Acta Mechanica 36, 263—289 (1980) ACTA MECHANICA
© by Springer-Verlag 1980

A Theory of Viscoplasticity Based on Infinitesimal Total Strain
By
E. P. Cernocky and E. Krempl, Troy, New York
With 5 Figures

(Received May 12, 1978)

Summary — Zusammenfassung

A Theory of Viscoplasticity Based. on Infinitesimal Total Strain. A viscoplasticity
theory based upon a nonlinear viscoelastic solid, linear in the rates of the strain and stress
tensors but nonlinear in the stress tensor and the infinitesimal strain temnsor, is being
investigated for isothermal, homogeneous motions. A general anisotropic form and a
specific isotropic formulation are proposed. A yield condition is not part of the theory and
the transition from linear (elastic) to nonlinear (inelastic) behavior is continuous. Only
total strains are used and the constant volume hypothesis is not employed. In this paper
Poisson’s ratio is assumed to be constant. The proposed equation can represent:
initial linear elastic behavior; initial elastic response in torsion (temsion) after arbitrary
prestrain (prestress) in tension (torsion); linear elastic behavior for pure hydrostatic
loading ; initial-elastic slope upon large instantaneous changes in strain rate; stress (strain)-
rate sensitivity; creep and relaxation; defined behavior in the limit of very slow and very
fast loading. Stress-strain curves obtained at different loading rates will ultimately have
the same “‘slope” and their spacing is nonlinearly related to the loading rate.

‘The above properties of the equation are obtained by qualitative arguments based
on the characteristics of the solutions of the resulting nonlinear first-order differential
equations. In some instances numerical examples are given.

For metals and isotropy we propose a.simple equation whose coefficient functions can
be determined from a tensile test [Eqs. (31), (35), (37), (38)]. Specializations suitable for
materials other than metals are possible.

The paper shows that this nonlinear viscoelastic model can represent essential features
of metal deformation behavior and reaffirms our previous assertion that metal deformation
is basically rate-dependent and can be represented by piecewise nonlinear viscoelasticity.
For cyclic loading the proposed model must be modified to account for history dependence
in the sense of plasticity.

Eine viskoplastische Theorie fiir infinitesimale totale Verzerrungen. Eine visko-
plastische Theorie fiir nichtlineare viskoelastische Festkorper, linear in den Geschwindig-
keiten des Verzerrungs- und Spannungstensors jedoch nichtlinear im Spannungstensor und
dem infinitesimalen Verzerrungstensor, wird fiir isotherme, homogene Bewegungen be-
trachtet. Eine allgemeine, anisotrope Form. und eine spezifisch isotrope Formulierung
werden vorgeschlagen. Eine Fliefibedingung ist in- der Theorie nicht enthalten und der
Ubergang von linearem (elastischem) zu nichtlinearem (inelastischem) Verhalten ist konti-
nuierlich. Nur totale Verzerrungen werden verwendet; die Hypothese der Volumenkonstanz
wird nicht herangezogen. Die Poisson-Zahl wird als konstant vorausgesetzt. Die vor-
geschlagene Gleichung kann reprisentieren: Anfinglich linear elastisches Verhalten;
anfianglich elastisches Verhalten fir Torsion (Zug) nach beliebiger Vorverzerrung (Vor-
spannung) durch Zug (Torsion); linear. elastisches Verhalten fiir rein hydrostatische Be-
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lastung; anfdnglich elastischer Anstieg nach sprunghaften Wechseln in der Verzerrungs-
geschwindigkeit; Spannungs- (Verzerrungs-) Geschwindigkeitsempfindlichkeit; Kriechen
und Relaxation; definiertes Verhalten im Grenzbereich von sehr langsamer und sehr
schneller Belastung. Spannungs-Verzerrungskurven zufolge unterschiedlicher Belastungs-
geschwindigkeiten erreichen denselben Anstieg und ihr Abstand hingt nichtlinear von der
Belastungsgeschwindigkeit ab.

Die obigen Eigenschaften der Gleichungen werden durch qualitative Argumente fiir die
Charakteristiken der Losungen von nichtlinearen Differentialgleichungen erster Ordnung
erhalten. In einigen Fillen werden numerische Beispiele angegeben.

Fiir isotrope, metallische Werkstoffe wird eine einfache Gleichung vorgeschlagen, deren
Koeffizientenfunktionen aus einem Zugversuch bestimmmt werden kénnen. [Gln. (31), (35),
(37), (38)]. Spezialisierungen fiir andere Materialien sind méglich.

Die Arbeit zeigt, daB dieses nichtlineare viskoelastische Modell wesentliche Merkmale
des Metalldeformationsverhaltens beschreiben kann und unterstreicht die frithere Behaup-
tung, dafl die Metalldeformation im wesentlichen geschwindigkeitsabhingig ist und durch
abschnittsweise nichtlineare Viskoelastizitit dargestellt werden kann. Fir zyklische
Belastung muB das vorgeschlagene Modell modifiziert werden, um die “history dependence
in the sense of plasticity” wiedergeben zu kénnen.

1. Introduction

The description of inelastic behavior, specifically of metals, has in recent
years attracted considerable attention. This interest is caused by demands of
technology and by the availability of powerful computation methods in the design
office. In addition recent developments in material test techniques show that the
clagsical idealizations of real material behavior are not adequate.

There were for a long time three almost separate disciplines of metal ‘“plasti-
city”. At low homologous temperature rate (time)-dependence was considered in
dynamic plasticity, seefor example Cristescu [1], whereas rate (time)-independence
was assumed in static plasticity, Hill [2], Prager [3] and others. At high homol-
ogous temperature creep is important and separate creep theories were developed,
Odquvist [4], Rabotnov [5], Hoff [6]. These theories were then combined with
rate (time)-independent plasticity for the representation of metallic material
deformation behavior, Leckie [7], Corum et al. [8], under quasi-static conditions.

A growing body of evidence suggests that inelastic deformation of metals is
basically rate-dependent, Rice [9], Perzyna [10], Kratochvil [11], Miller [12],
Hart [13], Eisenberg, Lee and Phillips [14], Phillips and Riceciuti [15]. Recent
investigations also aim. to give a general representation of plasticity which com-
bines the above approaches and at the same time improves upon the capability of
reproducing real metal deformation behavior, since the capabilities of the classical
theories were shown to be in need of improvement, Krempl [16].

A review was made of the experimental foundations of static plasticity theory
emphasizing the experiments designed to differentiate between incremental,
physical, and deformation theories of staivc plasticity, Edelman [17]. In almost all
instances creep at room temperature was mentioned as a problem which had to be
avoided. “Creep causes great difficulty in full interpretation at high values of
strain. It is still a confusing factor in the range of small strains investigated.
However, no correction was made for time effects”, Drucker and Stockton [18].
Recent experiments on Type 304 stainless steel, copper, brass, and an aluminium
alloy, Krempl [19], Hart et al. [20], showed that rate sensitivity, creep, and relax-
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ation were present at room temperature. These facts attest further to the rate-
dependent formation of structural metals at room temperature.

In previous papers, Krempl [21], [22], an operational definition of history
dependence in the sense of plasticity, of aging, and of rate-dependence was given.
As a consequence of these definitions we asserted that viscoplasticity cannot be
distinguished from nonlinear viscoelasticity while a material is loaded, and we
postulated that viscoplasticity is piecewise, nonlinear viscoelasticity. Rather than
postulating state variables and their growth laws, the introduction of new origins
and the possible updating of the material parameters provides for the necessary
representation in constitutive equations of the internal microstructural changes,
Krempl [21].

Here we propose a relatively simple nonlinear viscoelasticity law based upon
small total strain; it is linearin thestress rate and strain rate tensors but nonlinear
in the stress and strain tensors. The anisotropic form exhibits key characteristics
of metal deformation behavior. Subsequently an isotropic formulation is given
which exhibits creep, relaxation, and rate-sensitivity in a unified way. Only
total strains are employed, the constant volume assumption is not used, and the
model can predict linear elastic response under hydrostatic loading. The axial and
torsional equations exhibit similar solution characteristics. In uniaxial defor-
mation the specific isotropic equations proposed herein reduce to the previously
proposed uniaxial equations, Cernocky and Krempl [23], Liu and Krempl [24],
which were shown to represent many features of rate-dependent metal deformation
behavio?. The attempt here is not to present general theories but rather a relatively
simple model complex enough to reproduce qualitatively key features of metal
deformation as long as there is no cyclic loading involved. The modifications of
this nenlinear viscoelastic model to fully represent metallic behavior for cyclic
loading are not a subject of this paper. They were in principle given previously,
Krempl [21], and will be developed for the constitutive equation of this paper in a
future publication.

2. General Properties of the Anisotropic Model

We consider only homogeneous motions and propose for small strain & and
strain rate & and associated stress ¢ and stress rate ¢ the constitutive equation

M[o,¢] & + G[¢] = 0 + K[o,6] 6. (1)

In the above square brackets a denote function of the quantities inside the brackets
and a dot designates differentiation with respect to time.

The fourth order tensors M and K linearly transform é and &, respectively.
They are required to be symmetric, positive definite linear transformations for
all values of their arguments such that

MijuByBy >0 and  KjyB;iBy >0 (2)

for all nonzero tensors B. Because of this requirement the inverses of M and K
exist.

The function G[&] is constructed so that G[0] = 0, and we usually require

18*
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it to be odd so that
G[—s¢] = —~G[e]. (3)

Further, we usually require that G be a bijective function over all real tensor
values. In this case we ensure that (1) is an equation of state, i.e., given any three
tensor variables in (1) the fourth tensor variable is uniquely determined.

For zero ¢ and zero 6, 6 = 0 and & = 0 as well as 6 = G[¢] are solutions to (1).
The function G[e] represents for given strain & the locus of ¢ for which both the
stress rate and strain rate are zero; the origin is one of these points.

A generalized creep test! is performed by setting 6 = 0 and 6 = 6% for t = ¢,
where ¢° is a constant tensor. Eq. (1) reduces to

Mé = 6° — G[e] )

which must be solved subject to the initial condition &[¢] + 0 to obtain & = €]
— g[t,], the strain accumulated in the creep test.
Similarly, for a generalized relaxation test & = 0 and & = &° for { = ¢, such
that
K6 = G[&°] — o. : {5)

Again (5) has to be solved for a suitable initial condition o[t} 4 0.

Although both tests follow different paths the stress rate will be zero at the
stress 0 = G[&°] and the creep rate may become zero at a strain which satisfies
0° = G[¢] 2. We conclude that the relaxation test (5) will always reach equilibrium
whereas the creep test may not. However, if G is bijective for all real & then both
tests terminate on the G{&] curve.

If we multiply (4) by é and contract we obtain

(6% — Gilenl) 8, = 0 (6)
and similarly from (5)
(Gijlet,] — 0ij) 645 = 0 (7

because of the positive definiteness of M and K.

In the case where G is bijective so that the inverse of G exists, for every tensor
& = constant the function & may be utilized to construect a surface. Then in the
case of 6 = G[§&], we obtain

&gy = Gij'[ow] G7lonl.- (8)

For each constant value of &, (8) represents a surface in stress space which may be
isotropic or anisotropic. For zero strain (8) degenerates into the origin. With
increasing strain the surface defined in (8) “increases in size’, since the left-hand
side represents the square of the magnitude of the strain tensor. Kq. (8)
represents for each constant & the surface for which there are zero rates of stress
and strain.

1 By generalized creep test we mean a test condition where all the components of ¢ are
constant; some may be zero.
% For a given G such an & may not be found.
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Relation Between M and K

Using the chain rule we may rewrite Eq. (1) as

(M[a, £] — K[o, ] Z ) i — 0 — Gle] )
or as
(M[G, ¢l -2% — Ko, e]) 6 =6 — Gle]. (10)

We are interested in the response of (1) with initial conditions such that
6 — Glg] =0, ie, we want to compute the response of (1) upon leaving the
“equilibrium stress-strain curve” [15] at any point &.

For this case (9) and. (10) represent linear, homogeneous equations in the
strain and stress rates, respectively. The rates can be arbitrarily imposed and ¢
and & are also arbitrary. Consequently, the expressions in the parentheses must
vanish when ¢ = Gf¢] and we obtain

o0
KM, g = e (11)
or
a
(KM, _ gy = 3_2 (12)

If we select K~*M|,_ g;,; = ¢ where ¢ represents the fourth-order tensor of the
elastic constants, then (11) and (12) show that all curves depart from the equi-
librium stress-strain curve 6 — G[&] = 0 with elastic “slope”. (Note, this in-
cludes the origin. Also it is impossible to depart from ¢ — G[g] = 0 by a creep
or relaxation test.) ,

Following Cernocky and Krempl [23] we now impose

KM =¢ (11a)

for all values of ¢ and &, since this relation leads to several useful properties in the
model. Note, however, that K and M remain nonlinear functions; only their
combination according to (11a) is constant.

A consequence of condition (11a} is the ability to mode! realistically the
subsequent response of a metal in torsion aftera preload in tension. Such experi-
ments are reported in the plasticity literature. Most of the experiments show,
Edelman [17], that in the presence of arbitrary axial preloadmg the initval response
in torsion is purely elastic.

Appendix T demonstrates that (1) subject to (11a) and additional specified

c . o6 o s . s
restrictions on M, K, and plls reproduce the initial elastic response for various
&

material symmetries including isotropy, transverse isotropy, and orthotropy. We
therefore have demonstrated that the rate-dependent Eq. (1) can reproduce a key
result which is normally considered to be in the domain of rate (time)-independent
incremental plasticity theory. Note that we have used total strains only.

- Formally, we can at any time split the straing into elastic and inelastic strains
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which are, however, rate-dependent. To demonstrate this we rewrite (1) using
(11a) and obtain

3
elt] = [ M{o[«] — Gle[7]]) dv + ¢ %o (13)
0

or

gt] = &[] + e[t] ]
where
(14)

ginft] = [ M*(o[7] — Gle[z]]) dv J

and where we have assumed that for £ < 0,6 =0 and & = 0.

Behavior at and Near 6 = 0 and ¢ = 0

We assume that Gfe] is linear in & in the neighborhood of the origin &;;e;; < &
< 1 where £ is a suitable constant, and we investigate the two possibilities

ich —e (15a)
de <]

and
a6 =& (15h)
de syyey <€

where ¢ and ¢ are both constant tensors.
Using (11a) and (15a), Eq. (9) can be rewritten as

K(c——af)s:a—ce. (15¢)
o€

The initial material response predicted by (15¢) is independent of the strain rate
and is that of a linear elastic material. Alternatively when (15b) is used instead
and when K is assumed to be constant in the neighborhood of the origin, then the
initial response predicted by (1) is that of a linear anisotropic viscoelastic solid.

The model proposed in (1) subject to (11a) reproduces initial linear elastic
response. Also in the neighborhood of ¢ = 0 and & = 0 linear elastic or linear
viscoelastic behavior can be modeled.

A Particular Dependence of M and K Upon 6 and &

Thus far the dependence of K and M upon ¢ and ¢ has not been stipulated and
the previous results are valid for all K and M. If we make these functions depend
upon the difference {6 — G[¢]) then additional desirable properties can be modeled.
Specifically, Eq. (9) can be rewritten as

K[o — G[e]] {c — %g} ¢ =0 — Gle] (16)
and from (4) and () we obtain, for the generalized oreep and relaxation test,

respectively
¢ = ¢ K e* — Ge]] (6® — Gle]} (17



A Theory of Viscoplasticity Based on Infinitesimal Total Strain 269

and

—6 = K6 — G[£']] {6 — G[]}. (18)
Suppose that a generalized constant strain rate test with & = 2 is conducted

with the hypothetical material represented by (16) and that we observe EL

. £liox
to be constant; then we must conclude that 6 — G[¢] = A where A is a constant
tensor and we can construct surfaces

8¢5 = 037" Gle] + A] 03[ Gle] + 4] (19)

where £ is some constant strain field. For 4 = 0 we obtain the surface of Eq. (8).

Therefore in a creep or relaxation test started from any point on a curve for

& =% on which %ﬁ is observed to be constant, the initial creep rate or the initial

&

relaxation rate is independent of the actual value of ¢ and & depending only
upon {6 — G[¢]}.

We now derive a specific and simple isotropic version of (1). This version

permits the identification of the coefficient funections from experimental results

and the simulation of real experiments by numerical integration of the resulting
first-order nonlinear differential equations.

3. An Isotropic Formulation

A specific isotropic formulation can be obtained by using the following
requirements which are deemed suitable for metals:
The isotropic equation is to be derived from (1).

The tensors M and K must be tensors of constants times a respective
scalar-valued function of the invariants of the stress and strain tensors.

For hydrostatic stress (strain) states the classical linear elastic relation
must be obtained.

The constant volume assumption is not imposed upon this theory, because
a recent literature survey has not produced experimental evidence to
support this assumption in the small strain range, Hewelt and Krempl [25].

The isotropic equation must reduce to the uniaxial formulation [23] when
the uniaxial deformation field is imposed.

With these stipulations and the symmetry of ¢ and & in mind we set
Mijap = 610 M5 + M30;;0, (20)
Kijap = 0:a0pp Ky + K30500 (21)

where M; and K; (7 = 1, 2) are isotropic scalar-valued functions of invariants of
the stress and strain tensors. When s represents the deviatoric stress, e the

deviatoric strain and G¢ the deviatoric component of G, G?]- =Gy — —%— Gubijs
we may rewrite (1) using (20), (21) as

Mléij — Kléi]' = Sij — G‘ZJ[E] (22)
(Ml + 3M2) éaa - (Kl + 3K2) 6'ua = Oga — Gaa[s]' (23)
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The previously proposed uniaxial constitutive equation is [23], [24]
m[o, e} ¢ — ko, e] 6 = o — g|e] (24)3

where ¢ is the axial stress and ¢ is the gxial strain in the uniaxial deformation field.
We stipulate that in this deformation field Egs. (22) and (23) must reduce to (24).
This requires that when the strain tensor is

1 0 0
[ely=¢|0 —» O (25)

0 0 —y

then the tensor G must assume the specific form

0
0 (26)
0

oo O

1
[G[s]]ij = g[a] 0
0

where v is Poisson’s ratio which for this paper is considered to be a positive con-
stant less than 1/2. In addition, the coefficient functions M ; and K, must assume
the specific forms:

__ mfo, €]
=T, 27

. ymlo, €]
P — 2 (28)
K, = ko, €] (29)
K, = 0. (30)

To generalize our construction of M; and K; and meet the requirements of
isotropy and those embodied in (27)—(30) we assume for all deformation fields the
forms presented in (27)—(30) except that we replace the stress therein by a
suitable invariant ¢ of the stress tensor, and we replace the strain therein by a
suitable invariant ¢ of the strain tensor. These invariants are restricted by the
requirements that in a uniaxial deformation field, ¢ must reduce to the axial
stress ¢ and @ must reduce to the axial strain e. An example of a choice suitable
for metals is

3 . \if2 ‘
== (Fey) [+ (31)
and
R N 3 \1/2 ;

Additional pairs of ¢, ¢ appear in Table 1. We remark that the ¢, ¢ pairs are
related by the restriction that when on the surface defined by (8), i.e., when
g;; = (], then ¢ = g[e]; this constrains ¢ for a given choice of ¢.

3 From [23] m[ ] and k[ ] are restricted to be positive and bounded.
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From (27)—(32) we obtain the constitutive representation

oy — ks 9l 8y = 5y — O] (33)
m[@, ¢] . LA L _
1 — 2v) €aa k@, ¢] 640 = Oua Gool 8] (34)

Eq. (25), (26) severely restrict the representation of the functions G[€];
a specific construction of & appears in Appendix 1I. We note that the argument
of G and G, is the total strain tensor & and not its respective deviatoric and
hydrostatic components. Therefore, Eqs. (33) and (34) must be regarded as
coupled equations.

Alternatively (33) and (34) may be combined to obtain

m[®, pl by + Gilel = oy -+ ki, @] 64 (35)

where i;; is defined by

P i Y€ag i
L& T Sy 2v) % (36)
Also from (11a) we require that m{ | and %{ ] always be related through the ratio
m[ ]
od 0 P 7 37
5 (37)

where E is the modulus of elasticity. (Appendix III discusses the consequences of
mfk 3 B.)

In view of (11a) and the discussion associated with (16) we now define the
invariant ‘

T = {(0;; — Gyle]) (o5 — Gyle]))M2. (38)

Individually we now select m[ | and k[ ]to be functions of I"alone. In the uniaxial
deformation field, this corresponds to m = m[a — g[e]] and k = k[a — g[e]]
in (24)%

Using the chain rule (35) may be rewritten using (37) as

oy ooy \ . o;; — Gil€]
o if __ Gy yLel 5
(E Oz 381cm) Fhm kL] 39)

Tt is easily seen that departure from the curves ¢y = G;[¢] is linear elastic.
Furthermore (39) predicts initial elastic shear response in the presence of axial
prestress (prestrain) and predicts initial elastic axial response in the presence of
shear prestress (prestrain); (see Appendix I for details). Fig.1 demonstrates
the initial elastic shear response predicted by (39) at various axial prestrains; for
ease in the numerical integration and since (A9) clearly shows that the ¢nitial
elastic response is obtained for any k-function, £ was chosen to be constant.

4 Further motivations for this modification appear in Part 4 and in [23].
i
5 T4

appears in (B5) of Appendix IL.
a‘c"km
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of 10-% 571, The pure shear and the pure tensile stress-strain curves at the same strain rates

are also shown. Note the initial linear elastic shear response is independent of the tensile

prestrain (prestrain values greater than .04 are only for the illustration of the mathematical
properties of the solutions). » = .3

Limating Behavior at Large Tvmes

Following the methods developed for the uniaxial case, Cernocky and Krempl
[23], we now transform (35) subject to (37) into an equivalent integral expression
and obtain with 6(0) = 0 and &0) =0

t t

— Gy Oy Gy B I
0;; = Gyle] + f {E aek; Bak;} {exp f k[]’[x]]} Spm d. (40)
0 T

Provided the limits of aG”[a[t]] » &1m and k[F[t]] are bounded and finite as

t — o0, Eq. (40) can be used to determme the response for large times following
the procedure of Cernocky and Krempl [23]. We obtain

. oy oGy
iirg {Uij — Gii[e[t]]} = {(E E’;’;‘ . )Ekmk[F]} e (41)
and
lim doy; — aGii[s[f’o]] . (42)
tsco Ofkm -

Eq. (42) says that ultimately the ““slopes” of stress-strain curves are equal to the
“slopes” of the G-curves.
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Performing the limits in (41) and (42) may appear unrealistic and in violation
of the small strain assumption. In reality this is not so since the solutions of (40)
are rapidly asymptotic to these limits. This has been demonstrated in the uniaxial
case, Liu and Krempl [24], Cernocky and Krempl [23], and will be reaffirmed by
some of the examples to be given later, see specifically Fig. 2. Therefore (41) and
(42) may be used as approximate relations when time is finite.

If we assume that G;; is approximated by (B8) and that ¢ > X%, then from
(41) and (42) with (B9) we have for large times

oy
(03 — Gg) ~ (B — By) S8 éuufo0] Ty ] (43)
and
i ~ E, @_ii, (44)
Degm Oegm

respectively. In the above E; denotes the constant slope of the uniaxial stress-
strain curve in the plastic range. Again (43) and (44) may be used as approximate
expressions for finite time.

Consider now a uniaxial tensile test with strain ¢ and performed with constant
strain rate « and let oy, = g, then from (40) using (B1)

y : dx
o — gle) = zxf (B — g'[els])) (exp —_ fm) ds. (45)

0 8

Let X = lim (¢ — g[e[#]]); then from (45) or (43)

>0

X

ﬁ == (E d Es) . (46)

Similarly, from (40) the response in a shear test with constant shear-strain rate
é1p = &y = v, where 6y, = 0y, i8 obtained to be

t
(612 — Gralera; £a1l) = 7 f{ E_ 8G [ esals]; ealsT] _ 6012[812[5]3821[8]]}

1+ Oeyys] Oeg[8]
: (47)
: {QXP - f da } ds.
s k[ﬁ (ogelz] — Gl ele]; 821[»”0]])]
We let ¥ = lim (oy; — Gy,) and obtain, using (47) or (43)
t—o00
Y B — F
= £y (48)

Hyzy] 1+

where X and Y denote the respective heights of the axial and shear responses
above the axial and shear equilibrium curves. If & = y we see from (46) and (48)
that ¥ and X are different. If G' does not permit the approximation (B8) then

¢ For ¢ > X, glp] in Appendix II is assumed to be approximately linear.
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the right-hand sides of (46) and (48) also depend upon the choice of ¢. In this
case Eq. (41) applies.
For the invariant ¢, given in (31), (47) reduces to

t
_ 1 &19 V3 — Y o V3
(612 s’ [“ +”>D (a+ ”)f {E g [(1 + ) 812[8]}}
0

¢

dx
5(oray L [enl=]V3
k':]/2 ((0'12[ J V§ 9[(1 T ”):D]

The solutions of (45) and (47a) for various &« = y-values and a specific choice
of g[ 1 and k[ | are given in Fig. 2. The results were obtained with a computer
program developed by Liu and Krempl [24]. Note the nonlinear spacing of the
curves at various constant strain rate values in the axial and shear tests. This is
due to the dependence of the k-function upon {¢ — G} through the invariant I;
see the discussion in Cernocky and Krempl [23].

exp —

S

Limating Behavior for Very Lorge and Very Small Constant Strain Rates

The case of uniaxial deformation under limiting magnitude of loading rates is
considered in detail in Cernocky and Krempl [23]. We will consider here the
limiting loading rate cases for shear. We let é;, = & = y so that (47) applies, and
we define the transformation

Giale10s €215 '}/] = G(t)‘Elg——‘Egl:yt (49)
all other ¢;; =0

where &, is the stress response as a function of strain and parametric dependence
upon v is indicated. Proceeding we obtain

) E12 1 aG d 12
e = Gt [ {? B4 — Fh }GXP 1y f e
0

> (50)
+ f { B/ +

and where in this case

T2y ] = IMzy] = Vé (612 — Ghal212, 221])- (1)

£21

1/ dzyq
}exp Uy f r Ao

£2%%

We consider limiting slow loading rate and we let 7 — 0 in (50) to obtain

61olers, €215 0] = Gy (52>
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If (31) is used with (B1) then G, in (52) is given by

Gu= g [1@.1_2} (53)
V3 14

Appropriate representations for G, using the other g of Table 1 are easily ob-
tained, see Fig. 5.
Similarly for limiting fast loading rate we let v — co and we obtain from (50)

. E
)

&9 - (54)

B19le10, €215 0]

Eq. (62) shows again that & represents the equilibrium stress-strain
curves. The linear elastic response at high strain rate is due to the assumption (37).

Table 1. Invariants ¢ and §*-**

Invariant @ ¢
Subscript
1 M (1.5s;5555) 1/
(1 +7)
2 (lpljlpl])l/z (O'ij(fij)l/z
1.5 31% 1/4
’ : e(lyeilpz;’lll;:b) (1'55ii‘9i7'6abo'ab)l/4
1 1/2
4 it _\"® (LA sy + 5 (1= 20)° (o)
(1 4+ 2v%)
14 22
5 [ (1.5e56) + Ble)® T2 (L.5835845) (1 + ) 4- B(1 — 20)? ()2
[(1 + )R 4 Bl — 2v)? (1 + )2 + B(1 — 2w)?
=0

* From (B1) and 6 = G[&] we get ¢; = ¢[g;] ¢ = 1---5 and this represents an “effec-
tive” stress-strain diagram. _
** Only positive roots are intended.

Analogous results apply when any component of the strain (or stress) tensor is
applied at a limitingly fast or slow loading rate. Therefore, (39) or (40) predicts
linear elastic behavior in the limit of very fast loading.

If instead of (37) Eq. (C1) applies, then a nonlinear response in (54) is per-
mitted, so that (54) would become for all ¢ which satisfy (B3)

bulers, e 0] = 2 0, (55)
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Instantaneous Change tn Strain Rate

Suppose the strain rate is changed instantaneously at some point ¢! #: 0,
& 3£ 0 and corresponding time . Let & and & be the strain rates for ¢ < ¢,~
and ¢ > tgt, respectively. Then we derive from (39)

00 ;; oo;; o R R
D4 bl - g =g D, (56)
Oegm t=ty ey tety* -

The change in slope is therefore independent of 6! and &' 7. As a specific example
we consider

£ = b&t 67
where b is some constant. Then
| o 1 Jo;; alpi' 1 .
kK — = E s 1 2 - )
] (] e o

Let us now consider the case where the change in strain rate takes place when
(42) and the approximation (44) hold, i.e., if the strain rate is changed in the
“‘plastic region”. Under this condition (58) may be rewritten as

60'.. alp 1 E .1
= — (L] — — (1 - = 0.
{8‘9km t=tyt ( Oty ( b ( E )))} Sl 0 (59)
We assume that B/E < 1 as is true for most metals. Then we see that for o] > 1,
i.e., very large positive or negative changes in strain rate, the slope at ¢ = ¢+ is

approximately elastic. On the other hand if we reverse the strain rate, b = —1,
then the “slope” at ¢ = 4+ is approximately twice the elastic “slope”s.

Creep and Relaxation

Before a creep and relaxation test can be started from some value of the stress
and strain tensors we must reach these stress and strain tensors by another test.
this other test be terminated at time ¢ = #,, and up to this time we impose an
arbitrary constant strain rate s;;, so that é;;|,o, = »;;. We assume that ¢'[p] < E
so that (B7) is positive. Then from (40)

{03 — Gyle]} 25, =0 (60)
and. with this result from (39)

Oy Goyy o

fort <t¢,.
Because % can be arbitrary Kq. (61) asserts that the “slope” %g obtained in a
&

constant strain rate test cannot exceed the “elastic slope”. From (60) we deduce
that in a tensile or shear test with positive (negative) constant strain rate the

7 Note that this property is true even if the function % depends upon ¢, .
® These properties are shared by the anisotropic model as well; compare (16) with (39).
However, in this case we have not shown that (42) holds true at large times.
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corresponding components of ¢ — G are positive (negative). Both statements
require (B7) to be positive.

At t = t, the creep or relaxation test commences and from (35) using (37) and
(38) for ¢ > £,
o} — Gyjle

oy = S (62)
for the case of creep; for the case of relaxation
L Gyl — oy ;
Gy = —n (63)

where the superseript © denotes the quantity which is kept constant during a
specific test.

Using the interpretation of (60) given earlier, we can now state that the
axial and shear creep rates following the respective test with constant positive
(negative) strain rate are positive (negative). However, the relaxation rates have
the opposite sign of the corresponding creep rates. Since £ is positive, see Cernocky
and Krempl [23], the sign of a particular component of the creep (relaxation) rate
is always determined by the sign of the appropriate component of {6 — G}. The
initial loading determines thereforethesign of a particular component of the creep
and relaxation rates. Moreover, the creep (relaxation) rates are zero only if the
corresponding components of {¢ — G} are zero.

If the invariant ¢, or any other deviatoric ¢ together with (B 1) is used then
Ey — G = 0 for a hydrostatic state of strain and ¢ = & from (40). For this state
of strain and for deviatoric ¢ there is no creep and no relaxation. However, if a
nondeviatoric invariant ¢ was to be employed instead then creep and relaxation
can oceur for a hydrostatic state of strain.

4. Discussion

In the preceding the properties of a nonlinear anisotropic or isotropic consti-
tutive equation based on total strain were investigated. It has been shown that
this model can represent many qualitative features of metal deformation behavior
in a unified way, including

Initial linear elastic behavior

Initial elastic response in torsion (tension) after arbitrary prestrain (pre-
stress) in tension (torsion)

Linear elastic, rate-independent behavior for pure hydrostatic stress
(strain)

Initial elastic “‘slope” upon large instantaneous changes in strain rate in the
“plastic region” under any state of stress

Strain (stress)-rate sensitivity of the stress-strain curves
Defined behavior in the limit of very slow and very fast loading rates

Nearly rate-independent behavior for small strain rates and a proper
choice of the material function %
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Stress-strain curves obtained at different constant strain rates will ulti-
mately have the same slope.

The spacing of the stress-strain diagrams can be highly nonlinear. The
stresses at a given strain for stress-strain curves obtained with strain
rates differing by several orders of magmtude can be much less than an
order of magnitude different.

Creep and relaxation are included in a natural way

Relaxation will ultimately terminate, but both primary and secondary
creep are possible.

The creep rates have the same sign as the strain rates used to arrive at the
creep stress level. The relaxation rates have the opposite sign.

Initial creep and relaxation rates in tests started from a point in the

“plastic range” of a constant strain-rate tensile test depend only upon the
strain rate, and not on the particular values of stress and strain.

In the above we have used stress-strain curves, strain rate, creep, and relaxation
rate in a scalar sense. It is implied that the tensor equations of the paper are
specialized to suitable homogeneous deformations such as the tensile or shear
(torsion} test.

We have kept the equations as simple as possible, and the two remaining
coefficient functions in (35) subject to (37) and (38) can in principle be determined
from uniaxial tensile tests alone. Here we have assumed that Poisson’s ratio is
constant. A forthcoming paper will deal with variable Poisson’s ratio to remove
this restriction. The proper choice of the invariant ¢ in G will determine the
relation between the axial and shear responses as demonstrated in Fig. 2. The
isotropic formulation given in (35) is of course only ore of many that can be
derived from (1). Eq. (1) is itself a very specific choice.

But even the specific choice of (35) offers many possibilities. We have empha-
sized the application to metals, i.e., conditions (37) and (38) together with a
deviatoric ¢ in &. However, if a nondeviatoric ¢ is used in G while keeping (37)
and (38) we can model creep and relaxation under pure hydrostatic stress (strain).
Replacing (37) by (C1) offers other possibilities. Eq. (35) could be applied to
materials other than metals.

The nonlinear viscoelastic solid proposed herein is not a valid model for metals
if cyclic loadings are involved. Specifically, we contend that (1) or (35) subject to
(37) and (38) needs modifications whenever any one tensor component {e;; — G;;}
changes sign. Equivalently we need modifications when a loading path would
penetrate the surface defined by (8). These modifications will be discussed in a
subsequent paper and are stated in principle by Krempi [21]. Note that the model
holds for some nonproportional loading paths, see specifically Fig. 1. (Further it
can be seen from (17), (18) or (62), (63) that a creep or relaxation test does not
penetrate the surface defined in (8).)

We may therefore consider a combined creep and relaxation test of the
following character. Through proportional loading we reach a shear stress and an
axial strain which are subsequently kept constant. We have therefore creep in
torsion simultaneously occurring with axial relaxation.

19 Acta Mech. 36/3—4
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Considering (62) and (63) we see that the two tests influence each other
through the invariant ¢ in G and through the invariant I' in k. If the conditions
are such that only primary creep occurs we can compute from (62) and (63) the
final value of the shear creep strain as influenced by the shear creep stress and the
axial relaxation strain since this value does not depend upon the function k.

constant Shear Stress (ksi):

1 ksi ~ 6,894 Mpa

FINAL SHEAR STRAIN *107'

MW oR R u @ @

% oo 0. 08 0.12 .18 a. 24 0. 30
AXIAL STRAIN *107

Fig. 3. Simultaneous axial relaxation and shear creep. Final value of total shear strain in
primary creep at various constant shear stress values plotted vs axial constant prestrain
for a specific g-function and ¢ = @;; v = .3.

Fig. 3 shows a graph illustrating this relationship for a particular choice of G
and the ¢ of (31). Particular relaxation and creep curves for this test are given in
Figs. 4a and b, respectively, for a constant k. These curves reflect only the in-
fluence of the invariant ¢. A dependence of & upon I" would certainly alter the
detailed variation of the curves with time, but would not influence the qualitative
behavior.

No experiments duplicating the above calculations appear to be available for
metals. The trend predicted by our-equations has been observed by Lai and
Findlay [28] on polyurethane.

The present model was established as a rate-dependent model. It can predict
almost rate-independent behavior for limited ranges of strain rates through the
function k. If k is small then the exponential term in (40) can become very small.
If in addition the strain rates are small then the integral in (40) may be small
relative to G.

Although our approach differs conceptually from others proposed in the
literature, certain common elements can be identified.
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Fig. 4. a Axial relaxation curves with shear creep at constant shear stress occurring simul-

taneously. Material properties correspond to Fig. 3. ¥ = 1 hr.,-» Complement to Fig. 4a.

Total shear strain curves in shear creep with axial relaxation at constant axial strain
accurring simultaneously. Material properties are those used in Figs. 3 and 4a.

19%
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Eqgs. (16) and (35), (37) and (38) show that the behavior predicted by
these equations for a given stress (strain) rate tensor is determined by the value of
{6 — G}. Because of this feature our equation is related to the overstress model
which was previously proposed by Malvern [29], see also Perzyna [30].

The curve &' can be interpreted as the “‘equilibrium” stress-strain curve of
Eisenberg et al. [14] and (8) could be considered an equilibrium surface. Con-
centric to this surface are the ones defined in Eg. (19). Eq. (42) shows that a
constant strain-rate test can ultimately reach 6 — G = 4 where 4 is constant.
On the surfaces A = const. the inelastic strain rate is constant, see Eq. (14); it is
zero for A = 0. Therefore, the surfaces 4 = const. could for a given & be inter-
preted as the 2-surfaces proposed by Rice [9] and G[¢] for a given & would be
identified as the rest stress, see Rice [9]. Further if we consider the approximation
of rate independence discussed earlier then the surfaces A = const. are close
together as proposed by Rice, see Fig. 2 in [9]. Eq. (18) clearly shows that the
creep strain rate is dependent on ¢ — G as discussed by Eisenberg et al. [14],
p. 1249.

The concept of a rest stress or back stress is also employed in the basically
rate-dependent formulations of Miller [31] and Krieg et al. [32]. In their approach
the inelastic strain rate is zero when the applied stress reaches the rest stress. This
property is shared by the present model.

The above shows that our theory contains elements of other approaches. The
connecting link is the {0 — &/} dependence of our final equations.

This dependence together with the specialization (11a) or (37) assures that the
solutions depend on ¢ and & only through {6 — &G}. As a consequence the solutions
have properties representative of actual metal deformation behavior. These
properties include:

Initial elastic response upon departure from ¢ = G[¢], Egs. (9), (10),
(11a) and (39).

The existence of a ‘‘steady-state” condition for constant strain rate,
Eq. (41). If in (41) ¥ would depend on ¢, ¢ instead of I" then &[¢, ¢]l;_
would have to be constant for {6 — G} to be constant®. In this case the
{o — G}-curves for various constant strain rates would be linearly spaced,
see (41) and [23]. A creep or relaxation test started from the steady-state
condition would in this case be linear in stress, see (62) and (63). If & is
made to depend on [” then both nonlinear spacing of the stress-strain
curves at various constant strain rates results and the creep and relaxation
curves originating from the steady-state position of the stress-strain curve
depend nonlinearly on stress in accordance with the qualitative behavior
of metals.

There are other desirable properties as a consequence of the {¢ — &} depend-
ence of the equations. They are discussed in [23] for the uniaxial case and carry
over to the multiaxial case. For details in the uniaxial case the reader is referred to
Cernocky and Krempl [23] and Liu and Krempl [24].

® In making this argument we assume I to be constant. For realistic cases

8Gy; %k
< E so that small changes of —8—’L with € have little effect on 6 — G.
km

o0
8skm
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Appendix I

Torsional Response in the Presence of Axial Prestress.
The Prediction of (1)

For the thin-walled tube usﬁally employed in plasticity experiments an axial
prestress

c 00
[6]=10 0 0 (A1)
0 00
results in a strain tensor
&g 0 0
[l =10 & &g3]- (A2)

0 €93 a3

In the case of isotropy &3 = 0 and &y, = &;. The strain matrix (A2) can be
arrived at by purely kinematical consideration and by assuming that the state of
stress and the state of deformation are homogeneous.

We have to assume that &, M and K in (1) are constructed in such a way
that (A1) gives rise to (A2). Now let ¢ in (A1) be constant for all £ = ¢, > 0.

At time ¢ = {, the stress increment

0 dO’lz ddlg
[do] = |do,, O O (A3)
do; O 0

with doy; = do,; is imposed which can result in the strain increment (depending
upon the material symmetries some of the d& components may be zero; in the case
of isotropy dey; = 0)
deyy deyy  degg
[de] = | deyy  degy  din |- (A4)
deyg  degy  degy
The components of the tensors in (A1)—(A4) are referred to a rectangular co-
ordinate system with the e,-direction along the axis of the usually employed

thin-walled tube. d
To obtain useful results we have to restrict M, K and d—‘; . Specifically the

components of the above tensors with an index appearing only once or with two
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identical indices and the other two indices different will be set equal to zerol®. We
then obtain from (9) '

Myyy1é11 4 Migasdes -+ Myggséss = 0y — Gy

Mzzuén + M2222€'22 + M2233é33 : 0 (A5‘1)
Masuén + M3322é22 + M3333é33 =0
by3 =0 (AB-2)

0.
(M1212 ~— 2K 515 6812

12

) gy — 0 (A5-3)

17/ .
(M1313 — 2K 315 %) £y = 0. (A 5‘4}
€13

Because of the fact that ¢, and é,; are arbitrary in (A5-3) and (A5-4), respec-
tively we see that the shear response is elastic provided (11a) holds. Eqgs. (A5-1)
are constraint equations which must and can be satisfied.

The material symmetries to which we have restricted ourselves include the
usual cases of isotropy, transverse isotropy and orthotropy. These are material
symmetries that are pertinent to the thin-walled tube tests of plasticity.

From the above we see that (1) together with (11a) and the imposed symmetry
restrictions reproduces the initial elastic shear response under a tensile prestress
observed in many experiments. We note that while the ¢nufial shear response
remains unaltered by the presence of large axial prestress (prestrain), as shown in
Fig. 1 the subsegueni nonlinear shear response is affected by the magnitude of the
prestress (prestrain) value.

Isotropic Case

From (39) we obtain for de,; = 0 and g53 = 0

(E% . @7_) & _{_Q(E%. — éﬁl) 19

Ogpy ey » a Jeqs 0849 o (46)
iy _ 9%\ . . %5 YylE
2 (E Ogqg 68i3) o Kry o
From (A6) using (A1), (A3), (B1) and (BH)

. _ oy — GylE]

& = ~Ek[]“] (A7)
as well as
_Goms o B Fow),
deqy bt 2 (2(1 + ) 6812) f2 =0 (A9
. . 002 0033 : s
where we have used doy, = doyg, &5 = &3 and —2 = —2_ Since ¢, can be
9e1 2

arbitrarily imposed and since &, is given by (A7) we conclude from (A7) and

¥ We are therefore not considering the most general case.
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(A8)
00y, _ 00, _ E (A9)
08y 044 2(1 4 »)
and
005 _ 0015 0
deyy ' Bey (410)

Note that no restrictions were put on %‘Z in the isotropic case. The derivation for
&

torsional prestress and subsequent axial loading is similar with analogous results.

Appendix II

Construction of Isotroplc G';; Functions and Invariants

When &;; = ¢;; 3+ 0 and all other &, are zero, the component functions
@i = Gy; are required to have ‘the ‘general form of a stress-strain curve, and all
other G, must equal zero. Further, G must be isotropic and must reduce to the
linear isotropic elastic relationship in strain for an initial interval of strain. Also
we require that G reduce appropriately, Eq. (26), to the uniaxial case when a
uniaxial deformation field, Eq. (26), is imposed. Consequently, an acceptable
representation of G; is

@
with (B1)
by = — (e + —— s
i = d+9 €ij 1 — 2 kk zy)
and for ¢ < & where & is some appropriate number < 1

1ol & g0l (B2)
@

p=§

Usually ¢'{0] = &, the modulus of elasticity. The function g[z] represents the
uniaxial stress-strain curve for the axial strain « in the limit of very slow loading.
For its idealized mathematical representations the methods propesed by Liu et al.
[26] or Cernocky and Krempl [27] may be used. In these two cases g[x] is analytic,
monotonic, and is O[x] both as 2, — 0 and as x — oo™

Various constructions of the invariant @ and its partner invariant ¢ appear
in Table 1. Certainly an infinite variety of invariant constructions is possible. We
note that two of the representation pairs of (¢, ¢) that is (¢, ¢,) and (s, ¢s),
are deviatoric; they vanish under a hydrostatic strain and stress field, respectively.
All ¢ and & in Table 1 reduce to the uniaxial strain and stress, respectively, in the
uniaxial deformation field. In addition, all of the listed ¢ satisfy the differential
equation

op .
58; if =~ ¢- (B3)

11 O[x] denotes the Landau order symbol; see p. 128 of R. G. Bartle, The Elements of

Real Analysis, Wiley 1976.
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Differentiation of G;; with respect to strain yields

oty glel oy . og'le) — glo] op

gy P Oy @ Degy
and (B4)
WGyl '[0]%
Oggp |e=0 Oeqp
where
s 1 1 »
Wiy L (s s 5. 5.
i = e (o Gutn 0wt + 6,,6@) (B5)

Oty
a.ab
we obtain the condition

8o that we obtain &g = P;;. Then for the strain invariants which satisfy (B3)

Gy oo IO (Ve
asab 81]8ab - (1 —f—’l)) 51.73z7 + (1 *21)) (8]7) 2 O (B6)

provided ¢g'[¢] = O which is usually the case for metals. Also from (B3)—(B6) we
obtain

Wi G\ o (B gol) — e (eer - — T (52
E(aaab asab Eij€ap (E g [qj]) 1+ 7 €;i€ij -+ m g (SH) _2 0 (B7)

provided E = ¢'[¢].

If the Y[X] functions of Cernocky and Krempl [27] are used for the represen-
tation of g{g] then the following approximate expressions result for ¢ > X, for the
second kernel form and for appropriately selected constants

L (B — B)(RX;— )
G.. N I3 E a——
17[8] Py ( s T ‘P RF’[RXf ~ ) (B 8)

and

%y g, N (B9)

a{;‘ab a&'ab
where
B elastic modulus
E, tangent modulus in the ‘‘plastic range”
R, X, 7, parameters of the uniaxial stress-strain curve as defined in [27]
Flx] any of the base functions listed in [27].

The selection of the Y[X]-functions for the representation of g[e] requires
that the actual uniaxial stress-strain diagram can be approximated by an initial
linear range, followed by a strong nonlinear monotonic curvature which terminates
with another linear region. Although we have found these representations for
gle] very useful, the theory presented herein is valid for any suitable g-function.

We note that the particular choice of the suitable invariant ¢ does not in-
fluence the character of the constitutive equations governing uniaxial deforma-
tion; this is because in the uniaxial field ¢ is made to reduce to the axial strain.
However, the selection of a particular invariant ¢s a constitutive assumption, and
the particular construction of ¢ does influence the nature of all deformations other
than those of the tensile test. Specifically, in a pure torsion deformation, the shear
stress-shear strain curve will differ from a pure tensile stress-axial strain curve at
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corresponding strain values, and this difference will depend upon the particular
choice of . This is clear in Fig. 5 in which we have plotted the solution for a pure
tensile loading at limitingly small strain rate and then have plotted pure shear
deformation curves on the same strain scale and at the same limiting loading rate
for each of the five invariants ¢ in Table 1. The influence of the choice of ¢ upon
the shear stress-strain diagram is apparent. The results shown in Fig. 2 apply
similarly for other and more complicated deformations. Consequently, full under-
standing of the uniaxial and shear deformation characters of the material will
strongly motivate the construction of appropriate invariants ¢.
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Fig. 5. The influence of the choice of the invariant ¢ upon the pure shear response in the
limit of very slow loading, see Eq. (52). The tensile curve is independent of the choice of ¢.
In all the shear curves v = .3

We note that if the ¢ which appears in the hydrostatic Eq. (34) is deviatoric,
then when (37) applies, Eq.(35) predicts linear elastic rate-independent
response to a pure hydrostatic loading. This prediction is deemed suitable for
metals. Conversely if ¢ is not deviatoric in (34) then the theory predicts a non-
linear rate-dependent response under pure hydrostatic loading.

The deviatoric and hydrostatic relations (33) and (34) are combined into (35)
because the same stress and strain invariants have been used in both of (33) and
(34). We may however elect to use different constructions of ¢ in the respective
deviatoric and hydrostatic constitutive equations. This increases the capability of
the model. For example, a deviatoric ¢ may be used in Eq. (34), while a non-
deviatoric ¢ may be used in the deviatoric relation (33). We recall § is determined
according to the condition ¢ = ¢f¢] if 6 = G.
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Appendix INT
Instead of postulating % = I as in (38) we set
nL1 gy — 4] 0] — B o1
g =l =SF and g10] ©1)

where ¢ is a suitable invariant of the strain tensor. The assertions given below can
be verified if ¥ is replaced by §’[¢] in the appropriate equations.
Eq. (C1) has the following consequences:

The “elastic strain rate” is no longer linear, i.e., from (33) and (34), respec.

tively,
% (m[] R ©2)
. Oy — @ Faa(l — 2v)
o = | e Taa) (4 __ 9 feat- — 70 C3
) ( il )( Nt e (©3)

If ¢'[¢] > §'[¢] then (60), (61) change sign, see Cernocky and Krempl [23].
Initial linear elastic response in shear may not result in the presence of
axial prestress, see Eqs. (A8) and (A9).

The spacing of stress-strain curves obtained at various strain rates is
strongly affected by §, see (41) and (43). Note that (44) still holds; see [23].

The change in slope upon an instantaneous strain-rate change, Egs. (56) to
(59) is no longer independent of &.

The creep rate depends not only on of; — G;;[¢] but also on §'[e], Eq. (62).
In the limit of very fast strain rates a nonlinear stress-strain curve may be
obtained, see Eq. (55). ,

For a hydrostatic state of strain the stress response may become nonlinear
and rate-dependent under suitable selections of the invariants in § and G.
If a nondeviatoric invariant is used for ¢ then the stress response to a
hydrostatic strain may be nonlinear and rate dependent. In the limit of
very slow loading, however, the response is linear if a deviatoric invariant
is used in G.
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