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The Selberg Trace Formula connects the spectrum of the Laplace operator A on 
a compact Riemann surface M to the length spectrum of closed geodesics on M 
[11], [17]. Selberg defined a zeta function which is associated to this trace for- 
mula and gives information on the length spectrum of M. A general trace for- 
mula for compact manifolds of variable negative curvature has been obtained by 
Colin de Verdi~re [5] and Duistermaat-Guillemin [7]. Millson defined a zeta 
function in [14] to discuss the t/-invariant of a (4n-1)-dimensional  compact 
manifold of constant negative curvature. He extended Z(s) from its half-plane of 
convergence to a meromorphic function on the whole plane. The trace formula 
in [71 and the definition of Z(s) in [14] both weight the closed geodesics accord- 
ing to the strength of the hyperbolicity of their Poincar6 return maps. 

A function measuring strength of hyperkiolicity has been used by Sinai [19] 
and Bowen-Ruelle [3] in studying equilibrium states for Anosov and Axiom A 
flows. In this paper we use their approach to calculate the precise domain of 
convergence of a zeta function of Millson's type for manifolds of variable nega- 
tive curvature. It turns out that this domain is given by the pressure of half 
Sinai's function. This answer reduces in Millson's case to half the entropy of the 
geodesic flow. We do not know whether Millson's technique of obtaining a func- 
tional equation for Z(s) and extending Z to a meromorphic function can be 
applied in the case of variable negative curvature. 

Let M be a compact Riemannian manifold of dimension n with all sectional 
curvatures negative and let N be the set of its primitive closed geodesics. Define 
a zeta function by 

i e x p -  ks L(7 ) 
log Z(s) = ~ k Met (I --p(7)k)l t" 

7c~ k= i 

Here p(7) is the Poincar6 map of the geodesic flow qb around the closed orbit 7 
and L(?) is the period. It is well-known [1] that ~5 is an Anosov flow on the unit 
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tangent bundle T1M and T(T1M ) has invariant (n-1)-dimensional  subbundles 
E ~ and E" that are respectively contracted and expanded by the flow. Following 
[19] and [3] we define c~: TIM~IR by 

d 
a(v) = - ~-  log det (D qS~ I E")It = 0. 

This is minus the instantaneous rate of expansion at v. 
For a flow ~ = ( O t ) ~  on a metric space (N, d) we define the pressure P(/~) of a 

function/3: N ~ I R  as follows [16], [21]. For large T and small 3 > 0  a finite set 
Y c N  is said to be (T, 6)-separated if, given y, y'sY,, y4=y ', there is te l0 ,  T] with 
d(Oty, ~ty')>=6. Then 

P(/~)=lim limsup T -1 logsup ~, exp ~(O~y)ds; Y is (T, 6)-separated . 
6 ~ 0  T ~ o o  ( y ~ y  

Thus the pressure of a function, a concept that came into Dynamical Systems 
from Statistical Mechanics, measures the growth rate of the number of separated 
orbits weighted according to the value of the function along them. 

Theorem. Z(s) is absolutely convergent if and only if 

Re (s) > p(�89 ~) 

Remarks 1. In Millson's zeta function the 7-term in the series is multiplied by a 
coefficient depending on a representation of the compact group SO(dim M - 1 )  
and the parallel transport around y. Any continuous representation of such a 
compact group will not affect the domain of convergence. 

2. The exponent of �89 in the denominator of Z corresponds to the �89 in P(�89 
and it will be apparent from the proof that if Z were defined with some other 
exponent t then the domain of convergence would be Re(s)>P(t~).  The zeta 
function introduced by Smale [20, p. 801] for Axiom A flows corresponds to the 
case of exponent 0. This was shown by Chert in the case of the geodesic flow for 
negative curvature [4], [12] to have exponent of convergence equal to the to- 
pological entropy, which is P(0). 

3. Smale's zeta function was considered by Ruelle [15] and was shown by 
Gallavotti [9] not to be analytic in general. It is possible that a better definition 
for an Axiom A flow would weight the terms by some factor Idet(I-p(7)k)] -t as 
in Z above. The convergence would again be given by P(tc~). However, this idea 
would only be useful if Z could be shown to have a meromorphic continuation. 
Here we do not have the half-densities of [7] to suggest t=�89 We might guess 
that the EU(E ~) factor should appear with an exponent the Hausdorff dimension 
of the intersection of the non-wandering set with local strong unstable (stable) 
manifolds. 

Proof of Theorem. First note that the double sum over positive integers k and 
primitive closed geodesics 7 can be considered as a sum over the set Q of all 
closed geodesics 

log Z (s) = ~. Met (I - p (~))l- ~ k(,/)-i exp - sL(7) 
~,EQ 
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where k(7) is the positive integer for which 7 is k(7) times a primitive closed 
geodesic. For absolute convergence it suffices to consider s real. 

Now consider det(I-p(7)).  If P(7) has expanding eigenvalues 21 . . . .  ,2,_ ~ and 
contracting eigenvalues 2 . . . . . .  22,_ 2 then 

2 n - 2  

[det(I-p(7))] = 1-[ 
1 

n - - 1  n l  2 n - 2  

1-~1= H I~,1. H FI-~;*I H 11-2kl. 
i = 1  j = l  k = n  

By the hyperbolicity properties of the Anosov flow 2[ 1, ..., 2~-_~1, 2,, ..., 22,_ 2 
are smaller than exp-bL(7)  for some b>0.  Thus the ratio of [det(I-p(7))l to 
n - 1  

~I j2i] tends to 1 as L(v)~oe and for purposes of convergence we may replace 
i ~ l  

the first expression by the second in the definition of Z(s). 
This product of expanding eigenvalues is the coefficient of expansion of vol- 

ume in E u, namely exp -~  a, since the function - ~  is the rate of expansion of 
7 

volume in E" (called ev by Sinai [19, w and -~b (") by Bowen-Ruelle [3]). Now 
the summand in Z corresponding to 7 is 

k(7) 1 exp -sL(7) exp �89 ~ a =k(7) -1 exp ~ (�89 
Y 

We break up our summation using a small number e as follows: 

where 

2 k(7) -1 exp~ (�89 ~ a~ 
~,~Q ?, 1"=0 

a~= ~ k(~) -1 exp ~ (�89 
r ~ -  �89 �89 y 

By Lemma 2.8 of [8], a, reexp-reP(�89 lies between two positive constants. 
(See also Lemma 4 of [2] for this idea that the separated set of periodic orbits is 
adequate for the definition of pressure.) Now the series converges if and only if 
P ( � 89  By Theorem 2.1(vii) of [21], P(�89189 so the series con- 
verges absolutely if and only if 

Re(s)>p(la) 
as required. 

Remarks 4. Pressure is a convex function (Theorem 2.1 of [21]) so P(�89189 
+ P(a)) and P(0) is the topological entropy h(qS) of the flow while P(a)= 0 (with 
the smooth measure as equilibrium state) by [3]. Thus P(�89189 In the 
special case of constant curvature a is constant so the functions 0 and a have the 
same equilibrium state (the smooth measure) and P(�89189 This agrees 
with Sinai's formula [181, [13] giving the topological and measure entropy as 
( d i m M - 1 )  K when the curvature is constant at - K  2 applied to Millson's re- 
mark [14, p. 2] that his zeta function converges for Re(s)>�89 M - 1 )  where 
the implicit assumption is that the curvature is - 1 .  

5. It would be nice to know that the exponent of convergence P(�89 is ex- 
tremal for a metric of constant curvature among Riemannian metrics of negative 
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c u r v a t u r e  on M wi th  the  s a m e  v o l u m e .  F o r  surfaces  K a t o k  has  shown  [10]  tha t  

the  t o p o l o g i c a l  e n t r o p y  increases  a n d  the  m e a s u r e  e n t r o p y  decreases  as we per-  

t u rb  o u r  m e t r i c  a w a y  f rom c o n s t a n t  cu rva tu re .  T h e  b e h a v i o u r  o f  P(�89 0 is no t  

c lear  to us n o r  is the  r e m a r k  [14, p, 34] t ha t  sugges ts  P ( �89189  
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