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Summary -- Zusammeufassuug 

A Theory of Viseoplastieity Based on Infinitesimal Total Strain. A viscoplasticity 
theory based upon a nonlinear viscoelastic solid, linear in the rates of the strain and stress 
tensors but nonlinear in the stress tensor and the infinitesimal strain tensor, is being 
investigated for isothermal, homogeneous motions. A general anisotropic form and a 
specific isotropic formulation are p~'oposed. A yield condition is not part of the theory and 
the transition from linear (elastic) to nonlinear (inelastic) behavior is continuous. Only 
total strains are used and the constant volume hypothesis is not employed. In  this paper 
Poisson's ratio is assumed to be constant. The proposed equation can represent: 
initial linear elastic behavior; initial elastic response in torsion (tension) after arbitrary 
prestrain (prestress) in tension (torsion); linear elastic behavior for pure hydrostatic 
loading; initial-elastic slope upon large instantaneous changes in strain rate; stress (strain)- 
rate sensitivity; creep and relaxation; defined behavior in the limit of very slow and very 
fast loading. Stress-strain curves obtained at different loading rates will ultimately have 
the same "slope" and their spacing is nonlinearly related to the loading rate. 

The  above properties of the equation are obtained by qualitative arguments based 
on the characteristics of the solutions of the resulting nonlinear first-order differential 
equations. In  some instances numerical examples are given. 

For metals and isotropy we propose a simple equation whose coefficient functions can 
be determined from a tensile test [Eqs. (31), (35), (37), (38)]. Specializations suitable for 
materials other than metals are possible'. 

The paper, shows that this nonlinear viscoelastic model can represent essential features 
of metal deformation behavior and reaffirms our previous assertion that metal deformation 
is basically rate-dependent and can be represented by pieeewise nonlinear viscoelasticity. 
For cyclic loading the proposed model must be modified to account for history dependence 
in the sense of plasticity. 

Eine viskoplastisehe Theorie fiir infinitesimale totale Verzerrungen. Eine visko- 
plastische Theorie ffir nichtlineare viskoelastische FestkSrper, linear in den Geschwindig- 
keiten des Verzerrungs- and Spannungstensors jedoch nichtlinea r i m  Spannungstensor und 
dem infinitesimalen Verzerrungstensor, wird ffir isotherme, homogene Bewegungen be- 
trachtet. Nine allgemeine, anisotrope t~orm, und eine spezifisch isotrope Formulierung 
werden vorgeschlagen. Nine FlieBbedingung ist in, der Theorie nicht enthalten und der 
Ubergang yon linearem (elastischem) zu nichtlinearem (inelastischem) Verhalten ist konti- 
nuierlich. Nur totale Verzerrungen werden verwendet; die IIyp0these der Volumenkonstanz 
wird nicht herangezogen. Die Poisson-Zahl wird als konstar~t vorausgesetzt. Die vor- 
geschlagene Gleichung kann repr/~sentieren: Anfgnglich linear elasLisches Verhalten; 
anfgnglieh elastisches Verhalten ffir Torsion (Zug) nach beliebiger Vorverzerrung (Vor- 
spannung) dutch Zug (Torsion); linear etE/stisches Verhalten.fiir rein hydrostatische :Be- 
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lastung; ~nf~nglieh elastischer Anstieg nach sprunghaften Wechseln in der Verzerrungs- 
geschwindigkeit; Spannungs- (Verzerrungs-) Gesehwindigkeitsempfindlichkeit; Krieehen 
und Relaxation; definiertes Verhalten im Grenzbereich yon sehr langsamer und sehr 
sehneller Belastung. Spannungs-Verzerrungskurven zufolge unterschiedlicher Belastungs- 
geschwindigkeiten erreichen denselben Ans~ieg und ihr Abstand h~ngt nichtline~r yon der 
Belastungsgesehwindigkeit ~b. 

Die obigen Eigenschaften der Gleichungen werden durch qualitative Argumente fiir die 
Charakteristiken der LSsungen yon nichtlinearen Differentialgleichungen erster Ordnung 
erhalten. In einigen F~llen werden numerische Beispiele angegeben. 

Fiir isotrope, metallische Werkstoffe wird eine einfaehe Gleichung vorgeschlagen, deren 
Koeffizientenfunktionen aus einem Zugversueh bestimmt werden kSnnen. [Gin. (31), (35), 
(37), (38)]. Spezialisierungen fiir andere Materialien sind m5glieh. 

Die Arbeit zeigt, d ~  dieses nichtlineare viskoe]astische Mode]l wesentliche Merkmale 
des ~etalldeformationsverhaltens beschreiben kauu und unterstreieht die friihere Behaup- 
tung, dab die Metalldeformation im wesentlichen geschwindigkeits~bhs ist und durch 
abschnittsweise nichtlineare Viskoelastizitiit dargestellt werden k~nn. Fiir zyklische 
Belastung muI~ das vorgesehlagene Modell raodifiziert werden, um die "history dependence 
in the sense of plasticity" wiedergeben zu kSnnen. 

1. Introduction 

The description of inelastic behavior, specifically of metals, has in recent 
years a t t racted considerable attention. This interest is caused by demands of 
technology and by  the availability of powerful computation methods in the design 
office. In  addition recent developments in material  test  techniques show tha t  the 
classical idealizations of real material  behavior are not adequate. 

There were for a tong t ime three almost separate disciplines of metal  "plasti- 
city". At low homologous temperature  rate (time)-dependence was considered in 
dynamic plasticity, seefor example Cristescu [1], whereas rate (time)-independence 
was assumed in static plasticity, Hill [2], Prager [3] and others. At high homol- 
ogous temperature  creep is important  and separate creep theories were developed, 
Odquvist [4], Rabotnov [5], Hoff  [6]. These theories were then combined with 
rate (time)-independent plasticity for the representation of metallic material 
deformation behavior, Leckie [7], Corum et ah [8], under quasi-static conditions. 

A growing body of evidence suggests that  inelastic deformation of metals is 
basically rate-dependent,  Rice [9], Perzyna [10], Kratochvil  [11], Miller [12], 
Ha r t  [13], Eisenberg, Lee and Phillips [14], Phillips and Rieciuti [15]. l~ecent 
investigations also aim to give a general representation of plasticity which com- 
bines the above approaches and at the same time improves upon the capability of 
reproducing real metal  deformation behavior, since the capabilities of the classical 
theories were shown to be in need of improvement,  Krempl  [16]. 

A review was made of the experimental foundations of static plasticity theory 
emphasizing the experiments designed to differentiate between incremental, 
physical, and deformation theories of static plasticity, Edelman [17]. In  almost all 
instances creep a t  room temperature  was mentioned as a problem which had to be 
avoided. "Creep causes great difficulty in full interpretation at  high values of 
strain. I t  is still a confusing factor in the range of small strains investigated. 
However, no correction was made for t ime effects", Drucker and Stockton [18]. 
l~ecent experiments on Type  304 stainless steel, copper, brass, and an aluminium 
alloy, Krempl  [19], Har t  et al. [20], showed that  rate sensitivity, creep, and relax- 
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ation were present at room temperature. These facts at test  further to the rate- 
dependent formation of structural metals at  room temperature. 

In previous papers, Krempl [21], [22], an operational definition of history 
dependence in the sense of plasticity, of aging, and of rate-dependence was given. 
As a consequence of these definitions we asserted that  viscoplasticity cannot be 
distinguished from nonlinear viscoelasticity while a material is loaded, and we 
postulated that  viscoplasticity is piecewise, nonlinear viscoelasticity, l%ather than 
postulating state variables and their growth laws, the introduction of new origins 
and the possible updating of the material parameters provides for the necessary 
representation in constitutive equations of the internal microstruetural changes, 
Krempl [21]. 

Here we propose a relatively simple nonlinear viscoelasticity law based upon 
small total strain; it is linear in the stress rate and strain rate tensors but nonlinear 
in the stress and strain tensors. The anisotropic form exhibits key characteristics 
of metal deformation behavior. Subsequently an isotropic formulation is given 
which exhibits creep, relaxation, and rate-sensitivity in a unified way. Only 
total strains are employed, the constant volume assumption is not used, and the 
model can predict linear elastic response under hydrostatic loading. The axial and 
torsional equations exhibit similar solution characteristics. In uniaxial defor- 
mation the specific isotropic equations proposed herein reduce to the previously 
proposed uniaxial equations, Cernocky and Krempl[23] ,  Liu and Krempl [24], 
which were shown to represent many features of rate-dependent metal deformation 
behavior. The at tempt  here is not to present general theories but  rather a relatively 
simple model complex enough to reproduce qualitatively key features of metal 
deformation as long as there is no cyclic loading involved. The modifications of 
this nonlinear viscoelastic model to fully represent metallic behavior for cyclic 
loading are not a subject of this paper. They were in principle given previously, 
Krempl [21], and wil] be developed for the constitutive equation of this paper in a 
future publication. 

2. General Properties of the Anisotropie Model 

We consider only homogeneous motions and propose for small strain ~ and 
strain rate ~ and associated stress 6 and stress rate d the constitutive equation 

M[G, ~] ~ + G[s] = a + I~[~,s] a. (1) 

In the above square brackets a denote function of the quantities inside the brackets 
and a dot designates differentiation with respect to time. 

The fourth order tensors 1tl and K linearly transform ~ and d, respectively. 
They are required to be symmetric, positive definite linear transformations for 
all values Of their arguments such that  

M~j~iBijBkz > 0 and K~sklB~jBkt > 0 (2) 

for all nonzero tensors B. Because of this requirement the inverses of 111 and K 
exist. 

The function G[e] is constructed so that  G[0] = 0, and we usually require 
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i t  to be odd  so t ha t  

G [ - - ~ ]  = - - G [ ~ ] .  (3) 

F u r t h e r ,  we usua l ly  requi re  t h a t  G be a b i jec t ive  funct ion  over  all real  tensor  
values.  I n  t h i s  case we ensure t h a t  (1) is an  equa t ion  of s ta te ,  i.e., g iven a n y  three  
tensor  var iables  in (1) the  four th  tensor  var iable  is uniquely  de te rmined .  

Fo r  zero ~ a n d  zero d,  a = 0 and  e = 0 as well as a = G[e] are  solut ions to  (1). 
The  funct ion  G[e] r epresen t s  for g iven s t ra in  e the  locus of a for which bo th  the  
stress r a t e  and  s t ra in  r a t e  a re  zero;  the  origin i s one of these  points .  

A general ized creep tes t  1 is pe r fo rmed  b y  se t t ing d = 0 and  a = a ~ for t _> to 
where o ~ is a cons tan t  tensor .  Eq.  (1) reduces  to 

M~ = a o - G[e]  (4) 

which mus t  be solved subjec t  to  the  ini t ia l  condi t ion ~[t0] @ 0 to ob ta in  e c = e[t] 
- -  ~[t0], t he  s t ra in  accumula t ed  in t he  creep test .  

S imi l a r ly ,  for a genera l ized  r e l axa t ion  tes t  ~ = 0 and  ~ = ~o for t ~ t o such 
that 

K d  = G[~ 0] - -  a .  (5) 

Again  (5) has to  be solved for a su i tab le  in i t ia l  condi t ion a[t0] ~ 0. 
Al though  bo th  tes ts  follow di f ferent  p a t h s  the  stress r a t e  will be ze ro  a t  the  

s tress  a = G[~ ~ and  the  creep ra te  m a y  become zero a t  a s t ra in  which satisfies 
60 z G[~] 2. W e  conclude t h a t  t h e  r e l axa t ion  t e s t  (5) will a lways  reach equi l ibr ium 
whereas  the  creep tes t  m a y  not.  However ,  if G is b i jec t ive  for all real  e t hen  bo th  
tes ts  t e r m i n a t e  on the  G[e] curve. 

I f  we nml t ip ly  (4) b y  $ and  con t rac t  we ob ta in  

(~0j _ G~j[ekd) ~ > 0 (6) 

and  s imi lar ly  f rom (5) 

(a~j[~~ - q j )  ~ j  > 0 (7) 

because of the  pos i t ive  def in i teness  of 1)I and  K. 
I n  t he  ease where  G is b i j ec t ive  so t h a t  t he  inverse  of G exists,  for every  tensor  

= cons tan t  the  funct ion G m a y  be ut i l ized to cons t ruc t  a surface. Then  in t he  
case of a = G[~], we ob t a in  

~@~ = a ~ [ ~ z ]  G ~ [ ~ , ] .  (s) 

For  each cons tan t  value  of ~, (8) r epresen t s  a surface in s tress  space which  m a y  be 
isotropie  or anisotropic .  F o r  zero s t ra in  (8) degenera tes  in to  t he  origin. W i t h  
increasing s t ra in  the  surface def ined  in (8) " increases  in size",  since t he  l e f t -hand  
side represents  the  square  of the  magn i tude  of the  s t ra in  tensor ,  Eq.  (8) 
represen ts  for each cons tan t  $ the  surface for which there  are  zero ra tes  of s tress  
and  s train.  

1 By generalized creep test we mean a test condition where fill the components of a are 
constant; some may be zero. 

, z :For a given G such an e may no$ be found. 



A Theory of Viscoplasticity Based On Infinitesimal Total Strain 267 

Relation Between M and K 

Using the  chain rule we m a y  rewri te  Eq, (1 )as  

( 
or as 

(9) 

o r  

K-1Mla-G[q = a--e (11) 

~e (12)  (K-1M)-I[c,=G[ q - -  ~ �9 

I f  we select K-II~I]~_~E~] = c where e represents  the  four th-order  tensor  of the  
elastic constants ,  then  (11) and  (12) show t h a t  all curves depar t  f rom the equi- 
l ibr imn stress-strain curve 6 -  G[e] = 0 with elastic "s lope" .  (Note, this in- 
cludes the  origin. Also it is impossible to depar i  f rom 6 - -  G[v] = 0 b y  a creep 
or re laxa t ion  test.)  

Following Cernocky and K r e m p l  [23] we now impose 

K 1M = c ( l l a )  

for all values of 6 and  e, sifice this relat ion leads to several  useful proper t ies  in the  
model.  Note,  however,  t ha t  K and M remain  nonl inear  funct ions;  only  their  
combina t ion  according to ( l l a )  is constant .  

A consequence of condit ion ( l l a )  is the  abi l i ty  to  model  realist ically the  
subsequent  response of a meta l  in torsion af ter  a preload in tension. Such experi- 
men t s  are repor ted  in the  plas t ic i ty  l i terature.  Most of the  exper iments  show, 
Ede lmah  [17], t ha t  in the  presence 'of  a rb i t r a ry  axial  pre loading the  initial response 
in torsion is pure ly  elastic. 

Appendix  I demons t ra tes  t ha t  (1) subject  to (11a) and  addi t ional  specified 

restr ict ions on M, K, and  0a " J - -  can reproduce  the  initial elastic response for various 
Of 

mater ia l  symmet r ies  including isotropy,  t ransverse  isotropy,  and  or thot ropy.  We  
therefore  have  demons t r a t ed  tha t  the  ra te -dependen t  Eq.  (1) can reproduce a key  
result  which is normal ly  considered to be  in the  domain  of ra te  ( t ime) , independent  
incrementa l  p las t ic i ty  theory.  No te  t ha t  we have  used tota l  s trains only. 

= Formal ly ,  we can a t  a n y  time' spli t  the  s trains into elastic and  inelastic s trains 

,9~ _ K[o', ~]) (} : o" - -  G[~] (10) 

We  are in teres ted in the  response of (1) with initial conditions such t ha t  
- -  G[e] ---- 0, i.e., we wan t  to compute  t h e  ~:esponse of (1) upon leaving the  

"equi l ibr ium stress-s t rain curve"  [15] a t  a n y  point  e. 
For  this case (9) a n d  (10) represent  linear, homogeneous  equat ions in the  

strain and  stress rates,  respect ively.  The  ra tes  can be arbitrarily imposed and (~ 
and  e are also arb i t rary .  Consequently,  the  expressions in the  parentheses  m u s t  
vanish when 6 ~ G[e] and we obta in  
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which are, however, rate-dependent.  To demonstrate this we rewrite (1) using 
(11a) and obtain 

0 

o r  

~[t] _= ~"[t]  + r  } 

where I 

e,-ft] _= f 
o J 

and where we h~ve assumed tha t  for t ~ 0, d = 0 ~nd e = 0. 

Behavior at and Near a = 0 and ~ = 0 

We assume tha t  G[s] is linear in e in the neighborhood of the origin e~e~j ~ 
1 where ~ is a suitable constant, and we investigate the two possibilities 

and 

dGjl = e (15a) 

dG ~ = ~ (15b) 

where ~ and c are both constant tensors. 
Using ( l l a )  and (15a), Eq. (9) can be rewritten as 

K c - -  t = a - - c ~ .  (15c) 

The initial material response predicted by (15 c) is independent of the strain rate 
and is that  of a linear elastic material. Alterr, at ively when (15b) is used instead 
and when K is assumed to be constant in the neighborhood of the origin, then the 
initial response predicted by  (1) is that  of a linear anisotropic viscoelastic solid. 

The model proposed in (1) subject to ( l l a )  reproduees initial linear elastic 
response. Also in the neighborhood of a = 0 and ~ = 0 linear elastic or linear 
viscoelastic behavior can be modeled. 

A Particular Dependence o] M and K Upon a and e 

Thus far the dependence of K and M upon 5 and e has not been stipulated and 
the previous results are valid for all K a n d  1tl. I f  we make these functions depend 
upon the difference {a - -  G[e]} then additional desirable properties can be modeled. 
Specifically, Eq. (9) can be rewritten as 

{~176 t K [ a -  a [ ~ ] ]  e - ~ ~ = a - a [ ~ ]  (16) 

and from (4) and (5) we obtain, for the generalized creep and relaxation test, 
respectively 

= e - l K - l [ ~  o - -  G[~]]  {6 ~ - -  ~ [~ ]}  (17) 
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and 
- - d  = K- l [ a  - -  G[e~ {6 - -  Gie~ (18) 

Suppose that  a generalized constant strain rate test  with $ = u is conducted 

with the hypothetical material  represented by  (16) and that  we observe Tee =,~ 

to be constant ; then we must  conclade that  6 - -  G[~] = et where A is a constant 
tensor and we can construct surfaces 

eij~ii = O'~I[G[ $1 -~- A] o~jl[G[t~] -~- A] (19) 

where $ is some constant strain field. For A =- 0 we obtain the surface of Eq. (8). 
Therefore in a creep or relaxation test  s tarted from any point on a curve for 

--~ u on which d_g_~ is observed to be constant, the initial creep rate  or the initial 
de 

relaxation rate is independent of the actual value of 6 and ~, depending only 
upon { 6 -  G[e]}. 

We now derive a specific and simple isotropic version of (1). This version 
permits the identification of the coefficient functions from experimental results 
and the simulation of real experiments by  numerical integration of the resulting 
first-order nonlinear differential equations. 

3. An Isotropic Formulation 

A specific isotropic formulation can be obtained by  using the following 
requirements which are deemed suitable for metals: 

The isotropic equation is to be derived from (1). 

The tensors  M and K must  be tensors of constants times a respective 
scMar-vMued function of the invariants of the stress and strain tensors. 

For hydrostatic stress (strain) states the classical linear elastic relation 
must  be obtained. 

The constant volume assumption is not imposed upon this theory, because 
a recent literature survey has not produced experimental evidence to 
support  this assumption in the small strain range, I-Iewelt and Krempl  [25]. 

The isotropic equation must  reduce to the uniaxiM formulation [23] when 
the uniaxiM deformation field is imposed. 

With these stipulations and the symmet ry  of d and ~ in mind we set 

Miiab = (~ia(~ibM 1 -1- M2~i(~ab (20) 

Kiiab = (~ia(~jbg 1 -~ J[~2(~ii(~ab (21) 

where M~ and K~ (i ~-- 1, 2) are isotropic scMar-vMued functions of invariants of 
the stress and strain tensors. When s represents the deviatorie stress, e the 

1 
deviatoric strain and G a the deviatoric component of G,  G~ = G~i - -  --~ Ga~Sij, 
we may  rewrite (1) using (20), (21) as 

Mle~ i - -  KI$ i  i = 8ii Gd[e] (22) 

(M1 -~ 3M~) ~a~ --  ( g  1 -~ 3K2) ~aa ~ - -  f f a a  - -  G a a [ E ]  �9 (23) 
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The previously proposed uniaxiM const i tut ive equation is [23], [24] 

m [ a ,  el ~ - -  k [a ,  el O = a - -  g[e] (24) 3 

where a is the axial stress and e is the  ~xial strain in the uniaxiM deformation field. 
We st ipulate tha t  in this deformation field Eqs. (22) and (23) must  reduce to (24). 
This requires tha t  when the  strain tensor is 

[e]~'j = e ~ ,  (25) 

0 

then the tensor G must  assume the specific form 

= 0 ( 2 6 )  

0 

where ~ is Poisson's ratio w h i c h / o r  t h i s  p a p e r  is considered to be a positive con- 
s tant  less than  1/2. I n  addition, the  coefficient functions M~ and K, must  assume 
the  specific forms: 

M1 - -  re[a, el (27) 
l + v  

~m[~, el (28) 
M 2 = ( l + v ) ( l _ 2 v )  

= ( 2 9 )  

K2 ~- 0. (30) 

To generalize our construct ion of M~ and K~ and meet  the  requirements of 
isotropy and those embodied in (27)--(30) we assmne for all deformation fields the 
forms presented in (27)--(30) except t ha t  we replace the stress therein by  a 
suitable invariant  ~ of the stress tensor, and we replace the strain therein by  a 
suitable invariant  09 of the strain tensor. These invariants are restricted by  the 
requirements tha t  in a uniaxiM deformation field, q) m n s t  r educe  to the axial 
stress a and 09 must  reduce to the axial strain s. An example of a choice suitable 
for metals is 

;7  09 = 091 = e~ie~j (1 + v) (31) 

and 

q) =-- ~l -~ ( 3  Si~Sij) 112 . (32) 

Additional  pairs of ~, 09 appear  in Table 1. We remark tha t  the ~, 09 pairs are 
related by  the  restriction tha t  when on the  sur face  defined by  (8), i.e., when 
a~j z G~i[e], then ~ --~ 9[09]; this constrains ~ for a given choice of 09. 

From [23] m[]  and k[ ] are restricted to be positive and bounded. 
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From (27)--(32) we obtain the constitutive representation 

m [ ~ ,  ~J . " - -  G~ . [e ]  ( 3 3 )  

m[~,  9] ~aa - -  k[~ ,  ~] 8aa = ~ - -  Gaa[S]. (34) 
(1 - -  2v )  

Eq. (25), (26) severely restrict the representation of the functions G~j[e]; 
a specific construction of G appears in Appendix II. We note that  the argument 
of G d and Gaa is the total strain tensor e, and not its respective deviatoric and 
hydrostatic components. Therefore, Eqs: (33) and (34) must be regarded as 
coupled equations. 

Alternatively (33) and (34) may he combined to obtain 

m[~, ~] ~ j  + G~j[~] = ~j + k[~, ~] ~.  (35) 

where ~,~ is defined by 

eiJ + Veaa (~ij. (36) 

Also from (11a) we require that  m[ ] and k[ ] always be related through the ratio 

m[ ] _ E (37) 
k[] 

where E is the modulus of elasticity. (Appendix I I I  discusses the consequences of 
m / k  ~ E . )  

In view of (11a) and the discussion associated with (16) we now define the 
invariant 

/ ~  { (~j -  G~[~])(~j- G~j[~])}~/~. (3S) 

Individually we now select m[ ] and k[ ] to be functions of F alone. In the uniaxial 
deformation field, this corresponds to m ~-- m [ a  - -  g[e]] and k = k[a  - -  g[s]] 
in (24) ~. 

Using the chain rule (35) may b e rewritten using (37) as 

(E ~b~i ~ , )  ~. -- G~[~] (39) ~ 

I t  is easily seen that  departure from the curves a~i --~ G~[~] is linear elastic. 
Furthermore (39) predicts initial elastic shear response in the presence of axial 
prestress (prestrain) and predicts initial elastic axial response in the presence of 
shear prestress (prestrain); (see Appendix I for details). Fig. 1 demonstrates 
the initial elastic shear response predicted by (39) at various axial prestrains; for 
ease in the numerical integration and since (A9) clearly shows t h a t  the i n i t i a l  

elastic response is obtained for any k-function, k was chosen to be  constant. 

Further motivations for this modification appear in Part 4 and in [23]. 

appears in (BS) of Appendix II. 
~km 
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Constant Axial 
Prestrain 

~ /  .016 

e a  . 0 2 4  

* x 6 . ioo 

~r .250 ~ .40o 

= ~i; k = 16 s; strain rate = 10 .4 s -I 

i psi ~6.894 �9 103 Pa 

Q.~7 ~ . l o  o . t z  o .  t 5  a ' . t 7  o'.uo 

STRAIN *i0 "I 

Fig. 1. Torsional response for various constant axial prestrain values at a shear strain rate 
of 10 -4 s -I. The pure shear and the pure tensile stress-strain curves at the same strain rates 
are also shown. Note the initial linear elastic shear response is independent of the tensile 
prestrain (prestrain values greater than .04 are only for the illustration of the mathematical 

properties of the solutions), v = .3 

Limiting Behavior at Large Time.s 

Following the methods developed for the  uniaxial case, Cernoeky and Krempl  
[23], we now t ransform (35) subject to (37) into an  equivalent  integral expression 
and obtain with 6(0) = 0 and  e(0) = 0 

t t 

dx  

0 

Provided  the limits of aGi~[s[t]] &kin ' ekm and k[F[t]] are bounded  and finite as 

t ---> oo, Eq. (40) can be used to determine the response for large times following 
the procedure of Cernocky and  Krempl  [gal. We obtain 

limt+~ { a ~ , -  Gi/[e[t]]} = {(E &kin ar - -  askm og' i / /skJ~[F]}t=~ (41) 

and 

lira as~i = aG~j[s[oo]] (42) 
t-+oo (:98kin 6%km 

Eq.  (42) says tha t  u l t imately  the "slopes" of stress-strain curves are equal t.o the 
"slopes" of the  G-curves. 
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Performing the limits in (41) and (42) m a y  appear  unrealistic and in "violation 
of the small strain assumption. In  reality this is not so since the solutions of (40) 
are rapidly asymptotic  to these limits. This has been demonstrated in the uniaxial 
case, Liu and Krempl  [24], Cernocky and Krempl  [23], and will be reaffirmed by  
some of the examples to be given later, see specifically :Fig. 2. Therefore (41) and 
(42) may  be used as approximate  relations when t ime is finite. 

I f  we assume that  G~i is approximated by  (B 8) and that  ~0 > Xg 6, then from 
(41) and (42) with (B9) we have for large times 

and 

(:ij -- G~i) ~ (E -- E,~) ~ ~k,~[oo] k[I'It=oo ] 
(%kin 

(43) 

For ~0 > Xf,  g[~0] in Appendix I I  is assumed to be approximately linear. 

~a~i ~, Es ~b~i , (44) 
r C~ekm 

respectively. In the above Es denotes the constant slope of the uniaxial stress- 
strain curve in the plastic range. Again (43) and (44) may  be used as approximate  
expressions for finite time. 

Consider now a uniaxial tensile test  with strain e and performed with constant 
strain rate  ~ and let :11 7_ : ,  then from (40) using (B 1) 

/ ( / - , )  : - g(~) = ~ ( E -  r  exp  - -  k[~,[~] -)[~[~]] ~ (45) 

0 s 

L e t  Z = l ira (o - -  g[4t] ] )  ; then  f rom (45) or (43) 

x 
: (E - -  Es) ~. (46) 

k[x] 

Similarly, from (40) the response in a shear test with constant shear-strain rate 

s12 z i21 = V, where :12 ~ a2:, is obtained to be 

t 

(::2 - -  G121812; z21]) = V ~ti + v ~el~[S ] - -  ~s2:[s ] J 
o 

(47) 

We let Y = lira (a12 -- G12) and obtain, using (47) or (43) 
t~oo 

Y E - - E  s 
- - -  r ( 4 s )  

k[C~r] * + .  

where X and Y denote the respective heights of the axial and shear responses 
above the axial and shear equilibrium curves. I f  a = y we see from (46) and (48) 
that  Y and X are different. I f  G does not permit  the approximation (B 8) then 
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Fig. 2. Uniaxia l  stress-strain curves at  various strain rates, Fig. 2a, and shear stress vs. 
engineering shear strain ( 2 ~ )  curves at the same rates, :Fig. 2b.  The solutions correspond 
to the integration of (45) and (47a). Note  the nonIinear spacing of the curves which is due 

to the dependence of k u p o n / ' .  
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the right-hand sides of (46) and (48) also depend u p o n  the choice of % In this 
case Eq. (41) applies. 

For the invariant % given in (31), (47) reduces to 

t 

(~12 - -  ~ '~g L( 1 + l ' ) ] ]  (][ ~ Y) (] -~ y) 
0 

The solutions of (45) and (47a) for various c~ = ,/-values and a specific choice 
of g[ ] and k[ ] are given in Fig. 2. The results were obtained with a computer 
program developed by  Liu and Krempl  [24]. Note the nonlinear spacing of the 
curves at  various constant strain rate values in the axial and shear tests. This is 
due to the dependence of the/c-function upon {6 - -  G} through the invariant _P; 
see the discussion in Cernoeky and Krempl  [23]. 

Limiting Behavior ]or Very Large and Very Small Constant Strain Rates 

The case of uniaxial deformation under limiting magnitude of loading rates is 
considered in detail in Cernoeky and Krempl  [23]. We will consider here the 
limiting loading rate eases for shear. We let i12 = 421 = ?~ so that  (47) applies, and 
we define the transformation 

(~121812, 821; ~] = a(t)l~,~=~,l=~t (49) 

all other e~j = 0 

where ~12 is the stress response as a function of strain and parametric dependence 
upon y is indicated. Proceeding we obtain 

/ ; 812 ~- GI2 + --~ E/(1 + ~,) - -  exp dZ12 
ex1~j k[r[z1~]] 

0 " ~ X12 
(50) 

-4:- o/~t-~E/(1 + ~ ) - -  #G~2/~x2~ ) exp - - l /Ys  k[F[z21]]ldxzl 

and where in this case 

1~[Z21] = F[z12] = ]/~ (~12 - -  r Z21])" (51) 

We consider limiting slow loading rate and we let 7 --~ 0 in (50) to obtain 

~121812, 821 ; 0] : G12. (52) 
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I f  (31) is used with (B 1) then G~2 in (52) is given by  

012 = [/3 g L* @ ~J 

Appropriate representations for G12 using the other ~ of Table 1 are easily ob- 
tained, see Fig. 5. 

Similarly for limiting fast loading rate  we let 7 -+ e~ and we obtain from (50) 

E 
(~12[~:12, E21 ; (X?] - -  - -  e l2 ,  (54)  

(1 - v) 

Eq. (52) shows again tha t  G represents the equilibrium stress-strain 
curves. The linear elastic response at  high strain rate is due to the assumption (37). 

Table 1. lnvariants  q~ and ~*,** 

Invariant ~ 
Subscript 

( l'Se~ie~i)l]2 (1.5s~is~i)1/2 
1 (1 + v) 

2 (~bi]~bi~) 1/2 (o'qo'i~) 1/2 

3 C J "Se~iei]@abJ)ab')1]4 
(1 @ v)l/2 (l'5siisii~ab%b)l/4 

(1 + 2v~)/ 

(! , )11  1 + v) ~ siisii + --~ (1 - 2v) 2 (z~k) ~ 

1 § 2v ~ 

[ (l.5eijeii) § fi(sii) ~ ]:/3 
[(1 + v)2 + #(t - 2v)2J 

# > 0  

[ (J[.58~iS~i) (1 § 7)) 2 ~- ~(1 - -  2~J) 2 (0"~i)2] 1/2 

(1 + v? + #(1 - 2v) 2 ] 

* From (B1) and a = G[e] we get ~i = g[~0~] i = 1 ...5 and this represents an "effec- 
tive" stress-strain diagram. 

** Only positive roots are intended. 

Analogous results apply  when a ny  component  of the strain (or stress) tensor is 
applied at  a l imitingly fast or slow loading rate. Therefore, (39) or (40) predicts 
linear elastic behavior in the  limit of very  fast loading. 

I f  instead of (37) Eq. (C1) applies, then  a nonlinear response in (54) is per- 
mit ted,  so tha t  (54) would become for all q0 which satisfy (B3) 

~121812, 821; ~ ]  - -  ~12 g[~]  (55)  



A Theory of Viscoplasticity Based on Infinitesimal Total Strain 277 

Instantaneous Change in Strain Rate 

Suppose the  strain rate  is changed ins tantaneously  at  some point  61 @ 0, 
e~ @ 0 and  corresponding t ime to. Le t  $~ and ~2 be the  strain rates  for t < t0- 
and  t > to+, respectively. Then  we derive from (39) 

~km t~4- ~km t=4 + ~km 

The change in slope is therefore independent  of ~x and e~ 7. As a specific example 
we consider 

~ = b~ ~ (57) 

where b is some constant .  Then 

- + (58) 
( ~Skm ]t~to + ~km k b//J 

Let  us now consider the  case where the  change in strain rate  takes place when 
(42) and  the  approximat ion (44) hold, i.e., if the  strain ra te  is changed in the  
"plast ic region". Under  this condition (58) m a y  be rewrit ten as 

(?ekm IHo+ ~Sem -b- 

We  assume tha t  E J E  ~ 1 as is t rue for most  metals. Then  we see tha t  for Ib[ >~ 1, 
i.e., very large positive or negative changes in strain rate, the  slope at  t = to + is 
approximate ly  e]astie. On s other  hand  if we reverse the  strain rate, b = --1,  
then the  "s lope"  at t ~ to + is approximate ly  twice the  elastic "slope ''8. 

Creep and Relaxation 

Before a creep and relaxation test  can be s tar ted from some value of the  stress 
and strain tensors we must  reach these stress and strain tensors by  another  test. 
this o ther  test  be terminated at  t ime t ~ to, and up to this t ime we impose an 
a rb i t ra ry  constant  strain ra te  ~ ,  so tha t  iiJlt<t0 ~ ~,~- We  assume tha t  g'[~] ~ E 
so tha t  (B 7) is positive. Then from (40) 

{~j - G~[~]} ~ > 0 (60) 

and with this result  from (39) 

E 8~L _ ~.~i ) 8~km ~ekm z~k~ ~ 0. (61) 

for t ~ to. 
d6 Because ~ can be arb i t rary  Eq. (61) asserts tha t  the  "s lope"  ~e obtained in a 

constant  s train rate  test  cannot  exceed the  "elastic slope". F rom (60) we deduce 
tha t  in a tensile or shear test  with positive (negative) constant  strain ra te  the  

7 Note that this property is true even if the function k depends upon ~, ~. 
s These properties are shared by the anisotropic model as well; compare (16) with (39). 

However, in this case we have not shown that (42) holds true at large times. 
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corresponding components of o - -  G are positive (negative). Both statements 
require (B 7) to be positive. 

At. t = t o the creep or relaxation test  commences and from (35) using (37) and 
(38) for t > t o 

~ij - -  a~ -- a~i[e] (62) 
E k [ F ]  

for the case of creep; for the case of relaxation 

d'i~ = a~[t~ " (h~ (63) 
k[F] 

where the superscript 0 denotes the quanti ty which is kept  constant during a 
specific test. 

Using the interpretation of (60) given earlier, we can now state that  the 
axial and shear creep ra tes  following the respective test with constant positive 
(negative) strain rate are positive (negative). However, the relaxation rates have 
the opposite sign of the corresponding creep rates. Since k is positivel See Cernocky 
and Krempl  [23], the sign of a particular component of the creep (relaxation) rate 
is always determined by  the sign of the appropriate component of [a --  G}. The 
initial loading determines therefore the sign of a particular component of the creep 
and relaxation rates. Moreover, the creep (relaxation) rates are zero only if the 
corresponding components of {a - -  G / a r e  zero. 

I f  the invariant ~1 or any  other deviatoric ~s together with (B 1) is used then 
E~D --  G = 0 for a hydrostatic state of strain and a = G from (40). For this s tate  
of strain and for deviatoric ~ there is no creep and  no relaxation. However, if a 
nondeviatoric invariant ~s was to be employed instead then creep and relaxation 
can occur for a hydrostatic state of strain. 

4. Discussion 

In  the preceding the properties of a nonlinear anisotropic or isotropic consti- 
tutive equation based on total strain were investigated. I t  has been shown that  
this model can represent many  qualitative features of metal  deformation behavior 
in a unified way, including 

Initial linear elastic behavior 

Initial elastic response in torsion (tension) after  arbi t rary prestrain (pre- 
stress) in tension (torsion) 

Linear elastic, rate-independent behavior for pure hydrostatic stress 
(strain) 

Initial elastic "slope" upon large  instantaneous changes in strain rate in the 
"plastic region" under any  state of stress 

Strain (stress)-rate sensitivity of the stress-strain curves 

Defined behavior in the limit of very slow and very fast loading rates 

Nearly rate- independent  behavior for small strain rates and a proper 
choice of the material function k 
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Stress-strain curves obtained at  different constant strain rates will ulti- 
mate ly  have the same slope. 

The spacing of the stress-strain diagrams can be highly nonlinear. The 
stresses at  a given strain for stress-strain curves Obtained with strain 
rates differing by  several orders of magnitude can be much less than an 
order of :magnitude different. 

Creep and relaxation are included in a natural  way 

Relaxation will ul t imately terminate, but both pr imary and secondary 
creep are possible. 

The creep rates have the same sign as the strain rates used to arrive at  the 
creep stress level. The relaxation rates have the opposite sign. 

Initial creep and relaxation rates in tests started from a point in the 

"plastic range" of a constant strain-rate tensile test  depend only upon the 
strain rate, and not on the particular values of stress and strain. 

In  the above we have used stress-strain curves, strain rate, creep, and relaxation 
rate in a scalar sense. I t  is implied that  the tensor equations of the paper  are 
specialized to suitable homogeneous deformations such as the tensile or shear 
(torsion) test. 

We have kept  the equations as simple as possible, and the two remaining 
coefficient functions in (35) subject to (37) and (38) can in principle be determined 
from uniaxial tensile tests alone. Here  we have assumed that  Poisson's ratio is 
constant. A forthcoming paper  will deal with variable Poisson's ratio to remove 
this restriction. The proper choice of the invariant  ~0 in G will determine the 
relation between the axial and shear responses as demonstrated in Fig. 2. The 
isotropic formulation given in (35) is of course only one of many  tha t  can be 
derived from (1). Eq. (1) is itself a very specific choice. 

But  even the specific choice of (35) offers many  possibilities. We have empha- 
sized the application to metals, i.e., c~onditions (37) and (38) together with a 
deviatoric ? in G. However, if a nondeviatoric F is used in G while keeping (37) 
and (38) we can model creep and relaxation under pure hydrostatic stress (strain). 
l~eplacing (37) by  (C 1) offers other possibilities. Eq. (35) could be applied to 
materials other than  metals. 

The nonlinear viscoelastic solid proposed herein is not a valid mode] for metals 
if cyclic loadings are involved. Specifically, we contend that  (1) or (35), subject to 
(37) and (38) needs modifications whenever any one tensor component {a~i - -  G,i} 
changes sign. Equivalently we need modifications when a loading pa th  would 
penetrate  the surface defined by  (8). These modifications will be discussed in a 
subsequent paper  and are stated in principle by  Kremp] [21]. Note tha t  the model 
holds for some nonproportional loading paths, see specifically :Fig. 1. (Further it 
can be seen from (17),(18) or (62), (63) that  a creep or relaxation test  does not 
penetrate  the surface defined in (8).) 

We may  therefore consider a combined creep and relaxation test  of the 
following character. Through proportional loading we reach a shear stress and an 
axial  strain which are subsequently kept  constant. We have therefore creep in 
torsion simultaneously occurring with axial relaxation. 

19 AcLe. Mech. 36/3--4 
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Considering (62) and (63) we see tha t  the two tes ts  influence each other  
through the  invariant  90 in G and through the invar iant  !" in It: I f  the condi t ions  
are such tha t  only  p r imary  creep occurs we can compute  from (62) and (63) the  
final value of the shear creep strain as influenced by  the shear creep stress and the 
axial relaxation strain since this value does no t  depend upon the function It. 

Constant Shear Stress (ksi): 

c; 
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Fig. 3. Simultaneous axial relaxation and shear creep. Final value of total shear strain in 
primary creep at various constant shear stress values plotted vs axial constant prestrain 

for a specific g-function and ~ ~ q%; ~ ~ .3. 

Fig. 3 shows a graph illustrating this relationship for a par t icu lar  choice of G 
and the F of (31). Par t icular  relaxation and creep curves for this test  are given in 
Figs. r  and b, respectively, for a constant  k. These curves reflect only  the in- 
fluence of the invariant  9. A dependence of lc upon F would certainly alter the 
detailed variat ion of the  curves with time, bu t  would not  influence the quali tat ive 
behavior. 

No experiments duplicating the above calculations appear  to be available for 
metals. The t rend predicted b y  o u r  equations has been observed by  Lai and 
F ind lay  [28] on polyurethane.  

The present  model  was established as a ra te-dependent  model. I t  can predict  
almost  ra te- independent  behavior  for limited ranges of strain rates through the 
function ]c. I f  ]c is small then the exponential  te rm in (40) can become very  small. 
I f  in addit ion the  strain rates are small then the integral in (40) m a y  be small 
relat ive to G. 

Although our approach differs conceptual ly f rom others proposed in the  
literature, certain common elements can be identified. 
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Eqs. (16) and (35), (37) and (38) show that the behavior predicted by 
these equations for a given stress (strain) rate tensor is determined by the value of 
{6 -- G}. Because of this feature our equation is related to the overstress model 
which was previously proposed by Malvern [29], see also Perzyna [30]. 

The curve G can be interpreted as the "equilibrium" stress-strain curve of 
Eisenberg et al. [14] and (8) could be considered an equilibrium surface. Con- 
centric to this surface a~e the ones defined in Eq. (19). Eq. (42) shows that a 
constant strain-rate test can ultimately reach 6 --  G = A where A is constant. 
On the surfaces A = eonst, the inelastic strain rate is constant, see Eq. (14); it is 
zero for A = 0. Therefore, the surfaces A = const, could for a given e be inter- 
preted as the D-surfaces proposed by Rice [9] and G[~] for a given ~ would be 
identified as the rest stress, see Rice [9]. Further if we consider the approximation 
of rate independence discussed earlier then the surfaces A -~ const, are close 
together as proposed by Rice, see Fig. 2 in [9]. Eq. (18) clearly shows that the 
creep strain rate is dependent on 6 --  G as discussed by Eisenberg e ta] .  [14], 
p. 1249. 

The concept of a rest stress or back stress is also employed in the basically 
rate-dependent formulations of Miller [31] and Krieg et al. [32]. In their approach 
the inelastic strain rat~ is zero when the applied stress reaches the rest stress. This 
property is shared by the present model. 

The above shows that our theory contains elements of other approaches. The 
connecting link is the {6 -- G} dependence of our final equations. 

This dependence together with the specialization ( l la)  or (37) assures that the 
solutions depend on 6 and s only through {6 - -  G}. As a consequence the solutions 
have properties representative of actual metal deformation behavior. These 
properties include: 

Initial elastic response upon departure from 6 - =  G[~], Eqs. (9), (10), 
( l la )  and (39). 
The existence of a "steady-state" condition for constant strain rate, 
Eq. (41). I f  in (41) /c would depend on ~, ~ instead of F then ~[r}, ~]It=~ 
would have to be constant for {6 -- G} to be constant 9. In this case the 
{a --  G}-curves for various constant strain rates would be linearly spaced, 
see (41) and [23], A creep or relaxation test started from the steady-state 
condition would in this case be linear in stress, see (62) and (63). I f /c  is 
made to depend on /" then both n0n]inear spacing of the stress-strain 
curves at various constant strain rates results and the creep and relaxation 
curves originating from the steady-state position of the stress-strain curve 
depend nonlinearly on stress in accordance with the qualitative behavior 
of metals. 

There are other desirable properties as a consequence of the {6 -- G} depend- 
ence of the equations. They are discussed in [23] for the uniaxial case and carry 
over to the multiaxial case. For details in the uniaxial case the reader is referred to 
Cernocky and Krempl [23] and Liu and Krempl [24]. 

OGi i 9 In making this argument we assume to be constant. For realistic cases 

~ E so that small changes of oGi] Oekm ~C'km ~8;m with e have little effect on 6 -- G. 
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Appendix I 

Torsional Response in the Presence of Axial Prestress. 
The Prediction of (1) 

For the thin-walled tube usually employed in plasticity experiments an axial 
prestress 

[6] = o (A~) 
0 

results in a strain tensor 

t en 0 0 ] 

| e l  : / 0  ~22 E23 ~ (A2) 

L0 ~23 ~33.J 

In the case of isotropy E23 = 0 and ~22 = S33" The strain matrix (A2) can be 
arrived at by purely kinematical consideration and by assuming that  the state of 
stress and the state of deformation are homogeneous. 

We have to assume that  G, M and K in (1) are constructed in such a way 
that  (A1) gives rise to (A2). :Now let a in (A1) be constant for all t ~ t o ~ 0. 

At time t ~ to the stress increment 

[do] = d~12 0 
LdG~ 0 

(A3) 

with dff12 --~ da13 is imposed which can result in the strain increment (depending 
upon the material symmetries some of the de components may be zero ; in the case 
of isotropy ds23 ~ O) 

[d~l, d~,2 d~,3] 

[ g e ] - ~ | d ~ a  de22 de23|. (A4) 

Ldel3 de23 de3aA 

The components of the tensors in (A1)--(A4) are referred to a rectangular co- 
ordinate system with the el-direction along the axis of the usually employed 
thin-walled tube. 

To obtain useful results we have to restrict M, K and d__a. Specifically the 
de 

components of the above tensors with an index appearing only once or with two 
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identical indices and the other two indices different wilt be set equal to zero 1~ We 
then obtain from (9) 

Ml111811 @ Ml122822 @ Mllaa~a3 -~ fill - -  Gll 

M2211811 q- M2222~22 @ M22aa/aa ~-- 0 (A5-1) 

Ma31,~11 -}- Maa2~2e @ M3333,~33 = 0 

Qa =: 0 (A5~2) 

(M1212 --  2K1912 3(71, ) " Oq~ / ~12 = 0 (A5-3) 

( Mml a - -  2K~aia i~a = 0. (A5-4) 
Oela ] 

Because of the fact that  i12 and ila are arbi trary in (A5-3) and (A5-4), respec- 
t ively we see that  the shear response is elastic provided ( l l a )  holds. Eqs. (A5-1) 
are constraint equations which must  and can be satisfied. 

The material  symmetries to which we have restr ie ted ourselves include the 
usual cases of isotropy, transverse isotropy and orthotropy. These are material 
symmetries that  are pert inent  to the thin-wMled tube tests of plasticity. 

From the above we see that  (1) together with (11 a) and the imposed symmet ry  
restrictions reproduces the initial elastic shear response under a tensile prestress 
observed in many  experiments. We note that  while the initial shear response 
remains unaltered by  the presence of large axial prestress (prestrain), as shown in 
Fig. 1 the subsequent nonlinear shear response is affected by  the magnitude of the 
prestress (prestrain) value. 

Isotropic Case 

From (39) we obtain for de23 = 0 and %a = 0 

(E otO~i ar 1 ( ~ &D ~ " 
aell aell/  811 @ 2 E Ogl2 ael2] 812 

&*3 - -  & i a / ~ , a  - -  ~ - [ ~  - 

(A6) 

From (A6) using (A1), (A3), (B1) and (B5) 

as well as 

en = %1 -- Gn[e] (A7) 
Ek[V] 

~o'12 ( 2 E a~.. / e.. = o (A 8) 

where we have used dr12 =-dfla,  ~12--~ ~13 and 0~1s ___ ~ l s .  Since ~12 can be 
&12 &la 

arbitrarily imposed and since 811 iS given by  (A7) we conclude from (A7) and 

lq We a~re therefore not considering the most general case. 
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(AS) 

and 

a(Ii2 ~Ui3 E 
~12 ~13 2(1 + v) 

(A9) 

~13 __ ~12 __ 0. (AI0) 

Note tha t  no restrictions were put  on - -  m the isotropic case. The derivation for 
~e 

torsional prestress and subsequent axial loading is similar with analogous results. 

Appendix I I  

Construction of Isotropic G o Functions and Invariants 

When ~i ~ s# @ 0 and all other ~a~ are zero, the componen t functions 
G~i ~ Gi, are required tO have the 'general form of a stress-strain curve, and all 
other Gab must equal zero. Further, G must be isotropic and must reduce to the 
linear isotropic elastic relationship in strain for an initial interval of strain. Also 
we require that G reduce appropriately, Eq. (26), to the uniaxial case when a 
uniaxial deformation field, Eq. (25), is imposed. Consequently, an acceptable 
representation of Gii is 

G~j[~] = ~ g[~__2] | 

with (B 1) 

) 
and for ~o < ~ where ~ is some appropriate number  ~ 1 

K2] ~ g'[o]. (B2) 

Usually g'[0] ~- E, the modulus of elasticity. The function g[x] represents the 
uniaxial stress-strain curve for the axial  strain x in the limit of very slow loading. 
For its idealized mather~atieal representations the methods proposed by  Liu et al. 
[26] or Cernocky and Krempl  [27] may  be used. In  these two cases g[x] is analytic, 
monotonic, and is O[x] both as x,-+ 0 and as x -+ o~ li. 

Various constructions of the invariant ~ and its par tner  invadant  ~ appear  
in Table 1. Certainly an  infinite var iety of invariant  constructions is possible. We 
note that  two of the representation pairs of (~, ?) tha t  is (~1, ~i) and (~a, ~a), 
are deviatoric ; they vanish under a hydrostatic strain and stress field, respectively, 
All ~ and ~ in Table 1 reduce to the uniaxial strain and stress, respectively, in the 
uniaxiat deformation field. In  addition, all of the listed ~sa t i s fy  the differential 
equation 

~s~ s~ = ~. (B 3') 

ii O[x] denotes the Landau order symbol; see p. 128 of R. G. Bartle, The Elements of 
Real Analysis, Wiley 1976. 
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and 

where 

Differentiation of G~ with respect to strain yields 

~2 ~eab 

~o~ ~:~ = g'[o] ~ 

(B~) 

where 

E 
E~ 
R, X~,,~o 
~[~] 

and 

~eabaG'~i (lg'[~]+v) ( e~ieii ~- (1 v ) e~iea~ = -- 2v - - -~  (eii)~ > 0 (B6) 

provided g'[~v] > 0 which is usually the case for metals. Also from (B3)--(B6) we 
obtain 

1(  ) 
E {~r _ 0_~] = (E -- 9'[?])(1 + v) e~ ~- (1 -2v)  (ez)2 > 0 (B 7) 

provided E > g'[~0]. 
If the Y[X] functions of Cernocky and Krempl [27] are used for the represen- 

tation of g[~v] then the following approximate expressions result for ~v > Xf for the 
second kernel form and for appropriately selected constants 

Gii[e] ~ ~ii (E8 + 1 (E -- Es)(RXf--)~o) ] (B8) 
RF[RX~ -- g] ] 

~Gii ~ E8 ~ j  (B9) 
~Cab a8ab 

elastic modulus 
tangent modulus in the "plastic range" 
parameters of the uniaxial stress-strain curve as defined in [27] 
any of the base functions listed in [27]. 

The selection of the Y[X]-functions for the representation of g[9] requires 
that  the actual uniaxial stress-strain diagram can be approximated by an initial 
linear range, followed by a strong nonlinear monotonic curvature which terminates 
with another linear region. Although we have found these representations for 
g[~] very useful, the theory presented herein is valid for any suitable g-function. 

We note that  the particular choice of the suitable invariant ~ does not in- 
fluence the character of the constitutive equations governing uniaxial deforma- 
tion; this is because in the uniaxial field 9 is made to reduce to the axial strain. 
However, the selection of a particular invariant is a constitutive assumption, and 
the particular construction of ~ does influence the nature of all deformations other 
than those of the tensile test. Specifically, in a pure torsion deformation, the shear 
stress-shear strain curve will differ from a pure tensile stress-axial strain curve at 

(+ ) ar _ 1 ( ~  + ~SJ~) + ( 1 -  2~----~ ~ # ~  (B5) &ab (1 + v) 

so that  we obtain ~b~i e~o = ~j .  Then for the strain invariants which satisfy (B3) 
tOeab 

we obtain the condition 
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corresponding strain values, and this difference will depend upon the particular 
choice of F. This is clear in Fig. 5 in which we have plotted the solution for a pure 
tensile loading at limitingly small strain rate and then  have plotted pure shear 
deformation curves on the same strain scale and at the same limiting loading rate 
for each of ~he five invariants ~ in Table 1. The influence of the choice of ~o upon 
the shear stress-strain diagram is apparent. The results shown in :Fig. 2 apply 
similarly for other and more complicated deformations. Consequently, full under- 
standing of  the uniaxial and shear deformation characters of the material will 
strongly motivate the construction of appropriate invariants ~0. 

o_= r 

7o 

oo o',oz o'.o4 o'.o~ o'.oe o',~o o',i~ o',~4 o',~e o. la 
STRAIN *i0 -~ 

Fig. 5. The influence of the choice of the invariant q~ upon the pure shear response in the 
limit of very slow loading, see Eq. (52). The tensile curve is independent of the choice of q). 

In all the shear curves v = .3 

We note that  if the ~ which appears in the hydrostatic Eq. (34) is deviatoric, 
then when (37) applies, Eq. (35) predicts linear elastic rate-independent 
response to a pure hydrostatic loading. This prediction is deemed suitable for 
metals. Conversely if ~0 is not deviatoric in (34) then the theory predicts a non- 
linear rate-dependent response under pure hydrostatic loading. 

The deviatoric and hydrostatic relations (33) and (34) are combined into (35) 
because the same stress and strain invariants have been used in both of (33) and 
(34). We may however elect to use different constructions of ~v in the respective 
deviatoric and hydrostatic constitutive equations. 'This increases the capability of 
the model. For example, a deviatoric ~o may be used in Eq. (34), while a non- 
deviatoric ~0 may be used in the deviatoric relation (33). We recall c} is determined 
a~cording to the condition ~0 = g[~] if (7 = G. 

20 Acta Mech.  36/3--4 
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Appendix III 

Ins tead  of postulat ing m[ ] ~_ E as in (38) we set k[ ] 

m[ ] _ ~5'[~0] - -  d~[~] and 9'[0] --~ E (C1) 
k[ ] d~ 

where ~ is a suitable invariant  of the strain tensor. The assertions given below can 
be verified if E is replaced by  9'[~] in the appropria te  equations. 

Eq. (C 1) has the  following consequences: 

The "elastic strain ra te"  is no longer linear, i.e., f rom (33) and (34), respec. 
tively, 

~aa" :(~aa----~aa)(1--2v)+\ m [ _  - ~aa(1-- 2v)0'[~] (C3) 

I f  g ' [?]  > 9'[~] then (60), (61) change sign, see Cernocky and Krempl  [23]. 

Init ial  linear elastic response in shear m a y  not  result  in the presence of 
axial prestress, see Eqs. (A8) and (A9). 

The spacing of stress-strain curves obtained a t  various strain rates is 
s t rongly affected by  g, see (41) and (43), Note  tha t  (44) still holds ; see [23]. 

The change in slope upon an instantaneous strain-rate change, Eqs. (56) to 
(59) is no longer independent  of e. 

The creep rate  depends  not  only on ai~ G~i[e] bu t  also on 9 '[?] ,  Eq.  (62). 
I n  the  limit of very  fast strain rates a nonlinear stress-strain curve may  be 
obtained, see Eq. (55). 

For  a hydrostat ic  state of strain the stress response m a y  become nonlinear 
and ra te-dependent  under  suitable selections of the invariants in ~ and G. 
If  a nondeviatoric  invariant  is used for ~ then the stress response to a 
hydrostat ic  strain m a y  be nonlinear and rate  dependent .  I n  the  limit of 
very  slow loading, however, the response is linear if a deviatoric invariant  
is used in G. 
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