times in the sequel.

2.1. Proposition. *For infinite dimensional subspaces M and N of a Banach space X the following assertions are equivalent:*

a) *M and N are perpendicular*

b) i: $M \oplus N \rightarrow X$, $i(x, y) = x + y$ is an isomorphism into X, a.e. there is a *constant* $C>0$ *such that* $||x+y|| \ge C ||x||$ *for all* $x \in M$, $y \in N$.

 $c)M^{\perp}+N^{\perp}=X'$

d) $M \cap N = \{0\}$ *and there is a* $\epsilon > 0$ *such that no infinite dimensional subspace* \tilde{M} of M has an embedding $J: \tilde{M} \to N$ with $||Jx-x|| \leq \varepsilon ||x||$ for all $x \in \tilde{M}$.

a) \Leftrightarrow b) follows from the open-mapping theorem; a proof of a) \Leftrightarrow d) using basic sequences is implicit in [23], Theorem 1, but 2.1. can also be shown in a way similar to 2.2, which deals with the "dual" property $M+N=X$.

2.2. Proposition. *For infinite codimensional subspaces M and N of a Banach space X the following assertions are equivalent:*

a) $M+N=X$

b) $\Phi: X \to X/M \oplus X/N$, $\Phi(x)=(\Phi_M x, \Phi_N x)$, is surjective.

c) M^{\perp} is perpendicular to N^{\perp} in X'.

d) $N^{\perp} \cap M^{\perp} = \{0\}$ *and there is a* $\varepsilon > 0$ *such that no w**-closed, infinite dimensional subspace \tilde{M} of M^{\perp} has a w*-continuous embedding $J: \tilde{M} \to N^{\perp}$ with $||Jx'-x'|| \leq \varepsilon ||x'||$ *for all* $x' \in \tilde{M}$.

Proof. a) \Leftrightarrow b) This follows from Im $\Phi = \{(\Phi_M x, \Phi_N y): x - y \in M + N\}$ which is easy to verify.

b) \Rightarrow c) We have $\Phi' : N^{\perp} \oplus M^{\perp} \rightarrow X'$, $\Phi'(x', y') = x' + y' \cdot \Phi'$ is an isomorphism because Φ is surjective (see [22], C.I. Theorem 2.7).

c) \Rightarrow d) This is clear since there is a C > 0 such that $||x' + y'|| \ge C||x'||$ for all $x'\in M^{\perp}$, $y'\in N^{\perp}$.

c) \Rightarrow b) Since $(M+N)^{\perp} = M^{\perp} \cap N^{\perp} = \{0\}$, $M+N$ is dense in X and Im Φ $=\{(\Phi_Mx, \Phi_Ny): x-y\in M+N\}$ is dense in $X/M\oplus X/N$. Assume that Φ is not surjective. Then $\Phi: M^{\perp} \oplus N^{\perp} \to X'$ is not a bounded Φ_{+} -operator (see [22], C.I. Theorem 2.7'). By C.III. Lemma 6.2. and its proof there is for every $\varepsilon > 0$ a w^{*}-closed subspace L of $M^{\perp} \oplus N^{\perp}$ such that $\|\Phi\|_{I} \leq \varepsilon$.

For all $x' M^{\perp}$, $v' \in N^{\perp}$ with $(x', v') \in L$ we have

$$
2||x'|| \ge ||x'|| + ||y'|| - ||x' + y'|| = ||(x', y')|| - ||\Phi'(x', y')|| \ge (1 - \varepsilon) ||(x', y')||
$$

and similarly: $2||y'|| \geq (1 - \varepsilon) ||(x', y')||$.

If $P: M^{\perp}\oplus N^{\perp} \rightarrow M^{\perp}$ and $Q: M^{\perp}\oplus N^{\perp} \rightarrow N^{\perp}$ denote the natural projections it follows that $M_1 = P(L)$ and $N_1 = Q(L)$ are w^{*}-closed subspaces of M^{\perp} and N^{\perp} resp., and $J = -P_2(P_1 \mid_M)^{-1}$: $M_1 \rightarrow N_1$ is a w*-isomorphism with

$$
||Jx'-x'|| \leq \varepsilon ||(x', -Jx')|| \leq \frac{2\varepsilon}{1-\varepsilon} ||x'||
$$

because $(x', -Jx') \in L$. But this contradicts d).

It still seems to be unknown if every Banach space X contains two perpendicular infinite dimensional subspaces or two infinite codimensional subspaces M and N with $M+N=X$ (see [29], Problem 3, [1], p. 101). But such subspaces do exist if the space of bounded operators defined on X is rich enough, e.g.

2.3. Corollary. a) If $T \in \mathfrak{B}(X, Y)$ is neither strictly singular nor a bounded Φ_+ *operator, then X contains two infinite dimensional perpendicular subspaces.*

b) If $T \in \mathfrak{B}(X, Y)$ is neither strictly cosingular nor a bounded Φ -operator, *then there are infinite codimensional subspaces M and N of Y with* $M + N = Y$ *.*

Proof. b) If $\Phi_M T: X \to Y/M$ is surjective, there is an $\alpha > 0$ such that $||T'x'|| \ge \alpha ||x'||$ for all $x' \in M^{\perp}$.

Since T is not a Φ -operator, $T' : Y' \to X'$ is not a Φ_+ -operator ([22], C.I. 2.7') and by [22], C.II. 6.2., and its proof there is a w^* -closed infinite dimensional subspace L of Y' such that $||T'x'|| \leq (|\alpha/2)| |x'|$ for $x' \in L$. For $x' \in M^{\perp}$, $y' \in L$ we have

$$
||T|| \cdot ||x' + y'|| \ge ||T'x' + T'y'|| \ge ||T'x'|| - ||T'x'|| \ge (\alpha/2) ||x'||.
$$

Hence M and L are perpendicular and from 2.2. we conclude $M + L^{\perp} = Y$.

a) can be shown in the same way.

If $X = Y$ the following variation of 2.3. gives some useful additional information.

2.4. **Lemma.** Let $T \in \mathfrak{B}(X)$ be a Rieszoperator, e.a. $\lambda Id - T \in \Phi(X)$ for all $\lambda \in \mathbb{C}$, λ $\neq 0$.

a) *If T is not strictly singular, there is an infinite dimensional subspace M of X* such that $T|_M$ is an isomorphism and M and $T(M)$ are perpendicular.

b) *If T is not strictly cosingular, there is an infinite codimensional subspace M* of *X* such that $\Phi_M T$ is surjective and $M + T^{-1}(M) = X$.

Proof. a) In [28] Schechter introduced the quantity $\tau(T) = \sup \inf \{ ||Tx|| :$ L $x \in L$; $||x|| = 1$, where the supremum is taken over all infinite dimensional subspaces L of X, and he showed that $\lim_{T \to \infty} \tau(T^{n})^{1/n}$ is the Fredholm radius of T. n Hence in our case: $\tau(T^n)^{1/n} \to 0$. Now choose a subspace N of X and a $\alpha > 0$ such that $||Tx|| \ge \alpha ||x||$ for all $x \in N$.

Then there exists a
$$
n \in \mathbb{N}
$$
 and a subspace \tilde{M} of $T^n(N)$ (*)

such that $\tau(T|\tilde{y})<\alpha$.

Otherwise one could select inductively a sequence (M_i) of subspaces such that $M_0 = N, M_{i+1} \subset T(M_i), \|Tx\| \geq (\alpha/2) \|x\|$ for $x \in M_{i+1}$.

For $N_i = (T^i|_{N_{i-1}})^{-1}(M_i)$ we get $\tau(T^i) \geq \inf \left\|T^i x\right\| \geq (\alpha/2)^i$ and this con $x \in N_i$, $||x|| = 1$ tradicts $\tau(T^n)^{1/n} \to 0$. Let n_0 be the smallest natural number for which there exists a \tilde{M} as in (*), and choose for a small enough $\varepsilon > 0$ a subspace M $\subset T^{-1}(\tilde{M})$ such that

$$
||Tx|| \geq (\alpha - \varepsilon) ||x|| \quad \text{for } x \in M, \ \tau(T|_{T(M)}) < \alpha - 2\varepsilon. \tag{**}
$$

This implies that $T(M) \cap M$ is at most finite dimensional and so we can alter M so that in addition to (**) $T(M) \cap M = \{0\}$. Assume now that M and $T(M)$ are not perpendicular. By 2.1. there is a subspace L of $T(M)$ and an isomorphism $J: L \rightarrow M$ with $||Jx-x|| \leq (\varepsilon/2) ||T|| \cdot ||x||$ for $x \in L$. By (**) there is a $x_0 \in L$, $||x_0|| = 1$, with $||Tx_0|| < \alpha - 2\varepsilon$.

For $y_0 = (\frac{f}{dx_0})^{-1} Jx_0$ we obtain

$$
||Ty_0|| \le ||T|| \cdot ||x_0 - y_0|| + ||Tx_0|| \le \varepsilon + ||Tx_0|| < \alpha - \varepsilon
$$

which contradicts (**). Consequently $M \perp T(M)$.

b) Since T' is not strictly singular there is a w*-closed subspace $M_1 \subset X'$ and $\alpha>0$ such that $||T'x'|| \ge \alpha ||x'||$ for $x' \in M_1$. Define $\tau(T') = \sup \inf \{||T'x'|| : x' \in L$, $||x'|| = 1$ } where the supremum is taken only over all w^{*}-closed subspaces of *X'*. Because of $\tau'(T') \leq \tau(T')$ we still have $\tau'(T')^{n}$ ^{$1/n$} \rightarrow 0 and working only with w^* -closed subspaces we find as in a) a w^* -closed subspace M of X' such that $T'|_M$ is an isomorphism and $M \perp T'(M)$. Then $\Phi_{M \perp} T$ is surjective and M^{\perp} $+ [T'(M)]^{\perp} = X$ by 2.2. Now observe that $[T'(M)]^{\perp} = T^{-1}(M^{\perp})$.

We shall also need quasi-complements: Two subspaces M and N of X are quasi-complemented if $M \cap N = \{0\}$ and $M+N$ is dense in X. The following existence theorems for quasi-complements are known. For a separable Banach space X they are due to Mackey, Guarii and Kadec (see [8]) and part c) is a result of Johnson, Lindenstrauß and Rosenthal (see [12]).

2.5. Proposition. a) *Let M be a subspace of X such that X/M is separable and infinite dimensional. For every separable subspace N of M with* dim $N = \infty$ *there is a quasi-complement* N_1 *of* M *in* X *such that* $N \approx N_1$ *and* $X/N \approx X/N_1$ *.*

b) *Let N be a separable, infinite dimensional subspace of X. For every M* \supset *N* with *X/M separable and infinite dimensional, there is a quasi-complement* M_1 of N in X such that $M \approx M_1$ and $X/M \approx X/M_1$.

c) Let M be a subspace of X such that M' is w^* -separable and X/M has a *separable infinite dimensional quotient space. Then M has a quasi-complement N in X such that* N^{\perp} *is w*-separable.*

Proof (of a) and b)). Let (y_n, y'_n) be a biorthogonal system in X such that $||y_n||$ = 1, $(\Phi_M y_n)$ is complete in X/M and $y'_n \in M^{\perp}$ (see [17], IX.1 Theorem 7) and let (x_n, x'_n) be a biorthogonal system in X such that $||x_n|| = 1$, (x_n) is complete in N and (x_n) is total over N. Define

$$
J: X \to X, \quad Jx = x + \sum_{n=1}^{\infty} 2^{-n-1} (||x'_n||)^{-1} x'_n(x) y_n.
$$

Then $||Id-J|| \leq \frac{1}{2}$ and J is an isomorphism onto X. Put $N_1 = J(N)$. Hence $J|_N: N \to N_1$ and $J\Phi_{N_1}: X/N \to X/N_1$ are isomorphism. $M+N_1$ is dense in X since $M+N_1$ contains M and (y_n) . If $x \in M \cap N_1$ then

$$
x - J^{-1} x = \sum_{n=1}^{\infty} 2^{-n-1} (\|x'_n\|)^{-1} x'_n (J^{-1} x) y_n \in M
$$

implies $x'_n(J^{-1}x)=0$ for all n (since $y'_n \in M^{\perp}$) and therefore $J^{-1}x=0$ (since (x'_n)) is total over N). Hence $x=0$. This proves a). In order to prove b) put M_1 $=J^{-1}(M)$ and recall that J^{-1} is an isomorphism.

3. Proof of the Main Results

Theorem A will follow from 3.2., 3.7. and Theorem B from 3.1., 3.6. and 3.5.

3.1. **Theorem.** Let Y be weakly compactly generated. Then $\mathfrak{S}(X, Y) = \mathfrak{F}_+(X, Y)$ *for all Banach spaces X if and only if Y eontains at least two infinite dimensional subspaces* L_1, L_2 with L_1 perpendicular to L_2 .

Proof. " \Leftarrow " Assume that $T \in \mathfrak{B}(X, Y)$ restricted to some separable infinitedimensional subspace M_0 of X is an isomorphism. Given some injective Φ_+ operator $U: X \to Y$ we shall construct another $S \in \Phi_+(X, Y)$ such that $T-S$ is not a Φ_+ -operator.

By 2.1. there is an infinite dimensional subspace of $T(M_0)$ which is perpendicular either to L_1 or L_2 . Indeed, if $T(M_0)$ is not perpendicular to L_2 and $\|x\|$ $+y \leq C \|x\|$ for $x \in L_1$, $y \in L_2$ there is a subspace M of M_0 and an isomorphism *J:* $T(M) \rightarrow L_2$ with $||Jx-x|| \leq (C/2) ||x||$ for $x \in T(M)$. This implies $T(M) \perp L_1$. Hence $T(M) \perp L$ with $L = L_1$ or $L = L_2$. Next we choose a projection $P: Y \rightarrow Y$ such that $P(Y)$ is separable, $T(M) + L \subset P(Y)$ and $P(\text{Im }U) \subset \text{Im }U$. This is possible according to Lemma 4 in Chap. 5, $\S1$ of [3] since Y is weakly compactly generated. If $N_1 = \text{Ker } P \cap \text{Im } U$ then $N_1 \perp T(M)$, $N_1 \perp L$ and $\text{Im } U/N_1$ is separable.

Since U^{-1} : $N_1 \rightarrow X$ is continuous, $X/(U^{-1}(N_1)+M)$ is separable and there exists a separable quasi-complement K of $U^{-1}(N_1)+M$ in X by 2.5.a. Finally, we choose a quasi-complement N of $U(M) \cap N_1$ in N_t using 2.5.c. Indeed, since $U^{-1}: N_1 \cap U(M) \to M$ is continuous and M is separable, the Banach space $U(M) \cap N_1$ has w^{*}-separable dual and $N_1/(U(M) \cap N_1)$ has an infinite dimensional separable quotient space by [11], Cor. 1. Then $U^{-1}(N) \cap M = \{0\}$, $U^{-1}(N) \cap K = \{0\}$ but $U^{-1}(N) + M + K$ is dense in X. Pick some surjective $V \in \Phi(K, L)$ (see [7]) and define $S: M + \mathcal{D}(V) + U^{-1}(N) \rightarrow Y$ by $S|_M = T|_M$, $S|_{\mathscr{D}(V)}=V$ and $S|_{U^{-1}(N)}=U|_{U^{-1}(N)}$. Then $\mathscr{D}(S)$ is dense in X, Im $S=T(U)+L+N$ is closed in Y and S is a closed operator because S^{-1} : Im $S \rightarrow X$ is continuous. Hence $S \in \Phi_+(X, Y)$ but $S-T \notin \Phi_+(X, Y)$.

 \Rightarrow " Assume that Y has no subspaces perpendicular to each other. Then Y has to be separable because every non-separable, weakly compactly generated Banach space has a separable, complemented subspace (see [3], Chap. 5, $\S 2$, Theorem 3).

Put $X = Y \times Y$. Then $\Phi_+(X, Y) \neq \emptyset$ by [7], but for every $S \in \Phi_+(X, Y)$ the inclusion map j: $X_s \rightarrow X$ is strictly singular. Indeed, since a finite codimensional subspace of X_s is isomorphic to the subspace ImS of Y, X_s cannot contain perpendicular subspaces. Then j is not a bounded Φ_+ -operator, because otherwise $X_s \approx X = Y \times Y$; and it follows from 2.3. that j is strictly singular.

If $T \in \mathfrak{B}(X, Y)$, then $X_{S+T} \approx X_S$ and $jT \in \mathfrak{S}(X_{S+T}, Y)$. Therefore $j(S+T)$ $=jS+jT$ is a bounded Φ_+ -operator and $S+T\epsilon\Phi_+(X, Y)$. Hence $\mathfrak{B}(X, Y)$ $=\mathfrak{F}_{+}(X, Y)$ but the operator $T: X \rightarrow Y$ defined by $T((y_1, y_2))=y_1$ is certainly not strictly singular.

3.2. Corollary. *Assume that every separable subspace of X is contained in a weakly compactly generated and complemented subspace of X. Then* $\mathfrak{F}_{+}(X)$ $= \mathfrak{S}(X).$

Proof. Assume there were an operator $T \in \mathfrak{F}_+(X) - \mathfrak{S}(X)$. Then, by 2.4., we could pick a separable subspace M such that $T|_M$ is an isomorphism and $M \perp T(M)$. By assumption there is a w.c.g. subspace X_1 of X containing M *+T(M)* and a subspace X_2 of X such that $X = X_1 \oplus X_2$. If $S_1 \in \Phi_+(X_1, X_1)$ with $S_1|_M = T|_M$, we define $S: \mathcal{D}(S_1) + X_2 \rightarrow X$ by $S|_{\mathcal{D}(S_1)} = S_1$, $S|_{X_2} = Id_{X_2}$. Then $S \in \Phi_+(X)$ but $S-T \notin \Phi_+(X)$ which contradicts $T \in \mathfrak{F}_+(X)$. The existence of S_1 follows from the proof of 3.1. or by the following more direct argument: Choose a sequence $x'_i \in X'_1$ with $x'_i|_M = 0$ which norms $T(M)$, i.e. $\sup |x_i'(x)| \ge C ||x||$ for some $C > 0$ and all $x \in T(M)$. If $N = [x_i]^\perp \subset X_1$, then M $\subset N$ and X_1/N is separable because X_1/N is weakly compactly generated and (X_1/N) [$[x_i]$ ^{\perp} is w*-separable (this follows e.g. from [3], p. 163, Theorem 3). By 2.5.a there is a quasicomplement N_1 of M in X_1 and an isomorphism *J:* $N_1 \rightarrow N$. Define S_1 : $M + N_1 \rightarrow X_1$ by $S|_M = T|_M$, $S|_N = J$.

3.3. *Remark.* The assumption of 3.2. is fulfilled for example by Banach lattices with an order continuous norm (see [26], II.5; a sequence $(x_i) \subset X$ is contained in the band generated by $x = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\partial^2 u}{\partial x_i}$, which is w.c.g. by 5.10).

Some important Banach spaces, like l_{∞} , which are not covered by 3.2. can be treated by the following variation:

3.4. Corollary. If $X \approx X \oplus X$ has at least one separable infinite dimensional *quotient space, then* $\mathfrak{F}_{+}(X) = \mathfrak{S}(X)$,

Proof. Let P_1 and $P_2 = Id - P_1$ be projections in X with $P_1(X)$ and $P_2(X)$ isomorphic to X. If $T \in \mathfrak{B}(X)$ is not strictly singular, then there are $i, j \in \{1, 2\}$ such that $P_{i}TP_{i}$ is not strictly singular. Pick a separable $M \subset P_{i}(X)$ such that $P_{i}TP_{i|M}$ is an isomorphism. Then $T(M)$ is perpendicular to $(Id - P_i)(X)$. Since X/M has a complemented subspace isomorphic to X, namely $(I-P_i)(X)$, it follows that X/M has a separable quotient space. Choose a quasi-complement N of M in X (by 2.5.a) and an isomorphic embedding $J: N \rightarrow (I-P_i)(X)$. Then S: $M+N \rightarrow X$ defined by $S|_N = J$, $S|_M = T|_M$ belongs to $\Phi_+(X)$, but $T-S \notin \Phi(X)$.

3.5. *Remark.* It still seems to be an open question if every Banach space has a separable quotient space. But it is known that X has a separable quotient in each of the following cases:

a) X is weakly compactly generated or just a subspace of a quotient of a weakly compactly generated space: (see [23], Chap. 5, §2, Theorem 3 and [11], Corollary 1).

b) X contains a subspace isomorphic to l_1 or c_0 : (in the first case X has a quotient isomorphic to l_2 by a result in [20]; in the second case it follows that X' has a subspace isomorphic l_1 and Corollary 1 of [9] can be applied).

c) X is a Banach lattice: (if X does not contain c_0 or l_1 then X is reflexive, see [26], II. Theorem 5.16).

d) X is a quotient of a $C(K)$ -space: (by [19], Theorem 1, X is either reflexive or contains a subspace isomorphic to c_0).

a) and d) show that the assumption of Theorem 3.6 below is shared by all subspaces of weakly compactly generated spaces and all $C(K)$ -spaces.

3,6, Theorem. *Assume that every infinite dimensional quotiem space of the Banaeh space X has an irlfinite dimensional separable quotient space, Then we have* $\mathfrak{F}_-(X, Y) = \mathfrak{C} \mathfrak{S}(X, Y)$ *for all Banach spaces Y if and only if X contains at least one pair of infinite codimensional closed subspaces* L_1 , L_2 with $X = L_1 + L_2$.

Proof. " \Leftarrow " Given a $T \in \mathfrak{B}(X, Y)$ which is not strictly cosingular and some surjective $U \in \Phi_-(X, Y)$ we construct another $S \in \Phi_-(X, Y)$ so that S $-T\phi\Phi_{-}(X, Y)$. By assumption there is a subspace M_0 of Y such that $\Phi_{M_0}T$ is surjective, and $Y/M_0 \approx X/T^{-1}(M_0)$ is separable and infinite dimensional. Next we choose an infinite codimensional subspace \tilde{M} of X containing $T^{-1}(M_0)$ such that $\tilde{M}+L_1=X$ or $\tilde{M}+L_2=X$: as in 3.1. it follows from 2.2. that $T^{-1}(M_0)^{\perp} \subset X'$ contains a w^{*}-closed subspace \tilde{M}^{\perp} which is either perpendicular to L_1^{\perp} or L_1^{\perp} since $L_1^{\perp} \perp L_2^{\perp}$. Assume $\tilde{M} + L = X$ with $L = L_1$ or $L = L_2$ and put $M = T(\tilde{M})$. By assumption we can alter L so that in addition X/L is separable. Therefore we can find separable subspaces N_1 , N_2 , N_3 of X such

that $L+N_1=X$, $\tilde{M}+N_2=X$, $U(N_3)+M=Y$ (e.g. see [30], Lemma 2) and $U(N_3) \cap M$ is infinite dimensional. If $N_0 = \text{Ker } U$ and $N = \begin{bmatrix} 3 \\ 1 \end{bmatrix} N_i$ then $U(N)$ is closed in Y and $U(N)'$ is w*-separable since $\Phi_{N_0}(N)$ is closed and separable in X/N_0 and U induces a continuous injective operator \hat{U}^{-1} : $Y \rightarrow X/N_0$. The latter operator induces a continuous, injective operator $Y/U(N) \rightarrow X/N$ with dense range, and its inverse U_1 belongs to $\Phi_-(X/N, Y/U(N))$. Since $U(N)'$ is w^{*}-separable, the dual of $U(N) \cap M$ is w^{*}-separable and $Y/(U(N) \cap M)$ has a separable quotient space, namely Y/M . Therefore, by 2.5.c, $U(N) \cap M$ has a quasi-complement K in Y such that $(Y/K)' \approx K^{\perp}$ is w*-separable. Pick some $V \in \Phi_{-}(X/L, Y/K)$ (see [7]) and denote by S₀ the composition operator given by

$$
X \xrightarrow{\Phi} X/\tilde{M} \oplus X/N \oplus X/L \xrightarrow{\widetilde{\Phi_M \, T} \oplus U_1 \oplus Y} Y/M \oplus Y/U(N) \oplus Y/K
$$

where $\Phi(x) = (\Phi_{\tilde{M}} x, \Phi_N x, \Phi_L x)$ and $\widehat{\Phi_M T}$ is induced by $\Phi_M T: X \to Y/M$. Since Φ is surjective by 2.2, it follows that S₀ is a Φ -operator with $\mathscr{D}(S_0)$ $=\Phi^{-1}(X/\tilde{M}\oplus\mathscr{D}(U_1)\oplus\mathscr{D}(V))$. The map j: $Y\rightarrow Y/M\oplus Y/U(N)\oplus Y/K$ given by $j(x)=(\Phi_M x, \Phi_{U(N)}, x, \Phi_K x)$ is injective and has dense range because $Y/M \oplus YU(N) = Y/(M \cap U(N))$ and *K* and $M \cap U(N)$ are quasi-complements. Therefore we can identify Y with a dense subspace of $Y/M \oplus Y/U(N) \oplus Y/K$. Now it is easy to check that the operator $S = S_0 \vert_{\alpha}$ where $\mathscr{D} = S_0^{-1}(Y)$, belongs to $\Phi_{-}(X, Y)$ and that $\Phi_{M}(T-S)=0$.

" \Rightarrow " Assume there are no infinite codimensional subspaces L_1, L_2 of X with $X = L_1 + L_2$. Then X has to be separable because if X is non-separable we can choose a separable quotient space X/M and a separable subspace N with $M + N = X$ (see [30], Lemma 2) where N has to have infinite codimension.

Put $Y=X\oplus X$. Then Φ $(X, Y)\neq\emptyset$ (see [7]). If $S\in\Phi$ (X, Y) , then the inclusion map $j: X_s \to X$ is not a bounded Φ -operator because otherwise X/K er $S \approx X_s/K$ er $S \approx \text{Im } S \approx X_1 \oplus X_2$ with finite-codimensional subspaces X_1 , X_2 of X, and this contradicts our assumption. In view of 2.3. *j* has to be strictly cosingular. For every $T \in \mathfrak{B}(X, Y)$ we have $X_s \approx X_{s+r}$ and $jT: X_s \to Y$ is strictly cosingular. Then $j(T+S)=jT+jS$: $X_S \rightarrow Y$ is a bounded Φ -operator and $T+S\in\Phi_{-}(X, Y)$. So we showed $\mathfrak{B}(X, Y)=\mathfrak{F}_{-}(X, Y)$. On the other hand, the operator $T: X \to Y$, $Tx = (x, 0)$, is not strictly cosingular.

3.7. Corollary. Assume that every infinite dimensional quotient space of the Banach space X has an infinite dimensional separable quotient space. Then $\mathfrak{F}_-(X)=\mathfrak{C}\mathfrak{S}(X).$

Proof. This is a consequence of 3.6. and 2.3. or of the following more direct argument: If there were a $T \in \mathfrak{F}_-(X)-\mathfrak{CS}(X)$ we could choose by 2.4. a subspace M of X such that $\Phi_M T$ is surjective, $T^{-1}(M) + M = X$, and X/M is infinite-dimensional and separable. Pick a separable subspace N of M such that $T^{-1}(M) + N = X$ (see [30], Lemma 2). By 2.5.b there is a quasi-complement N_1 of M in X such that there is an isomorphism V of X/N onto X/N_1 . As in 3.6. we find a $S \in \Phi_{-}(X)$ with $S - T \notin \Phi_{-}(X)$ using the composition

$$
X \to X/T^{-1}(M) \oplus X/N \xrightarrow{\oint_M \widetilde{T} \oplus V} X/M \oplus X/N_1 \supset X.
$$

This contradicts $T \in \mathfrak{F}$ (X).

4. Some Counterexamples Concerning Fredholm Perturbations

It is known already that there are Banach spaces X with $\mathfrak{F}(X) + \mathfrak{S}(X)$ or $\mathfrak{F}(X)$ $+\mathfrak{C}\mathfrak{S}(X)$ (see [5]) but it will follow from Proposition 4.1 that this can even occur for Banach spaces with a very nice Banach space structure, like *C(K)* spaces, Orlicz-sequence spaces or rearrangement invariant function spaces 'close' to L_p -spaces.

4.1. Proposition. *Assume that X has two subspaces M, N such that*

- a) *both are isomorphic to* c_0 *or the same* l_p *for some* $1 \leq p < \infty$ *,*
- b) *M is complemented in X*

c) *N contains no infinite dimensional subspace complemented in X. Then* $\mathfrak{F}(X) = \mathfrak{S}(X)$.

Proof. If $P: X \to M$ is a projection and $J: M \to N$ an isomorphism onto N, then $T=JP\notin \mathfrak{S}(X)$. Assume that $T \notin \mathfrak{F}(X)$. By [27], Theorem 27, there is a bounded $S \in \Phi(X)$ such that $(S-T)|_L=0$ for some infinite-dimensional subspace L of X. If X_1 is a complement of KerS in X and $X_2 = \text{Im }S$ then X_1 and X_2 have finite codimension in X and we may assume that $M \subset X_1$, $L \subset X_1$ and N $\subset X_2$. Furthermore, $S|_L=JP|_L$ implies that $P|_L$ is an isomorphism. By [15], 2.a.2., there is an infinite dimensional projection $Q: M \to M$ with $\text{Im } Q \subset P(L)$. Then $U=(P|_L)^{-1}QP: X_1 \to X_1$ is a projection onto a subspace of L and V $= SU(S|_{X_1})^{-1}$: $X_2 \rightarrow X_2$ is a projection into $S(L) = T(L) \subset M$. This, contradicts c). Hence $T \in \mathfrak{F}(X)$.

4.2. *Examples.* a) Let $X = C(K)$, where K is the disjoint union of the onepoint-compactification \tilde{N} of \tilde{N} and the Stone-Cech-compactification $\beta \tilde{N}$ of **N.** Then $\mathfrak{F}(X) \neq \mathfrak{S}(X)$.

b) Let $X = L_p(0, \infty) + L_q(0, \infty)$ with the norm $||f|| = \inf \{||h||_p + ||g||_q : f = h$ +g}. If $1 < p < q < 2$ then $\mathfrak{F}(X) + S(X)$.

c) Let $X = L_p(0, \infty) \cap L_q(0, \infty)$ with the norm $||f|| = max(||f||_p, ||f||_q)$. If $2 < q < p < \infty$ then $\mathfrak{F}(X) + \mathfrak{C} \mathfrak{S}(X)$.

d) Let $X = L(p, q)$ be the Lorentz-space on [0,1] with the norm $||f||$ $=\left(\frac{q}{p}\int_{0}^{1}[t^{1/p}f^{*}(t)]^{q}\frac{dt}{t}\right)^{1/q}$ where f^{*} is the decreasing rearrangement of f (see [10] or [16], p. 120).

Then $\mathfrak{F}(X)$ + $\mathfrak{S}(X)$ for $1 < p < q < 2$ and $\mathfrak{F}(X)$ + $\mathfrak{C}(X)$ for $2 < q < p < \infty$.

e) Let $X = U_{c,d}$ be an Orlicz sequence space as in [15], Theorem 4.b.12 with $\frac{1}{\sigma} + \frac{1}{\sigma} = 1$. Then $\mathfrak{F}(X) \neq \mathfrak{S}(X)$ and $\mathfrak{F}(X) \neq \mathfrak{C}$

Proof. a) Since $C(K) \approx C(\tilde{N}) \oplus C(\beta N) \approx c_0 \oplus l_\infty$, and there is no projection in l_{∞} onto a subspace isomorphic to a subspace of c_0 (see e.g. [15], Theorem 2.a.7), one can apply 4.1.

b) X has a complemented subspace M isomorphic to l_a , e.g. take the span of $\chi_{[n^2,(n+1)^2]}$, $n \in \mathbb{N}$ (c.f. Lemma 1 in [13]). On the other hand, since $p < q$ we have $X|_{[0, 1]} \approx L_p[0, 1]$ and $X|_{[0, 1]}$ contains a subspace N isomorphic to l_q but without complemented subspaces (by $[13]$, Remark 2 and Corollary 3).

c) follows from b) by duality since $X' = L_{p'}(0, \infty) + L_{q'}(0, \infty)$ with $\frac{1}{a} + \frac{1}{a'} = 1$, $\frac{1}{\epsilon} + \frac{1}{\epsilon'} = 1$ and $T \in \mathfrak{F}(X)$ iff $T' \in \mathfrak{F}(X')$, $T \in \mathfrak{F}(X)$ iff $T' \in \mathfrak{F}(X')$ (by [22], C.I. 2.6', 2.7', 6.9).

d) X contains a complemented subspace M isomorphic to l_q by [4], Theorem 5.1. It is easy to calculate the Boyd indices of X (see [16], p. 130): $p_x = q_x$ $= p.$

Therefore, if $p < r < q$, we have a continuous inclusion map j: $L_r[0, 1] \hookrightarrow X$ (by $[16]$, Proposition 2.b.3.).

Since $r < q < 2$, L_r[0, 1] contains a subspace N₁ isomorphic to l_q ([13], Remark 2) such that the inclusion $N_1 \subset L_r[0, 1] \hookrightarrow X \subset L_1[0, 1]$ is an isomorphism into L_1 (combine Theorem 1 and 2 of [13]).

Then $N = j(N_1)$ is a subspace of X isomorphic to l_q and there is no infinite dimensional projection $P: X \rightarrow N$ because otherwise there is a projection Q $=(j_{N_1})^{-1}P_i: L_r \to N_1$ which contradicts [13], Corollary 3. Hence 4.1 settles the case $1 < p < q < 2$. As in c) the case $2 < q < p < \infty$ follows by duality since $L(p, q)'$ $= L(p', q')$ with $\frac{1}{p} + \frac{1}{p'} = 1$, $\frac{1}{q} + \frac{1}{q'} = 1$ (see [10] 2.7).

e) By 4.b.12 of [15] $U_{c,d}$ contains a complemented M isomorphic to l_p for $c < p < d$, as well as an Orlicz space X that contains a subspace N isomorphic to l_p but no complemented subspace isomorphic to l_p ([15], Example 4.c.6).

Hence $\mathfrak{F}(X)$ + $\mathfrak{S}(X)$ by 4.1. Since $U'_{c,d} \approx U_{c,d}$ (see the remark following 3.b.12 in [15]) $\mathfrak{F}(X) + \mathfrak{C}(X)$ follows by duality.

5. **The Fourier Transform as an** Admissible Fredhohn **Perturbation**

Let (G, m) be a locally compact group with its Haar-measure m. Denote by (T, n) the dual group of G with its Haar measure *n* adjusted in such a way that the inversion formula holds. $\hat{f}(\gamma) = \int f(x)(-x, \gamma) dm(x)$, $\gamma \in \Gamma$ is the Fourier trans-G form of $f \in L_1(G)$ (see [25], Sect. 1.2.). For $1 \leq p \leq 2$ the map $f \rightarrow \hat{f}$ extends to bounded operators $\mathscr{F}: L_p(G, m) \to L_{p'}(F, n)$ with $\frac{1}{p}+\frac{1}{p'}=1$. For $p=2$ we get an isometry (see [25], Theorem 2.6.1). For $1 < p < 2$, $\mathcal F$ is certainly not compact but we have

5.1. **Theorem.** For $1 < p < 2$ the Fourier transform $\mathcal{F}: L_p(G,m) \to L_{p'}(\Gamma,n)$ is *strictly singular and strictly cosingular.*

Proof. Assume that there is an infinite dimensional, separable subspace M of $L_p(G,m)$ and a constant $C>0$ such that $\|\mathscr{F}f\| \ge C\|f\|$ for $f \in M$. Choose a sequence (K_n) of compact subsets of G with

$$
K_n \subset K_{n+1} \subset \dots
$$
 and $||(1 - \chi_{K_n})f|| \longrightarrow 0$

for all $f \in M$, and a sequence (L_n) of compact subsets of Γ such that $L_n \subset L_{n+1} \subset \dots$ and $||(1-\chi_{L_n})g|| \to 0$ for all $g \in \mathcal{F}(\chi_{K_n} M)$, $n \in \mathbb{N}$. Put $\chi_n = \chi_{K_n}$ and $\rho_n = \chi_{L_n}$. First we show that $\mathscr{F} \cdot \chi_n|_M$ is strictly singular for all $n \in \mathbb{N}$. For every normalized sequence $f_i \in \chi_n M$ weakly converging to zero it follows from the compactness of $\rho_m \mathscr{F} \chi_n$ ($\rho_m \mathscr{F} \chi_n$ is an integral operator with uniformly bounded kernel on L_m $\times K_n$) that $\|\rho_m\mathscr{F}\chi_n f_i\| \xrightarrow{i \to \infty} 0$ for all m. Therefore, we can find inductively a subsequence $m_k \in \mathbb{N}$ and a subsequence g_k of $(\mathscr{F}\chi_n f)_{i \in \mathbb{N}}$ such that

$$
\|(\rho_{m_{k+1}} - \rho_{m_k})g_k - g_k\| \leq C/2^{k+1}.
$$

The functions $(\rho_{m_{k+1}} - \rho_{m_k})g_k$, having pairwise disjoint support span a subspace isomorphic to $l_{p'}$ (compare [13], Lemma 1) and then $[g_k] \approx l_{p'}$ by a standard stability result (see [15], 1.a.9). But L_p for $p+2$ has no subspace isomorphic to $l_{p'}$ and, consequently, $\mathscr{F}|_{[f_n]}$ cannot be an isomorphism. Hence all operators $\mathscr{F}_{\chi_n|_M}$ are strictly singular and by [6], III.2.1. there is a sequence of infinite dimensional subspaces $M \supset M_1 \supset \ldots \supset M_n$ such that $\|\mathscr{F}\chi_n\|_{M_n} \to 0$ for $n \to \infty$. For $\varepsilon_k=\frac{1}{8}C^2\cdot 2^{-k}$ we choose inductively $n_k\in\mathbb{N}$ and a sequence $f_k\in M$, $||f_n||=1$ with

- i) $f_k \in M_{n_k}$ and $\|\mathscr{F}\chi_{n_k}(f_k)\| \leq \varepsilon_k$ ii) $\int_{-k}^{k} g_{i}^{p-1} dm = 0$ for $j < k$ where $g_{j} = (\chi_{n_{i+1}} - \chi_{n_{i}}) f_{j}$ (so that $g_{j}^{p-1} \in L_{p}(G)$)
- iii) $||(1-\chi_{n_{k+1}})f_j|| \leq \varepsilon_{k+1}$ for $j \leq k$.

Then $Pf = \sum_{j=1}^{\infty} (||g_j||^{-p} \int f g^{p-1} dm) g_j$ is a projection of norm 1 onto the subspace $[g_i]$ isomorphic to l_p (compare [13], Lemma 1). We have

$$
\begin{aligned} \|Pf_k - g_k\|_p &\leq \sum_{j > k} \|g_j\|_p^{1-p} \left| \int f_k g_j^{p-1} \, dm \right| \\ &\leq \sum_{j > k} \|f_k(1 - \chi_{n_j})\|_p \leq \sum_{j > k} \varepsilon_j \leq \varepsilon_k. \end{aligned}
$$

and

$$
||g_k|| \geq ||\mathcal{F} g_k|| \geq ||\mathcal{F} f_k|| - ||\mathcal{F} \chi_{n_k} f_k|| - ||(1 - \chi_{n_{k+1}}) f_k|| \geq C - 2\varepsilon_k \geq (3/4) C.
$$

More generally, for all $\alpha_1 \dots \alpha_n \in \mathbb{C}$ we get

$$
\|\sum \alpha_k \mathscr{F} g_k\| \ge \|\sum \alpha_k \mathscr{F} f_k\| - \sum |\alpha_k| \|\mathscr{F} \chi_{n_k} f_k\| - \|\mathscr{F}\| \sum_k |\alpha_k| \cdot \|(1 - \chi_{n_{k+1}}) f_k\|
$$

\n
$$
\ge C \|\sum \alpha_k f_k\| - (\sum |\alpha_k|^p)^{1/p} 2 \cdot (\sum \varepsilon_k^p)^{1/p'}
$$

\n
$$
\ge C \cdot \|P(\sum \alpha_k f_k)\| - (2 C^2/8) (\sum |\alpha_k|^p)^{1/p}
$$

\n
$$
\ge C \cdot \|\sum \alpha_k g_k\| - \sum |\alpha_k| \|Pf_k - g_k\| - (2 \cdot C^2/8) (\sum |\alpha_k|^p)^{1/p}
$$

\n
$$
\ge C \cdot \|\sum \alpha_k g_k\| - (3 C^2/8) \left[\frac{4}{3C} (\sum |\alpha_k|^p \cdot \|g_k\|^p)^{1/p}\right]
$$

\n
$$
\ge C \cdot \|\sum \alpha_k g_k\| - C/2 \|\sum \alpha_k g_k\|.
$$

Hence $\mathscr{F}|_{[g_k]}$ is an isomorphism and this leads to the impossible conclusion that l_p is isomorphic to a subspace of $L_p(r, n)$. Hence $\mathscr F$ is strictly singular. By the Pontryagin Duality Theorem ([25], Theorem 1.7.2) we have that $\mathcal{F}'f$ $=\overline{\mathscr{G}(f)}$ where $\mathscr{G}: L_p(\Gamma) \to L_{p'}(G)$ is the Fourier transform. Therefore \mathscr{F} is strictly cosingular since $\mathscr G$ is strictly singular (see [22], C.II.6.9).

5.2. Corollary. *For l <p <2 the range of the Fourier transform* $\mathscr{F}: L_p(G) \to L_p(\Gamma)$ does not contain an infinite dimensional subspace closed in $L_{n'}$.

Proof. This follows from 5.1. and the closed graph theorem because $\mathscr F$ is injective.

5.3. *Remark.* It was shown in [2] that $\mathcal{F}: L_1(G) \to C_0(\Gamma)$ is strictly singular if and only if G is compact. One may add that $\mathcal{F}: L_1(G) \to C_0(\Gamma)$ is never strictly cosingular if G is infinite. Indeed, if Γ is not discrete then Γ contains an infinite, compact Helson set $E \subset \Gamma$ ([25], 5.6.6), and if Γ is discrete, there exists an infinite Sidon set $E \subset \Gamma$ ([25], 5.7.5). In any case, if $\Phi: C_0(\Gamma) \to C_0(E)$ denotes the quotient map $g \rightarrow g|_E$, it follows that $\Phi \mathscr{F}$ is surjective (cf. [25], 5.6.2 and [25], 5.7.3e).

The same argument also shows that $\mathcal{F}: M(G) \to C(E)$ is neither strictly cosingular, ([25], 5.6.2 and 5.7.3d) nor strictly singular: (observe that *C(E)* contains a subspace isomorphic to l_1 and if $\mu_n \in M(G)$ are such that $\Phi \mathcal{F}(\mu_n)$ is equivalent to the unit vector basis of l_1 , then $\Phi \mathscr{F}|_{[t_{u_n}]}$ is necessarily an isomorphism),

In particular, if G is compact, the Fourier transform $\mathcal{F}: L_1(G) \to C_0(\Gamma)$ provides a natural example for a strictly singular operator such that the adjoint map is neither strictly singular nor strictly cosingular. For earlier examples of this kind, see [5] and [19].

References

- 1. Davis, W., Dean, D., Lin, B.: Bibasic sequences and norming basic sequences. Trans. Amer. Math. Soc. 176, 89-102 (1973)
- 2. Dierolf, P., Dierolf, S.: Strict Singularity and weak compactness of the Fourier Transform. Bull. Soc. Roy. Sci. Lieg6 48, 438-443 (1979)
- 3. Diestel, J.: Geometry of Banach Spaces Selected Topics. Lecture Notes in Mathematics 485 Berlin-Heidelberg-New York: Springer 1975
- 4. Figiel, T., Johnson, W.B.,Tzafriri, L.: On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces. J. Approximation Theory 13, 395-412 (1975)
- 5. Gohberg, I., Markus, A,, Feldman, I.: Normally solvable operators and ideals associated with them. Izv. Moldar. Fil. Akad. Nauk SSSR 10, 51-69 (1960) [Russian]. Engl. Transl.: Amer. Math. Soc. Transl. 61, 63-84 (1967)
- 6. Goldberg, S.: Unbounded Linear Operators. New York-London-Sydney: Mc Graw-Hill 1966
- 7. Goldberg, S., Kruse, A.: The existence of compact, linear maps between Banach spaces. Proc. Amer. Math. Soc. 13, 808-811 (1962)
- 8, Gurarii, V., Kadec, I.: Minimal systems and quasicomplements in Banach spaces. Dokl. Acad. Nauk SSSR 145, 256-258 (1962) [Russian]. Engl. Transl.: Soviet. Math. Dokl. 3, 966-968 (1962)
- 9. Hagler, J., Johnson, W.B.: On Banach spaces where dual balls are not weak $*$ sequentially compact. Israel J. Math. 28, 325-330 (1977)
- 10. Hunt, R.: On *L(p,* q)-spaces. Enseignement Math. 12, 249-274 (1966)
- 11. John, K., Zizler, V.: Projections in dual weakly compactly generated Banach spaces. Studia Math, 49, 41-50 (1973)
- i2. Johnson, W.B.: On quasi-complements. Pacific J. Math. 48, 113-118 (1973)
- 13. Kadec, M.I., Pelczynski, A.: Basis, lacunary sequences and complemented subspaces in the spaces L_n . Studia Math, 21, 161-176 (1962)
- 14. Kato, T.: Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Analyse Math. 6, 26t-322 (I958)
- 15. Lindenstraul3, J, Tzafriri, L.: Classical Banach spaces I. Sequence Spaces. Berlin-Heidelberg-New York: Springer 1977
- 16. LindenstrauB, J., Tzafriri, L: Classical Banach spaces II. Function Spaces. Berlin-Heidelberg-New York: Springer 1979
- 17. Marti, J.: Introduction to the Theory of Bases. Berlin-Heidelberg-New York: Springer 1969
- 18. Mitman, V.D.: Some properties of strictly singular operators. Functional Anal. AppL 3, 77-78 (1969)
- 19. Pelczynski, A.: Strictly singular and strictly cosingular operators. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13, 31-41 (1965)
- 20. Pelczynski, A.: On Banach spaces containing $L_1(\mu)$. Studia Math. 30, 231-246 (1968)
- 21. Pietsch, A.: Operator Ideals, Berlin: Deutscher Verlag der Wissenschaften 1978
- 22. Przeworska-Rolewicz, D., Rolewicz, S.: Equations in linear spaces. Warszawa: Polish Scientific Publishers 1968
- 23. Rosenthal, H.: On totally incomparable Banach spaces. J. Functional Analysis 4, 167-175 (1969)
- 24. Rosenthal, H.: On relatively disjoint families of measures with some applications to Banach space theory. Stndia Math. 37, 13-36 (1970)
- 25. Rudin, W.: Fourier Analysis on Groups. New York-London: Wiley 1960
- 26. Schaefer, H.H.: Banach Lattices and Positive Operators. Berlin-Heidelberg-NewYork: Springer 1974
- 27. Schechter, M.: Riesz operators and Fredhotm perturbations. Bull. Amer. Math. Soc. 74, 1139- 1144 (1968)
- 28. Schechter, M.: Quantities related to strictly singular operators. Indiana Univ. Math. J. 21, 1061-1071 (1972)
- 29. Singer, I.: On pseudo-complemented subspaces of Banach spaces. J. Functional Analysis 13, 223-232 (1973)
- 30. Valdivia, M.: On a class of Banach spaces. Studia Math. 60, 11-13 (1977)
- 3I. Vladimirskii, JA.: Strictly cosingular operators. DokL Akad. Nauk SSSR 174, I251-1252 (I967) [Russian]. Engl. TransL: Soviet. Math. Dokl. 8, 739-740 (1967)
- 32. Weis, L.: On perturbations of Fredholm operators in $L_n(\mu)$ -spaces. Proc. Amer. Math. Soc. 67, 287-292 (1977)

Received May 6, I981