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1. Introduction 

A group is said to be locally indicable if each of its non-trivial finitely 
generated subgroups has the infinite cyclic group as a homomorphic image. 
Such groups were studied by Higman [-9] in connection with the zero-divisor 
and unit problems for group rings. More recently, they have arisen I-2, 12] in 
the study of equations over groups. 

In [12], I proved a Freiheitsatz for locally indicable groups. This has been 
proved independently by Brodskii [2] and Short [22]. The present paper arises 
from an investigation of a question put to me by S.J. Pride - whether torsion- 
free 1-relator groups are locally indicable. The question was raised originally 
by Baumslag (I-1], Problem 19) and an affirmative solution has recently been 
announced by Brodski~ [2]. 

As a consequence, the group algebra RG of a torsion-free 1-relator group G 
over an integral domain R has no non-trivial zero-divisors, and no non-trivial 
units (using Higman's results [9]). The first fact was also proved by Lewin and 
Lewin [16], by embedding RG in a division ring. The second appears to be 
new, as was pointed out to me by K.A. Brown. 

A second consequence is that no 1-relator group has a non-trivial finitely 
generated perfect subgroup, which answers [1], Problem 7 and [10], Question 
1. 

In fact, using the Freiheitsatz, and the tower method described in [12], it is 
possible to prove the following general version of Brodskii's theorem. 

Theorem 4.2. Let A and B be locally indicable groups, and let G be the quotient 
of  A * B by the normal closure of a cyclically reduced word r of  length at least 2. 
Then the following are equivalent: 

(i) G is locally indicable; 
(ii) G is torsion-free; 

(iii) r is not a proper power in A * B. 

�9 Research partly supported by a William Gordon Seggie Brown Fellowship 
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The group G in Theorem 4.2 will be called a 1-relator product of A and B. 
Thus the class of locally indicable groups is closed under the formation of 1- 
relator products in which the relator is not a proper power. 

The methods used in the proof of Theorem 4.2 can also be used to study 
asphericity in 2-complexes with locally indicable fundamental groups. 

Theorem 5.2. Let L be a connected 2-complex with H2(L)=0  and ~I(L) locally 
indicable. Then L is aspherical. 

Theorem 5.3. Let L be a 2-complex formed by attaching a 1-cell and a 2-ceil to a 
2-complex K, each component of which is aspherical with locally indicable 
fundamental group. Suppose the attaching map for the 2-cell of L \ K  is not 
homotopic in K u L  (1) to a map into K, and does not represent a proper power 
in ~I (K w L(1)). Then L is aspherical. 

These results may be applied to a class of group presentations which I call 
"reducible", and which includes, for example, all 1-relator and staggered pre- 
sentations. 

Corollary 4.5. A group given by a reducible presentation with no proper powers is 
locally indicable. 

Corollary 5.4. A reducible presentation with no proper powers is asphericaI. 

These terms will be made precise in w 2, but an "aspherical" presentation is 
one whose geometric realisation is an aspherical 2-complex. There exist in the 
literature a variety of inter-related notions of asphericity for presentations, 
which have been extensively investigated by Chiswell, Collins and Huebsch- 
mann [4] (see also [3, 7, 17, 21]). Any staggered presentation (with or without 
proper powers) is Cohen-Lyndon aspherical in the sense of [4]. In contrast, the 
proper power condition in Corollary 5.4 is crucial: a group given by a re- 
ducible presentation need not have finite quasi-projective dimension in the 
sense of Howie and Schneebeli [133, so the presentation need not satisfy any 
of the asphericity conditions discussed in [-43. 

A large class of locally indicable groups arise as fundamental groups of 
suitable 3-manifolds. In particular all knot-groups and link-groups are locally 
indicable, which answers Question 3 of [10]. This fact seems to be understood 
by 3-dimensional topologists, but does not seem to be in the literature. I have 
included a proof in w based on Scott's compact submanifold theorem. I am 
grateful to G.A. Swarup for the ideas behind this proof. 

Short ([-22, 23]) applies the Freiheitsatz for knot-groups to a problem of 
Lickorish ([15], Problem 1.1): a band sum of two knots can be the unknot 
only if each of the original knots is the unknot. 

I am grateful to the referee and to S.D. Brodski~ for a number of improvements to my original 
version of this paper. 

2. Notation and Definitions 

A group G is locally indicable if every finitely generated subgroup A of G 
(other than the identity) admits an epimorphism onto the infinite cyclic group. 
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Equivalent ways of saying this are that HI(A)~=O or that HI(A ) ( = A  ab 
= ALIA, A]) is finite. (All homology and cohomology is with integer coefficients 
unless stated otherwise.) 

The main object of study of this paper is 1-relator products of locally 
indicable groups, that is groups of the form G = (A * B)/N, where A and B are 
locally indicable, and N is the normal closure of a single element r, not 
conjugate to an element of A or of B. The relator r may be represented (up to 
conjugacy) as a cyclically reduced word of length at least 2. We must therefore 
study cyclically reduced words in free products, or more generally in graphs of 
groups with trivial edge groups. 

We use the notation of Dicks [5] for graphs of groups. Thus a graph of 
groups (~q, X) consists of a connected, oriented graph X, with vertex set V 
= V(X) and edge set E=E(X) ,  together with groups ~(v) (v~V) and (r (eeE), 
and monomorphisms ze: N(e)--+N0e), re: (~(e)-+(g(ve) (e~E), where le, ze de- 
note the initial and terminal vertices respectively of e. 

Following Higgins [8], we define the fundamental groupoid ~ ( ~ , X )  of 
((q,X) to be the groupoid generated by the groups (r (veV) and the edges 
e~E, subject to the relations e. re(g ) = Ze(g ) - e (e~E, gsN(e)). 

The fundamental group ~((r X) is then just a vertex group of ~ ( ~ ,  X), or 
alternatively the quotient of ~,~((q, X) by a maximal tree subgroupoid. 

An element of o~(~, X) can be expressed as a word 

w =go" e~(1)'gl"..." e~(')'g, 

where gj~(C(vj) (v~V), e(j)=-t-1, ej~E and l(ej)=vj_l ,  z(ej)=vj (if e( j )=l) ,  or 
t ( e j ) :  v j, "c (e j )= v j_ 1 (if e ( j)= - 1). 

The integer n is the length of the word (w). A word (w) is reduced if it does 
not contain a sequence of the form e.%(h), e -1 or e -1-Te(h).e (h~(~(e)). It is 
closed if' v 0 = v,. A closed word (w) is cyclically reduced if it is reduced and if 
e~ (")" (g, go)" e] (1) is reduced. 

Elements of J~((~, X) have a normal form [8], which in general depends on 
choices of transversals for the images of the maps re, r e. In the case where the 
edge groups (~(e) are trivial, there is a unique choice of transversals, so a 
unique normal form, and  the normal forms are precisely the reduced words. 
Hence every element of o~((~, X) is uniquely defined by a reduced word. Also, 
every element in rc((r X) is conjugate in g ( N ,  X) to (an element represented 
by) a cyclically reduced closed word. 

Let 
�9 . e e ( n )  . g W=go'e](1) gl"... -, .... 

w'= h o .f~(1). hi.....f2(m), h,, 

be reduced words, such that g,, ho~N(v ) for the same vertex wV. Then one can 
form the product word 

w. w'= go" e] (1)" . e~t,). (g, ho ) .f~(1) �9 f"("), h 
�9 " "  " - �9 �9 a m - - m  �9 

This is reduced if and only if e~, ("). (g, ho).f~(1) is reduced. 
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Let w be a cyclically reduced closed word. If wl, w 2 are reduced words such 
that w l . w  2 is defined, and is a cyclically reduced conjugate of w, then we will 
call w 1 and w 2 subwords of w. If both w~ and w 2 have positive length, then 
they are proper subwords of w. 

A 2-complex is a CW-complex K of dimension at most 2. Its 1-skeleton 
K (1) may be thought of as a graph, and the attaching maps for 2-cells may be 
thought of as closed paths in K (1), which we will always assume to be cyclically 
reduced. 

An elementary reduction consists of a pair (L,K) of 2-complexes, with K c L ,  
such that L \ K  has no 0-cells, exactly one 1-cell, and at most one 2-cell; and 
such that the attaching map for the 2-cell (if there is one) strictly involves the 1- 
cell, in the sense that it is not homotopic in K u L  (1) to a map into K. 

We will be concerned with the case when L is connected, so that K has 
either 1 or 2 components. We associate a graph of groups (N,X) to the 
elementary reduction (L,K) as follows. The graph X is obtained from K u L  (~) 
by shrinking each component of K to a point. Thus X has a single edge e and 
one vertex v for each component K v of K. Define ~ (e )=  1, and fq(v)-rq(Kv). 

Clearly ~(N,X)_~rc~(KuL(1)). In particular, if there is no 2-cell in L \ K ,  
then re(N, X)-~rCl(L ). If there is a 2-cell in L \ K ,  its attaching map "spells out" 
a closed word w in ~ ( ~ , X ) ,  and rcl(L)~-~z(~,X)/N , where N is the normal 
closure of the element represented by w. 

Note that, if K is connected, then w is not well-defined in general, but 
depends on a choice of maximal tree in K (~). In general also w is not cyclically 
reduced (although this is independent of a choice of tree), but is nevertheless 
conjugate to a cyclically reduced word of positive length. Replacing w by a 
conjugate does not alter the (simple) homotopy type of the pair (L, K), so there 
is no loss of generality in considering only the elementary reductions (L,K) for 
which the corresponding word w is cyclically reduced. 

An important special case of an elementary reduction is an elementary 
collapse L',~K. An elementary reduction (L,K) is an elementary collapse 
precisely when (L, K) has a 2-cell, K is connected and w has length 1. 

Recall [-10] that a combinatorial map f :  I 2~L  between CW-complexes is a 
cellular map which maps each cell of L' homeomorphically onto a cell of L 
(necessarily of the same dimension). Suppose (E, K'), (L, K) are elementary 
reductions, and f :  E--,L is a combinatorial map. We will say f carries (E, K') to 
(L, K) i f f  maps each cell of E \ K '  to a cell of L \ K .  In particular if E \ K '  has a 
2-cell then so has L\K .  Note that f is not required to map K' into K. 

By a tower (of height h) we mean a map between connected 2-complexes 
which can be expressed as a composite ioopl o i~ . . . . .  Ph ~ ih, where each Pr is 
an infinite cyclic covering, and each ir is the inclusion of a finite, connected 
subcomplex. (This is an (5,~oo) -tower in the notation of [12], where more 
general towers are considered.) Clearly towers are combinatorial maps. 

Lemma 2.1. Let (L,K) be an elementary reduction, and g: E--+L a tower such that 
g(E)~;K. Then there exists an elementary reduction (E,K') which is carried to 
(L, K) by g. 
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Proof Since g(E)~_K, it is clear that the 1-cell of L \ K  lies in g(E), and it 
follows that (g(E), K c~g(E)) is an elementary reduction. Hence there is no loss 
of generality in assuming g to be surjective. Also, by an inductive argument on 
the height of g, it is sufficient to consider the height 1 case. Thus we may take 
g to be poi, where p : L ~ L  is an infinite cyclic covering, and i:E~--,L is an 
inclusion. 

Let c denote the generator of the group of covering transformations of p. 
Since E is finite and p o i is surjective, we may choose a 1-cell y of E such that 
p(y)r and d(y)r for any t=>l. If y is involved in the attaching map for at 
most 1 2-cell (c~, say) of E, we may define K' to be E\{y}  or E\{y ,  ~}, and the 
result holds. 

Suppose then that y is involved in the attaching maps for 2 distinct 2-cells 
cq and e2 of E. Then p(y), the 1-cell of L \ K  is involved in the attaching maps 
for p (~ )  and P(e2), which must therefore be 2-cells in L\K,  and so p(cq) 
=P(e2)- Thus there is a covering transformation c s (s:t:O) such that cS(cq)=c~2 . 
Since y is involved in the attaching map for cq, it follows that d(y) is involved 
in that for e2, so c~(y)~E. Similarly c-S(y)~E, which contradicts the choice of 
y. 

Define a 2-complex L to be reducible if for every finite subcomplex L' either 
E c L  w) or there exists an elementary reduction (E,K'). Recall that to any 
group presentation 

~: (xl ,x2 .... Ir~,r2, ...) 

is associated a connected 2-complex K(N), with a single 0-cell, a 1-cell for each 
generator, and a 2-cell for each defining relator - attached along a path which 
"spells" the relator. Define a presentation ~ to be reducible if K(~)  is re- 
ducible. Equivalently, N is reducible if every finite subpresentation with at least 
one defining relator has the form 

(xl ,  ..., xm, ylrl, ..., rn, s), 

such that the r i are words in the xj, and s is not conjugate in G.(y )  to an 
element of G =  (x l ,  ..., x,,[rl, ..., r,). 

Suppose ~ '  is the presentation obtained by omitting the defining relator r 
from the presentation ~.  Say that r is a proper power of ~ if it is a proper 
power in the group G presented by ~' .  That is there exist a word q in the 
generators and an integer m > 2  such that r and q" represent the same element 
of G. We will say that a presentation has no proper powers if none of its 
defining relators is a proper power. 

Clearly all 1-relator presentations, and indeed all staggered presentations, 
are reducible. In fact reducible presentations may be thought of as being 
"staggered on one side", and so are a natural generalisation of staggered 
presentations. It turns out that reducible presentations with no proper powers 
share some of the "nice" properties of staggered presentations, while those 
with proper powers do not, in general. 
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A topological space X is aspherical if 7~,(X)=0 for each n>2.  It is well 
known that a 2-complex L is aspherical if and only if ~zz(L)=0.  A presentation 

is aspherical if the corresponding 2-complex K(N) is aspherical. Now any 
presentation which is aspherical in this sense has no proper powers. There are, 
however, various slightly different asphericity conditions, for presentations, 
which allow proper powers (see [4] for a full discussion). Staggered pre- 
sentations (even those with proper powers) are aspherical under the strongest 
of these conditions, that of Cohen-Lyndon asphericity. We will show in w 5 that 
reducible presentations with no proper powers are aspherical in the topological 
sense, but those with proper powers need not be aspherical in any sense. 

Indeed, any group G with a presentation satisfying any of the asphericity 
conditions of [4] must have quasi-projective dimension (qpd) at most 2 in the 
sense of [13]. That is, there exists an exact sequence 

of ~G-modules, with Q a permutation module, and each P~ projective. Thus the 
invariant qpd may be used to show that certain presentations are not aspheri- 
cal in any sense. We give examples of groups of qpd more than 2, with 
reducible presentations. 

3. Preliminary Results 

The simplest case of Theorem 4.2 is when r has length 2, that is when G is the 
free product of A and B with an infinite cyclic subgroup amalgamated. This 
case is a result of Karrass and Solitar [-14]. In particular, it follows that the 
class of locally indicable groups is closed under the process of "adjoining an 
n th root" to a non-trivial element. We will make use of this fact in the proof of 
Proposition 3.3 below, so it is convenient to state the special case of Theorem 
4.2 separately. 

Proposition 3.1 ([14], Theorem 9). Let G be an amalgamated free product G 
= A , B ,  where A and B are locally indicable, and C is infinite cyclic. Then G is 

c 

locally indicable. 

Corollary 3.2. Let a be a non-trivial element of the locally indicable group A, and 
let n be a positive integer. Then the group G = <A, tit" = a> is locally indicable. 

Proof Put B = < t )  and C = ~ t n ) = ( a )  in Proposition 3.1, 

The following technical result generalises a result of Weinbaum [24], that 
any proper subword of the defining relator represents a non-trivial element in 
a one-relator group. 

Proposition 3.3. Let (fr X) be a graph of groups with trivial edge groups and 
locally indicable vertex groups. Let wl, ..., wn (n>=2) be reduced closed words in 
(~, X), not all of length zero, such that the product w = w  1...w n is defined and is 
cyclically reduced. Let N denote the normal closure of w in 7~(N, X). I f  w 1 N . . . .  
=w n N, then either 
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(i) w l =  ... =w,q~N; or 
(ii) all but one of the w i are the empty word. 

Proof The proof  is by induction on the length 2 of w. If 2 =  1, then w has the 
form ge +1 or e + 1 g, where g~(f(v), v =  ~(e)=z(e). Let Y be the subgraph X\{e}  
of X, and denote the restriction of (~, X) to Y by (~f, Y). Then the composite 
n((q, Y)~n((r X)~rc(N, X)/N is an isomorphism. Now rc((r Y) is a free product 
of the vertex groups N(v) (v~V(x)) and the free group nl(X), all of which are 
locally indicable. It is an immediate consequence of the Kurog subgroup 
theorem that a free product of locally indicable groups is locally indicable. 
Thus n(c~,X)/N is locally indicable, so torsion-free. Since (w~N)"=wN=N, it 
follows that w ~ N  for all i. But all but one of the w i are words in ((r Y), and 
are thus equal to the empty word. Hence (ii) holds. 

Suppose then that 2 >  1 and that the result holds for words of length less 
than 2. Next suppose that w involves two distinct edges. Let f be one of those 
edges, let X o be the smallest subgraph containing f and let X'  be the graph 
obtained from X by shrinking X 0 to a vertex 0. Define a graph of groups 
(~ ' ,X ' )  by ~ ' (0)=~(~,Xo) ,  ~f'(v)=~q(v) for v~V(X)\V(Xo) and ~r for 
eeE(X'). Then n(aJ',X')~n(aJ, x), and the words w~ determine reduced closed 
words w'~ in (N', X'), not all of length 0. Furthermore the product w'= w'l...., w', 
is defined, and is cyclically reduced of length 2' <2. The result holds for w' by 
inductive hypothesis, and thus holds also for w. 

Hence we may assume that precisely one edge, e say, occurs in w. Let X~ 
denote the smallest subgraph containing e, let ((r X1) denote the restriction of 
(N,X) to X1, and let N1 be the normal closure of w in n(~ ,X  O. Then 
n(~,X1)/N ~ is a free factor of n(qJ, X)/N, so it is sufficient to prove the 
proposit ion for w as a word in (~r X1). We may therefore assume that X=X~,  
that is X consists only of the edge e and its initial and terminal vertices (which 
may coincide). By cyclically permuting the wl, conjugating all the w~ by some 
fixed element of some vertex group, and possibly changing the orientation of e, 
we may assume that w 1 (and hence also w) begins 1 . e . . . . .  If  e has non-zero 
exponent sum in w, then X has a single vertex, v say, and w has a subword of 
the form e.g. e or e -1 .g-~ .e -~ for some g ~ ( v ) .  There is an automorphism 0 
of n(N,X) defined by 0 = i d  on ~(v) and 0(e )=eg  -1. Then O(w) 
=0(wa) - . . . .  O(w,) is a cyclically reduced word of length 2, beginning 1. e . . . . ,  
and containing a subword of the form e-1 .  e or e - 1 . 1 - e - 1 .  Clearly the result 
for w will follow from that for O(w), so we may also assume that either e has 
exponent sum zero in w, or w has a subword of the form e. 1. e or e -  1.1 �9 e -  1. 
Finally, we may assume that the vertex groups of (~r X) are generated by those 
elements which occur in some w~. 

Next suppose that some vertex group of ((r X), say N(v), vanishes. Then v is 
the only vertex of X (otherwise no closed reduced word in (~, X) has positive 
length). Thus n((r X) is infinite cyclic, generated by e. Since the w~ and w are 
all reduced, we have w~=e ~(~ and w=e ~, where 0<2(/)  for all i, 1<2(1), and 
2(1)+. . .  +2(n)=2 .  Also n(c~, X)/N~-2g/271, so 2(1)=. . . -=2(n) (rood 2). Hence 
either 2(1) . . . .  = 2(n) = 2/n 2# 0 (mod 2), or 2(1) = 2 and 2(2) = . . .  = 2 (n)= 0, corre- 
sponding to the possibilities (i) and (ii) in the statement. 
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We may therefore assume that no vertex group vanishes. Since the vertex 
groups are finitely generated and locally indicable, it follows that HI(~(~,  X)) 
has rank at least 2, so we may choose an epimorphism 4): rc(~q,X)--~Z with 
4)(w)=0. In particular, if V(X)={v}  and e has exponent sum 0 in w, then 4) 
may be defined by 4)(N(v))=0 and 4)(e)= 1. We make the convention that this 
choice of 4) is used whenever possible. Clearly 4)(wi)=0 for all i, since 4)(wi)" 
=4)(w)=0. 

For each vertex v of X, the image of if(v) under 4) is a subgroup of 2g, so 
has the form kTZ for some k>0.  If k>2 ,  choose g~ff(v) such that 4)(g)=k and 
let ~(v) denote the group obtained by .adjoining a k th root to g. Then ~(v) is 
locally indicable, by Corollary 3.2, and the map 4) on ~(v) extends uniquely to 
an epimorphism 4): ~(v)--~2g. Replacin_g each if(v) by ~(v) whenever k__>_2 gives 
a new graph of groups (9, X), where ff(v)=ff(v) if k = 0  or k =  1. Let N denote 
the normal closure of w in ~z(~, X). It follows from the Freiheitsatz [12] that 

z~(~, X) /N  ~ ~(u) �9 (~(~, X)/N) �9 ~(v) if V(X)= {u, v}, 
(u) ~ (v) 

o r  

n(@,X)/N ~- @(v) �9 ~(c5, X) /N if V(x)= {v}. 
~(v) 

Hence it is sufficient to prove the result for w as a word in (a~, X). Note that 
the vertex groups of (.~, X) are not in general generated by those elements 
which appear in the w i. However, unless 4)((-5(v))=0 for all veV(X),  some w i 
contains an element g of some vertex group such that 4)(g)#:0. That  is, either 
w i begins or ends with such a g, or has a subword e -T1 -g-e -~1. It follows that w 
also contains such a g. For otherwise 0:4)(w)=a.4)(e),  where a is the ex- 
ponent sum of e in w. By our choice of 4), we must have a + 0 ,  so 4)(e)=0. 
Since the only elements with non-zero 4)-image which can occur in w 3 are the 

�9 e = 1 .  . e ~ 1. hj with 4) (g j ) :  - 4) (hi). In particular first and last, we have w j :  g3 ... 
4)(gi) 4= 0. Since h j_ 1 gj is a vertex group element appearing in w, we also have 
4)(hj_lgj)=O , and so 4)(gj)4=0for all j, contradicting the assumption that w 1 
begins 1.e .... Thus either 4)(~(v))=0 for all v, or w ends . . . . e  -~1 .g or has a 
subword e -~ 1 .g. e T 1, with 4)(g) 4=0. 

Now let H denote the kernel of 4): n ( ~ , X ) ~ .  By Bass-Serre Theory [5, 
20], G : z(a~, X) acts on a tree T, regularly on the edges of T, with quotient X. 
Also H : ~ ( ~ , ) ( ) ,  where ]~ is the quotient of T by the action of H, and 
(2It ~, X) is a graph of groups with trivial edge groups, and vertex groups which 
are isomorphic to subgroups of those of (a~,X). The regular action of G on 
E(T) induces a regular action of ~ '~G/H on E(X), which may be used to label 
the edges of X: ..., e 1, Co, el, .... There are 4 possibilities for the isomorphism 
type of (Yt ~ )() depending on X and 4)" 

A) V(X)-- {u, v}, 4)(aJ(u)): 7/= 4)(@(v)). Then V ( ) f ) :  {u, v}, Yf(u) = H c~ @(u), 
2 / f ( v ) : H ~ ( v ) ,  and each e i connects u to v. 

B) V(X) : {u , v } ,  4)(@(u)):2~, 4)(~(v)):0. Then V ( X ) : { u ; . . . ,  v_l ,  v o, 
vl, ...}, Y f ( u ) = H ~ ( u ) ,  YF(vr and each e i connects u to v i. 

C) V(X)---{v}, 4)(aJ(v))--7L. Then V ( ) ( ) :  {v} and ~.~-W(V):Hc~(v). 
D) V(X) : {v } ,  4)(aJ(v)):0. Then V( f f ) : { . . . , v_ l ,Vo ,V l , . . . } ,  Yd'(vi)~-@;(v), 

and each e~ connects vr to v~+ 1. 
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The elements of G represented by the w~ all belong to H, and so can be 
represented by reduced closed words #~ in (~ , ) ? ) ,  such that #1 begins 
1 .~o. . . . ,  and such that the product  # = # 1 "  ... "#,  is defined. Since w is cycli- 
cally reduced, so is #. Also # has length 2. 

Let s denote the least index such that e~ occurs in #, and let t denote the 
greatest such index. Let X o denote the smallest subgraph of Jf containing the 
edges e~ ( s < i < t ) .  Let X 1 be obtained from X o by omitting e t (together with v~ 
in case B or vt+ 1 in case D), and let X 2 be obtained from X o by omitting e s 
(together with v S in cases B and D). Define G~=n(~,X~) ( i=0,1,2) ,  where 
(~,  Xi) is the restriction of (~ ,  2),  and let N o be the normal closure of # in G o. 
It is clear that X 1 and X 2 are connected, except possibly if s = t  in case A, 
when X a = X  2 consists of 2 vertices and no edges. However, we will see below 
that this possibility cannot arise: # involves more than one edge in case A. 

Now G=rc (~ ,X)  can be expressed as an HNN-extension of Go, with 
associated subgroups G 1 and G2, via the canonical embedding 
rc(~, Xo)--+rc(~ , J ? ) ~ ( ( r  X). In cases A and B, the stable letter may be taken 
to be an element p of ~(u) such that ~b(p) is a generator of ~. In case C it may 
be taken to be a similar element of if(v), and in case D it may be taken to be 
the element e. 

Also, the maps G ~ G o ~ G o / N  o ( i=1,2)  are injective, by the Freiheitsatz 
[12], and hence GiN can be expressed as an HNN-extens ion  of Go/No, also 
with associated subgroups G 1 and G 2. It follows that it is enough to prove the 
result for #, regarded as a word in (~ ,  Xo). 

If s < t, that is if # involves more than one edge, then the result holds for #, 
and so for w. In particular this is true in cases A and B, for then w has a 
(cyclic) subword of the form e . g . e  -1 or e - 1 . g . e  for some vertex group 
element g with ~b(g)=k~0, and the corresponding cyclic subword of # has the 
form ei.h.e~+ ~ or el -1 .h.e~+ k for some integer i and some element h of some 
vertex group of (~ ,  Xo). 

We also have s < t  in case C, for then ~b(~(v))+0, so e has non-zero 
exponent sum in w, by choice of ~b. Then w has subwords 

(a) e . l - e o r e - l - l . e  - I .  
(b) e -+l .g-e  -+1 with ~b(g)=k+0. 
If ~b(e)=l+0, then corresponding to (a) is a subword of # of the form 

e i. 1.ei+ 1 or ei-l . l-eF_~ for some i. If  ~b(e)=0, then corresponding to (b) is a 
subword of # of the form e~ i .  h - e / ~  for some i and some h. 

Thus the only case in which # can involve only one edge is case D, in 
which case X o is a graph with 1 edge and 2 vertices. Repeating the whole 
argument with w replaced by # and (if, X) replaced by (~,  Xo), the result holds 
for # because we arrive in case A or B. 

This completes the proof  of Proposition 3.3. 

Corollary 3.4. Let (if, X) be a graph of  groups as in Proposition 3.3. Let N be the 
normal closure in ~(ff, X) of  a cyclically reduced closed word w in (if, X). Then 
no proper closed subword of  w represents an element of  N. 

Proof Suppose # = w l . w  2 is a cyclically reduced conjugate of w, and w 1 
represents an element of N. Then w 2 N = (w I N) - l (#N) = N, so w 2 N = w I g .  By 
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Proposition 3.3, one of w 1, w 2 is the empty word, so w 1 is not a proper closed 
subword of w. 

Corollary 3.5. Let (f#, X) be a graph of groups as in Proposition 3.3, and let N be 
the normal closure in ~(f#, X) of w=u ' ,  where u is a cyclically reduced closed 
word of positive length. Then uN is an element of order precisely m in ~(f#, X)/N. 

Proof Clearly (uN)m=wN=N, so uN has order at most m. But for k<m,  u k is 
a proper closed subword of w, so ukCN by Corollary 3.4. 

Corollary 3.6. Let (L, K) be an elementary reduction, such that each component of 
K has locally indicable fundamental group. Suppose that L \ K  has a 2-cell, 
attached along a cyclically reduced closed path P in L (1), and let w denote the 
closed word defined by P in the graph of groups corresponding to (L, K) (see w 2). 
Suppose also that w is cyclically reduced and not a proper power. Let (E, K') be 
an elementary reduction with a 2-cell in E \K ' ,  and let g: E ~ L  be a tower 
carrying (E,K') to (L,K), such that g.(rtl(K"))= 1 in 7zl(L ) for some component 
K" of K'. Then K'= K" and (E, K') is an elementary collapse. 

Proof Let ~ denote the 1-cell of E\K ' ,  and let e denote both the 1-cell g(~) of 
L \ K  and the unique edge of the graph X. The orientation of e as an edge of X 
induces an orientation of ~. Since g is a tower, the 2-cell of E \ K '  is attached 
along a cyclically reduced closed path 15 in / J1 )  such that g (P)=P .  

Suppose both ~ and ~-1 occur in the path t5. Then there exist adjacent 
occurrences of ~ and ~ - t  separated by a reduced closed path (~ in K ''(x). In 
particular this holds if K '  is disconnected. Thus t5 has a subpath ~. Q. ~-~ or 
~ 1 . ( ~ : ~ ,  so P has a subpath e .Q.e  -1 or e - t - Q . e ,  where Q=g((~). If e occurs 
in Q, then Q represents a proper subword w 1 of w, which lies in the normal  
closure of w in rc(fg, X)=rcl(KuL(1)), since Q is nullhomotopic in L. This 
contradicts Corollary 3.4. If e does not occur in Q, then Q is a path in K (~) 
which is nullhomotopic in L. By the Freiheitsatz [12], Q is nullhomotopic in 
K, so w has a subword e. 1. e - t  or e - 1 . 1 ,  e. This contradicts the assumption 
that w is cyclically reduced. 

Hence ~ and ~- ~ cannot both occur in /5. Without loss of generality we 
may assume only ~ occurs. In particular, K ' = K "  is connected, and /5 
=~'(~1 " o ' . . - ' e ' ( ~ .  up to cyclic permutation, where (~  . . . .  ,(~, are reduced 
paths in K". Let Qi---g(Qi) ( i= 1, ..., n) and let w i be the reduced closed word in 
(fr X) spelt out by the path e.Q~. Since Q7 ~ .Qj=-g(Q[~ .Q) is the image in L 
of a closed path in K", it is nullhomotopic in L, so w~ N =  ... = w , N ,  where N 
is the normal closure of w in 7t(N, X). If n>2 ,  we can apply Proposition 3.3 to 
get w~=.. .=w, ,  contradicting the hypothesis that w is not a proper power. 
Hence n = 1, and (E, K') is an elementary collapse, as claimed. 

4. One-Relator Products 

In this section we prove the main result, Theorem 4.2. First it is necessary to 
prove the following Lemrna. The proof uses arguments similar to those of 1-11]. 



On LocalIy Indicable Groups 455 

Lemma 4.1. Let L be a connected 2-complex such that z~l(L ) is not locally 
indicable. Then there exists a tower g: E ~ L such that 

(a) H ' ( L ' ) = 0 ;  and 
(b) g,(TCl(E))~= 1 in 7c1(L ). 

Proof Since ~ ( L )  is not locally indicable, there is a finitely generated sub- 
group G =~ 1 of rc~ (L) such that G ab is finite, of order m say. Since the inclusion- 
induced map tl:ul(L(1))~ua(L) is surjective, there exists a finite subset 
{b I, ..., b,} of TcI(L (1)) such that {t/(bl) , ..., r/(bn) } generates G. Let H denote the 
subgroup of ul(L (1)) generated by {bl ,  ... , bn}- 

For each i, we have ~/(bv")~[G, G]=rI([H, HJ), so there exists wi~[H,H ] 
such that t/(b/-")=r/(wi), that is rl(b~wi)=l. Now there exists a planar, 1- 
connected 2-complex D~, and a combinatorial map f~: Di-~L, such that f~ maps 
the boundary path ?D~ of D~ in the plane to a path in L (~) representing bT'w ~. 
(Indeed D i may be taken as a wedge of complexes, each consisting of a disc 
with subdivided boundary, connected to the basepoint by a subdivided arc.) In 
particular OD i is a composite PII"-.. 'P/~' Qi of paths such that each f/(Pij) is a 
closed path representing hi, and f~(Q~) is a closed path representing w~. 

Let D denote the wedge ~/D~ of the various D~, and let f =  Vf~: D-~L be 
the induced map. Let ~ 

E 

/1 
D ~ L  

be a maximal tower-lifting o f f  [12, Lemma 3.1]. Now D is simply connected, 
so H I ( D ) = 0  and hence H i ( E ) = 0  (otherwise f '  lifts over some infinite cyclic 
cover of E, contradicting maximality). Hence (a) holds. 

To prove (b), suppose Imf_~K~L,  and f :  D ~ L  is a lift of f over an infinite 
cyclic cover p" L ~ K .  Then f(P~i) is a closed path in L (1), representing an 
element bi of ~I(L (1)) (which depends only on i, not on j). Also eachf(Qi  ) is a 
closed path representing some product of commutators of the /~i. Repeating 
this argument, we see that f'(P~j) is a closed path in E (~), representing an 
element b' i (depending only on i). Clearly g,(b'i)=bi, so l+G_~g,(~zi(E)) 
-----•I(L). 

Theorem 4.2. Let A and B be locally indicable groups, and let G be the quotient 
of A * B by the normal closure of a cyclically reduced word r of length at least 2. 
Then the following are equivalent: 

(i) G is locally indicable; 
(ii) G is torsion fi'ee; 

(iii) r is not a proper power in A * B. 

Proof That (i)~(ii) is immediate from the definition of locally indicable, and 
that (ii)~(iii) is Corollary 3.5, so it remains to prove (iii)~(i). Suppose then 
that r is not a proper power, and G is not locally indicable. 
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Choose presentations ~A, ~B for A, B respectively, and let K be the disjoint 
union K(~A)~K(~B). Attach a 1-cell e to K, connecting the two 0-cells of K. 
Then rcl(Kw{e})~-A*B~_n(f#,X), where X is the tree with one edge and 
(f~, X) has vertex groups A, B, and trivial edge group. The cyclically reduced 
word r of A * B corresponds to a cyclically reduced closed word w in (fr X), 
and w can be represented by a cyclically reduced closed path P in K(1)u {e}. 
Form a 2-complex L by attaching a 2-cell to K u {e} along P. Then (L, K) is an 
elementary reduction, and ~1 (L) ~ G. 

Since G is not locally indicable, Lemma 4.1 applies, and there is a tower 
g: E ~ L  such that 

(a) HI(L')=0;  and 
(b) g,(nl(E)) 4:1 in rCl(L ). 
Since L' is finite, there is no loss of generality in assuming it to be minimal 

with respect to (a) and (b), that is no proper connected subcomplex also 
satisfies these properties. Since each component of K has locally indicable 
fundamental group, it follows from (a) and (b) that g(L')~K. Hence, by Lemma 
2.1, there is an elementary reduction (E, K') which is carried to (L, K) by g. 

Suppose first that E \ K '  has no 2-cell. Then by (a) it follows that K'  is 
disconnected, say K'=K'lWK'2, and so Hl(K'i)=0 for each i=1,2.  By mini- 
reality of L', we must have g,(nl(Ki))= 1 in rci(L), otherwise K'; also satisfies (a) 

' ' E 1, contradicting and (b). But rcl(E)=Tzl(K1)* rci(K'2), so g,(rcl( ))= (b). 
Now suppose E \ K '  has a 2-cell. Then at least one component K" of K' has 

HI(K")=O. By minimality of L' we must have g,(rcl(K"))=l  in rci(L ). Hence 
by Corollary 3.6 (since w is not a proper power) it follows that K'=K" is 
connected, and (E, K') is an elementary collapse. In particular, rct(K')~rc~(E) is 
an isomorphism, so g,  (rci (E)) = g,  (rcl (K')) = 1, again contradicting (b). 

In either case, we have obtained a contradiction. Hence (iii)~(i), and the 
Theorem is proved. 

Corollary 4.3 (Brodskil I-2]). All torsion-free one-relator groups are locally 
indicable. 

Corollary 4.4 (Brodskii [-2]). One-relator groups have no non-trivial finitely 
generated perfect subgroups. 

Proof If G is a one-relator group, then there is an exact sequence 

I ~ N ~ G ~ H ~ I ,  

where N is the normal closure in G of the root of the defining relator, and H is 
a torsion free one-relator group. Now N is a free product of finite cyclic 
groups [6], and so has no non-trivial finitely generated perfect subgroups. But 
neither has H, by Corollary 4.3, and hence neither has G. 

Corollary 4.5. Suppose the group G has a reducible presentation with no proper 
powers. Then G is locally indicable. 

Proof Let ~ be a such a presentation. Since G is the direct limit of the groups 
presented by finite subpresentations of ~, it is sufficient to consider the case 
when r is finite. The proof is by induction on the number of defining relators 
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in ~. In the initial case there are no defining relators, so G is free. The 
inductive step is provided by Theorem 4.2 with B free. 

The following consequence of Theorem 4.2 was pointed out to me by S.D. 
BrodskiL Let us call a group G equationally closed if every nontrivial equation 
over G has a solution in G. That is, if F is a free group and N is the normal 
closure in G * F  of a word w not belonging to any conjugate of G, then the 
canonical map G---,(G * F)/N is a split injection. 

Corollary 4.6. Every locally indicable group can be embedded in a locally 
indicable, equationalIy closed group. 

Proof Let G be locally indicable, and let F be a fixed free group of countably 
infinite rank. Any element w~G * F not in any conjugate of G can be uniquely 
expressed w = u  m where m > l  is an integer, and u is not a proper power. By 
Theorem 4.2 and the Freiheitsatz [12], G embeds in a group G(u) in which the 
equation u = 1 (and so also w = 1) has a solution. If G' is the free product of all 
such G(u), amalgamated over G, then G' is locally indicable, by an inductive 
argument using Theorem 4.2 and the Freiheitsatz. Also every nontrivial equa- 
tion over G has a solution in G'. Define G o = G, and inductively G i = GI_ 1 for 
i>  1. Then G embeds in the locally indicable, equationally closed group G" 
= ~ G i .  

5. Asphericity 

We begin this section with a result similar to Lemma 4.1. 

Lemma 5.1. Let L be a connected, non-aspherical 2-complex. Then there exists a 
tower g: E--*L such that 

(a) H i ( E ) = 0 ;  and 
(b) g,(~z(L'))40 in ~2(L). 

Proof Since L is non-aspherical, 7c 2 (L)40.  

Choose 7 4 0  in ~2(L)c  ~2(L, L(1)). Then there exists a 1-connected planar 2- 
complex D, an element ~ercz(D,D") ), and a combinatorial map f :  D ~ K  such 
that f,(c~)= 7. (As in Lemma4.1, take n to be a wedge of complexes, each 
consisting of a disc with subdivided boundary, connected to the base point by 
a subdivided arc.) 

Let 
E 

D ~ L  

lifting of f ([12], Lemma 3.1), and define be a maximal tower 
= f,(o:)~g2(L' , L'(I)). 
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Let ~: n2(IJ, E(1))--*nl(IJ ti)) denote the boundary map. Then g,(0/3)--1 in 
ni(L(l)). But g,:nl(E(1))-~nl(L (l)) is injective, because g is a tower. Hence 
/~Ker~?=7~2(L'), and so 0#7=g,(f l )6g,(n2(E))  in 7c2(L), showing (b). 

That (a) holds is a consequence of the maximality o f f ' ,  since H 1 (D)= 0. 

Theorem 5.2. Let L be a connected 2-complex with H2(L)=0 and nl(L ) locally 
indicable. Then L is aspherical. 

Proof Suppose L is not aspherical. Then by Lemma 5.1 there is a tower 
g: L'~L such that H i ( E ) = 0  and g,(n2(E))#0 in n2(L ). 

Since ni(L ) is locally indicable, g , (n l (E ) )= l  in nl(L), so g lifts over the 
universal cover q: L ~ L ,  

L 

E ~L. g 

Since H 2 ( L ) = 0  , it follows from [12], Lemma 3.2 that H2(E)=0. 
From the commutative diagram 

h 
nz(L' ) , H z ( E ) = 0  

~(L) ~ ,H~(L) 

it follows that g,(7~2(LI))=0 in n2(L ), so g.(n2(L'))=0 in ha(L), a contradiction. 
Hence L is aspherical. 

Theorem 5.3. Suppose (L, K) is a simple reduction with a 2-cell whose attaching 
map does not represent a proper power in nl(K~Ltl)),  Suppose also that each 
component of K is asphericaI with locally indicable fundamental group. Then L is 
aspherical. 

Proof Let (fq, X) denote the graph of groups corresponding to the reduction 
(L, K)(see w 2). Up to homotopy, we may assume the 2-cell of L \ K  is attached 
along a cyclically reduced path in L (1) which spells out a cyclically reduced 
closed word w in (~, X). Clearly w is not a proper power. 

Suppose L is not aspherical. Then by Lemma 5.1 there is a tower g: E ~ L  
such that H i ( E ) = 0  and g.(n2(E))#0 in n2(L ). Since E is finite, we may 
assume without loss of generality that E is minimal with respect to these 
properties, that is there is no proper connected subcomplex K' of L' such that 
HI (K ' )=0  and g,(rcz(K'))4=0 in rcz(L ). From this assumption we derive a 
contradiction. 

Since K is aspherical and g.(rcz(L'))=t=0 , it follows that g(E)$K.  Hence, by 
Lemma, by Lemma 2.1 there is an elementary reduction (E,K') which is 
carried to (L, K) by g. 
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First suppose that E \ K '  has a 2-cell. Since H~(E)=0, it follows that 
H I ( K " ) = 0  for some component K" of K'. Since ~zl(L ) is locally indicable, by 
Theorem 4.2, it follows that g , (~ t (K" ) )= l  in 7rl(L ). Hence, by Corollary 3.6, 
K " = K '  and (E, K') is an elementary collapse. Thus HI (K ' )=0  and g,(~2(K')) 
= g,  ( ~  (E)) ~= 0, contradicting the minimality of E. 

Now suppose that E \ K '  has no 2-cell. Since Ha(L')=0, it follows that K' 
has 2 components, say K'  1 and K2, and that HI(K'O=O=HI(K2). Also n2(E) 
is generated as a ~zl(E)-module by the images of ~z2(K'l) and ~zz(K~). Since 
g,(~2(E))=~0, at least one of g,(zc2(K0),' g,(~2(K~)) is non-zero, contradicting 
the minimality of E. 

In either case we have obtained a contradiction, so L is aspherical. 

Corollary 5.4. A reducible presentation with no proper powers is aspherical. 

Proof It is enough to prove the result for finite presentations, and this is done 
by induction on the number of defining relators. The inductive step is provided 
by Theorem 5.3 and Corollary 4.5. 

The following examples show that the condition on proper powers in 
Corollary 5.4 is essential for any form of asphericity to hold. 

Example 1. G = SL2(~ ) has a reducible presentation (x, y lx 4, x-2  y3), but qpd G 
= C O .  

Example2: G = g  x;g/m has a reducible presentation (x, ylx", [x ,y]) ,  but 
qpd G = oo. 

Example 3. G=Sa, the symmetric group on 3 letters, has a reducible pre- 
sentation (x, ylx 2, x yx  y-2),  but qpd G=4. 

Example 4. G=2g has a presentation ( x [ - )  which is aspherical in any sense, 
but also a reducible presentation ~ :  (x,y,z]x 2, x y x y  -2, x z y z  -1) which is not 
aspherical in any sense: K(~) has the homotopy type of S 1 v S 2. 

Note also that Chiswell [4] and Sieradski [213 have constructed examples 
of aspherical presentations of the trivial group which are not diagrammatically 
aspherical (aspherical in the sense of Lyndon and Schupp [-17]). Chiswell's 
example and one of Sieradski's are reducible presentations (with no proper 
powers). 

6. 3-manifold Groups 

The following shows that a large class of 3-manifolds have locally indicable 
fundamental groups. 

Theorem 6.1. Let M be a connected, orientable 3-manifold with rc2(M)=0. Let G 
be a non-triviaI finitely generated subgroup of ~cl(M ) with Hi(G)--O. Then M is a 
rational homology 3-sphere (in particular M is closed), and G has finite index in 
rcl(m). 

Proof Let 34 denote the covering of M corresponding to the subgroup G of 
~I(M). Since G=~I(1Q ) is finitely generated, it follows [19] that ~,1 contains a 
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compac t  submani fo ld  N such tha t  the inc lus ion- induced  m a p  r c l ( N ) ~ z l ( M  ) is 
an i somorphism.  Since H 1 ( N ) =  H ~ (G)=  0, it follows f rom Poincar6  dual i ty  that  
H I ( ~ N ) = 0 ,  so 0 N  consists of  a finite number  $1, . . . , S  n of  2-spheres. 

Since rc2(M)=Tz2(M)=0, each S i separa tes  ]Q into 2 componen t s ,  one of 
which is a (possibly fake) 3-cell D i. N o w  N ~ D i ,  for otherwise  the i s o m o r p h i s m  
rcl(N)~Th(M ) ~ G  would  factor t h rough  7zl(Di)= 1, con t rad ic t ing  the hypothes is  
G # I .  Hence  M = N ~ D ~ u . . . ~ D ~ .  

In pa r t i cu la r  1VI is closed, so M is closed, and  G has finite index in n l (M ). 
Since H i ( G ) = 0 ,  it follows tha t  H i ( M ) = 0 ,  so H I ( M ; I I ~ ) = 0 ,  and  M is a 
r a t iona l  h o m o l o g y  3-sphere, as claimed.  

CorolLary 6.2. Let M be a compact orientable 3-manifold. Then either rcl(M ) is 
locally indicable, or M has a connected summand which is a rational homology 3- 
sphere but not a homotopy 3-sphere. 

Proof. Let  M = M I # . . .  # M  n be a p r ime  fac tor i sa t ion  of  M [18], so that  n~(M) 
=rc t (M1)* . . . *1h(Mn) .  If  n l ( M  ) is not  local ly  indicable,  then  some nl(Mi) is 
not  local ly  indicable.  In  par t icular ,  zc~(M~)~r so n2(Mi)=O. Hence  M~ is a 
r a t iona l  h o m o l o g y  3-sphere, by the Theorem.  

The  fol lowing is an immedia t e  consequence  of  Coro l l a ry  6.2. 

Corol la ry  6.3. Let f be a tame link in S 3. Then ~zl(S3\F) is locally indicable. 
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