
Math. Z. 178, 429-442 (1981) Mathematische 
Zeitschrift 

�9 Springer-Verlag 1981 

Perturbation Classes of Semi-Fredholm Operators 

Lutz Weis 

Fachbereich Mathematik der UniversitM Kaiserslautern, Erwin-Schr6dinger-StraBe, 
D-6750 Kaiserslautern, Federal Republic of Germany 

1. Introduction 

Around 1956 Kato improved the classical perturbation theorems for densily 
defined, closed semi-Fredholm operators. In E14] he called a bounded, linear 
operator T: X--~ Y in Banach spaces X and Y strictly singular (Te~(X,  Y)) if 
the restriction of T to any infinite-dimensional subspace of X is not an 
isomorphism; and he showed that not only compact operators but also strictly 
singular operators T ~ ( X ,  Y) are admissible eb +-perturbations (T~3+(X, Y)), 
i.e. S+T:  X - + Y  is a 4~+-operator whenever S: X ~ Y  is one. A class of 
operators in a certain sense dual to strictly singular operators was introduced 
by Pelczynski in [19]: he called a bounded linear operator T: X---, Y strictly 
cosingular ( T ~ ( X ,  Y)) if the composition ~ T  with any infinite-dimensional 
quotient map �9 on Y is not surjective. Later it was shown by Vladimirskii that 
all strictly cosingular operators are admissible cb_-perturbations (T~3_(X, Y)), 
i.e. S+T:  X ~  Y is a 45_-operator whenever S is one. The classes 3+(X, Y) 
and 3_(X, Y) where first studied in their own right by Gohberg, Markus and 
Feldman in [5] but the question of whether strictly singular operators are the 
maximal class of admissible ~+-perturbations was left open (see E5], p. 74). It 
is also not known if all admissible 4~ -perturbations are strictly cosingular. 
These questions are not only of interest because a positive answer would provide 
a topological characterization of the perturbation classes 3+ and 3_,  but also 
because 3+ and 3_ form an operator ideal as defined by Pietsch if and only if 
~(X, Y)=3+(X,  Y) and ~ ( X ,  Y)=3_(X,  Y) for all Banach spaces X and Y. 

There are some partial results in this direction. It follows already from [5], 
w 5 that ~ ( X ) =  3+(X) and g (X)=  3- (X)  for X = lp, 1 <p < oo. The same is true 
for X=Lp(f2, t~) or X =  C[0, 1] according to [18] and [32]. In this paper we 
give a positive answer for a large class of Banach spaces, including most 
classical Banach spaces, and we reduce the general question to some long 
unsolved problems in Banach space theory. More precisely: 

Theorem A. I f  X is weakly compactly generated, then 3 + ( X ) = ~ ( X )  and 
3_  (x) = ~ ( x ) .  
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Recall that a Banach space X is weakly compactly generated (w.c.g.) if the 
linear span of some weakly compact subset is dense in X. Hence all separable 
and all reflexive Banach spaces are w.c.g, as well as LI(O, ~) if (O, g) is a-finite. 
(For a discussion of w.c.g, spaces, see [3], Chap. 5.) 

Our proofs also work for some more general classes of Banach spaces as 
detailed in Sect. 3. They imply for example that ~ _ ( X ) = ~ ( X )  for all Banach 
spaces if every Banach space had a separable quotient space. Wether or not 
this is true still seems to be unknown. Dealing with non-endomorphisms leads 
to another open problem, namely whether each infinite dimensional Banach 
space X contains, infinite dimensional subspaces M and N such that M + N  is 
closed in X (and M + N/N, M + N/M are infinite dimensional). 

Theorem B. Let Y be weakly compactly generated. 

a) ~+(X, Y)=~(X,  Y)for all Banach spaces X if and only if Y contains at 
least two infinite dimensional subspaces M and N such that Mc~N= {0} and M 
+ N is closed in Y. 

b) ~_(Y, X ) = ~ ( Y ,  X) for all Banach spaces X if and only if Y contains at 
least two infinite codimensional subspaces M and N such that M + N = Z 

Theorem A and B are proved in Sect. 3. Section 2 includes the necessary 
properties of subspaces M and N with M + N closed. We also use a theorem 
on quasi-complements by Lindenstraul3, Rosenthal and Johnson from [12]. 

Actually in [18] and [323 a stronger result than ~+(X)= ~(X) and ~_(X) 
= ~ ( X )  was proved for X=Lp(O, kt) or X = C [ 0 ,  1], namely that ~(X) and 
~ ( X )  both equal the class of admissible Fredholm perturbations. In Sect. 4 
we give some examples showing that this cannot be extended to all C(K)- 
spaces or to function spaces "close" to Lp. As a contrast to the "constructed" 
operators used so far we give in Sect. 5 a "natural" example of a non-compact 
admissible Fredholm perturbation: we show that for 1 <p <2  the Fouriertrans- 

1 1 
form ~:Lp(G,m)~Lp,(F,n),  p + ~ = l ,  on a locally compact group G is 

strictly singular and strictly cosingular. In particular, the range of @ on Lp 
does not contain an infinite dimensional subspace closed in Lp,. 

Notation. X and Y always denote Banach spaces and ~3(X, Y) stands for the 
space of all bounded linear operators T: X ~ Y. For a closed subspace M of X, 
~M is the quotient map ibM: X ~ X / M ,  x~2c. If S: X ~ Y  is a closed operator 
we denote its domain by @(S) and the Banach spaces X s is ~(S) with the 
graph norm Ilxlls=llxll+llSxll. Let S: X - , Y  be a densely defined, closed 
operator S: X--+Y with a closed range. Then S is a ~+-operator (SE~b+(X, Y)) 
if S has a finite dimensional kernel, and S is a ~b_-operator (S~4)(X,  Y)) if its 
range has finite codimension in Y. 4~(X, Y)=cb+(X, Y ) r ~ _ ( X ,  Y) is the class 
of Fredholm-operators. Observe that qs(X, Y ) + ~  if X is separable and Y' is 
separable in the w*-topology (indeed, by [-7] there is an injective, compact 
operator K:  Y---,X and K -1 defines a Fredholm-operator). If @(X, Y)+~ ,  the 
class ~(X, Y) of admissible Fredholm-perturbations consists of all operators 
T~3(X,  Y) such that S + T  is a Fredholm operator whenever S~q~(X, Y). If 
4>(X, Y ) = ~  we put ~(X, Y ) = { T ~ ( X ,  Y): I d x + S r ~ ( X  ) for all S ~ ( Y ,  X)}. 
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We defined above ~+(X, Y) and ~_(X, Y) for ~b+(X, Y):t=~ and ~ (X, Y):[:~, 
respectively. If ~+(X, Y ) = g  we put ~+(X, Y)=| Y) and for ~ ( X ,  Y ) = ~  
we set ~_(X, Y)=E~(X,  Y). The latter definitions differ from [5] but they are 
chosen to allow for the possibility that ~+, ~_ and ~ define operator ideals. 
Sometimes (e.g. [27]) the symbols ~+, ~_, ~ are used for the perturbation 
classes of bounded (Semi-) Fredholm operators. Except for ~(X) it seems to be 
unknown if the two kinds of perturbation classes are the same. 

For basic properties of strictly singular and strictly cosingular operators we 
refer to [6, 15 and 22]. 

2. Preliminaries on Perpendicular Subspaces 

Two subspaces M and N of a Banach space X are called perpendicular (see 
[24], p. 20, or "pseudo-complemented" in [29]) in short M •  if Mc~N={0} 
and M + N  is closed in X. In 2.1. we collect some known properties of 
perpendicular subspaces which we will use many times in the sequel. 

2.1. Proposition. For infinite dimensional subspaces M and N of a Banach space 
X the following assertions are equivalent: 

a) M and N are perpendicular 

b) i: MO)N--~X,  i ( x , y ) = x + y  is an isomorphism into X, a.e. there is a 
constant C > 0  such that /]x+yl[ => Cllxll for all x e M ,  yeN.  

c ) M I + N •  ' 

d) Mc~N={0} and there is a e>0  such that no infinite dimensional subspace 
f I  of M has an embedding J: M ~ N  with [[Jx-xpl _-<~ltxll for all x eM.  

a)<:~b) follows from the open-mapping theorem; a proof of a)<=~d) using 
basic sequences is implicit in [23], Theorem 1, but 2.1. can also be shown in a 
way similar to 2.2. which deals with the "dual" property M + N = X .  

2.2. Proposition. For infinite codimensional subspaces M and N of a Banach 
space X the following assertions are equivalent: 

a) M + N = X  

b) ~: X-- -~X/MOX/N,  ~b(x)=(~Mx, ~Nx), is surjective. 

c) M • is perpendicular to N • in X'. 

d) NZc~Ml={0} and there is a e>0  such that no w*-closed, infinite dimen- 
sional subspace f4 of M • has a w*-continuous embedding J: 37I---,N • with 
]lJx'-x'[I <-_~ Hx'l[ for all x'e)gI. 

Proof a)<:~b) This follows from Im~={(~MX,~Ny): x - - y e M + N }  which is 
easy to verify. 

b ) ~ c )  We have ~': N • 1 7 7  ', ~ ' (x ' ,y ' )=x '+y ' .q) '  is an isomorphism 
because ~b is surjective (see [22], C.I. Theorem 2.7). 

c )~d )  This is clear since there is a C > 0  such that Ilx'+y'll  > CIlx'lF for all 
x ' e M  • y ' eN  • 
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c ) ~ b )  Since (M+N)•  M + N  is dense in X and Im~b 
={(4~Mx, ~bNy): x - y e M + N }  is dense in X / M |  Assume that �9 is not 
surjective. Then 45': M • 1 7 7  ' is not a bounded 4~+-operator (see [22], 
C.I. Theorem 2.7'). By C.III. Lemma 6.2. and its proof there is for every e > 0  a 
w*-closed subspace L of M • 1 7 4  • such that ]lr <~- 

For  all x' M a, y' e N  • with (x', y ' )eL we have 

2mx'[I > IIx'l] + Ily'IL- IIx' +y'H = H(x', y ' )H- II~'(x', y')ll >(1 -e)H(x',  y')IL 

and similarly: 2lly'[I >(1 -e)II(x',  y')l[. 
If P: M • 1 7 7  • and Q: M ~ @ N I ~ N  • denote the natural projections 

it follows that M 1 =P(L)  and N 1 =Q(L) are w*-closed subspaces of M 1 and N • 
resp., and J =  -P2(P1 ]~tl)-1: M I ~ N  1 is a w*-isomorphism with 

< , < 2~ 
IlJx'-x'l[ _ e  ll(x, - Jx')[] =-1~--e Nx'[I 

because (x', - J x ' ) e L .  But this contradicts d). 
It still seems to be unknown if every Banach space X contains two 

perpendicular infinite dimensional subspaces or two infinite codimensional 
subspaces M and N with M + N = X  (see [29], Problem 3, [1], p. 101). But 
such subspaces do exist if the space of bounded operators defined on X is rich 
enough, e.g. 

2.3. Corollary. a) I f  T e ~ ( X ,  Y) is neither strictly singular nor a bounded ~b+- 
operator, then X contains two infinite dimensional perpendicular subspaces. 

b) I f  T e ~ ( X ,  Y) is neither strictly cosingular nor a bounded ~b_-operator, 
then there are infinite codimensional subspaces M and N of Y with M + N = Y. 

Proof. b) If ~bMT: X- -* Y /M  is surjective, there is an e > 0  such that 
h]T'x'll >~llx'll for all x ' e M  • 

Since T is not a 4~_-operator, T': Y ' ~ X '  is not a ~b+-operator ([22], 
C.I. 2.7')and by [-22], C.II. 6.2., and its proof there is a w*-closed infinite 
dimensional subspace L of Y' such that ]]Z'x'll<(~/2)IWII for x'eL. For 
x ' eM a, y 'eL we have 

II TII" ]Ix' +Y'II--> I Ir 'x '+ T'y'H >= [Ir 'x ' l l -  II r'x'll >__ (~/2)IIx'll. 

Hence M and L are perpendicular and from 2.2. we conclude M + L • --- Y. 

a) can be shown in the same way. 

If X = Y the following variation of 2.3. gives some useful additional infor- 
mation. 

2.4. Lemma. Let T e ~ ( X )  be a Rieszoperator, e.a. 2 I d -  TeeD(X) for all 2012, 2 
4=0. 

a) I f  T is not strictly singular, there is an infinite dimensional subspace M of 
X such that TIM is an isomorphism and M and T(M) are perpendicular. 

b) I f  T is not strictly cosingular, there is an infinite codimensional subspace 
M of X such that ~b M T is surjeetive and M +  T - I ( M ) = X .  



Perturbation Classes of Semi-Fredholm Operators 433 

Proof a) In [28] Schechter introduced the quantity ~(T)=supinf{tfTxil: 
L 

xeL; jlxr]=l}, where the supremum is taken over all infinite dimensional 
subspaces L of X, and he showed that lira z(T") 1/" is the Fredholm radius of T. 

n 
Hence in our case: z(T")l/"+O. Now choose a subspace N of X and a e>O 
such that IlTx]l>elix]] for all x~N. 

Then there exists a n~N and a subspace 1~r of Tn(N) (*) 

such that z(Tt~)<e.  

Otherwise one could select inductively a sequence (Mi) of subspaces such that 
M o = N  , M i +  1 c r(Mi) , ll rx]l => (e/2)IlxlP for xEMi+ 1. 

For N~=(T~IN,_)-I(Mi) we get z(rl)__> inf IPrixll >(e/2) i and this con- 
x~Ni. Ilxll= 1 

tradicts z(T")l/"-*O. Let n o be the smallest natural number for which there 
exists a 37/ as in (*), and choose for a small enough e>0  a subspace M 
c r - 1 (f4) such that 

lIrxll >(a-e)i lxt!  for xeM,  "c(rlr(M))<e--2e. (**) 

This implies that T(M)c~M is at most finite dimensional and so we can alter 
M so that in addition to (**) T(M)nM={O}.  Assume now that M and T(M) 
are not perpendicular. By 2.1. there is a subspace L of T(M) and an isomor- 
phism J : L - - , M  with []Jx-xlr<-_(~/2) HTl[.llx[[ for x~L. By (**) there is a 
xoeL, Hx0l]=l, with ]lTxol I < e - 2 e .  

For Yo = (]lJxo l])- 1 j x  ~ we obtain 

l! ZYoll N IITII" tlXo-Yol] + I] rx0t] < e +  il rxoll < e - e  

which contradicts (**). Consequently M_t_ T(M). 

b) Since T' is not strictly singular there is a w*-closed subspace M 1 c X '  and 
c~>0 such that [Ir'x'll > e  IIx'll for x'eM1. Define z(T ' )=supinf{ l l r 'x ' ] l :x 'eL,  

L 
IIx'll =1} where the supremum is taken only over all w*-closed subspaces of 
X'. Because of , ' (T')<r(T')we still have z'((T')")l/"-.~O and working only with 
w*-closed subspaces we find as in a) a w*-closed subspace M of X' such that 
T'IM is an isomorphism and MLT'(M).  Then 4~zT  is surjective and M • 
+ [T'(M)]~=X by 2.2. Now observe that [T'(M)]a= T-I(M• 

We shall also need quasi-complements: Two subspaces M and N of X are 
quasi-complemented if Mc~N={0} and M + N  is dense in X. The following 
existence theorems for quasi-complements are known. For a separable Banach 
space X they are due to Mackey, Guarii and Kadec (see [8]) and part c) is a 
result of Johnson, Lindenstraul3 and Rosenthal (see [12]). 

2.5. Proposition. a) Let M be a subspace of X such that X /M is separable and 
infinite dimensional. For every separable subspace N of M with dim N = oo there 
is a quasi-complement N~ of M in X such that N ~ N  1 and X / N ~ X / N  1. 
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b) Let N be a separable, infinite dimensional subspace of X. For every M 
D N with X /M separable and infinite dimensional, there is a quasi-complement 
M 1 of N in X such that M ~ M i and X /M'~  X / M  i . 

c) Let M be a subspace of X such that M' is w*-separable and X / M  has a 
separable infinite dimensional quotient space. Then M has a quasi-complement N 
in X such that N ~ is w*-separable. 

Proof (of a) and b)). Let (y,, y',) be a biorthogonal system in X such that I[YJl 
= 1, (~uy,)  is complete in X/M and y',eM l (see [17], IX.1 Theorem 7) and let 
(x,, x',) be a biorthogonal system in X such that [ix,[i = 1, (x,) is complete in N 
and (x',) is total over N. Define 

J: X - * X ,  Y x = x +  ~ 2 -~-I  x"  (~t .11)-1 x.(x) y . . '  
n = l  

Then ]lId-J]l <�89 and J is an isomorphism onto X. Put Ni=J(N).  Hence 
JIN: N ~ N 1  and J~bN: X / N - - , X / N  1 are isomorphism. M+N~ is dense in X 
since M+N~ contains M and (y,). If xeMc~N1 then 

x - j - i x =  i 2-"-l([]x',Lt)-lx',,(J-ix)Y, eM 
g = l  

implies x' , (J- lx)=O for all n (since ' • j - 1  y, eM ) and therefore x = 0  (since (x'~) 
is total over N). Hence x=0 .  This proves a). In order to prove b) put M 1 
= J - I ( M )  and recall that J -~  is an isomorphism. 

3. Proof of the Main Results 

Theorem A will follow from 3.2., 3.7. and Theorem B from 3.1., 3.6. and 3.5. 

3.1. Theorem. Let Y be weakly compactly generated. Then ~(X,  Y)=~+(X,  Y) 
for all Banach spaces X if and only if Y eontains at least two infinite dimen- 
sional subspaces Li, L 2 with L 1 perpendicular to L 2. 

Pro@ " ~ "  Assume that T e ~ ( X ,  Y) restricted to some separable infinite- 
dimensional subspace M o of X is an isomorphism. Given some injective ~+- 
operator U: X - ~ Y  we shall construct another S ~ + ( X ,  Y) such that T - S  is 
not a q~+-operator. 

By 2.1. there is an infinite dimensional subspace of T(Mo) which is perpen- 
dicular either to L 1 or L 2. Indeed, if T(Mo) is not perpendicular to L 2 and []x 
+yll > Cl[xll for xEL l, yeL  2 there is a subspace M of M 0 and an isomorphism 
J: T(M)-~L 2 with IlJx-x]l <(C/2)Ilxll for xer (M) .  This implies T ( M ) Z L  1. 
Hence T ( M ) L L  with L = L  t or L = L  2. Next we choose a projection P: Y--+ Y 
such that P(Y) is separable, T ( M ) + L c P ( Y )  and P ( I m U ) c l m U .  This is 
possible according to Lemma 4 in Chap. 5, w 1 of [3] since Y is weakly com- 
pactly generated. If N 1 = K e r P  ~ I m  U then N 1 .L T(M), Nq ]_L and Im U/N] is 
separable. 
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Since U - l :  N1--,X is continuous, X/(U-I(NO+M) is separable and there 
exists a separable quasi-complement K of U-I(Nt)+M in X by 2.5.a. 
Finally, we choose a quasi-complement N of U(M)c~ Nt in N~ using 2.5.c. Indeed, 
since U-I:Nlc~U(M)-~M is continuous and M is separable, the Banach 
space U(M)c~N 1 has w*-separable dual and N1/(U(M)~N 0 has an infinite 
dimensional separable quotient space by [11], Cor. 1. Then U-I(N)c~M= {0}, 
U-I(N)c~K={O} but U-I(N)+M+K is dense in X. Pick some surjective 
VeCb(K,L) (see [7]) and define S:M+N(V)+U-I(N)~Y by SIM----TIM, 
Sic(v)= V and SIV_~(N)= UIV-I(N). Then ~(S) is dense in X, I m S =  T(U)+L+N 
is closed in Y and S is a closed operator because S-I:ImS-~X is continuous. 
Hence Se~ + (X, Y) but S -  T ~  + (X, Y). 

" ~ "  Assume that Y has no subspaces perpendicular to each other. Then Y 
has to be separable because every non-separable, weakly compactly generated 
Banach space has a separable, complemented subspace (see [3], Chap. 5, w 
Theorem 3). 

Put X = Y x  Y Then 05+(X, Y ) + ~  by [7], but for every S~b+(X, Y) the 
inclusion map j: X,-*X is strictly singular. Indeed, since a finite codimen- 
sional subspace of X, is isomorphic to the subspace ImS of Y, X, cannot 
contain perpendicular subspaces. Then j is not a bounded r be- 
cause otherwise X ~ X = Y x Y ;  and it follows from 2.3. that j is strictly 
singular. 

If TeN(X,Y), then XS+T~X s and jTe~(Xs+T,Y ). Therefore j(S+T) 
=iS+iT is a bounded ~b+-operator and S+Te~+(X, Y). Hence $(X, Y) 
=~+(X,  Y) but the operator T : X ~ Y  defined by T((yl,y2))=y~ is certainly 
not strictly singular. 

3.2. Corollary. Assume that every separable subspace of X is contained in a 
weakly compactly generated and complemented subspace of X. Then ~+(X) 
= ~(X). 

Proof Assume there were an operator Ts~+(X)-~(X). Then, by 2.4., we 
could pick a separable subspace M such that TIM is an isomorphism and 
M• T(M). By assumption there is a w.c.g, subspace X1 of X containing M 
+T(M) and a subspace X 2 of X such that X.=XI| 2. If SleCb+(X1,X1) 
with SlIM = TIM, we define S: ~(SI)+ X z ~ X  by Sl~(s,)=S1, SIx~=Idx~. Then 
S~r but S-Tr which contradicts Te~+(X). The existence of S 1 
follows from the proof of 3.1. or by the following more direct argument: 
Choose a sequence x;eX[ with X'ilM=O which norms T(M), i.e. 
suplx'i(x)!>=CI[x!t for some C > 0  and all x~T(M). If N=[xJ• then M 

i 
~ N  and X,/N is separable because Xa/N is weakly compactly generated and 
(Xa/N)[= [xi] l• is w*-separable (this follows e.g. from [3], p. 163, Theorem 3). 
By 2.5.a there is a quasicomplement N1 of M in X~ and an isomorphism 
J: N~-~ N. Define $1: M + N1--+ X 1 by SIM= TIM , SIN ~ =J. 

3.3. Remark. The assumption of 3.2. is fulfilled for example by Banach lattices 

( with an order continuous norm see [26], II.5; a sequence (x~)c X is contained 

in the band generated by x = ~ 2z , which is w.c.g, by 5.10]. 
i~  1 tlxil! 
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Some important Banach spaces, like t , ,  which are not covered by 3.2. can be 
treated by the following variation: 

3.4. Corollary. I f  X,~ X | X has at least one separable it!finite dimensional 
quotient space, then ~+(X)= ~(X), 

Proof, Let P1 and ~ = I d - I I  be projections in X with Pt(X) and ~(X) isomor- 
phic to X. If TeN(X) is not strictly singular, then there are i,jE{t, 2} such that 
P~TP~ is not strictly- singular. Pick a separable M cPj(X) such that ~TPjtM is an 
isomorphism. Then T(M) is perpendictflar to (Id-P~)(X). Since X / M  has a 
complemented subspace isomorphic to X, namely ( I -~) (X) ,  it follows that 
X/M has a separable quotient space. Choose a quasi-complement N of M in X 
(by 2.5.a) and an isomorphic embedding J:  N--, (I-P~)(X). Then S: M + N-=, X 
defined by SIN=J, SIM=TIM belongs to ~b+(X), but T - S r  

3.5. Remark. It still seems to be an open question if every Banach space has 
a separable quotient space. But it is known that X has a separable quotient in 
each of the following cases: 

a) X is weakly compactly generated or just a subspace of a quotient of a 
weakly compactly generated space: (see [23], Chap. 5, w Theorem 3 and [ t l ] ,  
Corollary 1). 

b) X contains a subspace isomorphic to I~ or co: (in the first case X has a 
quotient isomorphic to 12 by a result in [20]; in the second case it follows that 
X' has a subspace isomorphic l~ and Corollary 1 of [9] can be applied). 

c) X is a Banach lattice: (ifX does not contain c o or 1 t then X is reflexive, see 
[26], II. Theorem 5.16). 

d) X is a quotient of a C(K)-space: (by [19], Theorem 1, X is either 
reflexive or contains a subspace isomorphic to co). 

a) and d) show that the assumption of Theorem 3.6 below is shared by all 
subspaces of weakly compactly generated spaces and all C(K)-spaces. 

3,6, Theorem. Assume that every infinite dimensional quotiem space of the 
Banaeh space X has an irlfinite dimensional separable quotient space, Then we 
have ~_(X,  Y ) = ~ ( X ,  Y) ,]br all Banach spaces Y i f  and only if X contains at 
least one pair of infinite codimensionat closed subspaces L I, L 2 with X =L t + L 2. 

Proof "~'" Given a TeN(X,  Y) which is not strictly cosingular and some 
suriective U~@_(X,Y) we construct another S~O (X,Y)  so that S 
-T~q~_(X, Y). By assumption there is a subspace M o of Y such that ~MoT is 
surjective, and Y/Mo~X/T- t (Mo)  is separable and infinite dimensional. Next 
we choose an infinite codimensionat subspace ~(l of X containing T-~(Mo) 
such that M + L a = X  or ~ / + L 2 = X :  as in 3.1. it follows from 2.2. that 
T~I(Mo)-LcX ' contains a w*-closed subspace ~/1 which is either perpendicu- 
lar to L~ or LJi since L~•  2. Assume ] ( I+L=X with L=L~ or L = L  2 and 
put M =  T(37/). By assumption we can alter L so that in addition X/L is 
separable. Therefore we can find separable subspaces N 1, N 2, N 3 of X such 
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that L+N~=X, ~ /+Nz=X ,  U(Ns)+M=Y (e.g. see [30], Lemma2) and 

[=0o] U(N3)nM is infinite dimensional. If No=KerU and N =  N then U(N) 

is closed in Y and U(N)' is w*-separable since ~bNo(N ) is closed and separable 
in X/N o and U induces a continuous injective operator 0 -1 :  Y~X/N o. The 
latter operator induces a continuous, injective operator Y/U(N)-+X/N with 
dense range, and its inverse U t belongs to q5 (X/N, Y/U(N)). Since 
U(N)' is w*-separable, the dual of U(N)nM is w*-separable and I~7(U(N)caM) 
has a separable quotient space, namely Y/M. Therefore, by 2.5.c, U(N)nM 
has a quasi-complement K in Y such that (Y/K)'~K a is w*-separabte. Pick 
some Ve~b(X/L, Y/K) (see [73) and denote by S o the composition operator 
given by 

X ~, X/tlJIOX/N@X/L ~ r e v , ~  W/M| y/rd(N)@ Y/K 
A 

where ~ ( x ) = ( ~ x ,  ffaNx , ~Lx) and ~ v T  is induced by ~MT: X--~Y/M. Since 
4~ is surjective by 2.2, it follows that S o is a 4~ -operator with ~(So) 
=qb-l(X/~7l@~(b~)@~(V)). The map j: Y~Y/M| given by 
j(x)=(~b u x, ~v(u~ x, ~ x) is injective and has dense range because 
Y/M@YU(N)=Y/(Mc~U(N)) and K and MnU(N) are quasi-complements. 
Therefore we can identify Y with a dense subspace of Y/M| 
Now it is easy to check that the operator S=So[ ~ where N=Sot(Y), belongs 
to ~b(X, Y) and that ~M(T--S)=0. 

~ Assume there are no infinite codimensional subspaces L , , L  z of X 
with X=L~ +L 2. Then X has to be separable because if X is non-separable we 
can choose a separable quotient space X/M and a separable subspace N with 
M + N  = X  (see [30], Lemma 2) where N has to have infinite codimension. 

Put Y=X@X. Then ~b (X, Y ) ~  (see [7]). If Se~ (X, Y), then the 
inclusion map j: Xs-~X is not a bounded ~ -operator because otherwise 
X/Ker S ~ Xs/Ker S ~ tm S ~ X 1 | X 2 with finite-codimensional subspaces X1, 
X 2 of X, and this contradicts our assumption. In view of 2.3. j has to be 
strictly cosingular. For every Te~3(X, Y) we have Xs.~Xs+ r and jT: X s ~ Y  
is strictly cosingular. Then j(T+S)=jT+jS: Xs-~ Y is a bounded ~_-operator 
and T+Se~b(X, Y). So we showed ~B(X, Y)=~/_(X, Y). On the other hand, 
the operator T: X-+ Y, Tx = (x, 0), is not strictly cosingular. 

3.7. Corollary. Assume that ever}, i,finite dimensional quotient space of the 
Banach space X has an i~gf~nite dimensional separable quotient space. Then 
~. _(x)=r 

Proof. This is a consequence of 3.6. and 2.3. or of the following more direct 
argument: If there were a Ta~_(X)-ff.~(X) we could choose by 2.4. a 
subspace M of X such that ~ T  is surjective, T-~(M)+M=X, and X/M is 
infinite-dimensional and separable. Pick a separable subspace N of M such 
that T-~(M)+N=X (see [30], Lemma2). By 2.5.b there is a quasi-comple- 
ment N, of M in X such that there is an isomorphism V of X/N onto X/Ni. 
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As in 3.6. we find a S ~ b ( X )  with S -  T(~@(X) using the composition 

X _ + X / T _ I ( M ) O X / N  r  X/M@X/N~ DX. 

This contradicts T ~ _ ( X ) .  

L. Weis 

4. Some Counterexamples Concerning Fredholm Perturbations 

It is known already that there are Banach spaces X with ~(X)4= ~(X) or ~(X) 
~=G~(X) (see [5]) but it will follow from Proposition 4.1 that this can even 
occur for Banach spaces with a very nice Banach space structure, like C(K)- 
spaces, Orlicz-sequence spaces or rearrangement invariant function spaces 
'close' to Lp-spaces. 

4.1. Proposition. Assume that X has two subspaces M, N such that 

a) both are isomorphic to c o or the same lp for some 1 <p < o% 
b) M is complemented in X 

c) N contains no infinite dimensional subspace complemented in X. 
Then ~(X) ~= ~(X). 

Proof. If P: X - + M  is a projection and J:  M--+N an isomorphism onto N, 
then T = J P r  Assume that Tr By [27], Theorem27,  there is a 
bounded S~#(X)  such that ( S - T ) I L = 0  for some infinite-dimensional subspace 
L of X. If X 1 is a complement of KerS  in X and X 2 = I m S  then X 1 and X 2 
have finite codimension in X and we may assume that M A X 1 ,  L c X I  and N 
c X  2. Furthermore, SIL=JP[L implies that PIL is an isomorphism. By [15], 
2.a.2., there is an infinite dimensional projection Q: M--+M with ImQaP(L) .  
Then U=(PIL)-IQP: X I - * X  1 is a projection onto a subspace of L and V 
= SU(S[x,)- ~ : X2 -~ X2 is a projection into S(L) = T(L) a M. This, contradicts 
c). Hence T ~ ( X ) .  

4.2. Examples. a) Let X =  C(K), where K is the disjoint union of the one- 
point-compactification N of N and the Stone-Cech-compactification f i n  of 
N. Then ~(X):t= ~(X). 

b) Let X=Lp(0,  oo)4-Lq(O, oo) with the norm Ilfl[ =inf{llhl[p+ NgHq:f=h 
+g}. If 1 < p < q < 2  then ~(X)q=S(X). 

c) Let X=Lp(0,  oo)mLq(0, oo) with the norm Ilfl[=max(llfllp, Ilfllq). If 
2 < q < p <  oo then ~(X)+G~(X) .  

d) Let X=L(p ,q)  be the Lorentz-space on [0,1] with the norm IlfH 

= q [tl/Pf*(t)] q where f *  is the decreasing rearrangement of f (see 

[I0] or [16], p. 120). 

Then ~(X) 4= ~(X) for 1 <p  < q < 2 and ~(X) ~ E~(X)  for 2 < q <p  < oo. 

e) Let X = U~,e be an Orlicz sequence space as in [15], Theorem 4.b.12 with 
1 1 
~ + c = l .  Then ~(X)=t= ~(X) and ~(X)+-r 
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Proos a) Since C(K) ~ C(~q) • C(flN) ~ c o �9 l~, and there is no proiection in 
lo~ onto a subspace isomorphic to a subspace of c o (see e.g. [,15], 
Theorem 2.a.7), one can apply 4.1. 

b) X has a complemented subspace M isomorphic to  lq, e.g. take'~the span 
of Xtn2,(n+l)2~, n~N (c.f. Lemma 1 in [-13]). On the other hand, since p<q we 
have XIEo, I~Lp[O, 1] and X]~o, tl contains a subspace N isomorphic to lq but 
without complemented subspaces (by [,13], Remark 2 and Corollary 3). 

1 1 
c) follows from b) by duality since X'=Lp,(O, oo)+Lq,(O, oo) with q + q ; =  1, 

1 1 
p + ~ ; = l  and T ~ ( X )  iff T'e~(X'), T~J(X) iff T'e~(X') (by [22], C.I. 2.6', 

2.7', 6.9). 
d) X contains a complemented subspace M isomorphic to  lq by [-4], Theo- 

rem 5.1. It is easy to calculate the Boyd indices of X (see [,,16], p. 130): p~=q~ 
= p .  

Therefore, if p < r < q ,  we have a continuous inclusion map j: L,[0, 1] ~-~X 
(by [,16], Proposition 2.b.3.). 

Since r < q < 2 ,  L~[0, 1] contains a subspace N I isomorphic to  lq ([,13], 
Remark2)  such that the inclusion N~cL~[O, 1]~-~XcL~[,0, 1] is an isomor- 
phism into L I (combine Theorem 1 and 2 of [13]). 

Then N =j(N1) is a subspace of X isomorphic to  lq and there is no infinite 
dimensional projection P: X.~N because otherwise there is a projection Q 
= (jlN])-I~: L~--~N 1 which contradicts [,13], Corollary 3. Hence 4.1 settles the 
case 1 < p < q < 2 .  As in c) the case 2 < q < p < o o  follows by duality since L(p, q)' 

1 1 1 1 
=Lip,q) . . . .  with 2+__-7=p P 1, q + ~ =  1 (see [,10] 2.7). 

e) By 4.b.12 of [,15] U~, d contains a complemented M isomorphic to lp for 
c<p<d, as well as an Orlicz space X that contains a subspace N isomorphic 
to l, but no complemented subspace isomorphic to lp ([15], Example 4.c.6). 

Hence ~(X):I= ~(X) by 4.1. Since U'd~ U~, d (see the remark following 3.b.12 
in [, 15]) ~(X) :I: G(X) follows by duality. 

5. The Fourier Transform as an Admissible Fredhohn Perturbation 

Let (G, m) be a locally compact group with its Haar-measure m. Denote by 
(F, n) the dual group of G with its Haar measure n adjusted in such a way that the 
inversion formula holds, f(~/)= ~f (x ) ( - x ,  v)dm(x), 7eF is the Fourier trans- 

G 
form of f~LI(G ) (see [25], Sect. 1.2.). For 1 < p < 2  the map f - - , f  extends to 

1 1 
bounded operators ~ "  Lp(G, m)--*Lp,(F, n) with p + ~ ; =  1. For p = 2  we get an 

isometry (see [-25], Theorem 2.6.1). For l < p < 2 ,  ~ is certainly not compact 
but we have 

5.1. Theorem. For 1 < p < 2  the Fourier transform J~: Lp(G,m)-->Lp.(F,n) is 
strictly singular and strictly cosingular. 
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Proof Assume that there is an infinite dimensional, separable subspace M of 
Lp(G,m) and a constant C > 0  such that II~fll>CIIfl[ for feM. Choose a 
sequence (K.) of compact subsets of G with 

K.=K.+~. . .  and H ( 1 - Z K . ) f l I . ~ 0  

for a l l f~M,  and a sequence (L.) of compact subsets of F such that L. c L.+ a ~ , , .  
and H(1--ZL,~)gIi---~0 for all g~ff(ZK M), n~N. Put X.=ZK. and Pn=XL. First 
we show that ~-Z. IM is strictly singular for all nsN.  For every normalized 
sequence f~z .M weakly converging to zero it follows from the compactness of 
P.,ffX. (P~YZ. is an integral operator with uniformly bounded kernel on L~ 

x K.) that I[Pm~)~.f~l[ ~ 0  for all m. Therefore, we can find inductively a 
subsequence mk~N and a subsequence gk of (~;Gf/)i~ such that 

[[(P,,~ + ~ - Pm~) gk -gk/[ --< C~ 2k+ 1 

The functions (p . . . .  -P,,k)gk, having pairwise disjoint support span a subspace 
isomorphic to Ip, (compare [t3],  Lemma 1) and then [gk]~/p, by a standard 
stability result (see [15], t.a.9). But L v for p + 2  has no subspace isomorphic to 
l v, and, consequently, ~[[,f,] cannot be an isomorphism. Hence all operators 
~Z,IM are strictly singular and by [6], III.2.1. there is a sequence of infinite 
dimensional subspaces M ~M~ ~ ... ~ M ,  such that IlYZ.IM.II ~ 0  for n ~  Go. For 
8k=�89 C ~ .2 -k we choose inductively n ~ N  and a sequencef~M, IIL]I = 1 with 

i) f ~ M , ~  and [l~-z.~(L)[I <e~ 
ii) ~ tog �9 gf -1 dm= 0 for j < k where gj = (Z,~+ ~ - Z~) f~ (so that gf -~ ~L v,(G)) 

iii) [[(1-X,~+~)f~[[<~+l for j<k. 

Then P f= L ([Igji[-P~fgP-~ dm)gj is a projection of norm 1 onto the subspace 
j = l  

[gj] isomorphic to l v (compare [13], Lemma 1). We have 

llPL-g~llp < ~ Ilgjllg-" I~fS]-~dml 
j>k 

j>k j>k 
and 

gf~ -[ lgz.~ f~[I- [[(1 -zn~+~)Lli  > C - - 2 e k > ( 3 / 4 )  C. ligk[[ > [i~-gkll > JkE 

More generally, for all ~1-.. ~ . ~  we get 

k 

>_-- c l lZ =~Ll l - (Z I~klP) 1/p 2. (X ~g,)t/p, 
> c .  lIP(2 ~k f,,)ll- (2 c2/8)(~ I~klP) z/p 
>__ c .  112 ~gg~lt-~ I~[ IiPL-ggll- (2, c2/a)(y, 1%1~) lz" 
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Hence ~[[gk] is an isomorphism and this leads to the impossible conclusion 
that Ip is isomorphic to a subspace of Lp,(F, n). Hence ~ is strictly singular. By 
the Pontryagin Duality Theorem ([25], Theorem 1.7.2) we have that @ ' f  
=N(.f)  where ~f: Lp(F)-*Lp,(G) is the Fourier transform. Therefore @ is 
strictly cosingular since ~ is strictly singular (see [22], C.II.6.9). 

5.2. Corollary. For l <p <2 the range of the Fourier transform 
~ : Lp(G)--~Lp,(F) does not contain an infinite dimensional subspace closed in 
gp,. 
Proof This follows from 5.1. and the closed graph theorem because J~ is 
injective. 

5.3. Remark. It was shown in [2] that ~-: LI(G)-~ Co(F) is strictly singular if 
and only if G is compact. One may add that ~ :  LI(G)--~ Co(F) is never strictly 
cosingular if G is infinite. Indeed, if F is not discrete then F contains an 
infinite, compact Helson set E c F ([25], 5.6.6), and if F is discrete, there exists 
an infinite Sidon set E c F  ([25], 5.7.5). In any case, if ~b: Co(F)~Co(E ) 
denotes the quotient map g ~ g l E ,  it follows that cb~ is surjective (cf. [25], 
5.6.2 and [25], 5.7.3e). 

The same argument also shows that ~ :  M(G)-,C(E) is neither strictly 
cosingular, ([25], 5.6.2 and 5.7.3d) nor strictly singular: (observe that C(E) 
contains a subspace isomorphic to l t and if ~,eM(G) are such that ~ g ( # , )  is 
equivalent to the unit vector basis of I1, then ~NIEu,1 is necessarily an isomor- 
phism), 

In particular, if G is compact, the Fourier transform ~ :  L~(G)-+Co(F) 
provides a natural example for a strictly singular operator such that the 
adjoint map is neither strictly singular nor strictly cosingular. For earlier 
examples of this kind, see [5] and [19]. 
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